

I hereby give notice that a hearing by commissioners will be held on:

Date:	Mondays through Thursdays from
	18 September until 12 October 2023
Time:	9:30am
Meeting Room:	Council Chambers
Venue:	Level 2, Henderson Civic, 3 Smythe Road,
	Henderson, Auckland 0612

NOTIFICATION MATERIAL

VOLUME 12

NORTH-WEST HOUSING INFRASTRUCTURE FUND (HIF): PROJECT ON TRIG ROAD (NoR)

TE TUPU NGĀTAHI SUPPORTING GROWTH

AUCKLAND TRANSPORT & WAKA KOTAHI NZ TRANSPORT AGENCY

COMMISSIONERS

Chairperson

Commissioners

Richard Blakey (Chairperson) Mark Farnsworth Vaughan Smith

> Patrice Baillargeon Kaitohutohu Mataamua Whakawā / Senior Hearings Advisor

Telephone: 09 890 4692 or 027 338 5383 Email: patrice.baillargeon@@aucklandcouncil.govt.nz Website: www.aucklandcouncil.govt.nz

Note: The reports contained within this agenda are for consideration and should not be construed as a decision of Council. Should Commissioners require further information relating to any reports, please contact the Team Leader Hearings.

VOLUME 11 TRHIF-PT 1	TABLE OF CONTENTS	PAGE NO.
	sing Infrastructure: Trig Road (NoR) – Part 1	
Attachment 01	Trig Road Corridor Upgrade – Public Notice	5-8
Attachment 02	Trig Road Corridor Upgrade – Lodgement Cover Letter	9-12
Attachment 03	Trig Road Corridor Upgrade – Form 18	13-50
Attachment 04	Trig Road Corridor Upgrade – Assessment of Effects on the Environment	51-182
Attachment 05	Trig Road Corridor Upgrade – Assessment of Alternatives	183-228
Attachment 06	Trig Road Corridor Upgrade – Statutory Assessment	229-244
Attachment 07	Trig Road Corridor Upgrade – Rules Assessment	245-256
Attachment 08	Trig Road Corridor Upgrade – Matters of Discretion and Assessment Criteria	257-264
Attachment 09	Trig Road Corridor Upgrade – Proposed Designation Conditions	265-290
Attachment 10	Trig Road Corridor Upgrade – Proposed Consent Conditions	291-300
Attachment 11	Trig Road Corridor Upgrade – Response to Soft Lodgement Request for Further Information	301-318
Attachment 12	Trig Road Corridor Upgrade – Indicative Design and Designation Drawings	319-340
Attachment 13	Trig Road Corridor Upgrade – Assessment of Transport Effects	341-384
Attachment 14	Trig Road Corridor Upgrade – Assessment of Construction Noise and Vibration	385-428
Attachment 15	Trig Road Corridor Upgrade – Assessment of Traffic Noise and Vibration Effects	429-480
Attachment 16	Trig Road Corridor Upgrade – Assessment of Historic Heritage Effects	481-528
Attachment 17	Trig Road Corridor Upgrade – Assessment of Landscape and Visual Effects	529-602
VOLUME 12 TRHIF-PT 2	TABLE OF CONTENTS	PAGE NO.
North-West Hou	sing Infrastructure: Trig Road (NoR) – Part 2	
Attachment 18	Trig Road Corridor Upgrade – Assessment of Ecological Effects	5-168
Attachment 19	Trig Road Corridor Upgrade – Assessment of Stormwater Effects	169-234
Attachment 20	Trig Road Corridor Upgrade – Erosion and Sediment Control Plan	235-280

	Notices of Requirement
Te Tupu Ngātahi Supporting Grow	th – North-West Project

Attachment 21	Trig Road Corridor Upgrade – Preliminary Site Investigation	281-332
Attachment 22	North-West HIF – Trig Road Geotechnical Factual Report	333-382
Attachment 23	North-West HIF – Trig Road Geotechnical Interpretive	383-412
Attachment 24	Report Record of Title	413-570
Attachment 25	Cultural Impact Assessment	571-624

ATTACHMENT 18

TRIG ROAD CORRIDOR UPGRADE ASSESSMENT OF ECOLOGICAL EFFECTS

Trig Road Corridor Upgrade Assessment of Ecological Effects

December 2022

Version 1

Document Status

Version no.	Responsibility	Name
2020 Draft	Author	Lisa Simonsen, Conor Reid
	Reviewer	Fiona Davies
		Lyndsey Smith
		Matthew Kerr-Ridge
		Matt Baber
		Gerry Kessels - Blue Wattle Ecology
1.0	Author	Dannie Cullen
1.0	Addio	Michiel Jonker
	Reviewer	Fiona Davies
	Approver	Bridget O'Leary

Revision Status

Version	Date	Reason for Issue
1.0	2022	Final for Lodgement

Table of Contents

1 2		executive Summary9 Itroduction			
	2.1 2.2		ground ose and Scope of this Report		
3	Proj	ect Desc	cription	14	
	3.1 3.2		ct Features ative Construction Methodology		
		3.2.1	General Construction Overview	16	
		3.2.2	Construction Methodology		
4	State	utory Co	ontext	17	
	4.1	Notice	e of Requirement	17	
	4.2	Resou	urce Consent Application	17	
5	Rece	eiving E	nvironment	18	
	5.1	Appro	oach to the Receiving Environment	18	
	5.2	Existi	ng and Future Environment Specific Context	19	
6	Asse	essment	t Methodology	20	
	6.1	Prepa	ration for this Report	20	
	6.2				
	6.3 6.4				
	6.5	3			
	6.6				
		6.6.1	Site Investigations		
		6.6.2	Assessing Aquatic Ecological Value		
	6.7	Wetla	nd Ecology Assessment Methodology	23	
		6.7.1	Site Investigation		
		6.7.2	Assessing Wetland Ecological Value	24	
	6.8	3 Terrestrial Ecology Assessment Methodology			
		6.8.1	Site Investigation		
		6.8.2	Assessing Terrestrial Ecological Value		
7	Asse	Assessment of Effects2			
	7.1	Ecolo	gical Baseline	29	
		7.1.1	Historic Ecological Context		
		7.1.2	Terrestrial Ecology (Flora)		
		7.1.3	Terrestrial Ecology (Fauna)		
		7.1.4 7.1.5	Aquatic Ecology Wetland Ecology		
		7.1.6	Summary of Ecological Value		

9

	7.2	7.2 Assessment of Ecological Effects		
		7.2.1	Positive Effects	
		7.2.2	Assessment of Construction Effects	
		7.2.3	Assessment of Operational Effects	
	7.3	Impa	act Management	65
		7.3.1	Terrestrial Ecology	65
		7.3.2	Wetland Ecology	
8	Conclusions			
9 References		erences	;	69

Appendices

Appendix 1 – Regulatory Assessment
Appendix 2 – Summary of Ecological Impact Assessment Methodology
Appendix 3 – Aquatic and Wetland Assessment Methodologies
Appendix 4 – Aquatic, Wetland and Terrestrial Ecology Results
Appendix 5 – Ecological Habitat Maps
Appendix 6 – Desktop and Incidental Fauna Records
Appendix 7 – Site Photographs (2019)
Appendix 8 – Wetland Offset & Conceptual Restoration Design

Figures

Figure 3-1 Overview of Trig Road Corridor Upgrade	15
Figure 6-1 EcIA approach followed for this assessment (Appendix 2)	21
Figure 6-2 ABM survey locations	27
Figure 7-1 Existing long-tailed bat records within a 10 km radius of the Project Area (Department of Conservation, 2022; Supporting Growth Alliance, 2022a)	
Figure 7-2 Existing long-tailed bat records within a 5 km radius of the Project Area (Department of Conservation, 2022; Supporting Growth Alliance, 2022a)	34
Figure 7-3 Potential copper skink habitat within and adjacent to the Project Area	40
Figure 9-1 Rapid Habitat Assessment (RHA) protocol (Clapcott, 2015)	82
Figure 9-2 The HGM classification according Brinson (1993) and adopted from Kotze et al. (2007)	83
Figure 9-3 Trig Road wetland vegetation survey plots	92
Figure 9-4 Wetland delineation observations	98

Figure 9-5 Site photographs (2019)	
------------------------------------	--

Tables

Table 1-1 Summary of ecological features and their value for aquatic, wetland and terrestrial habitat and associated fauna within the Project Area 9
Table 5-1 Whenuapai – Trig Road Corridor Upgrade Likely Receiving Environment
Table 6-1 Summary of how different methods of assessment have been applied to inform aquatic ecological value 23
Table 6-2 Summary of how different methods of assessment have been applied to inform wetland ecological value 25
Table 6-3 Summary of how different methods of assessment have been applied to inform terrestrial 28
Table 7-1 Terrestrial habitats in the Project Area
Table 7-2 Terrestrial habitat ecological value assessment associated with Trig Road
Table 7-3 Threatened or At Risk (TAR) native bird species recorded within 2 km of the Project Area 35
Table 7-4 Native bird species recorded incidentally during site walkover 37
Table 7-5 Ecological value for TAR bird species 38
Table 7-6 Native lizard species recorded within 2 km of the Project Area 38
Table 7-7 Native fish species recorded within 2 km of the Project Area
Table 7-8 Description of hydrogeomorphic features for streams TR-S1 to TR-S3 and W5-S241
Table 7-9 RHA results for streams TR-S1 to TR-S3 and W5-S2
Table 7-10 Aquatic ecological features and overall ecological value
Table 7-11 Wetland description and analysis 44
Table 7-12 Wetland ecological features and overall ecological value
Table 7-13 Summary of ecological values for aquatic, wetland and terrestrial habitat and specieswithin the Project Area45
Table 7-14 Magnitude of effects and subsequent level of effect (without impact management) of theProject upon terrestrial ecology (flora) during construction
Table 7-15 Magnitude of effects and subsequent level of effect (without impact management) of theProject upon terrestrial ecology (long-tailed bats) during construction
Table 7-16 Magnitude of effects and subsequent level of effect (without impact management) of theProject upon terrestrial ecology (birds) during construction
Table 7-17 Magnitude of effects and subsequent level of effect (without impact management) of theProject upon terrestrial ecology (herpetofauna) during construction
Table 7-18 Magnitude of effects and subsequent level of effect (without impact management) of theProject on wetland ecology during construction
Table 7-19 Magnitude of effects and subsequent level of effect (without impact management) of theProject upon terrestrial ecology (flora) during operation

Table 7-20 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon terrestrial ecology (long-tailed bats) during operation	1
Table 7-21 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon terrestrial ecology (birds) during operation	1
Table 7-22 Magnitude of effects and subsequent level of effect (without impact management) of theProject upon terrestrial ecology (herpetofauna) during operation	2
Table 7-23 Magnitude of effects and subsequent level of effect (without impact management) of theProject upon wetland ecology during operation6	4
Table 7-24 Wetland ecology features requiring mitigation	6
Table 9-1 Attributes to consider when assessing ecological value of terrestrial species	6
Table 9-2 Magnitude of effect characteristics 7	6
Table 9-3 Magnitude of effect – levels7	7
Table 9-4 Ecological effect matrix	8
Table 9-5 Stream classification criteria (Storey and Wadhwa, 2009)	0
Table 9-6 Likely presence of different functional wetland values associated with different HGM units (wetland types)	4
Table 9-7 Summary of aspects and components considered within the wetland condition assessment(Clarkson et al., 2004). The degree of modification was assessed using the following scoring: 5=verylow/none, 4=low, 3=medium, 2=high, 1=very high and 0=extreme	
Table 9-8 Key wetland pressures assessed within the catchment of the wetland (Clarkson et al.,	
2004). Pressure scores were assigned as follows:5=very high, 4= high, 3=medium, 2=low, 1=very low, 0=none	5
low, 0=none	6
low, 0=none	6
low, 0=none	6 7 8
low, 0=none	6 7 8 9
Iow, 0=none	6 7 8 9 3
Iow, 0=none. 8 Table 9-9 Wetland condition categories and associated descriptions used within this assessment 8 Table 9-10 Stream classification results, based on Storey and Wadhwa (2009)	6 7 8 9 3
low, 0=none. 8 Table 9-9 Wetland condition categories and associated descriptions used within this assessment 8 Table 9-10 Stream classification results, based on Storey and Wadhwa (2009)	6 7 8 9 3 9 0
low, 0=none	6 7 8 9 3 9 0
low, 0=none. 8 Table 9-9 Wetland condition categories and associated descriptions used within this assessment 8 Table 9-10 Stream classification results, based on Storey and Wadhwa (2009) 8 Table 9-11 Summary of RHA values 8 Table 9-12 Ecological value assessment for aquatic ecological features 8 Table 9-13 Wetland vegetation plots, dominance test (Dom T) and Prevalence Index (PI) 9 Table 9-14 Wetland condition scores for impact indicators and indicator components for TR-W1 to TR-W7 9 Table 9-15 Catchment impact score for TR-W1 to TR-W7 10 Table 9-16 The likelihood of different functional wetland values generically associated with Hillslope seep wetlands connected to the stream network (Kotze et al., 2007) 10 Table 9-17 The likelihood of different functional wetland values generically associated with channelled 10	6 7 8 9 3 9 0 1 d
Iow, 0=none. 8 Table 9-9 Wetland condition categories and associated descriptions used within this assessment 8 Table 9-10 Stream classification results, based on Storey and Wadhwa (2009)	6 7 8 9 3 9 0 1 d 2 3
Iow, 0=none. 8 Table 9-9 Wetland condition categories and associated descriptions used within this assessment 8 Table 9-10 Stream classification results, based on Storey and Wadhwa (2009)	6 7 8 9 3 9 0 1 d 2 3 6

Table 9-22 Ecological value assessment for terrestrial ecological features (fauna)	. 112
Table 9-23 Impact assessment for terrestrial ecological features (flora)	. 114
Table 9-24 Impact assessment for terrestrial ecological features (fauna)	. 116
Table 9-25 Desktop bird records within 2 km of the Project Area	. 125
Table 9-26 Incidental bird species identified in the Project Area during the site investigation	. 128
Table 9-27 Desktop herpetofauna records within 2 km of the Project Area	. 129
Table 9-28 Desktop freshwater fish records	. 129
Table 9-29 Vegetation species identified during site investigation	. 130

Glossary of Defined Terms and Acronyms

Acronym/Term	Description	
AEE	Assessment of Environmental Effects	
ABM	Automatic Bat Monitor	
AT	Auckland Transport	
AUP:OP	Auckland Unitary Plan: Operative in Part	
EcIA	Ecological Impact Assessment	
EIANZ	Environment Institute of Australia and New Zealand	
Impact Management	 Includes the full range of actions taken to address adverse effects on indigenous biodiversity and ecosystems. This includes: Avoid Remedy (remediate, restore, rehabilitate, reinstate) Mitigate Offset Compensate 	
NPS	National Policy Statement	
NPS:FM	National Policy Statement on Freshwater Management 2020	
NPS:IB	National Policy Statement for Indigenous Biodiversity 2019 (Draft)	
NG	Net Gain	
NNL	No Net Loss	
NoR	Notice of Requirement	
Project	Trig Road Corridor Upgrade Project	
Project Area	Area that is located within the designation footprint	
RMA	Resource Management Act 1991	
SEA	Significant Ecological Area	
TAR	Threatened or At Risk	
Te Tupu Ngātahi	Te Tupu Ngātahi Supporting Growth Alliance	
Waka Kotahi	Waka Kotahi New Zealand Transport Agency	
ZOI	Zone of Influence	

1 Executive Summary

Assessment Methodology

This assessment of effects on ecology has been undertaken in accordance with the Ecological Impact Assessment (EcIA) Guidelines, published by the Ecological Institute of Australia and New Zealand (Roper Lindsay et al., 2018) (hereinafter referred to as the EIANZ Guidelines) and best practice methodology. It utilises EIANZ Guidelines ecological value ratings (Very High, High, Moderate, Low, Very Low, and Negligible) to classify ecological features (i.e., aquatic, wetland and terrestrial habitats and their fauna), for the purposes of making an ecological assessment of Project impacts (Appendix 2). This is based on a relative scale and indicates the level of intactness or modification/damage to a feature or system. The aim of this approach is to protect the highest value features and to highlight more degraded systems where there is the potential for enhancement and restoration (if possible, within the Project scope or as part of possible compensation/offset proposals). Where features are unavoidable, this approach also allows prioritisation of features of greater value.

This report does not include an assessment of effects on Māori cultural values, Māori cultural matters may encompass a wider range of values than those covered in the report. This assessment does not denote the habitat or features of cultural value to Mana Whenua, and such assessments should only be made by Mana Whenua.

A desktop study was completed to identify existing records of native species and habitats that could be present within and adjacent to the Project Area and associated zone of influence (ZOI). These findings guided field assessment/effort, which included a high-level site walkover to classify habitats using Singers et al., 2017. A bat survey was completed to determine the presence or likely absence of long-tailed bats in the Project Area. No dedicated surveys were completed for native lizards and birds, however incidental site observations and habitat suitability appraisal was made. Where wetland habitat occurred, wetlands were delineated using the MfE (2020b) Wetland Delineation Protocols. Using the EIANZ Guidelines, ecological value was assigned, and assessment of the magnitude of effects was made, based on predicted impacts for construction and operation stages of the Project. Except where legislation or policy dictates the requirement for impact management, impact management was recommended where the overall level of effect (value x magnitude) was considered to be **Moderate** or greater. Where residual effects remain, these have been addressed through offset/compensation.

Ecological Baseline

Aquatic, wetland, and terrestrial features were described based on desktop and site investigations. A summary of ecological features and their value within the Project Area are provided in Table 1-1.

Table 1-1 Summary	f ecological features and their value for aquatic, wetland and terrestrial habitat and	1
associated fauna with	nin the Project Area	

Ecological Feature	Ecological Value	
Aquatic	Ecology	
TR-S1 (associated with TR-W3)	Low	
TR-S2 (associated with TR-W1)		

Ecological Feature	Ecological Value
TR-S3 (associated with TR-W4)	
W5-S2 (associated with TR-W7)	
Wetland	Ecology
TR-W1, TR-W2, TR-W3, TR-W7	Low
TR-W4, TR-W5&W6	Moderate
Terrestrial Ec	cology (Flora)
Brown Field (BF)	Negligible
Exotic Grassland (EG)	
Planted Vegetation – Native (recent) (PL.1)	Low
Planted Vegetation – Exotic/Native (amenity) (PL.3)	
Treeland – Exotic Dominated (TL.3)	
Terrestrial Ec	ology (Fauna)
Long-tailed bat	Very High
Non-TAR bird	Low
North Island fernbird	High
Copper skink	High

Assessment of Ecological Effects and Impact Management

The overall level of effect from the construction and operation of the Project to aquatic, wetland and terrestrial habitats and associated fauna was calculated (prior to and after impact management) as per the EIANZ Guidelines.

Terrestrial Ecology

The terrestrial vegetation within the Project site is of **Negligible** to **Low** ecological value. There are no construction or operational effects for terrestrial ecology where the level of effect was assessed to be **Moderate** or higher, however habitat is provided to native fauna including:

- Long-tailed bats (Very High ecological value)
- Non-TAR native birds (Low ecological value)
- North Island fernbird (**High** ecological value)
- Copper skink (High ecological value)

During vegetation removal there is the potential to kill/injure native fauna. All native fauna is protected by the Wildlife Act 1953; therefore, this effect will need to be avoided and mitigated.

Aquatic Ecology

All works (excluding minor stormwater outfall works) will be outside the riparian setback and therefore no instream works will occur. Therefore, potential effects on instream habitat due to hydrology and water quality impacts during construction and operation have been assessed for the corresponding wetland.

Wetland Ecology

Where possible the Project has minimised impacts on wetlands, however, the reclamation of the upper portions of TR-W1 and TR-W4 during construction is unavoidable. The loss of TR-W4 is considered a **Moderate** level of effect therefore impact management is required, however, the loss of TR-W1 and TR-W4 also requires impact management as a result of the NPS:FM requirements. The loss of these wetlands can be sufficiently offset through wetland habitat restoration and wetland margin planting of the lower portions of the respective wetlands within the Project designation. The proposed wetland offset areas will allow the Project to achieve No Net Loss in ecological value.

2 Introduction

2.1 Background

Auckland's population is growing rapidly; driven by both natural growth (more births than deaths) and migration from overseas and other parts of New Zealand. The Auckland Plan 2050 anticipates that this growth will generate demand for an additional 313,000 dwellings and require land for approximately 263,000 additional employment opportunities.

In response to this demand, the Auckland Unitary Plan Operative in Part (AUP:OP) identifies 15,000 hectares of predominantly rural land for future urbanisation. To enable the urban development of greenfield land, appropriate bulk infrastructure needs to be planned and delivered.

The Supporting Growth Programme is a collaboration between Auckland Transport (AT) and Waka Kotahi NZ Transport Agency to investigate, plan and deliver the transport network needed to support Auckland's future urban growth areas over the next 30 years.

2.2 Purpose and Scope of this Report

Trig Road, Whenuapai has been identified in the Supporting Growth Programme as a future arterial corridor that is needed to support the urban development of Whenuapai.

This report has been prepared to support AT's notice of requirement (NoR) and application for resource consents for the Trig Road Corridor Upgrade (the Project). The NoR under the Resource Management Act 1991 (RMA) is to designate land for the construction, operation and maintenance of the Project.

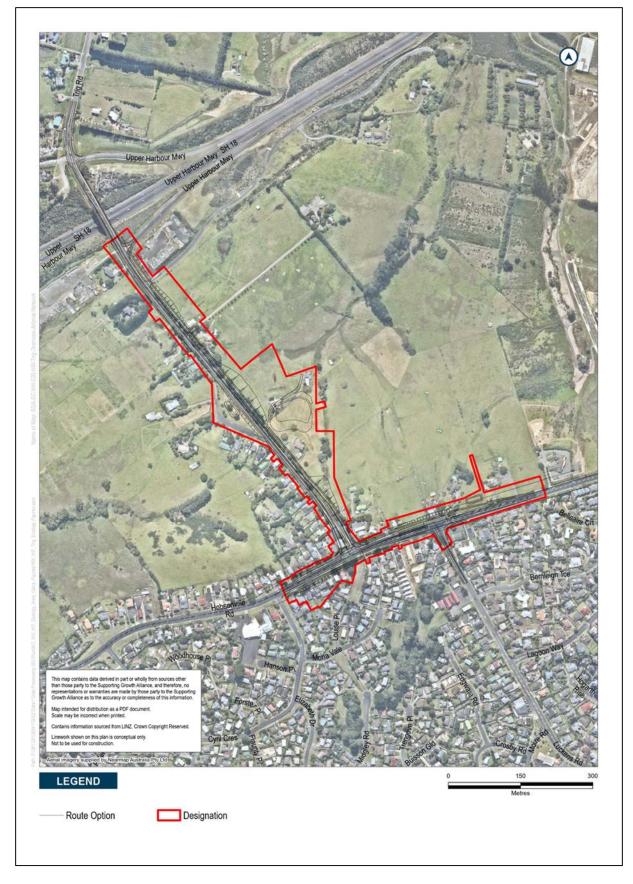
Funding for the upgrade of Trig Road between Hobsonville Road and State Highway 18 (SH18) has been made available through the Housing Infrastructure Fund¹. As there is funding available for construction, AT are also applying for the necessary resource consents under the RMA, concurrently with the NoR process.

This report provides an assessment of ecological effects associated with the construction, operation and maintenance of the Project. This assessment has been prepared to inform the Assessment of Environmental Effects (AEE) for the NoR and resource consent application.

The key matters addressed in this report are as follows:

- (a) Identify and describe the existing and potential ecological environment and associated ecological values;
- (b) Describe the actual and potential adverse ecological effects associated with construction and operation of the Project;
- (c) Recommend measures as appropriate to avoid, remedy or mitigate actual and potential adverse ecological effects (including any conditions/management plan(s) required);

¹ See North West Housing Infrastructure Fund Assessment of Environmental Effects for further detail regarding the Housing Infrastructure Fund.


- (d) Recommend measures to offset or compensate for any residual effects that cannot be avoided, remedied or mitigated (including any conditions/management plan(s) required); and
- (e) Present an overall conclusion of the level of actual and potential adverse ecological effects of the Project after recommended measures are implemented.

3 Project Description

The Project consists of the widening and upgrade of Trig Road between the SH18 off-ramps and Hobsonville Road. The widening has capacity to provide for a two-lane arterial standard corridor including new footpaths on both sides of the road and a cycleway which is indicatively shown as a dedicated bi-direction cycleway on the eastern side of the corridor. The Project will upgrade the current rural standard corridor to an urban standard, which is appropriate to support the soon to be urban environment on either side of Trig Road.

To tie into the existing road network, the Project also includes the signalisation of the intersections at Trig Road/Hobsonville Road and Luckens Road/Hobsonville Road and upgrade of Hobsonville Road between these intersections. This will require some localised widening of the road corridor along Hobsonville Road.

Figure 3-1 Overview of Trig Road Corridor Upgrade

Te Tupu Ngātahi Supporting Growth

3.1 **Project Features**

The features of the Project that have the potential to impact on ecological values include:

- The widening of the existing road corridor by 4 m, including a cycleway and footpath;
- Construction of a dry stormwater retention pond;
- Culverting/piping of a wetland, and associated disturbance that may result in the loss of wetland habitat;
- Construction machinery and earthworks within the Project area;
- Street lighting; and
- Upgrades to existing culverts.

3.2 Indicative Construction Methodology

An indicative construction methodology has been prepared to inform the assessment of the Project and while subject to change, assists in determining the envelope of effects. An overview of the indicative construction methodology is set out in the AEE. The final construction methodology for the Project will be confirmed during detailed design phase and finalised once a contractor has been engaged for the work.

A summary of the key components of the indicative construction methodology that are relevant to this report are outlined in the sub-sections below.

3.2.1 General Construction Overview

The total construction phase of the Project is expected to take approximately 18 to 24 months. It is anticipated that the works will be broken down into separate construction zones based on the type of works required and the nature of the work environment. These anticipated zones are:

- Zone 1: Trig Road North of the SH18 bridge
- Zone 2: Trig Road South including the SH18 bridge
- Zone 3: Hobsonville Road

3.2.2 Construction Methodology

Each zone has different construction activities depending on the type of work to be done and the surrounding environment. In all cases the general sequence of construction is likely to be:

- 1. Divert or remove services
- 2. Construct permanent and temporary stormwater drainage and controls
- 3. Move traffic away from works longitudinally
- 4. Construct earthworks and any retaining structures
- 5. Construct new longitudinal drainage
- 6. Construct new pavement to half of the road
- 7. Move traffic onto newly constructed pavement
- 8. Complete longitudinal drainage
- 9. Complete pavement and median
- 10. Move traffic to new alignment
- 11. Complete footpath and cycleway

4 Statutory Context

4.1 Notice of Requirement

This assessment has been prepared to support the NoR process for the Project. Section 171 of the RMA sets out the matters that must be considered by a territorial authority in making a recommendation on a NoR. This includes consideration of the actual or potential effects (including positive effects) on the environment of allowing the requirement.

4.2 **Resource Consent Application**

AT are also seeking regional resource consents under the AUP:OP and resource consents under the National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health and National Environmental Standard for Freshwater.

Overall, the application is assessed as a Discretionary Activity

5 Receiving Environment

5.1 Approach to the Receiving Environment

A key objective of the Supporting Growth Programme is to protect land now to ensure that the transport networks required to support growth areas in the future, around Auckland, can be provided in an efficient and co-ordinated manner. This Project supports the development of housing in the immediate vicinity of Trig Road and has funding to be constructed in the near future.

In the context of an RMA assessment process, considering the environment as it exists today will not be a true reflection of the real-world environment in which the transport corridor will operate. Accordingly, when considering the environment within which the effects of the construction and operation of the transport corridor are likely to occur, this assessment considers both the existing environment and the likely future environment for the Project Area.

The following outlines the key elements of the planning context for the Project:

- The existing corridor for Trig Road is approximately 20 m wide and zoned 'Road' under the AUP:OP.
- The proposed designation will be wider than the existing corridor to provide for the construction and operation of a 24 m wide transport corridor cross section, and additional space for construction activities and mitigation.

Table 5-1 sets out the likely future receiving environment of the Project. This rezoning signals a high probability of land use change over time for the majority of the Project Area from the current mostly rural character to higher density urban development. This 'likely future receiving environment' has been used to inform this assessment.

Whenuapai – Trig Road Corridor Upgrade Likely Receiving Environment	
Residential – Mixed Housing Urban Zone	 'Reasonably high-intensity zone enabling greater intensity of development than previously provided for'. Development 'typically up to three storeys in a variety of sizes and forms including detached dwellings, terraced housing and low-rise apartments'.
Residential – Terraced Housing and Apartment Building Zone	 'A high-intensity zoneproviding for urban residential living in the form of terraced housing and apartmentswith the greatest density, height and scale of development of all the residential zones'. Buildings enabled up to five, six or seven storeys. 'Predominantly located around metropolitan, town and local centre zones and the public transport network', also providing for a range of non-

Table 5-1 Whenuapai – Trig Road Corridor Upgrade Likely Receiving Environment

Whenuapai – Trig Road Corridor Upgrade Likely Receiving Environment

residential activities within an 'urban residential character'.

5.2 Existing and Future Environment Specific Context

The existing environment within the Project area is mostly highly modified rural land uses. The intersection of Trig Road and Hobsonville Road is an existing urban environment, with housing extending up the lower portion of the western side of Trig Road.

Remaining habitat in the locality of the Trig Road corridor within the Project Area is limited to small patches of remnant native forest and scattered native and exotic trees, streams and freshwater wetlands, dominated by exotic plant species. The Project Area is in relatively close proximity (approximately 1-2 km away), but not directly abutting, estuarine and harbour ecosystems.

It is anticipated that the Project will be constructed before or at the same time as urban development begins to occur in the vicinity. As such the effects of the road development and urbanisation on the natural environment may be cumulative rather than independent from each other.

This assessment assesses the construction impacts on the existing mostly rural environment, through which the construction will occur and the operational impacts on a future urbanised environment within which the Project will operate.

Historically in Auckland the Ministry for the Environment has observed that as land use changes from rural to urban the condition of streams has declined and there has been a loss of remaining native vegetation. However, the AUP:OP and NES:FW/NPS:FW place greater emphasis on the protection and enhancement of existing watercourses and require that these are accommodated within the future urban environment. Accordingly, it is assumed that in a future urbanised scenario stream corridors and areas of indigenous vegetation will be largely retained. It is also assumed that where practicable stormwater design will be integrated into the green network and sediment and pollutants will be controlled at source.

6 Assessment Methodology

This ecological impact assessment has been undertaken in general accordance with the EIANZ Guidelines and best practice methodology. It utilises EIANZ Guidelines ecological value ratings (Very High, High, Moderate, Low, Very Low, and Negligible) to classify ecological features (i.e., aquatic, wetland and terrestrial habitats and their fauna), for the purposes of making an ecological assessment of Project impacts (Appendix 2). This is based on a relative scale and indicates the level of intactness or modification/damage to a feature or system. This approach aims to protect the highest value features and to highlight more degraded systems where there is the potential for enhancement and restoration (if possible, within the Project scope or as part of possible compensation/offset proposals). Where features are unavoidable, this approach also allows prioritisation of features of greater value.

This report does not include an assessment of effects on Māori cultural values, Māori cultural concerns may encompass a wider range of values than those covered in the report. This assessment does not denote the habitat or features of cultural value to Mana Whenua, and such assessments should only be made by Mana Whenua.

6.1 **Preparation for this Report**

A desktop review was also undertaken to inform this report (Section 6.5) and field surveys were completed by AECOM Ecologists in December 2019, and September 2022. Full details on survey methodologies are provided in Section 6.6 to 6.8. These surveys formed the basis for the results which are presented in the 'Ecological Baseline' in Section 7.1.

6.2 Relevant Standards and Guidelines

A list of relevant legislation, policy, plans and strategies for this assessment are presented below. A more detailed summary is provided in Appendix 1:

- Resource Management Act 1991;
- Wildlife Act 1953;
- National Policy Statement for Freshwater Management (Ministry for the Environment, 2020a);
- Auckland Unitary Plan Operative in Part 2016 (Auckland Council, 2016);
- New Zealand Biodiversity Strategy (Department of Conservation & Ministry for the Environment, 2000);
- Protecting Our Places (Department of Conservation & Ministry for the Environment, 2007);
- Auckland Conservation Management Strategy 2014-2024 (Department of Conservation, 2014);
- Auckland Council Indigenous Biodiversity Strategy (Auckland Council, 2012);
- New Zealand's Fish Passage Guidelines (Franklin, et al., 2018); and
- EcIA Ecological Institute of Australia and New Zealand (EIANZ) guidelines for use in New Zealand: Terrestrial and freshwater ecosystems (Roper Lindsay et al., 2018).

6.3 Ecological Impact Assessment Approach

The approach followed for this ecological impact assessment (EcIA) for Project activities is consistent with the methodology outlined in the EIANZ Guidelines.

26

 Desktop assessment and literature review; Site investigation; · Data processing; 1.Ecological • Ecological Value assessment (1) Representativeness, (2) Rarity, (3) Diversity and pattern, (4) Ecological Value context Description of Project features and activities; Identification and description of Project effects; • Magnitude of Effects assessment based on (1) Type, (2) Extent, (3) Duration, (4) frequency, (5) Probability and (6) Reversibility 2.Level of • Level of Effect assessment; systematic approach based on the outcome of Ecological Value and Magnitude Effect of Effects assessments Mitigate in line with mitigation hierarchy; • Specific focus on Moderate or higher level of effects that can be avoided, minimised, remedied* 3.Mitigation · Assessment of residual effects after measures to avoid, minimise and remedy have been applied; · Address residual effects through offset or compensation measures to achieve No Net Loss or Net Gain 4.Residual Effects

The EcIA approach is represented in Figure 6-1 and is summarised in Appendix 2.

* The Wildlife Act 1953 must be complied with, as such management measures must always be implemented to ensure that Project activities do not injure or kill native wildlife.

Figure 6-1 EcIA approach followed for this assessment (Appendix 2)

6.4 **Project Area and Zone of Influence**

The Project has been described in Section 3. 'Project Area' has been used within this report as a term to describe the area that is located within the designation footprint.

The Zone of Influence (ZOI) of the Project relates to an area occupied by habitats and species that are adjacent to and may go beyond the boundary of the Project Area. It is defined in the EIANZ Guidelines as "the areas/resources that may be affected by the biophysical changes caused by the proposed Project and associated activities." The distance of the ZOI and type of effect from the Project can be different for different species and habitat types. ZOI is used throughout this report to describe the impacts of the Project (construction and operation) on adjacent or connected terrestrial, freshwater and wetland habitats and associated (often highly mobile) native species. This includes indirect effects on sensitive receiving environments and the potential for protected fauna and flora to be present within or adjacent to the Project Area.

The ZOI of the Project on different species differs depending on how they use their environment e.g., mobile species such as long-tailed bats have a larger home range and more diverse habitat requirements compared to lizards and threatened plant species which may be restricted to a small area or specific habitat type. This affects how a species could be impacted by the Project and this was taken into consideration during the desktop review and site investigations. To reflect the

likelihood of a species occurring or dispersal ability within the Project Area, varying search distances were used depending on the species context. The size of this search area is stated alongside any species or habitat records identified within the relevant sections of this report. ZOI is also relevant to habitats, as indirect impacts on the receiving environment such as sedimentation of waterbodies could affect habitats far beyond the Project Area. Similarly, habitats which require permanent or intermittent inundation such as wetlands could be negatively impacted by changes to hydrology as a result of Project design.

6.5 **Desktop Review**

A desktop review of existing ecological records was undertaken to gain an understanding of the aquatic, wetland² and terrestrial habitats and species that could be present within the ZOI of the Project Area.

The sources of information that were reviewed to determine the likelihood of a species or habitat occurring within or adjacent to the Project Area included:

- Auckland Council Geomaps³;
- Department of Conservation (DOC) Bioweb records⁴;
- Department of Conservation Threat Classification Series⁵;
- Ecological Regions and Districts of New Zealand (McEwen, 1987);
- iNaturalist records⁶, within approximately 5 km radius from each NoR. GPS coordinates are 'obscured' for Threatened species which may affect the accuracy of records within the study area;
- Indigenous terrestrial and wetland ecosystems of Auckland (Singers et al., 2017);
- National Institute of Water and Atmospheric Research (NIWA) freshwater fish database;
- New Zealand Bird Atlas eBird database⁷; recorded within 10 km² grid squares;
- Supporting Growth Alliance (SGA) North West Assessment of Ecological Effects (SGA, 2022a; SGA, 2022b).

6.6 Aquatic Ecology Assessment Methodology

6.6.1 Site Investigations

Field surveys were completed in December 2019 and September 2022 for watercourses associated with the Project Area. Section 6.6.2 outlines the specific methodology employed to determine baseline

² The RMA defines wetland as including 'permanently or intermittently wet areas, shallow water, and land water margins that support a natural ecosystem of plants and animals that are adapted to wet conditions'.

The NPS:FM excludes wetlands which do not meet its definition of 'natural wetlands' as:

a) a wetland constructed by artificial means (unless it was constructed to offset impacts on, or restore, an existing or former natural wetland); or b) a geothermal wetland; or c) any area of improved pasture that, at the commencement date, is dominated by (that is more than 50% of) exotic pasture species and is subject to temporary rain derived water pooling.

³ https://geomapspublic.aucklandcouncil.govt.nz/viewer/index.html

⁴ https://www.doc.govt.nz/our-work/monitoring-reporting/request-monitoring-data/

⁵ All Department of Conservation Threat Classification Documents are listed in the below webpage. When individual reports are referenced hereafter, they are referenced in-text. https://www.doc.govt.nz/about-us/science-publications/conservation-publications/nz-threat-classification-system

⁶ https://www.inaturalist.org/

⁷ https://ebird.org/atlasnz/home

conditions and ecological value. A short summary of the freshwater field assessments is provided below. For a detailed methodology refer to Appendix 3.

- General notes on the stream and river including name, catchment, hydrological regime, channel morphology, cross-sectional features, and REC classification based on the River Environment Classification (REC) (Snelder et al., 2004);
- Stream classification as per Storey and Wadhwa (2009) into ephemeral, intermittent and permanent hydroperiods (Appendix 3, Section 3.1);
- No streams are directly impacted by the Project. Therefore, the Rapid Habitat Assessment methodology (Clapcott, 2015) was used for streams to inform ecological condition to understand indirect effects. In the Project Area, streams are associated with wetland complexes (and the hydrology is mainly wetland). The reference state is likely to be inconsistent with what is presumed within the Stream Ecological Valuation (SEV) model, and the hydrology was mainly wetland.

6.6.2 Assessing Aquatic Ecological Value

The different aquatic ecological assessment methods were applied to inform the ecological value (ranging from **Negligible** to **Very High**) of rivers and streams within the ZOI and are consistent with the EIANZ Guidelines. This was done by using all or selected parts of different methods (Table 6-1) to inform matters influencing the ecological importance and sensitivity of the receiving environment (Figure 6-1). Each EcIA 'Matter' and corresponding method/s used to inform the matter are summarised in Table 6-1. To help inform the effects assessment, fish have been assigned a separate ecological value which corresponds to the ecological value of the river/stream it likely occupies.

EcIA Matter	Rapid Habitat Assessment	Fish community (desktop assessment)
Matter 1 Representativeness	✓	✓
Matter 2 Rarity/distinctiveness		✓
Matter 3 Diversity and pattern	~	
Matter 4 Ecological context		\checkmark

 Table 6-1 Summary of how different methods of assessment have been applied to inform aquatic ecological value

6.7 Wetland Ecology Assessment Methodology

6.7.1 Site Investigation

Wetlands were delineated in September 2022 as per the MfE (2020b) Wetland Delineation Protocols. This included reference to Clarkson (2018), Fraser et al. (2018) and MfE's Hydrology Tool (2021). Wetland habitats were initially classified based on Singers et al. (2017), to describe the wetland habitats present based on vegetation assemblage within and adjacent to the Project Area.

29

Potential wetlands were identified and delineated on desktop prior to field verification. All wetlands within 100 m of the Project designation were delineated. Wetlands potentially affected by the project activities were included within the field verification. For the field verification the wetland delineation was based on sampled quadrats, within and across vegetation types. Representative vegetation plots were sampled for each plant community observed, using a 2m × 2m quadrat. Estimate % cover was recorded for each species within each quadrats.

Wetland extent was then delineated based on the dominance of hydrophytic plants according to Clarkson (2018). This classifies plant species, according to fidelity to wetland soil conditions, into the following groups: obligate wetland (OBL: occurs almost always in wetlands), facultative wetland (FACW: occurs usually in wetlands), facultative (FAC: equally likely in wetlands or non-wetlands), facultative upland (FACU: usually in no wetlands) or obligate upland (UPL: almost always in non-wetlands). The dominance and prevalence of OBL, FACW and FAC species are then assessed through the Dominance Test (i.e., wetland plant species >50%) and Prevalence Index. In instances where the Dominance Test mainly consists of FAC species, the presence of hydric soils was used to inform the Prevalence Index. A Prevalence Index score below 3 confirmed the presence of a wetland. For vegetation plots where results are ambiguous, the delineation then relied on wetland soil and hydrology characteristics.

The vegetation quadrats were also used to inform NPS:FM exclusions, for exotic pasture species. Potential exclusion from an NPS:FM natural wetland was tested where pasture species⁸ were dominant (>50%) and rain derived soil saturation was considered temporary. Additionally, where a wetland was identified to be constructed by artificial means this was also excluded (Appendix 1, Section 1.2.1).

All wetlands delineated were subject to a wetland condition assessment to inform ecological value. This was done using the method outlined by Clarkson et al. (2004) and augmented with a wetland condition classification adopted from Kleynhans (2007) (Appendix 3, Table 9-7) which assesses direct modification to the wetland (Appendix 3, Table 9-7) and impacts within its wider catchment (Appendix 3, Table 9-8). The functional importance of wetlands was also assessed through the application of Brinson's (1993) hydrogeomorphic (HGM) classification, while the functional value of each HGM (in terms of flood attenuation, stream flow regulation, water quality enhancement and carbon storage) was inferred from Kotze et al. (2007). The different HGM types and associated functional values are provided in Appendix 3.

6.7.2 Assessing Wetland Ecological Value

The different wetland assessment methods described in Section 6.7.1 were applied to inform the ecological value (ranging from **Negligible** to **Very High**) of wetland habitat associated with the Project Area and were consistent with the EIANZ Guidelines. This was done by using all or selected parts of different methods employed to inform matters influencing the ecological importance and sensitivity of the receiving environment (Figure 6-1). Each ecological EcIA 'Matter' and corresponding method/s used to inform the matter are summarised in Table 6-2.

⁸ Technical guidance for the determination of natural wetlands under Greater Wellington's proposed Natural Resources Plan. Available: <u>http://www.gw.govt.nz/assets/Biodiversity/Wetland-Technical-Determination.pdf</u>

 Table 6-2 Summary of how different methods of assessment have been applied to inform wetland ecological value

EcIA Matter	Vegetation type (Singers et al., 2017)	Functional value ⁹ (Kotze et al., 2007)	Wetland Condition Index (Clarkson et al., 2004)
Matter 1 Representativeness			✓
Matter 2 Rarity/distinctiveness	✓		
Matter 3 Diversity and pattern	✓	\checkmark	
Matter 4 Ecological context		\checkmark	

6.8 Terrestrial Ecology Assessment Methodology

6.8.1 Site Investigation

6.8.1.1 Vegetation Communities and Habitats

Site walkovers were undertaken in December 2019, and September 2022 by experienced ecologists to map and describe the habitats¹⁰ present within and adjacent to the Project Area. Habitats were classified into ecosystem type based on those described in Singers et al. (2017). The habitats were also assessed as to their potential to support native fauna, including birds, bats, lizards, fish and macroinvertebrates.

Habitat assessment focused on areas of potentially significant value, such as stream corridors and areas of vegetation (trees, scrub) based on aerial photos and during site investigation. Species records from relevant literature and biodiversity databases were utilised to focus search efforts on certain areas within the Project Area.

Broad indigenous vegetation communities were mapped on recent aerial photography and incorporated into the Project's GIS database. The vegetation assessment included recording the dominant or characteristic species present and the general quality described, including structure, maturity, presence of weeds and evidence of disturbance.

6.8.1.2 Terrestrial Fauna

Incidental observations of any native species seen during site walkover were recorded. For lizard species, this included incidental searches of natural/artificial refugia, such as turning over logs/wood/corrugated iron on the ground. For birds, incidental observations were made during other field surveys for forest or wetland bird species.

31

⁹ Functional wetland values were informed by generic wetland functions including flood attenuation, stream flow regulation, sediment trapping, water purification, erosion control and carbon storage associated with different HGM units based on Kotze et al. (2007)

¹⁰ Ecosystem codes from Singers et al. (2017) were used to describe the habitats encountered on site.

To determine the presence or likely absence of long-tailed bats in the Project Area, two Automatic Bat Monitors (ABMs) (SM4BAT FS with SMM-U2 microphone) were placed along vegetated linear features, where bats were most likely to be foraging (in accordance with recommendations from Borkin and Parsons 2009 and O'Donnell et al., 2006). The ABMs were left on site for a minimum of 14 nights, during weather conditions when bats would be active¹¹ (Sedgeley, 2012). The locations of these ABMs are illustrated in Figure 6-2.

¹¹ ABM data was excluded from the analysis if conditions would affect bat activity (O'Donnell & Sedgeley, 1999);

Air temperatures dropped below 10°C overnight
 Mean overnight wind speed exceed 20km/h, max

[•] Mean overnight wind speed exceed 20km/h, maximum overnight wind gust exceeded 60km/h; and / or

Persistent heavy rain through the night.

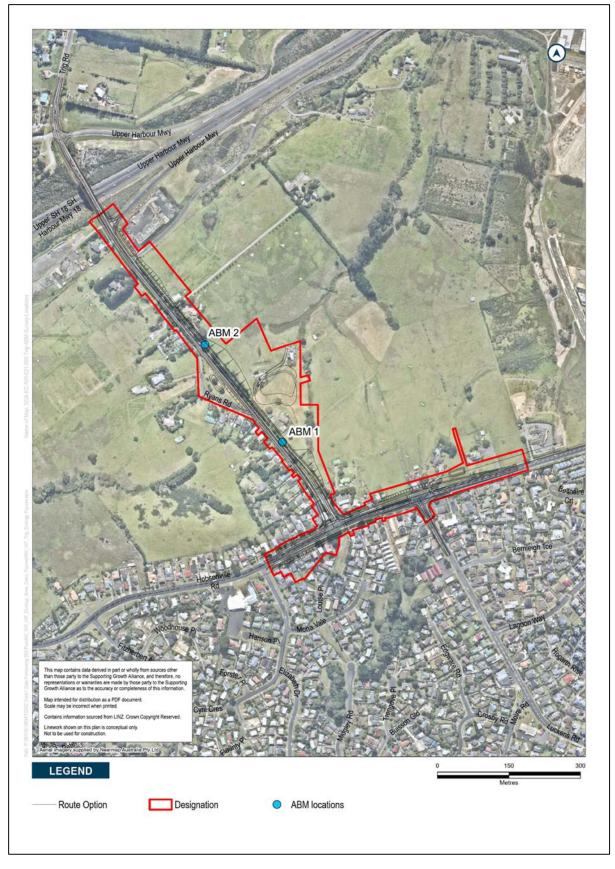


Figure 6-2 ABM survey locations

6.8.2 Assessing Terrestrial Ecological Value

The different terrestrial assessment methods were applied to inform the ecological value (ranging from **Negligible** to **Very High**) of terrestrial habitat associated with the Project Area and were consistent with the EIANZ Guidelines. This was done by using all or selected parts of different methods employed to inform matters influencing the ecological importance and sensitivity of the receiving environment. Each ecological EcIA 'Matter' and corresponding method(s) used to inform the matter are summarised in Table 6-3.

Table 6-3 Summary of how different methods of assessment have been applied to inform terrestrial	
ecological value	

EcIA Matter	Habitat description (Singers et al., 2017)	Presence of TAR species or habitats
Matter 1 Representativeness	\checkmark	✓
Matter 2 Rarity/distinctiveness	¥	✓
Matter 3 Diversity and pattern	¥	
Matter 4 Ecological context	✓	

In accordance with the EIANZ Guidelines, assigning ecological value at the species level considers the current threat status of a species (in accordance with the NZ Threat Classification system) that is present in areas potentially impacted by the Project (refer Appendix 2). For example, exotic species are assigned a **Negligible** ecological value and Native Threatened (Nationally Critical/Endangered/Vulnerable) species are assigned a **Very High** ecological value.

7 Assessment of Effects

7.1 Ecological Baseline

This section presents the findings of the desktop study (which includes a review of the documents listed in Section 6.5) and site investigations for all of the habitats and species ('ecological features') present within the Project Area. Based on this information, an ecological value has been calculated for each ecological feature using the assessment method outlined in Sections 6.6.2, 6.7.2 and 6.8.2.

7.1.1 Historic Ecological Context

The Project lies within the Tāmaki Ecological District, which has a warm, humid climate and is characterised by volcanic cones, isthmus, harbours and volcanic terrain (McEwen, 1987). Historically, the terrestrial portions of the Project Area would have been forested, and composed of species including pūriri (*Vitex lucens*), tōtara (*Podocarpus totara*), mataī (*Prumnopitys taxifolia*), kahikatea (*Dacrycarpus dacrydioides*) and tītoki (*Alectryon excelsus subsp. excelsus*), kōwhai (*Sophora sp.*) and taraire (Singers et al., 2017).

7.1.2 Terrestrial Ecology (Flora)

7.1.2.1 Desktop Review

Aerial imagery shows that the historical habitats described in Section 7.1.1 had been cleared prior to 1959 (earliest available aerial image). The habitats within the Project Area currently comprises grazed pasture, residential gardens, and native road plantings (Upper Harbour Motorway) (Appendix 5). No naturally occurring shrubland or forested habitat is currently present within the Project footprint.

Aerial imagery (Auckland Council, 2022) shows the presence of three terrestrial Significant Ecological Areas (**SEA**s) within 2 km of the Project Area (there are no SEAs located within the Project Area) and early route selection work sought to avoid these areas. These SEAs are identified in AUP:OP and include:

- SEA_T_2040: 1.0 km southwest of the Project Area.
- SEA_T_4661: 0.98 km south of the Project Area.
- SEA_T_4733: located within the wider stream catchment, approximately 2 km northeast of the Project Area, adjacent to the Waiarohia Stream. Tributaries to the Waiarohia Stream flow through from the Project Area.

7.1.2.2 Site Investigation

The Project Area is dominated by hard standing (existing roads and a footpath on the southern part of the western side), grazed exotic grasses, planted native and exotic trees consisting of mostly mature pines (*Pinus radiata*) and exotic garden species.

The surveys identified the presence of kānuka (*Kunzea robusta*) and mānuka (*Leptospermum scoparium*) within areas of native planting (< 20 years old) along the Upper Harbour Motorway and Trig Road, and pōhutukawa (*Metrosideros excelsa*) surrounding a pump station located at the junction between Trig Road and Hobsonville Road. These species are listed as 'Threatened – Nationally Vulnerable' because of the spread of myrtle rust within New Zealand and the risk that this poses to all Myrtaceae species. These species are currently common throughout the Tāmaki Ecological District

35

and, in addition, the individuals within the Project Area are all newly planted and either immature or semi-mature. Therefore, the presence of these Threatened species has not altered the valuation of the habitats within which they occur (Table 7-1). A detailed list of vegetation species observed during the site investigations is included in Appendix 0.

Table 7-1 below describes the habitats identified within the Project Area through site investigations and their value in accordance with EIANZ guidelines (Appendix 2). The extent of these habitats, in relation to the Project Area, is presented in Appendix 5.

Classification (Singers et al., 2014)	Vegetation Type	Description
BF	Brown Field (includes cropland)	This definition includes Industrial zones, metaled carparks, rail corridors, unmanaged or managed land within urban settings, road median strips, pavements, cracks in concrete. Substrate includes metal (stone chip) and concrete surfaces. largely exotic herbfield (weeds) and occasional exotic or native woody species.
EG	Exotic Grassland	Grassland dominated by exotic species. This includes pasture, and garden lawns.
PL.1	Planted Vegetation – Native (recent)	Native restoration plantings with <50% exotic biomass. Recently planted native scrub and forest <20 years old.
PL.3	Planted Vegetation – Exotic/Native (amenity)	Amenity plantings. This includes planted native and/or exotic vegetation within parks, amenity areas and private gardens.
TL.3	Treeland – Exotic- Dominated	Tree canopy cover 20-80%: <25% native with exotic tree cover dominant. For the purposes of mapping this includes planted and wilding exotic vegetation and mature shelterbelts. This includes mature riparian vegetation and scattered or discontinuous canopy of mature trees within gardens, farms and amenity areas.

36

Table 7-1 Terrestrial habitats in the Project Area

7.1.2.3 Ecological Value

The terrestrial habitats within the Project Area are dominated by exotic grasslands (EG) (managed cut grassland), which is of **Negligible** ecological value. The Project Area also includes planted amenity areas or self-seeded (scrub), which are entirely or predominantly exotic habitats (exotic scrubland, (ES), exotic treeland (TL.3) and planted vegetation (PL.1 and PL.3). These habitats are considered to be of **Low** ecological value due to their low botanical diversity (lack of native species) and predominance of pest species.

These exotic vegetation types although of limited value botanically provide some value in terms of ecosystem function, such as, bank stability and stream shading of the adjacent streams. In addition, they may provide habitat utilised by long-tailed bat (Threatened – Nationally Critical), non-TAR birds, and copper skink (At Risk – Declining):

- Long-tailed bat potential habitat: TL.3
- Non-TAR bird potential habitat: PL.1, PL.3, TL.3
- Copper skink potential habitat: EG, PL.1, PL.3, TL.3 (with appropriate understorey)

These habitat provisioning aspects of ecological value have been considered in the overall assessment of terrestrial habitats presented in Table 7-2. A detailed justification for the value assessment is outlined in Appendix 4 and ecological habitat maps are provided in Appendix 5.

Table 7-2 Terrestrial ha	abitat ecological val	ue assessment associa	ated with Trig Road
--------------------------	-----------------------	-----------------------	---------------------

Ecological Feature	Ecological Value
BF	Negligible
EG	Negligible
PL.1	Low
PL.3	Low
TL.3	Low

7.1.3 Terrestrial Ecology (Fauna)

7.1.3.1 Bats

Desktop Review

Existing records (Department of Conservation, 2022; Supporting Growth Alliance, 2022a) confirm the presence of long-tailed bats (*Chalinolobus tuberculatus*) in the wider landscape (Figure 7-1). The conservation status of this species is 'Threatened - Nationally Critical' (O'Donnell et al., 2017). The nearest record is approximately 1.5 km north of the Project Area (Figure 7-2).

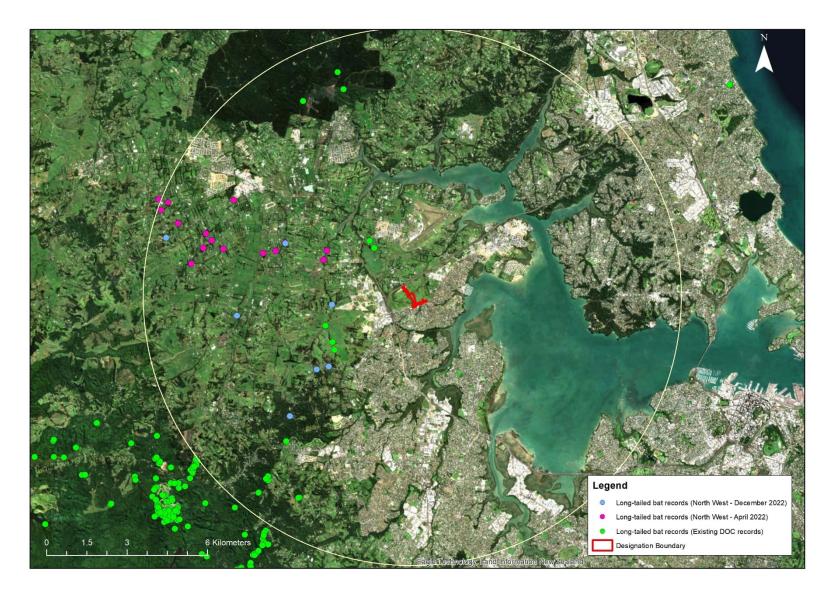


Figure 7-1 Existing long-tailed bat records within a 10 km radius of the Project Area (Department of Conservation, 2022; Supporting Growth Alliance, 2022a)

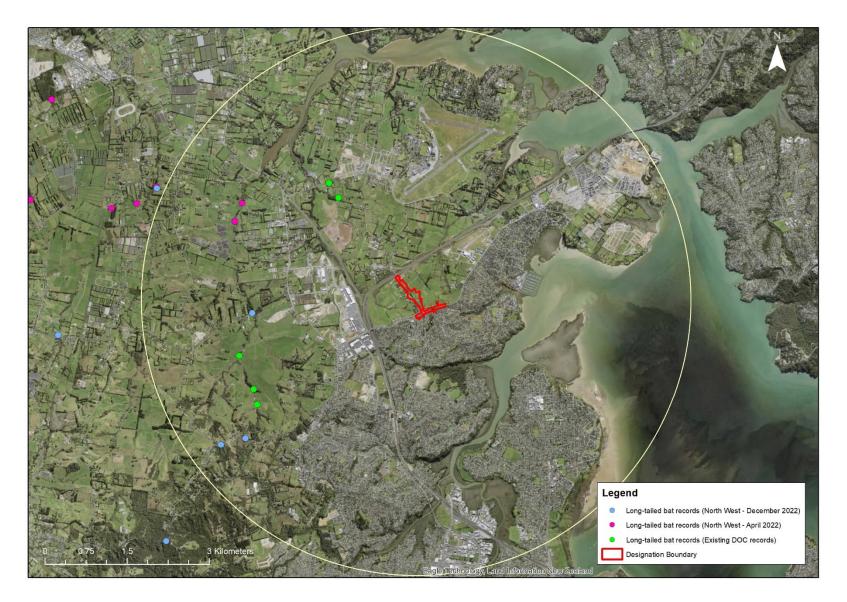


Figure 7-2 Existing long-tailed bat records within a 5 km radius of the Project Area (Department of Conservation, 2022; Supporting Growth Alliance, 2022a)

Site Investigation

Two ABMs were placed in the Project Area within linear vegetation located at the headwaters of Trig Stream for 17 nights between 1 November and 18 November 2019. No bat activity was recorded at either ABM during the monitoring period. Weather conditions were suitable during the monitoring period for bats to be active on 12 nights (Appendix 4 presents weather data from the monitoring period).

The habitat surrounding the Project Area is not considered to be optimal for bats (being agricultural fields and residential gardens) and the wetland/stream areas are dominated by pasture grass with only scattered stands of exotic trees. The standing dead timber around wetland TR-W4 did contain cracks, splits and rot holes within which bats could roost if present. However, bats would need to be foraging and commuting through this area to be able to identify these trees for roosting.

Survey information suggests that the habitat quality for long-tailed bats is poor and that they are not regularly present within the Project Area. However, as long-tailed bats are known to be present in the wider landscape, it is not possible to completely exclude the potential for bat presence.

Ecological Value

The conservation status of long-tailed bats is 'Threatened – Nationally Critical' (O'Donnell et al., 2017), therefore the ecological value of long-tailed bats is **Very High**.

7.1.3.2 Birds

Desktop Review

The New Zealand Bird Atlas¹² and iNaturalist identified 40 bird species within 2 km of the Project Area (Appendix 0). This included 21 native bird species, which are listed as 'At Risk' or 'Threatened' (TAR) species (Table 7-3). These species are predominantly coastal, excluding kākā (*Nestor meridionalis septentrionalis*) and New Zealand pipit (*Anthus novaeseelandiae novaeseelandiae*). Most of these species would be very unlikely to utilise habitats within the Project Area, apart from occasional flyovers, or to occasionally feed within the pasture wetland areas.

Common Name	Māori Name	Scientific Name	Conservation Status (Robertson et al., 2021)	Record Source
Banded dotterel	Pohowera	Charadrius bicinctus	At Risk - Declining	Desktop record - eBird (Bird Atlas)
Banded rail	Mioweka	Gallirallus philippensis assimilis	At Risk - Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
Black shag	Māpunga	Phalacrocorax carbo	At Risk - Relict	Desktop record - iNaturalist

Table 7.2 Threatened on At Dials	(TAD) motive bind	an a class was availed with	in Oliver of the Duclast Area
Table 7-3 Threatened or At Risk	(TAR) hauve biru	species recorded with	In 2 kill of the Project Area

¹² https://birdatlas.co.nz/

Te Tupu Ngātahi Supporting Growth

Common Name	Māori Name	Scientific Name	Conservation Status (Robertson et al., 2021)	Record Source
Caspian tern	Taranui	Hydroprogne caspia	Threatened - Nationally Vulnerable	Desktop record - iNaturalist/eBird (Bird Atlas)
Bar-tailed godwit	Kuaka	Limosa lapponica bauer	At Risk - Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
Black-billed gull	Tarāpuka	Larus bulleri	At Risk - Declining	Desktop record - iNaturalist
Dabchick	Weweia	Poliocephalus rufopectus	Threatened – Nationally Increasing	Desktop record - iNaturalist/eBird (Bird Atlas)
Lesser knot	Huahou	Calidris canutus rogersi	At Risk - Declining	Desktop record - eBird (Bird Atlas)
Little black shag	Kawau tūī	Phalacrocorax sulcirostris	At Risk – Naturally Uncommon	Desktop record - iNaturalist
New Zealand pipit	Нīоі	Anthus novaeseelandiae novaeseelandiae	At Risk – Declining	Desktop record - iNaturalist
North Island fernbird	Mātātā	Poodytes punctatus	At Risk – Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
North Island kākā	Kākā	Nestor meridionalis septentrionalis	At Risk – Recovering	Desktop record - iNaturalist
Northern New Zealand dotterel	Tūturiwhatu	Charadrius obscurus aquilonius	At Risk - Recovering	Desktop record - eBird (Bird Atlas)
Pied shag	Kāruhiruhi	Phalacrocorax varius	At Risk – Recovering	Desktop record - iNaturalist/eBird (Bird Atlas)
Red-billed gull	Tarāpunga	Larus novaehollandiae scopulinus	At Risk - Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
Lesser knot	Huahou	Calidris canutus rogersi	At Risk - Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
Royal spoonbill	Kōtuku ngutupapa	Platalea regia	At Risk – Naturally Uncommon	Desktop record - iNaturalist/eBird (Bird Atlas)

42

Common Name	Māori Name	Scientific Name	Conservation Status (Robertson et al., 2021)	Record Source
South Island pied oystercatcher	Tōrea	Haematopus finschi	At Risk - Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
Variable oystercatcher	Tōrea pango	Haematopus unicolor	At Risk - Recovering	Desktop record - eBird (Bird Atlas)
White-fronted tern	Tara	Sterna striata	At Risk - Declining	Desktop record - eBird (Bird Atlas)
Wrybill	Ngutu parore	Anarhynchus frontalis	Threatened – Nationally Increasing	Desktop record - iNaturalist

Site Observations

Formal bird surveys for wetland or forest bird species were not completed within the Project Area, as limited habitat was present for TAR species. However, during site visits, birds were recorded incidentally, the full list is presented in Appendix 0. Table 7-4 lists the native species observed within the Project Area, all of which are Not Threatened. The native species recorded are typical of a modified agricultural landscape with areas of open water and residential gardens.

Table 7-4 Native bird species recorded incidentally during site walkover

Common Name	Māori Name	Scientific Name	Conservation Status (Robertson et al., 2021)
Australasian harrier	Kāhu	Circus approximans	Not Threatened
Grey warbler	Riroriro	Gerygone igata	Not Threatened
Pūkeko	Pūkeko	Porphyrio melanotus melanotus	Not Threatened
Τατ	Τατ	Prosthemadera novaeseelandiae novaeseelandiae	Not Threatened
Welcome swallow	Warou	Hirundo neoxena	Not Threatened
White-faced heron	Matuku moana	Ergretta novaehollandiae	Not Threatened

Ecological Value

The desktop review and site investigations identified 21 TAR bird species within 2 km of the Project Area. These bird species included coastal, freshwater and forest species. There is the potential that several of these species could stop to feed or rest within the areas of open farmland that surround the Project Area (e.g., black-billed and red-billed gulls) and that these species could occasionally fly over the Project Area (e.g., kākā). New Zealand pipit has been recorded in the local area and can use areas of long grass along field margins to nest, but within the Project Area this habitat type is impacted by intensive stock grazing minimising cover and likely disturbance from the existing road network, and it is considered suboptimal for this species. North Island fernbird are associated with wetland habitats in the Project Area and are likely to be present and considered to be a transient visitor to the wetlands.

If any of the habitats surrounding the Project Area were to be used by TAR bird species, this would most likely be infrequently and not during critical stages of their lifecycle (e.g., nesting) (with the exception of North Island fernbird). Non-TAR native bird species would most likely forage and nest within vegetation within residential gardens that line the existing road network.

Common Name	Scientific Name	Conservation Status (Robertson et al., 2021)	Ecological Value
Non-TAR birds	-	Not Threatened	Low
North Island fernbird/ Mātātā	Poodytes punctatus	At Risk - Declining	High

Table 7-5 Ecological value for TAR bird species

7.1.3.3 Herpetofauna

Desktop Review

A desktop review confirmed eight herpetofauna records within 2 km of the Project Area (Appendix 0). No herpetofauna records were found within the Project Area. This does not confirm that herpetofauna are not present in the Project Area, but most likely that the habitat is too modified to be suitable for the majority of these species. Of the six native herpetofauna records, only copper skink is likely to be found within the Project Area based on habitat preference (Table 7-6).

Table 7-6 Native lizard species recorded within 2 km of the Project Area

Common Name	Scientific Name	Threat Class (Hitchmough et al., 2021; Burns et al., 2017)	Record Source	Likelihood of Presence
Pāpā/Pacific gecko	Dactylocnemis pacificus	At Risk – Not Threatened	iNaturalist	Unlikely
Hochstetter's frog	Leiopelma hochstetteri	At Risk - Declining	iNaturalist	Unlikely
Elegant gecko	Naultinus elegans	At Risk – Declining	DOC Bioweb	Unlikely

Common Name	Scientific Name	Threat Class (Hitchmough et al., 2021; Burns et al., 2017)	Record Source	Likelihood of Presence
Moko pirirākau/Forest gecko	Mokopirirakau granulatus	At Risk – Declining	iNaturalist	Unlikely
Mokomoko/Copper Skink	Oligosoma aeneum	At Risk – Declining	iNaturalist	Likely
Ornate skink	Oligosoma ornatum	At Risk – Declining	iNaturalist	Unlikely

Site Investigation

Habitats within the Project Area were assessed for their potential to support native lizards. This was completed during the site walkover along with consideration of lizard presence from desktop records. Where present, suitable refugia were inspected (i.e., logs, rocks etc) for the presence of lizards.

Although no lizards were identified during the site walkover, it was concluded that the rank grassland that is present along the existing road margins, and areas of leaf litter beneath exotic trees and native plantings could support copper skink (At Risk – Declining). Potential copper skink habitat that was observed during the site walkover (approximately 6195 m²) is presented in Figure 7-3.

The exotic trees within the Project Area are unlikely to support geckos due to their open form and lack of connectivity to established stands of native vegetation. The closely grazed pasture (without any refugia e.g., log piles) provide suboptimal habitat for native lizards. The Project Area potentially include habitats where ornate skink ('At Risk – Declining') could be present, however it is not connected to indigenous habitat that would support a population and as such they are considered unlikely to be present within the Project Area.

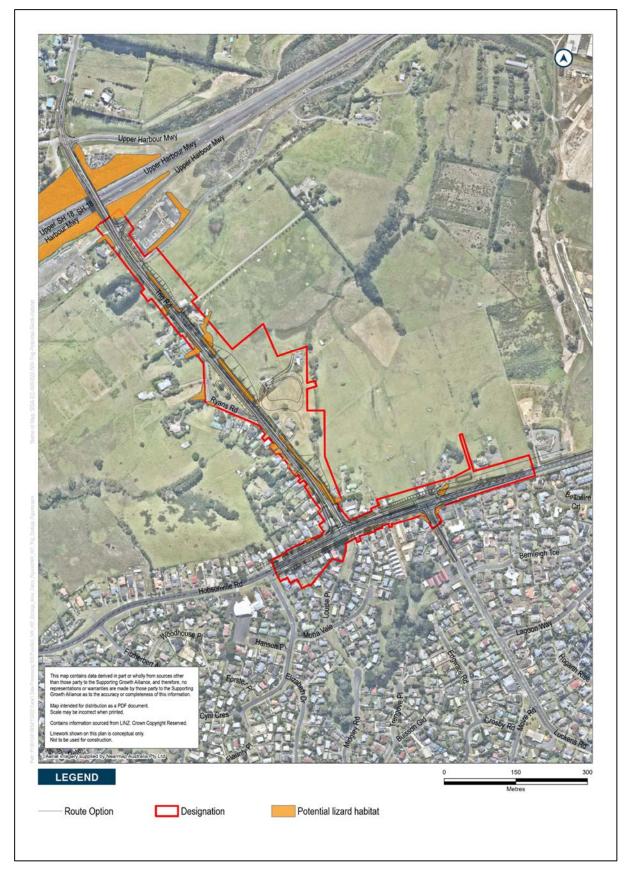


Figure 7-3 Potential copper skink habitat within and adjacent to the Project Area

46

Ecological Value

The conservation status of copper skink is 'At Risk – Declining' (Hitchmough et al., 2021), therefore the ecological value of copper skink is **High**.

7.1.4 Aquatic Ecology

7.1.4.1 Desktop Review

One stream (Trig Stream) was identified within the Project Area using Auckland Council Geomaps 'rivers and permanent streams' layer (Auckland Council, 2022). Stream habitats within the Project Area were assessed for their potential to support native fish and a desktop review of existing records was completed. The desktop review identified the presence of six native fish species in Waiarohia Stream (Table 7-7). There is the potential for eel species to be present within the upper stream and wetland reaches, and there is a low probability for longfin eel due to poor habitat. A detailed list of fish species identified in the desktop review is included in Appendix 0.

Table 7-7 Native	fish species	recorded withir	n 2 km of	the Project Area
------------------	--------------	-----------------	-----------	------------------

Common Name	Scientific Name	Threat class (Dunn et al., 2018)	Record source
Shortfin eel	Anguilla australis	Not Threatened	NIWA, iNaturalist
Longfin eel	Anguilla dieffenbachii	At Risk - Declining	NIWA, iNaturalist
Banded kokopu	Galaxias fasciatus	Not Threatened	NIWA, iNaturalist
Īnanga	Galaxias maculatus	At Risk – Declining	NIWA, iNaturalist
Common bully	Gobiomorphus cotidianus	Not Threatened	NIWA, iNaturalist
Giant bully	Gobiomorphus gobioides	At Risk – Naturally Uncommon	iNaturalist

7.1.4.2 Site Investigation

Stream Classification

The four streams identified within the Project Area were classified according to their Hydroperiod Classification (Appendix 4, Table 9-10). The results are described in Table 7-8, with all streams classified as intermittent. All streams were associated with valley head seep wetlands and are generally dominated by wetland hydrology (lateral soil seepage). Where present, stream channels were poorly defined but seasonally intercept the saturated soils and are therefore classified as intermittent streams.

Stream ID	Hydroperiod	Channel Morphology	Substrate Dominance
TR-S1	Intermittent	Soft bottom	Silt, mud and clay (>75% of reach)

Stream ID	Hydroperiod	Channel Morphology	Substrate Dominance
TR-S2	Intermittent	Soft bottom	Silt, mud and clay (>75% of reach)
TR-S3	Intermittent	Soft bottom	Silt, mud and clay (>75% of reach)
W5-S2	Intermittent	Soft bottom	Silt, mud and clay (>75% of reach)

Rapid Habitat Assessment

All streams were surveyed using the Rapid Habitat Assessment protocol (Clapcott, 2015). The streams measured overall habitat quality scores that were considered 'Poor' (Table 7-9). Detailed RHA results are presented in Appendix 4. The RHA category was included within the ecological value assessment for each of the streams where it was applied.

Table 7-9 RHA results for streams TR-S1 to TR-S3 and W5-S2

Stream ID	RHA Score	RHA Category
TR-S1	18	Poor
TR-S2	16	Poor
TR-S3*	18	Poor
W5-S2*	18	Poor

Notes: * = Stream assessed at a desktop level due to property access constraints.

7.1.4.3 Ecological Value

Based on the overall freshwater assessment, all four streams are associated with wetland complexes and were assessed to have **Low** ecological value (Table 7-10). A detailed justification for the value assessment is outlined in Appendix 4 and ecological habitat maps are provided in Appendix 5.

Table 7-10 Aquatic ecological features and overall ecological value

Ecological Feature	Ecological Value
TR-S1 (associated with TR-W3)	Low
TR-S2 (associated with TR-W1)	Low
TR-S3 (associated with TR-W4)	Low
W5-S2 (associated with TR-W7)	Low

7.1.5 Wetland Ecology

7.1.5.1 Site Investigation

Seven wetlands potentially affected by the Project have been identified, five within the Project Area (TR-W1, TR-W2, TR-W3, TR-W4, and TR-W5) and two directly adjacent (TR-W6 and TR-W7) to the

Project Area. All seven wetland areas were described as Exotic Wetland (EW) (Singers et al., 2017), due to the dominance of exotic hydrophytic plant species. Wetland descriptions and analysis are presented in Table 7-11 and the results of vegetation plots, Dominance Test, Prevalence Index, wetland condition assessment and wetland function assessment have been included in Appendix 4.

Based on results of the site investigation all wetlands have been classified as NPS:FM natural wetlands because they do not meet the NPS:FM exclusions that are outlined in Appendix 1, Section 1.2.1.

Table 7-11 Wetland description and analysis

Reference No. and location	Hydrogeomorphic type	Vegetation	Wetland condition	Wetland description in relation to NPS:FM
TR-W1	Seasonally saturated hillslope seep (headwater seep) connected to a channelled valley bottom	Exotic grass and sedges (>50% exotic pasture species)	Largely modified	Natural wetland
TR-W2	Seasonally saturated hillslope seep connected to a channelled valley bottom	Exotic grass and sedges (>50% exotic pasture species)	Largely modified	Natural wetland
TR-W3	Seasonal channelled valley bottom system	Exotic grass and sedges (>50% exotic pasture species)	Largely modified	Natural wetland
TR-W4	Permanently to seasonally saturated hillslope seep connected to stream network	Exotic grass and shrubs (>50% exotic pasture species)	Largely modified	Natural wetland
TR-W5&6	Channelled valley bottom system with permanent zone associated with channel and seasonal zone adjacent hillslopes	Exotic grass and sedges (>50% exotic pasture species)	Largely modified	Natural wetland
TR-W7	Seasonally saturated hillslope seep connected to stream network	Exotic grass and shrubs (>50% exotic pasture species)	Largely modified	Natural wetland

7.1.5.2 Ecological Value

Wetland habitats present within the Project Area are dominated by exotic plant species, degraded vegetation removal, artificial drainage and grazing and pugging from livestock. Alongside the wetland delineation process, the wetland condition was also assessed, and a value given based on the four "Matters": representativeness, rarity/distinctiveness, diversity and pattern, and ecological context. Although highly modified, taking into consideration the retained ecological functionality of these systems for attenuation of stormwater and nutrient removal, the ecological value of these exotic wetlands is considered to be **Low** to **Moderate (**Table 7-12). A detailed justification for the value assessment is outlined in Appendix 4 and ecological habitat maps are provided in Appendix 5.

Ecological Feature	Ecological Value
TR-W1	Low
TR-W2	Low
TR-W3	Low
TR-W4	Moderate
TR-W5&W6	Moderate
TR-W7	Low

Table 7-12 Wetland ecological features and overall ecological value

7.1.6 Summary of Ecological Value

Table 7-13 summarises the ecological values of the ecological features (aquatic, wetland and terrestrial) present within the Project Area.

Table 7-13 Summary of ecological values for aquatic, wetland and terrestrial habitat and species within	1
the Project Area	

Ecological Feature	Ecological Value				
Habitats					
Aquatic	Ecology				
TR-S1	Low				
TR-S2	Low				
TR-S3	Low				
W5-S2	Low				
Wetland Ecology					
TR-W1	Low				

51

Ecological Feature	Ecological Value
TR-W2	Low
TR-W3	Low
TR-W4	Moderate
TR-W5&W6	Moderate
TR-W7	Low
Terrestrial Ec	cology (Flora)
Brown Field (BF)	Negligible
Exotic Grassland (EG)	Negligible
Planted Vegetation – Native (recent) (PL.1)	Low
Planted Vegetation – Exotic/Native (amenity) (PL.3)	Low
Treeland – Exotic-Dominated (TL.3)	Low
Terrestrial Ec	ology (Fauna)
Long-tailed bats	Very High
Native birds (Non-TAR)	Low
North Island fernbird	High
Native herpetofauna	High

52

7.2 Assessment of Ecological Effects

7.2.1 Positive Effects

Wetland compensation within the Project designation will occur, which will include wetland planting and wetland buffer planting. As this will significantly enhance the existing, largely exotic (weed dominated) vegetation, this will in turn provide improved habitat for any remaining or recolonising native bird species and herpetofauna.

Additionally, further positive ecological outcomes and enhancement opportunities will be developed during detailed design. When implemented, these will include:

- Opportunities for green infrastructure and habitats within the Project Area. For example, planting
 native street trees, and planting native vegetation rather than grass, on roadside berms and
 around stormwater wetlands.
- Landscape planting that enhances existing retained habitat (e.g., underplant retained exotic treeland with native understorey vegetation and replace exotic scrub habitat with native species).

7.2.2 Assessment of Construction Effects

The proposed construction activities (described in Sections 7.2.2.1 to 0) have the potential to cause impacts on ecological features (aquatic, wetland and terrestrial) within and adjacent to the Project Area, without appropriate construction impact management. The effects assessment has considered the current ecological baseline only, under the assumption that the likely future ecological environment (considering permitted activities) will not change substantially.

7.2.2.1 Terrestrial Ecology (Flora)

Table 7-14 lists the potential effects to the terrestrial vegetation within the Project Area and their magnitude of effect. This is then used to calculate an overall level of effect to each ecological feature, prior to impact management. A detailed justification for the ecological value assessment and the magnitude of effect assessment that has resulted in the level of effect as per the EIANZ Guidelines is presented in Appendix 4.

Ecological Feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
Brown Fields (BF) (18,600 m²) Exotic Grassland (EG) (17,302 m²)	Negligible	Vegetation removal: Permanent loss of habitat/ecosystem, fragmentation and edge effects due to vegetation removal.	High	Effect is direct, local, permanent, and definite.	Very Low
Planted Vegetation – Native (recent) (PL.1) (149 m ²) Planted Vegetation - Amenity (PL.3) (3846 m ²) Treeland – Exotic- Dominated (TL.3) (3991 m ²)	Low	Vegetation removal: Permanent loss of habitat/ecosystem, fragmentation and edge effects due to vegetation removal.	High	Effect is direct, local, permanent, and definite.	Low
Exotic Grassland (EG) Planted Vegetation – Native (recent) (PL.1) Planted Vegetation - Amenity (PL.3) Treeland – Exotic- Dominated (TL.3)	Negligible - Low	Earthworks: Weed dispersal to previously unaffected areas of indigenous vegetation, reduction in terrestrial biodiversity.	Negligible	Effect is direct, local and short-term (<5 years). The effect is considered to be infrequent and unlikely.	Very Low

Table 7-14 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon terrestrial ecology (flora) during construction

7.2.2.2 Terrestrial Ecology (Fauna)

Table 7-15 lists the potential effects to the fauna within the Project Area and their magnitude of effect. This is then used to calculate an overall level of effect to each ecological feature, prior to impact management. A detailed justification for the ecological value assessment and the magnitude of effect assessment that has resulted in the level of effect as per the EIANZ Guidelines is presented in Appendix 4.

Long-tailed bats

Table 7-15 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon terrestrial ecology (long-tailed bats) during construction

Ecological Feature	Ecological Value	Effects Description*	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
Long-tailed bats	Very High	Disturbance and displacement to roosts and individuals (existing) due to construction activities (noise, light, dust etc).	Negligible	Effect is indirect, local, short term (<5 years) and unlikely. The effect will have a periodic frequency and is totally reversible.	Low
		Vegetation removal: Loss of foraging and breeding habitat, fragmentation of habitat, causing adverse effects on population dynamics.	Negligible	Effect is direct, local and permanent (>25 years). However, long-tailed bat habitat in the context of the Project Area is small, isolated, and adjacent to an existing road, therefore loss of habitat is considered unlikely.	Low
		Vegetation removal: Potential to kill/injure long-tailed bat, causing adverse effects on population dynamics.	Negligible	Effect is direct, local, and short term (<5 years). Although long-tailed bats are known to be in the wider landscape, no moderate or high roosting potential was identified in the Project Area, therefore the likelihood of the effect is considered unlikely.	Low WA 1953 requirements (refer Section 7.3.1.1)
				As long-tailed bat presence cannot be excluded in the future, the requirements of the Wildlife Act 1953 will need to be adhered to during vegetation removal.	

Notes: * = Roost loss has been considered but discounted as an effect as the consequence of roost loss (if it does occur at all) is considered less than Negligible in the context of this Project.

Birds

Table 7-16 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon terrestrial ecology (birds) during construction

Ecological feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
Non-TAR birds	Low	Disturbance and displacement to roosts and individuals (existing) due to construction activities (noise, light, dust etc).	Low	Effect is indirect, local, short term (<5 years) and highly likely. The effect will have a periodic frequency and is totally reversible.	Very Low
		Vegetation removal: Nest loss.	Low	Effect is direct, local, short term (<5 years) and is considered highly likely.	Very Low
		Vegetation removal: Loss of foraging and breeding habitat, fragmentation of habitat, causing adverse effects on population dynamics.	High	Effect is direct, local, permanent and the likelihood is considered definite due to the definite presence of native bird habitat in the Project Area.	Low
		Vegetation removal: Potential to kill/injure non-TAR birds, causing adverse effects on population dynamics.	Negligible	Effect is direct, local, and short term (<5 years). Although native birds are definitely present in the Project Area, an effect on population dynamics is considered unlikely.	Very Low WA 1953 requirements (refer Section 7.3.1.1)
				However, as all native birds are protected under the WA 1953, requirements of the WA 1953 will need to be adhered to during vegetation removal.	
North Island fernbird	High	Disturbance and displacement to roosts and individuals (existing) due to construction activities (noise, light, dust etc).	Negligible	Effect is indirect, local, short term (<5 years) and unlikely. The effect will have a periodic frequency and is totally reversible.	Very Low
		Vegetation removal: Nest loss.	Negligible	Effect is direct, local, and short term (<5 years). However, North Island fernbird potential nesting habitat in	Very Low

Ecological feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
				the Project Area is suboptimal, therefore nest loss in considered unlikely.	
		Vegetation removal: Loss of foraging and breeding habitat, fragmentation of habitat, causing adverse effects on population dynamics.	Negligible	Effect is direct, local, and permanent. However, North Island fernbird habitat is already isolated and surrounded by pasture, therefore the effect is considered unlikely.	Very Low
	kill/injure birds, causi	Vegetation removal: Potential to kill/injure birds, causing adverse effects on population dynamics.	Negligible	Effect is direct, local, and short term (<5 years) and considered unlikely. However, as all native birds are protected under the WA 1953, requirements of the WA 1953 will need to be adhered to during vegetation removal.	Very Low WA 1953 requirements (refer Section 7.3.1.1)

Herpetofauna

Table 7-17 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon terrestrial ecology (herpetofauna) during construction

Ecological feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
Copper skink	High	Disturbance and displacement to individuals (existing) due to construction activities (noise, light, dust etc).	Negligible	Effect is indirect, local, short term (<5 years) and unlikely. The effect will have a periodic frequency and is totally reversible.	Very Low
		Vegetation removal: Loss of foraging and breeding habitat, fragmentation	Low	Effect is direct, local, and permanent. Copper skink are anticipated to be utilising all terrestrial features in the	Low

of habitat, causing adverse effects on population dynamics.		Project Area (excluding Brown Fields). Approximately 6195 m ² of potential copper skink habitat will be removed, therefore the effect is considered likely. Additionally, a project specific Wildlife Act Permit (WAP) will be required for lizard salvage. The current expectations of Department of Conservation are that habitat restoration to address residual effects (of habitat loss and salvage) is required to issue a WAP. This will need to be considered.	Wildlife Act Permit (WAP) (refer Section 7.3.1.1)
Vegetation removal: Potential to kill/injure copper skink, causing adverse effects on population dynamics.	Negligible	Effect is direct, local, and short term (<5 years) and considered unlikely. However, as all native herpetofauna are protected under the WA 1953, requirements of the WA 1953 will need to be adhered to during vegetation removal.	Very Low WA 1953 requirements (refer Section 7.3.1.1)

7.2.2.3 Aquatic Ecology

All works (excluding minor stormwater outfall works) will be outside the stream riparian setback and therefore no instream works will occur. Additionally, all streams are associated with wetland complexes. The main hydrological maintenance of these complexes is associated with wetland hydrology. Therefore, potential effects on instream habitat due to hydrology and water quality impacts during construction have been assessed in Section 0 for the corresponding wetlands.

7.2.2.4 Wetland Ecology

Table 7-18 lists the potential construction effects (direct and indirect) to the wetland ecology within the Project Area and their magnitude of effect. This is then used to calculate an overall level of effect to each habitat, prior to impact management. A detailed justification for the ecological value assessment and the magnitude of effect assessment that has resulted in the level of effect as per the EIANZ Guidelines is presented in Appendix 4.

The effects assessment is based on the following assumptions and embedded mitigation being delivered as part of the Project:

- A provisional Erosion and Sediment Control Plan has been prepared for the Project which describes how the effects of sedimentation from construction earthworks will be managed. As such, it is assumed that issues related to sediment generation will be adequately mitigated and will not lead to adverse ecological effects. This includes the potential effects on the downstream receiving environment as it has been assumed that it can be acceptably managed as part of project delivery.
- Stormwater generated from the construction area will be treated through industry standard best
 practice measures, to remove or reduce contaminants to acceptable levels prior to discharge into
 any waterway within or adjacent to the proposed works area. It is assumed that the hydrology of
 the receiving wetlands will be maintained through the stormwater controls.

Ecological Feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
TR-W1	Low	Vegetation removal/reclamation: Road embankment will result in the permanent loss of approximately 1000 m ² (0.1 ha) of a 3,700 m ² (0.37 ha) hydrogeomorphic unit (HGM) of natural wetland associated with TR- W1 (approximately 27% of the hydrogeomorphic unit).	High	Permanent, irreversible loss of wetland habitat that will definitely occur. Although the level of effect is considered low, offset is required under the NES-FW due to loss in wetland extent.	Low NES-FW requirements (refer Section 7.3.2)
TR-W4	Moderate	Vegetation removal/reclamation: Road embankment will result in the permanent loss of approximately 780 m ² (0.078 ha) of a 2,800 m ² (0.28 ha) HGM unit of natural wetland associated with TR-W4 (approximately 29% of the hydrogeomorphic unit).	High	Permanent, irreversible loss of wetland habitat that will definitely occur. Level of effect is Moderate and offset is required. This is also required under the NES-FW due to a loss in wetland extent.	Moderate NES-FW requirements (refer Section 7.3.2)
TR-W1, TR-W2	Low	Earthworks: Detrimental effects on habitats including plant composition and fauna due to diversion,	Moderate	Regardless of embedded controls, earthworks for all wetlands have potential of affecting the hydrology of the receiving environment through disrupting soil-water pathways.	Low

Table 7-18 Magnitude of effects and subsequent level of effect (without impact management) of the Project on wetland ecology during construction

Ecological Feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
		abstraction or bunding of watercourses and water level/flow/periodicity changes.		 TR-W1: TR-W1 is a seasonal wetland and therefore has a reduced likelihood of this effect occurring relative to other wetlands. TR-W2: Earthworks for this wetland is mainly associated with the dry pond construction. 	
TR-W3	Low		Low	Wetland TR-W3 is located further away from construction and the upslope hydrology is more ephemeral, resulting in a lower likelihood of this impact occurring.	Very Low
TR-W4	Moderate		Low	Wetland TR-W4 is potentially spring fed. Earthworks will occur within a portion of this wetland, therefore posing a risk of disrupting soil-water pathways.	Low
TR- W5&W6	Moderate		Low	Wetland not directly associated with earthworks and maintained through multiple sub-catchments therefore reducing the likelihood.	Low
TR-W7	Low		Negligible	TR-W7 is approximately 37 m away from the relatively small stormwater outfall construction. Earthwork related flow disruption is unlikely due to the distance and the large additional catchment maintaining TR-W7.	Very Low
TR-W1, TR-W2, TR-W3	Low	Earthworks: Uncontrolled discharge leading to habitat and water quality degradation.	Low	Uncontrolled discharge from construction stormwater possible (therefore allocated 'Likely' probability) despite embedded controls.	Very Low

Ecological Feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
TR-W4, TR- W5&W6	Moderate		Low	Uncontrolled discharge from construction stormwater possible (therefore allocated 'Likely' probability) despite embedded controls.	Low
TR-W7	Low		Negligible	Uncontrolled discharge from construction stormwater unlikely due to distance to wetland and scale of construction (therefore allocated 'Unlikely' probability) despite embedded controls.	Very Low

7.2.3 Assessment of Operational Effects

The operation of the Project has the potential to cause impacts on ecological features (terrestrial and wetland) within and adjacent to the Project Area, without impact management. Section 7.2.3.2 to 7.2.3.4 details the magnitude of effect and subsequent level of effect on ecological features (further detail regarding how these were determined are provided in Appendix 2). The effects assessment has considered the current ecological baseline only, under the assumption that the likely future ecological environment (considering permitted activities) will not change substantially.

7.2.3.1 Terrestrial Ecology (Flora)

Operational effects on terrestrial ecology include weed dispersal to previously unaffected areas of indigenous vegetation due to presence of the infrastructure, and increased weed incursion and unintentional spray of indigenous vegetation due to maintenance. This is detailed further in Table 7-19.

Ecological Feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
Exotic Grassland (EG)	Negligible	Presence of the infrastructure: Weed dispersal to previously unaffected areas of indigenous vegetation, reduction in terrestrial biodiversity due to the presence of the infrastructure, use of infrastructure edges as dispersal corridors by invasive plant species.	Negligible	Effect is direct, local, permanent, and is considered infrequent and unlikely.	Very Low
Planted Vegetation – Native (recent) (PL.1) Planted Vegetation - Amenity (PL.3) Treeland – Exotic- Dominated (TL.3)	Low	Presence of the infrastructure: Weed dispersal to previously unaffected areas of indigenous vegetation, reduction in terrestrial biodiversity due to the presence of the infrastructure, use of infrastructure edges as dispersal corridors by invasive plant species.	Negligible	Effect is direct, local, permanent, and is considered infrequent and unlikely.	Very Low
Exotic Grassland (EG)	Negligible	Maintenance: Increased weed incursion, unintentional spray of indigenous vegetation due to maintenance, increased use of herbicides.	Low	Effect is direct, local, permanent, and is considered likely with a periodic frequency.	Very Low
Planted Vegetation – Native (recent) (PL.1) Planted Vegetation - Amenity (PL.3) Treeland – Exotic- Dominated (TL.3)	Low	Maintenance: Increased weed incursion, unintentional spray of indigenous vegetation due to maintenance, increased use of herbicides.	Low	Effect is direct, local, permanent, and is considered likely with a periodic frequency.	Very Low

Table 7-19 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon terrestrial ecology (flora) during operation

7.2.3.2 Terrestrial Ecology (Fauna)

The loss of connectivity through permanent habitat loss due to the presence of the road, and disturbance such as operational noise/vibration and light can lead to an overall reduction in size and quality of habitat and can impact bats, birds, and herpetofauna. This is detailed further in Table 7-20 to Table 7-22.

Long-tailed bats

Table 7-20 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon terrestrial ecology (long-tailed bats) during operation

Ecological Feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
Long-tailed bats		Disturbance and displacement of (new and existing) roosts and individuals due to lighting and noise/vibration.	Negligible	Effect is indirect, local, and permanent. However, due to the restricted bat habitat within the Project Area, the effect is considered unlikely.	Low
		Loss in connectivity due to permanent habitat loss, light, and noise effects from the road, leading to fragmentation of terrestrial habitat and influencing bat movement in the broader landscape.	Negligible	Effect is indirect, local, and permanent. However, due to the restricted bat habitat and existing fragmentation within the Project Area, the effect is considered unlikely.	Low

Birds

Table 7-21 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon terrestrial ecology (birds) during operation

Ecological feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
Non-TAR birds Lov	Low	Disturbance and displacement to roosts and individual birds (existing) due to the presence of the road (noise, light, dust etc).	Moderate	Effect is indirect, local, permanent, and is considered highly likely due to the definite presence of native birds in the Project Area.	Low
		Loss in connectivity due to permanent habitat loss, light and noise effects from the road, leading to fragmentation of terrestrial, wetland and riparian habitat due to the presence of the infrastructure.	Negligible	Effect is indirect, local, permanent, and is considered unlikely due to the existing fragmentation of the habitat.	Very Low

North Island fernbird	High	Disturbance and displacement to roosts and individual birds (existing) due to the presence of the road (noise, light, dust etc).	Negligible	Effect is indirect, local, and permanent. However, due to the restricted North Island fernbird habitat within the Project Area, the effect is considered unlikely.	Very Low
		Loss in connectivity due to permanent habitat loss, light and noise effects from the road, leading to fragmentation of terrestrial, wetland and riparian habitat due to the presence of the infrastructure.	Negligible	Effect is indirect, local, and permanent. However, due to the restricted North Island fernbird habitat and existing fragmentation within the Project Area, the effect is considered unlikely.	Very Low

Herpetofauna

Table 7-22 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon terrestrial ecology (herpetofauna) during operation

Ecological feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
Copper skink	High	Disturbance and displacement of existing and future copper skink due to light, noise and vibration effects from the presence of the road.	Negligible	Effect is indirect, local, permanent and is considered unlikely.	Very Low
		Loss in connectivity due to permanent habitat loss, light and noise/vibration effects from the road, leading to fragmentation of terrestrial, wetland and riparian habitat due to the presence of the infrastructure.	Negligible	Effect is indirect, local, permanent and is considered unlikely due to the existing fragmentation of copper skink habitat within the Project Area.	Very Low

7.2.3.3 Aquatic Ecology

All works (excluding minor stormwater outfall works) will be outside the stream riparian setback and therefore no instream works will occur. Therefore, potential effects on instream habitat due to hydrology and water quality impacts during operation have been assessed in Section 7.2.3.4 for the corresponding wetlands.

7.2.3.4 Wetland Ecology

Table 7-23 lists the potential operational effects (direct and indirect) to the wetland ecology within the Project Area and their magnitude of effect. This is then used to calculate an overall level of effect to each habitat, prior to impact management. A detailed justification for the ecological value assessment and the magnitude of effect assessment that has resulted in the level of effect as per the EIANZ Guidelines is presented in Appendix 4.

Ecological Feature	Ecological Value	Effects Description	Magnitude of Effect	Justification of Magnitude	Level of Effect (without impact management)
TR-W1, TR-W2, TR-W3	Low	Change in hydrology: Effect on downstream habitat (including erosion/sediment discharge) due to change in hydrology (increase or decrease) due to gradual change in hydrology from the presence of the infrastructure/stormwater, including reclamations.	Negligible	Wetland water budget (volume and timing) will be maintained through stormwater management. No increase in flood frequency post development relative to baseline.	Very Low
TR-W4	Moderate		Low	Groundwater management will convey the constant groundwater feed out of the fill embankment footprint where the spring seepage occurs for Wetland TR-W4. This control is considered sufficient to address operational changes to the hydrology of the receiving environment. However, the probability classes have conservatively been adjusted one class up	Low
TR- W5&W6	Moderate		Negligible	Wetland water budget (volume and timing) will be maintained through stormwater management. No increase in flood frequency post development relative to baseline.	Very Low
TR-W1, TR-W2, TR-W3	Low	Stormwater discharge: Permanent degradation of wetland habitat and water quality due to stormwater discharges - pollutants (such as	Negligible	All stormwater from the road pavement will be directed to the kerb channels and treated through the proposed stormwater treatment dry pond.	Very Low
TR-W4, TR- W5&W6	Moderate	heavy metals and herbicides).	Negligible	All stormwater from the road pavement will be directed to the kerb channels and treated through the proposed stormwater treatment dry pond.	Very Low

Table 7-23 Magnitude of effects and subsequent level of effect (without impact management) of the Project upon wetland ecology during operation

7.3 Impact Management

In accordance with the EIANZ Guidelines, measures to avoid, remedy or mitigate effects is focused on ecological features where the level of effect was assessed to be **Moderate** or higher. There were no construction or operational effects (except for the unavoidable loss of wetland TR-W4) that were assessed as **Moderate** or higher. However, there are construction related effects for fauna that requires impact management as a result of the Wildlife Act 1953 requirements, and construction related effects for wetlands that requires impact management as a result of the NPS:FM requirements. This is detailed further in Section 7.3.1 to 7.3.2.

7.3.1 Terrestrial Ecology

There are no construction or operational effects for terrestrial ecology where the level of effect was assessed to be **Moderate** or higher. However, all native fauna is protected by the Wildlife Act 1953, therefore requirements of this legislation will need to be adhered to. These requirements are detailed further in Section 7.3.1.1.

7.3.1.1 Wildlife Act 1953

Long-tailed bats

As long-tailed bat presence cannot be excluded in the future, the requirements of the Wildlife Act 1953 will need to be adhered to during vegetation removal of exotic-dominated treeland (TL.3) in the Project Area. This should include the implementation of vegetation removal protocols (including pre-felling surveys).

Birds

The Project Area is likely to contain native birds. Any vegetation clearance within the bird nesting season (September to February) will need to be managed to avoid harm to native bird species and their nests e.g., programming vegetation clearance to avoid bird nesting season or else undertaking nesting bird checks.

Herpetofauna

The Project Area is likely to contain copper skink. Methods to manage effects should be detailed in a Lizard Management Plan (LMP) and should address the following (as appropriate):

- Credentials and contact details of the ecologist/herpetologist who will implement the plan.
- Timing of the implementation of the LMP.
- A description of methodology for survey, trapping and relocation of lizards rescued including but not limited to salvage protocols, translocation protocols (including method used to identify suitable relocation site(s)), nocturnal and diurnal capture protocols, supervised habitat clearance/transfer protocols, artificial cover object protocols, and opportunity relocation protocols.
- A confirmation of the translocation site. Potential sites identified include:
 - 100 Hobsonville Road TEMP (20 metre riparian corridor of Rawiri Stream)
 - Trig Reserve (located off Ryans Road)
 - Suitable habitat within Project Area
- For the confirmed translocation site, a discussion of:
 - Provision for additional refugia, if required e.g., depositing salvaged logs, wood or debris for newly released skinks that have been rescued.

- Any protection mechanisms (if required) to ensure the relocation site is maintained (e.g.) covenants, consent notices etc.
- Any weed and pest management to ensure the relocation site is maintained as appropriated habitat.
- Monitoring methods, including but not limited to the following: baseline surveying with the site, baseline surveys outside the site to identify potential release sites for salvaged lizard populations and lizard monitoring sites, ongoing annual surveys to evaluate translocation success, pre- and post-translocation surveys, and monitoring of effectiveness of pest control and/or any potential adverse effects on lizards associated with pest control.
- A post-vegetation clearance search for remaining lizards.
- Details of lizard habitat restoration to compensation for the loss of lizard habitat (approximately 6195 m²) within the Project Area and to address residual effects of lizard salvage. It is recommended that restoration is accommodated within the designation as part of the Landscape Restoration Plans.

In order to implement the LMP, a project specific Wildlife Authority Permit (WAP) under the Wildlife Act 1953 is required and should be held by a suitably experienced Herpetologist (to handle or translocate indigenous wildlife and/or to destroy their habitat) which is administrated by the Department of Conservation. Permits can take several months to obtain and should be programmed appropriately prior to commencing vegetation/site clearance.

7.3.2 Wetland Ecology

The wetland ecology features that require mitigation are presented in Table 7-24. Although the level of effect for the permanent loss of TR-W1 was considered **Low**, offset is required under the NES-FW due to the loss in wetland extent.

Ecological Feature	Effects Description	Level of Effect, Without Impact Management	Mitigation	
TR-W1	Vegetation removal/reclamation: Road embankment will result in the permanent loss of approximately 1000 m ² (0.1 ha) of a 3,700 m ² (0.37 ha) hydrogeomorphic unit (HGM) of natural wetland associated with TR-W1 (approximately 27% of the hydrogeomorphic unit).	Low NES-FW requirements	The loss of wetland habitat at TR-W1 and TR- W4 cannot be mitigated 'at the point of impact'; therefore, this effect is considered further in Section 7.3.2.1.	
TR-W4	Vegetation removal/reclamation: Road embankment will result in the permanent loss of approximately 780 m ² (0.078 ha) of a 2,800 m ² (0.28 ha) HGM unit of natural wetland associated with TR-W4 (approximately 29% of the hydrogeomorphic unit).	Moderate NES-FW requirements		

Table 7-24 Wetland ecology features requiring mitigation

7.3.2.1 Residual Effects

The loss of wetland habitat at TR-W1 and TR-W4 cannot be mitigated 'at the point of impact' (due to unavoidable loss of wetland); therefore, offsetting is required. The proposed location for this offset is within the downslope areas of the remaining portions of wetland habitat associated with both wetlands (TR-W1 and TR-W4). The proposed designation boundary provides sufficient room for this offset to be finalised at detailed design stage.

Based on the current design, the area of wetland enhancement/planting required has been calculated using a Biodiversity Offset Accounting Model to ensure No Net Loss in ecological value. Appendix 8 presents an Indicative Wetland Offset/Compensation Restoration Plan and outlines the results of the offset modelling to identify the amount and type of wetland enhancement required. The model shows that restoring the downslope portions of the HGMs associated with TR-W1 (2,700 m²) and TR-W4 (1,000 m²) will result in a No Net Loss outcome.

It is recommended that the Biodiversity Offset Accounting Model, set out in Appendix 8, be re-calculated at the time of detailed design (if design changes effects on wetlands) and form the basis of a detailed Wetland Restoration and Enhancement Plan, which shall as a minimum include a methodology for the wetland enhancement and restoration.

8 Conclusions

Terrestrial Ecology

The terrestrial vegetation within the Project site is of **Negligible** to **Low** ecological value. There are no construction or operational effects for terrestrial ecology where the level of effect was assessed to be **Moderate** or higher, however habitat is provided to native fauna including:

- Long-tailed bats (Very High ecological value)
- Non-TAR native birds (**Low** ecological value)
- North Island fernbird (**High** ecological value)
- Copper skink (High ecological value)

During vegetation removal there is the potential to kill/injure native fauna. All native fauna is protected by the Wildlife Act 1953; therefore, this effect will need to be avoided and mitigated at the start of construction.

Aquatic Ecology

All works (excluding minor stormwater outfall works) will be outside the stream riparian setback and therefore no instream works will occur. Therefore, potential effects on instream habitat due to hydrology and water quality impacts during construction and operation have been assessed for the corresponding wetland.

Wetland Ecology

Where possible the Project has minimised impacts on wetlands, however, the reclamation of the upper portions of TR-W1 and TR-W4 during construction is unavoidable. The loss of TR-W4 is considered a **Moderate** level of effect therefore impact management is required, however, the loss of TR-W1 and TR-W4 also requires impact management as a result of the NPS:FM requirements. The loss of these wetlands can be sufficiently offset through wetland habitat restoration and wetland margin planting of the lower portions of the respective wetlands within the Project designation. The proposed wetland offset areas will allow the Project to achieve No Net Loss in ecological value.

9 References

Auckland Council. (2012). Auckland Council's Indigenous Biodiversity Strategy.

Auckland Council. (2016). Auckland Unitary Plan Operative in Part 2016.

Auckland Council. (2022). Auckland Council Geomaps. Retrieved from: https://geomapspublic.aucklandcouncil.govt.nz/viewer/index.html

Brinson, M. M. (1993). A hydrogeomorphic classification for wetlands, Technical Report WRP–DE–4, U.S. Army Corps of Engineers Engineer Waterways Experiment Station, Vicksburg, MS.

Borkin, K, M., & Parsons, S. (2009) Long-tailed bats' use of a Pinus radiata stand in Kinleith Forest: recommendations for monitoring. New Zealand Journal of Forestry 53: 38–43.

Burns, R. J., Bell, B. D., Haigh, A., Bishop, P., Easton, L., Wren, S., Germano, J., Hitchmough, R. A., Rolfe, J.R. & Makan, T. (2018). Conservation status of New Zealand amphibians, 2017. New Zealand Threat Classification Series 25. Department of Conservation, Wellington. 7 p.

Clapcott, J. E. (2015). National Rapid Habitat Assessment Protocol Development for Streams and Rivers. Prepared for Northland Regional Council. Report Number 2649. Cawthron Institute: Nelson, New Zealand.

Clarkson, B. (2018). Wetland delineation protocols. Manaaki Whenua – Landcare Research Contract Report LC3354 for Tasman District Council. 6 p.

Clarkson, B., Sorrell, B., Reeves, P., Champion, P., Partridge, T. & Clarkson, B. (2004). Handbook for Monitoring Wetland Condition – Coordinated Monitoring of New Zealand Wetlands. Revised Edition. doi:10.7931/J2Z60KZ3.

Conservation Act 1987.

de Lange, P. J., Rolfe, J. R., Barkla, J. W., Courtney, S. P., Champion, P. D., Perrie, L. R., Beadel. S.M., Ford. K. A., Breitwieser, I., Schönberger. I., Hindmarsh-Walls, R., Heenan, P. B. & Ladley, K. (2017). Threat Classification of New Zealand Vascular Plants. New Zealand Threat Classification Series 22. Department of Conservation: Wellington, New Zealand.

Department of Conservation (DOC). (2014). Auckland Conservation Management Strategy 2014 to 2024.

Department of Conservation (DOC) & Ministry for the Environment (MfE). (2000). The New Zealand Biodiversity Strategy: Our chance to turn the tide.

Department of Conservation (DOC) & Ministry for the Environment (MfE). (2007). Protecting our Places. Information about the Statement of National Priorities for Protecting Rare and Threatened Biodiversity on Private Land.

Department of Conservation. (2022). DOC Bioweb. Retrieved from: https://www.doc.govt.nz/our-work/monitoring-reporting/request-monitoring-data/

Dunn, N. R., Allibone, R. M., Closs, G. P., Crow, S. K., David, B. O., Goodman, J. M., Griffiths, M., Jack, D. C., Ling, N., Waters, J. M. & Rolfe, J. R. (2017). Conservation status of New Zealand freshwater fishes. New Zealand threat classification series 24 Department of Conservation.

Franklin, P., Gee, E., Baker, C. & Bowie, S. (2018). New Zealand Fish Passage Guidelines. National Institute of Water & Atmospheric Research (NIWA): Hamilton, New Zealand.

Hitchmough, R., Barr, B., Lettink, M., Monks, J., Reardon, J., Tocher, M., van Winkel, D. & Rolfe, J. (2016). Conservation status of New Zealand reptiles, 2015: New Zealand Threat Classification Series 17. Wellington, DOC.

Kleynhans, C. J. (2007). Module D: Fish Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry report. Pretoria, South Africa.

Kotze, D. C., Marneweck, G. C., Batchelor, A. L., Lindley, D. S. & Collins, N. B. (2007). WET-Ecoservices: A technique for rapidly assessing ecosystem services supplied by wetlands. WRC Report No TT 339/08, Water Research Commission, Pretoria.

McEwen, W. M (ed.). (1987). Ecological Regions and Districts of New Zealand. Wellington: Department of Conservation.

Ministry for the Environment (MfE). (2019). Draft National Policy Statement for Indigenous Biodiversity. ME 1471. Wellington, New Zealand: New Zealand Government.

Ministry for the Environment (MfE). (2020a). National Policy Statement for Freshwater Management. Wellington, New Zealand: New Zealand Government.

Ministry for the Environment (MfE). (2020b). Wetland delineation protocols. Wellington: Ministry for the Environment.

Ministry for the Environment (MfE) (2021). Wetland delineation hydrology tool for Aotearoa New Zealand. Wellington: Ministry for the Environment.

Morphum Environmental. (2021). 13-15 Trig Road – Ecological Impact Assessment.

O'Donnell, C. F. J., Christie, J. E. & Simpson, W. (2006). Habitat use and nocturnal activity of lesser shorttailed bats (Mystacina tuberculata) in comparison with long-tailed bats (Chalinolobus tuberculatus) in temperate rainforest. New Zealand Journal of Zoology 33: 113–124.

O'Donnell, C. F. J. & Sedgeley, J. A. (1999). Use of roosts by the long-tailed bat, Chalinolobus tuberculatus, in temperate rainforest in New Zealand. Journal of Mammalogy 80: 913–923.

O'Donnell, C. F. J., Borkin, K. M., Christie, J. E., Lloyd, B., Parsons, S. & Hitchmough, R.A. (2017). Conservation status of New Zealand Bats, 2017. New Zealand Threat Classification Series 21. Wellington, DOC.

Resource Management Act 1991.

Robertson, H. A., Baird, K. A., Elliot, G. P., Hitchmough, R. A., McArthur, N. J., Makan, T. D., Miskelly, C. M., O'Donnell, C. F. J., Sagar, P. M., Scofield, R. P., Taylor, G. A. & Michel, P. (2021). Conservation status of birds in Aotearoa New Zealand, 2021. New Zealand Threat Classification Series 36. Wellington, DOC.

Roper-Lindsay, J., Fuller, S.A., Hooson, S., Sanders, M.D. & Ussher, G.T. (2018). Ecological impact assessment. EIANZ Guidelines for use in New Zealand: terrestrial and freshwater ecosystems. 2nd edition. EIANZ Melbourne, Australia.

Sedgeley, J, A. (2012) Bats: counting away from roosts—automatic bat detectors Version 1.0 Inventory and monitoring toolbox: bats. Series DOCDM-590733. Christchurch: Department of Conservation.

Singers, N., Osborne, B., Lovegrove, T., Jamieson, A., Boow, J., Sawyer, J., Hill, K., Andrews, J., Hill, S. & Webb, C. (2017). Indigenous terrestrial and wetland ecosystems of Auckland. Auckland Council: Auckland, New Zealand.

Snelder, T. H., Biggs, B. & Weatherhead, M. (2004). New Zealand River Environment Classification User Guide. Ministry for the environment and NIWA. Publication number: ME 1026, ISBN 978047833495.

Storey, R. & Wadhwa, S. (2009). An assessment of the length of permanent, intermittent and ephemeral streams in the Auckland Region. Prepared by NIWA for Auckland Regional Council. Auckland Regional Council Technical Report 2009/028.

Supporting Growth Alliance (SGA). (2022a). North West Strategic – Assessment of Ecological Effects (Draft).

Supporting Growth Alliance (SGA). (2022b). North West Whenuapai – Assessment of Ecological Effects (Draft).

Wildlife Act 1953.

1 Appendix 1 – Regulatory Assessment

1.1 Legislation

1.1.1 Resource Management Act 1991

The purpose of the RMA is to achieve sustainable development of natural and physical resources. Important elements of this are the maintenance of indigenous biodiversity and protection of significant indigenous vegetation and habitats. These elements are given effect in Sections 5, 6 and 7, and Schedule 4 sets out the requirements for effects assessments.

1.1.2 Wildlife Act 1953

The Wildlife Act 1953 provides statutory protection for all indigenous lizard, frog, bat and bird species, and for the control of those species listed in Schedules 1 to 6. This includes a number of invertebrates (terrestrial and freshwater) and marine animals.

1.1.3 Conservation Act 1987

The Conservation Act 1987 provides for the protection of New Zealand's natural and historic resources. This includes protection of resources within public conservation land, including marginal strips and specially protected areas. Part 5B sets out protection for indigenous freshwater fish, including spawning habitat and individuals, and requirements regarding fish translocation.

1.2 National Policy Statements

1.2.1 National Policy Statement for Freshwater Management 2020

The National Policy Statement for Freshwater Management (MfE 2020a) provides national direction for decisions regarding water quality and quantity, and integrated management of land, freshwater and coastal environments under the RMA. The National Policy Statement for Freshwater Management contains national objectives that specify what local authorities, in their governance and management roles, must do to help achieve those objectives and policies.

The NPS:FM excludes wetlands which do not meet its definition of 'natural wetlands' as:

- a) a wetland constructed by artificial means (unless it was constructed to offset impacts on, or restore, an existing or former natural wetland); or
- b) a geothermal wetland; or
- c) any area of improved pasture that, at the commencement date, is dominated by (that is more than 50% of) exotic pasture species and is subject to temporary rain derived water pooling.

1.3 Auckland Unitary Plan Operative in Part 2016

The AUP:OP sets out the direction and rules for land, water, air and coastal use activities and development in the region and provides measures to protect natural and physical resources.

The AUP:OP became operative in part on 15 November 2015, replacing most district and regional plans in the Auckland Region.

1.4 Additional Planning Guidance

1.4.1 New Zealand's Fish Passage Guidelines 2018

This guidance document sets out recommended practice for the design of instream infrastructure to provide for fish passage. The intent of these guidelines is to set the foundation for the improvement of fish passage management in New Zealand.

1.4.2 New Zealand Biodiversity Strategy

The New Zealand Biodiversity Strategy (DOC and MfE 2000) was prepared in response to the state of decline of New Zealand's indigenous biodiversity and establishes a strategic framework for the conservation, sustainable use and management of New Zealand's biodiversity. This includes indigenous biodiversity and 'important' introduced species.

1.4.3 Protecting our Places

Protecting our Places (DOC & MfE, 2007) forms part of a Department of Conservation (DOC) and Ministry for the Environment (MfE) programme and intends to provide a framework for decision making regarding biodiversity management on private land. It is an important document for managing biodiversity under the RMA and its key provisions have been incorporated into the Proposed National Policy Statement for Biodiversity (refer to Sections 3.1.1 and 3.2.2).

It is supported by the 'Statement of National Priorities for protecting rare and threatened indigenous biodiversity on private land' and includes the provision of identifying rare and threatened environments and ecosystems in New Zealand:

National Priority 1: To protect indigenous vegetation associated with land environments (defined by Land Environments of New Zealand at Level IV), that have 20% or less remaining in indigenous cover.

National Priority 2: To protect indigenous vegetation associated with sand dunes and wetlands; ecosystem types that have become uncommon due to human activity.

National Priority 3: To protect indigenous vegetation associated with 'originally rare' terrestrial ecosystem types not already covered by priorities 1 and 2.

National Priority 4: To protect habitats of acutely and chronically threatened indigenous species.

1.4.4 Auckland Conservation Management Strategy 2014 to 2024

The Auckland Conservation Management Strategy (DOC, 2014) describes the conservation values present in Auckland and provides guidance for conservation work in the Auckland region. The purpose of the Auckland Conservation Management Strategy is to implement DOC's general policies and establishes objectives and

milestones for integrated management of the region's natural and historic resources. A priority of the strategy is the maintenance and enhancement of ecosystems, habitats and species vulnerable to the adverse effects of human activities.

1.4.5 Auckland Council's Indigenous Biodiversity Strategy 2012

The Council's Indigenous Biodiversity Strategy (Auckland Council, 2012) provides an approach for managing indigenous biodiversity in the region and gives guidance for the development of statutory plans, while upholding the Council's statutory obligations to biodiversity under the RMA and the Proposed National Policy Statement for Biodiversity.

It provides objectives and performance measures for:

- Conserving Auckland's indigenous ecosystems;
- The Long-term recovery of threatened species;
- The maintenance and enhancement of ecosystem services;
- Sustaining and protecting cultural values; and
- Improving understanding biodiversity, collaboration and implementation of statutory responsibilities.

2 Appendix 2 – Summary of Ecological Impact Assessment Methodology

A1. Assessment of Ecological Value

The first step in the Ecological Impact Assessment (EcIA) approach is to assess the value of ecological features identified as part of the ecological baseline in terms of Representativeness, Rarity, Diversity and Pattern, and Ecological context.

The ecological value of terrestrial, freshwater and wetland ecological features was assessed by assigning a score of 0 (None), 1 (Low), 2 (Moderate), 3 (High) or 4 (Very High) based on professional judgement (with justification) to aspects associated with each of the four ecological matters (1) Representativeness 2) Rarity/distinctiveness 3) Diversity and pattern 4) Ecological context) including:

Terrestrial Ecology

- 1) Representativeness: Typical structure, species composition and indigenous representation
- 2) Rarity/distinctiveness: Species of conservation significance, distinctive ecological values
- 3) **Diversity and pattern**: Habitat diversity, species diversity and patterns in habitat use
- 4) **Ecological context**: Size, shape and buffering function, sensitivity to change, ecological networks (linkages, pathways, migration)

Freshwater Ecology

- 1) **Representativeness**: RHA score for accessible sites and riparian habitat modification based on desktop stream and catchment assessments
- 2) **Rarity/distinctiveness**: Species of conservation significance informed by the potential occurrence of Threatened and At-Risk (TAR) fish species
- 3) Diversity and pattern: Level of natural diversity informed by the habitat diversity subsection of the RHA. Stream order, slope and hydroperiod were applied as desktop proxies to judge the likely habitat diversity for streams where access was constraint
- 4) Ecological context: Stream order and hydroperiod

Wetland Ecology

- 1) **Representativeness**: Informed by wetland condition assessment. Hydrological modification based on observations of drains, ponds and catchment land use. Native vegetation informed by site visit and review of landcover information;
- 2) **Rarity/distinctiveness**: Wetland type (rare or distinctive); distinctive ecological values (ecosystem services) in a larger catchment context;
- 3) **Diversity and pattern**: Representation of different hydroperiods (permanent, seasonal or temporary) and the structural complexity of vegetation cover
- 4) **Ecological context**: flood attenuation, streamflow regulation, sediment trapping, water purification, connectivity and migration

The score for each matter was constrained to the highest score for each aspect (for example a High score allocated to a wetland for flood attenuation will result in a High score for the Ecological context matter). The combined ecological value score (ranging from **Very High** to **Negligible**), for the four matters, was then determined in accordance with the EIANZ Guidelines.

Species

Te Tupu Ngātahi Supporting Growth

Assigning value at the terrestrial species level considers the current threat status of a species (in accordance with the NZ Threat Classification system) that is present in areas potentially impacted by the Project. The ecological value of the species is assigned in accordance with the table below.

Toble 0.4 Attributes	to consider when eccesin	ng ecological value of terrestrial species	
Table 9-1 Altribules	to consider when assessing	id ecological value of terrestrial species	

Threat Class	Threat Sub-class	Value
Exotic: Introduced and Naturalised	-	Negligible
Indigenous: Common/not threatened	-	Low
Indigenous: Locally uncommon or distinctive species	-	Moderate
Indigenous: At Risk	Naturally uncommon Relict Recovering	Moderate
	Declining	High
Indigenous: Threatened	Nationally Critical Nationally Endangered Nationally Vulnerable	Very High

A2. Assessment of ecological effects

The ecological effects assessment includes several steps that collectively assess the way the Project will interact with elements of the physical and biological, environment to produce effects to habitat and receptors. The method for determining the level of effect are outlined in the following sections.

Magnitude of effect

The magnitude of effects from a Project is firstly determined by the characteristics in the following table.

Characteristic	Definition	Designations
Туре	A descriptor indicating the relationship of the impact to the Project (in terms of cause and	Direct
	effect)	Indirect
Extent ¹³	The "reach" of the impact (e.g., confined to a small area around the Project Footprint,	Local
	projected for several kilometres, etc.)	Regional
		National
Duration	The time period over which a resource/receptor	Temporary (days or months)
	is affected	Short-term (<5 years)
		Long-term (15-25 years)

Table 9-2 Magnitude of effect characteristics

 13 Extent for streams and wetlands differs. The extent is as follows: score of 1 = <10% of reach length, 2 = 10-20% of stream length, 3 = 20-40% of stream length, 4 = 40-70% of stream length, 5 = >70% of stream length. Downstream flow/water quality effects are as follows: (a score of 1 is not appropriate in this context), score of 2 = stream reach 100-500 m, 3 = stream reach 500 m - 1 km, 4 = stream reach 1 - 10 km, 5 = stream reach >10 km.

82

Characteristic	Definition	Designations	
		Permanent (>25 years)	
Frequency	A measure of the constancy or periodicity the	Infrequently	
	receptor will be affected	Periodically	
		Frequently	
		Continuously	
Likelihood	The probability of an effect occurring if it is	Highly Unlikely	
	unplanned	Unlikely	
		Likely	
		Highly Likely	
		Definite	
Reversibility			
	be reversed in a reasonable time scale through natural processes or mitigation	Partially	
		Irreversible	
		Not applicable	

Based on the above-mentioned characteristics, a magnitude is assigned for each Project effect and are defined in the table below

Table 9-3 Magnitude of effect – levels

Magnitude	Description
Very High	Total loss of, or very major alteration to, key elements/features of the existing baseline conditions, such that the post-development character, composition and or attributes will be fundamentally changes and may be lost from the site altogether; and/or loss of very high proportion of the known population or range of the elements/features
High	Major loss or major alteration to key elements/features of the existing baseline such that the post-development character, composition and/or attributes will be fundamentally changed; and/or loss of a high proportion of the known population or range of the element/feature
Moderate	Loss or alteration to one or more key elements/features of the existing baseline such that the post-development character, composition and/or attributes will be partially changed; and/or loss of a moderate proportion of the known population or range of the element/feature
Low	Minor shift away from the existing baseline conditions. Change arising from the loss/alteration will be discernible, but underlying character, composition and/or attributes of the existing baseline conditions will be similar or pre-development circumstances or patterns; and or having a minor effect on the known population or range of the element/feature

Magnitude	Description
Negligible	Very slight change from the existing baseline condition. Change barely distinguishable, approximating to the 'no change' situation; and/or having negligible effect on the known population or range of the element/feature

Level of effect

Once the magnitude of effect and the ecological value of the feature have been determined, the level of effect on that feature, can be assigned for each effect, using the matrix shown in the table below

Table 9-4 Ecological effect matrix

	Ecological Values								
		Very High	High	Moderate	Low	Negligible			
	Very High	Very High	Very High	High	Moderate	Low			
	High	Very High	Very High	Moderate	Low	Very Low			
Magnitude	Moderate	High	High	Moderate	Low	Very Low			
Magn	Low	Moderate	Low	Low	Very Low	Very Low			
-	Negligible	Low	Very Low	Very Low	Very Low	Very Low			
	Positive	Negligible	Negligible	Negligible	Negligible	Negligible			

A3. Impact Management

Results from the matrix were used to determine the type of responses that may be required to mitigate potential direct and indirect impacts within the Project Area and within the zone of influence, considering the following:

- A 'Low' or 'Very Low' level of impact is not normally of concern, though design should take measures to minimise potential effects.
- A '**Moderate**' to '**High'** level of impact indicates a level of impact that qualifies careful assessment on a case-by-case basis. Such activities could be managed through avoidance (revised design) or appropriate mitigation. Where avoidance is not possible, No Net Loss of biodiversity values would be appropriate.
- A '**Very Hig**h' level of impact is are unlikely to be acceptable on ecological grounds alone and should be avoided. Where avoidance is not possible, a net gain in biodiversity values would be appropriate.

Residual impact

Once impact management measures are declared, the next step in the effects assessment process was to assign determine whether any residual effects remain and to implement further mitigation, offset or compensation measures to reduce the effect. This is a repeat of the impact assessment steps discussed above (until an acceptable level of effect remains – usually **Low/Very low/Negligible**), considering the implementation of the additional recommended impact management measures.

Managing uncertainty

Biophysical impacts are difficult to predict with certainty, but uncertainty stemming from on-going development of the Project design and implementation is inevitable, and the environment is variable over time. If

uncertainties are relevant to the effect assessment, they were stated and approached conservatively, to identify a range of likely residual effects and relevant mitigation measures.

Cumulative effects

Cumulative impacts and effects are those that arise because of an impact and effect from the Project interacting with those from another activity to create an additional impact and effect. These are termed cumulative impacts and effects. No structed methods were employed to assess cumulative impacts, but where relevant descriptions of potential cumulative effects have been provided.

3 Appendix **3** – Aquatic and Wetland Methodologies

3.1 Storey & Wadha (2009) Stream Classification Methodology

During the site walkovers detailed in Section 7.1.4.2, all streams within the Project Areas identified on Auckland Council Geomaps were ground truthed and classified as permanent, intermittent or ephemeral, according to the stream definitions described by Storey and Wadhwa (2009), which are presented in Table 9-5. Any additional streams observed during site walkovers were also classified and where appropriate artificial swales, ditches and piped flow paths were also recorded.

Criteria	Definition						
Permanent stream							
1	Evidence of continuous flow						
Intermittent or	ephemeral stream*						
1	Evidence of natural pools						
2	Well defined banks and bed						
3	Retains surface water present more than 48 hours after a rain event						
4	Rooted terrestrial vegetation not established across channel						
5	Organic debris from flooding present on floodplain						
6	Evidence of substrate sorting, including scour and deposition						

Table 9-5 Stream classification criteria (Storey and Wadhwa, 2009)

*If three or more of the six assessment criteria can be met with confidence, the watercourse is considered intermittent. If at least three criteria cannot be met, the watercourse is considered ephemeral.

Ephemeral

Stream reach with a bed above the water table at all times. Concentrated flow for short periods of time during and/or after rainfall. Not confined within a defined channel.

86

3.2 Rapid Habitat Assessment

Freshwater assessments were undertaken on all streams identified on site and included the implementation of the Rapid Habitat Assessment (RHA) protocol either onsite or at a desktop level (Clapcott, 2015) (Figure 9-1). The RHA provides a standardised protocol for making a quick, qualitative, site-based assessment of physical stream habitat conditions.

Habitat parameter				i.	Condit	on catego	огу				SCORE
1. Deposited sediment	The perc	entage d	of the stree	am bed c	overed b	y fine sedin	nent.				
	0	5	10	15	20	30	40	50	60	≥ 75	1
SCORE	10	9	8	7	6	5	4	3	2	1	
2. Invertebrate habitat diversity						as boulde ce of inters				d, leaves,	
	≥ 5	5	5	4	4	3	3	2	2	1	
SCORE	10	9	8	7	6	5	4	3	2	1	
3. Invertebrate habitat abundance	and the second					PT colonis crophytes.	the set of the set of the	xample fi	lowing wate	rover	
abandance	95	75	70	60	50	40	30	25	15	5	
SCORE	10	9	8	7	6	5	4	3	2	1	
4. Fish cover diversity	overhang	ning/encl		egetation	n, macrop	as woody hytes, bou					
SCORE	10	9	8	7	6	5	4	3	2	1	
5.		-							-	<u> </u>	
Fish cover abundance			of fish cov			1			1		
	95	75	60	50	40	30	20	10	5	0	
SCORE	10	9	8	1	6	5	4	3	2	1	
6. Hydraulic heterogeneity	cascade	waterfal	and the second se		vater. Pre	h as pool, r isence of d			ther.		
	≥5	5	4	4	3	3	2	2	2	1	
SCORE	10	9	8	7	6	5	4	3	2	1	
7. Bank erosion		10 0 T	of the stream ank or sto			actively ero	ding due t	o scourin	g at the wa	iter line,	
Left bank	0	≤5	5	15	25	35	50	65	75	> 75	
Right bank	0	≤5	5	15	25	35	50	65	75	> 75	
SCORE	10	9	8	7	6	5	4	3	2	1	
8. Bank vegetation	Mature n	ative	Regener	naturalne ating nat		nk vegetati Mature s	on. hrubs, spi	arse tree		yazed or	
AND Right bank	trees with and intac understo	t	flaxes/se dense e	edges/tus kotic	sock >	cover > grass	young exo	tic, long	mown gri bare/imp ground.		
SCORE	10	9	8	7	6	5	4	3	2	1	
9. Riparian width	The width	n (m) of	the riparia	n buffer c	onstraine	d by vegel	ation, fenc	e or othe	r structure	(s).	
Left bank	≥ 30	15	10	7	5	4	3	2	1	0	1
Right bank	≥ 30	15	10	7	5	4	3	2	1	0	
SCORE	10	9	8	7	6	5	4	3	2	1	
10. Riparian shade											
	≥ 90	80	70	60	50	40	25	15	10	≤5	1
SCORE	10	9	8	7	6	5	4	3	2	1	
TOTAL							2	(Sum of	paramete	ers 1-10)	

88

Figure 9-1 Rapid Habitat Assessment (RHA) protocol (Clapcott, 2015)

3.3 Wetland Assessment Methodology

Hydrogeomorphic Unit 3.3.1

Conceptual model for different HGM units as applied within this assessment (Figure 9-2).

Hydrogeomorphic		Description		of water ning the and
	types	Description	Surface	Sub- surface
Floodplain		Valley bottom areas with a well defined stream channel, gently sloped and characterized byfloodplain features such as oxbow depressions and natural levees and the alluvial (by water) transport and deposition of sediment, usually leading to a net accumulation of sediment. Water inputs from main channel (when channel banks overspill) and from adjacent slopes.		*
Valley bottom with a channel		Valley bottom areas with a well defined stream channel but lacking characteristic floodplain features. May be gently sloped and characterized by the net accumulation of alluvial deposits or may have steeper slopes and be characterized by the net loss of sediment. Water inputs from main channel (when channel banks overspill) and from adjacent slopes.		*/ ***
Valley bottom without a channel		Valley bottom areas with no clearly defined stream channel, usually gently sloped and characterized by alluvial sediment deposition, generally leading to a net accumulation of sediment. Water inputs mainly from channel entering the wetland and also from adjacent slopes.		•/ •••
Hillstope seepage linked to a stream channel		Slopes on hillsides, which are characterized by the colluvial (transported by gravity) movement of materials. Water inputs are mainly from sub-surface flow and outflow is usually via a well defined stream channel connecting the area directly to a stream channel.	•	***
Isolated Hillslope seepage		Slopes on hillsides, which are characterized by the colluvial (transported by gravity) movement of materials. Water inputs mainly from sub-surface flow and outflow either very limited or through diffuse sub-surface and/or surface flow but with no direct surface water connection to a stream channel.	•	***
Depression (includes Pans)		A basin shaped area with a closed elevation contour that allows for the accumulation of surface water (i.e. it is inward draining). It may also receive sub-surface water. An outlet is usually absent, and therefore this type is usually isolated from the stream channel network.	·/ ···	•/ •••

Precipitation is an important water source and evapotranspiration an important output in all of the above settings

Water source: * Contribution usually small ***

Wetland

*/ *** Contribution may be small or important depending on the local circumstances

+/ +++ Contribution may be small or important depending on the local circumstances.

Figure 9-2 The HGM classification according Brinson (1993) and adopted from Kotze et al. (2007)

3.3.2 Wetland Functional Value

Contribution usually large

The matrix outlining the likely presence of specific wetland functions associated with different wetland types is presented in Table 9-6.

89

	Early wet season Flood attenuation	Late wet season Flood attenuation	Stream flow regulation	Erosion control	Sediment trapping	Phosphate removal	Nitrate removal	Toxicants
Depression	Likely	Likely	Unlikely	Unlikely	Unlikely	Unlikely	Likely	Likely
Hillslope seep (isolated)	Likely	Unlikely	Unlikely	Very likely	Unlikely	Unlikely	Very likely	Likely
Hillslope seep (connected)	Likely	Unlikely	Likely	Very likely	Unlikely	Unlikely	Very likely	Very likely
Unchanneled valley bottom	Likely	Likely	Unlikely	Very likely	Very likely	Likely	Likely	Very likely
Channelled valley bottom	Likely	Unlikely	Likely	Very likely	Likely	Likely	Likely	Likely
Floodplain	Very likely	Likely	Unlikely	Very likely	Very likely	Very likely	Likely	Likely

Table 9-6 Likely presence of different functional wetland values associated with different HGM units (wetland types)

3.3.3 Wetland Condition

Based on Clarkson et al. (2004) handbook for monitoring wetland condition, to assess a range of external pressures which can lead to a decline in the health or condition of the wetland. For example, changes in hydrology, water pollution, nutrient enrichment, and invasion by weeds and pests can lead to biodiversity loss and impaired wetland functioning (Table 9-7). The wetland condition score was interpreted through wetland condition categories proposed by Kleynhans (2007) (Table 9-7). These conditions where used to value the functional integrity of the wetland habitat and therefore provide a way to value the system with regards to the EIANZ Guidelines.

 Table 9-7 Summary of aspects and components considered within the wetland condition assessment (Clarkson et al., 2004). The degree of modification was assessed using the following scoring: 5=very low/none, 4=low, 3=medium, 2=high, 1=very high and 0=extreme

Impact indicator	Indicator components		
Hydrological integrity	Impact of manmade structures		
	Water table depth		
	Dryland plant invasion		
Physico-chemical parameters	Fire damage		
	Degree of sedimentation		
	Nutrient levels		
	Von Post index		
Change in ecosystem intactness	Loss in area of original wetland		
	Connectivity barriers		
Change in browsing, predation and harvesting regimes	Damage by domestic or feral animals		
	Introduces predator impacts on wildlife		
	Harvesting levels		
Change in dominance of native plants	Introduced plant canopy cover		
	Introduced plant understory cover		
Total wetland condition index/25	·		

 Table 9-8 Key wetland pressures assessed within the catchment of the wetland (Clarkson et al., 2004).

 Pressure scores were assigned as follows:5=very high, 4= high, 3=medium, 2=low, 1=very low, 0=none

Pressure	
Modification to catchment hydrology	
Water quality within the catchment	
Animal access	
Key undesirable species	

91

Pressure
% catchment introduced vegetation
Other
Total catchment pressure index/30

Table 9-9 Wetland condition categories and associated descriptions used within this assessment

Category Wetland Condition	Description	%
Unmodified	Unmodified/ natural	100%
Largely natural	Largely natural with a few modifications. A slight change in ecosystem processes is discernible and a small loss of natural habitats and biota have taken place	80-100%
Moderately	Moderately modified. A moderate change in ecosystem processes and loss of natural habitats has taken place but the natural habitat remains predominantly intact	60-80%
Largely	Largely modified. A large change in ecosystem processes and loss of natural habitat and biota has occurred	40-60%
Seriously	Seriously modified. The change in ecosystem processes and loss of natural habitat and biota is great but some remaining natural habitat features are still recognizable	20-40%
Critically	Critically modified. Modifications have rich a critical level and the ecosystem processes have been modified completely with an almost complete loss of natural habitat and biota	<20%

92

4 Appendix 4 – Aquatic, Wetland and Terrestrial Ecology Results

4.1 Aquatic Ecology Results

4.1.1 Stream Hydroperiod Classification

Stream	Stream classification	Criteria met based on Storey and Wadhwa (2009) – refer Appendix 3, Section 3.1
TR-S1	Intermittent	Evidence of natural pools, defined banks and bed, rooted vegetation not established across channel. Riverbed seasonally intercepting the saturated soil zone
TR-S2	Intermittent	Evidence of natural pools, defined banks and bed, rooted vegetation not established across channel. Riverbed seasonally intercepting the saturated soil zone
TR-S3	Intermittent	Evidence of natural pools, defined banks and bed, rooted vegetation not established across channel. Riverbed seasonally intercepting the saturated soil zone
W5-S2*	Intermittent	Evidence of natural pools, well defined banks and bed, rooted vegetation not established across channel.

Notes: * = Desktop assessment.

4.1.2 Rapid Habitat Assessment

Table 9-11 Summary of RHA values

Stream ID	Deposited Sediment	Invertebrate habitat diversity	Invertebrate habitat abundance	Fish cover diversity	Fish cover abundance	Hydraulic heterogeneity	Bank erosion	Bank vegetation	Riparian width	Riparian shade	RHA Habitat Quality Score	Corresponding Habitat Value*
TR-S1	1	1	1	1	1	1	9	1	1	1	18	Poor
TR-S1	1	1	1	1	1	1	7	1	1	1	16	Poor
TR-S1	1	1	1	1	1	1	9	1	1	1	18	Poor
W5-S2	1	1	1	1	1	1	9	1	1	1	18	Poor

94

Notes:

* = Corresponding habitat values for each habitat quality score

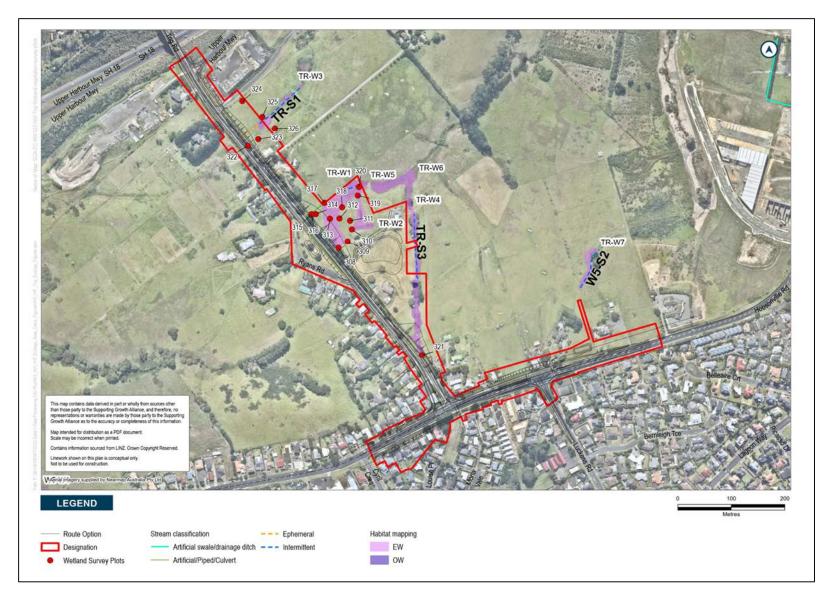
- P = Poor (Score 10-40)
- M = Moderate (Score 41-60)
- G = Good (Score 61-80)
- E = Excellent (Score 81+)

4.1.3 Aquatic Ecology - Value Assessment

Table 9-12 Ecological value assessment for aquatic ecological features

		Ecologica	al Feature		Justification
Attributes	TR-S1	TR-S2	TR-S3	W5-S2*	
Representativeness (including SEV, RHA and ecological integrity)	1	1	1	1	-
Instream habitat modification	1	1	1	-	Poor RHA scores for all streams.
Riparian habitat modification	1	1	1	1	Poor RHA scores for all streams.
Invertebrate assemblage representation	-	-	-	-	-
Fish assemblage representation	1	1	1	-	Habitat is largely unsuitable or inaccessible for potential assemblage.
SEV scores relative to potential score	-	-	-	-	-
RHA score relative to potential score	-	-	-	-	-
Rarity/distinctiveness	3	3	3	1	-
Range restricted or endemic species	-	-	-	-	-
Species of conservation significance	3	3	3	1	Desktop review: Potential for longfin eel (At Risk - Declining).
Stream type (rare or distinctive)	1	1	1	-	-
Distinctive ecological values (ecosystem services)	-	-	-	-	-
Diversity and pattern	0	0	0	1	-
Level of natural diversity	-	-	-	1	-
Species diversity	-	-	-	-	-
Complexity of community	-	-	-	-	-

Attributes	Ecological Feature				Justification
Attributes	TR-S1	TR-S2	TR-S3	W5-S2*	
Ecological context (Ecosystem services, importance and sensitivity)	3	3	3	3	-
Stream order	1	2	2	1	TR-S1: Zero order TR-S2: Order 1
					TR-S3: Zero order
Hydroperiod	3	3	3	3	TR-S1: Intermittent stream TR-S2: Intermittent stream TR-S3: Intermittent stream
Sensitivity to flow and water quality modification	1	1	1	-	Habitat already significantly altered by human activities, therefore less easily affected by anthropogenic changes.
Connectivity and migration	-	-	-	-	Habitat is not important in terms of connectivity for the survival of any species at any scale.
Protected status	-	-	-	-	Streams do not fall within any category of protected status.
Ecological Value	Low	Low	Low	Low	•


Notes: * = Ecological value assessment as per draft Assessment of Ecological Effects for North West – Whenuapai (Supporting Growth, 2022b).

4.2 Wetland Ecology Results

4.2.1 Wetland Vegetation Plots

A site plan showing the location of the wetland vegetation plots is presented in Figure 9-3 and further detail is provided in Table 9-13.

Figure 9-3 Trig Road wetland vegetation survey plots

Plot ID	Index	Common Name	Scientific Name	Cover (%)*	Rating	Exotic/Native	Pasture Dom (>50%) T	Wetland Dom T	PI
Plot 308	45	Kikuyu grass	Cenchrus clandestinus	20	FACU	Exotic	No	Yes	Yes (3.0)
-	54	Creeping buttercup	Ranunculus repens	70	FAC	Exotic			
	28	Soft rush	Juncus effusus	20	FACW	Exotic			
Plot 309	43	Mercer grass	Paspalum distichum	40	FACW	Exotic	No	Yes	Yes (2.8)
-	54	Creeping buttercup	Ranunculus repens	40	FAC	Exotic			
	45	Kikuyu grass	Cenchrus clandestinus	20	FACU	Exotic			
Plot 310	43	Mercer grass	Paspalum distichum	25	FACW	Exotic	No	Yes	Yes (2.5)
54 Cree		Creeping buttercup	Ranunculus repens	50	FAC	Exotic			
	28	Soft rush	Juncus effusus	25	FACW	Exotic			
Plot 311	43	Mercer grass	Paspalum distichum	40	FACW	Exotic	Yes	No	No (3.3)
	45	Kikuyu grass	Cenchrus clandestinus	80	FACU	Exotic			
	54	Creeping buttercup	Ranunculus repens	20	FAC	Exotic			
	67	White clover	Trifolium repens	10	FACU	Exotic			
Plot 312	43	Mercer grass	Paspalum distichum	50	FACW	Exotic	No	Yes	Yes (2.3)
	54	Creeping buttercup	Ranunculus repens	20	FAC	Exotic			
Plot 313	45	Kikuyu grass	Cenchrus clandestinus	90	FACU	Exotic	Yes	No	No (3.7)
	54	Creeping buttercup	Ranunculus repens	20	FAC	Exotic			
	43	Mercer grass	Paspalum distichum	10	FACW	Exotic			
Plot 315	45	Kikuyu grass	Cenchrus clandestinus	70	FACU	Exotic	Yes	No	No (3.5)

Table 9-13 Wetland vegetation plots, dominance test (Dom T) and Prevalence Index (PI)

Plot ID	Index	Common Name	Scientific Name	Cover (%)*	Rating	Exotic/Native	Pasture Dom (>50%) T	Wetland Dom T	PI
	54	Creeping buttercup	Ranunculus repens	40	FAC	Exotic			
	28	Soft rush	Juncus effusus	10	FACW	Exotic			
Plot 316	45	Kikuyu grass	Cenchrus clandestinus	100	FACU	Exotic	Yes	No	No (3.8)
	54	Creeping buttercup	Ranunculus repens	20	FAC	Exotic			
Plot 317	54	Creeping buttercup	Ranunculus repens	100	FAC	Exotic	No	Yes	No (3.2)
	45 Kikuyu grass Cenchrus clandestinus		Cenchrus clandestinus	30	FACU	Exotic			
Plot 318	43	Mercer grass	Paspalum distichum	50	FACW	Exotic	No	Yes	Yes (2.9)
	45 Kikuyu grass (Cenchrus clandestinus	30	FACU	Exotic			
	54	Creeping buttercup	Ranunculus repens	30	FAC	Exotic			
	67	White clover	Trifolium repens	10	FACU	Exotic			
Plot 319	43	Mercer grass	Paspalum distichum	50	FACW	Exotic	No	Yes	Yes (2.9)
	45	Kikuyu grass	Cenchrus clandestinus	40	FACU	Exotic			
	54	Creeping buttercup	Ranunculus repens	30	FAC	Exotic			
Plot 320	28	Soft rush	Juncus effusus	70	FACW	Exotic	No	Yes	Yes (2.3)
	54	Creeping buttercup	Ranunculus repens	30	FAC	Exotic			
	43	Mercer grass	Paspalum distichum	10	FACW	Exotic			
Plot 321	28	Soft rush	Juncus effusus	80	FACW	Exotic	No	No	Yes (2.4)
	45	Kikuyu grass	Cenchrus clandestinus	20	FACU	Exotic			
Plot 322		No property access.	Review of previous field assess	ment and ro	adside obse	rvation, determine	ed as wetland.		
Plot 323	45	Kikuyu grass	Cenchrus clandestinus	100	FACU	Exotic	Yes	No	Yes (3.8)

Plot ID	Index	Common Name	Scientific Name	Cover (%)*	Rating	Exotic/Native	Pasture Dom (>50%) T	Wetland Dom T	PI
	54	Creeping buttercup	Ranunculus repens	20	FAC	Exotic			
Plot 324	45	Kikuyu grass	Cenchrus clandestinus	95	FACU	Exotic	Yes	No	No (3.9)
	54	Creeping buttercup	Ranunculus repens	10	FAC	Exotic			
Plot 325	45	Kikuyu grass	Cenchrus clandestinus	40	FACU	Exotic	No	No	Yes (3.0)
	43	Mercer grass	Paspalum distichum	30	FACW	Exotic			
	67	White clover	Trifolium repens	5	FACU	Exotic			
Plot 326	45	Kikuyu grass	Cenchrus clandestinus	100	FACU	Exotic	Yes	No	No (4.0)

Notes: * - Absolute % cover for each species is estimated as the vertical projection (natural spread) of the above ground live biomass for each species irrespective of the position of other vegetation. Individual species cover cannot be more than 100% but total vegetation cover can >100%.

Te Tupu Ngātahi Supporting Growth

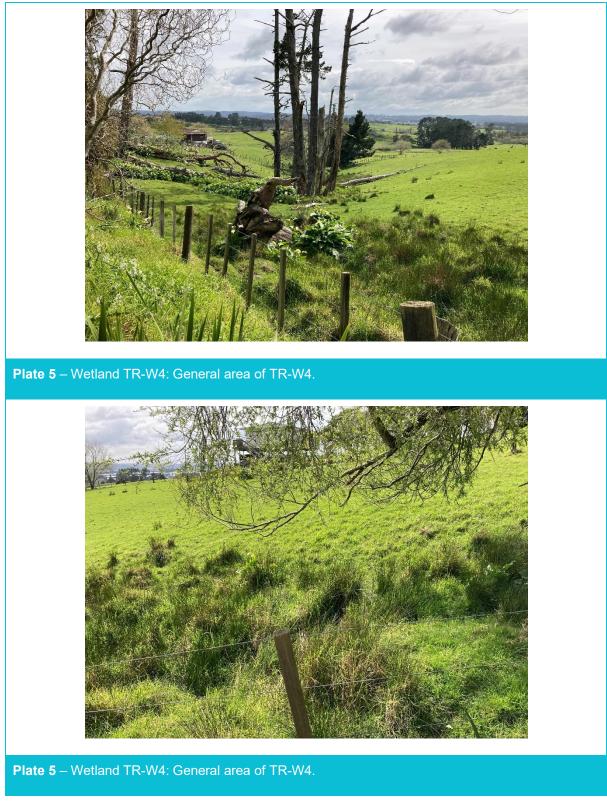


Figure 9-4 Wetland delineation observations

4.2.2 Wetland Condition Assessment

The condition of wetlands TR-W1 to TR-W7 were assessed using Clarkson et al., 2004 and the results of the assessment are provided in Table 9-14. A value of 1 corresponds to a very high degree of modification and a value of 5 corresponds to a very low degree of modification.

Te Tupu Ngātahi Supporting Growth

104

The overall condition scores ranged between 7/25 and 11/25 which translate to a **Largely Modified** state (a large change in ecosystem processes and loss of natural habitat and biota has occurred) or **Seriously Modified** state (the change in ecosystem processes and loss of natural habitat and biota is great but some remaining natural habitat features are still recognizable).

Impact Indicator	Indicator Components	TR-W1 Impact Score	TR-W2 Impact Score	TR-W3 Impact Score	TR-W4 Impact Score	TR-W5&6 Impact Score	TR-W7 Impact Score
Hydrologic al integrity	Impact of manmade structures	4	3	2	4	4	4
	Water table depth	-	-	-	-	-	-
	Dryland plant invasion	-	-	-	-	-	-
Mean Score)	4.0	3.0	2.0	4.0	4.0	4.0
Physico-	Fire damage	-	-	-	-	-	-
chemical parameter s	Degree of sedimentation	-	-	-	-	-	-
	Nutrient levels	2	1	1	2	1	1
	Von Post index	-	-	-	-	-	-
Mean score)	2.0	1.0	1.0	2.0	1.0	1.0
Change in ecosystem intactness	Loss in area of original wetland	3	3	2	3	3	3
	Connectivity barriers	-	-	-	-	-	-
Mean score)	3.0	3.0	2.0	3.0	3.0	3.0
Change in browsing, predation	Damage by domestic or feral animals	1	1	1	1	1	1
and harvesting regimes	Introduces predator impacts on wildlife	-	-	-	-	-	-
	Harvesting levels	-	-	-	-	-	-
Mean score	•	1.0	1.0	1.0	1.0	1.0	1.0

Impact Indicator	Indicator Components	TR-W1 Impact Score	TR-W2 Impact Score	TR-W3 Impact Score	TR-W4 Impact Score	TR-W5&6 Impact Score	TR-W7 Impact Score
Change in dominance of native plants	Introduced plant canopy cover	1	1	1	1	1	1
	Introduced plant understory cover	-	-	-	-	-	-
Mean score		1.0	1.0	1.0	1.0	1.0	1.0
Average condition score		11.0	9.0	7.0	11.0	10.0	10.0
Average condition %		44.00%	36.00%	28.00%	44.00%	40.00%	40.00%
Condition index category		Largely	Seriously	Seriously	Largely	Largely	Largely

Notes: 1 = Very high degree of modification to 5 = Very low degree of modification.

The catchment pressure assessment resulted in total overall catchment pressure scores of 18/25 (Table 9-15). This score reflects a High degree of catchment modification. A score of 0 corresponds to no catchment modification, and a score of 5 corresponds to a very high degree of catchment modification.

Table 9-15 Catchment impact score for TR-W1 to TR-W7

Catchment Pressure	TR-W1 Impact Score	TR-W2 Impact Score	TR-W3 Impact Score	TR-W4 Impact Score	TR- W5&W6 Impact Score	TR-W7 Impact Score
Modification to catchment hydrology	2	2	2	2	2	2
Water quality within the catchment	4	4	4	4	4	4
Animal access	5	5	5	5	5	5
Key undesirable species	2	2	2	2	2	2
% catchment introduced vegetation	5	5	5	5	5	5
Total catchment pressure index/25	18.0	18.0	18.0	18.0	18.0	18.0
Total catchment pressure (%)	28.00%	28.00%	28.00%	28.00%	28.00%	28.00%

Catchment Pressure	TR-W1 Impact Score	TR-W2 Impact Score	TR-W3 Impact Score	TR-W4 Impact Score	TR- W5&W6 Impact Score	TR-W7 Impact Score
Degree of modification	High	High	High	High	High	High

Notes: 0 = No catchment modification to 5 = Very high degree of catchment modification

4.2.3 Wetland Function Assessment

Likely functional values were assigned based on wetland type. TR-W1, TRW2, TR-W4, and TR-W7 represents a hillslope seep wetland connected to the stream network. Likely functional values associated with connected hillslope seep systems are provided in Table 9-16.

TR-W3 and TR-W5/W6 mostly represent channelled valley bottom wetlands. Likely functional values associated with channelled valley bottom systems are provided in Table 9-17. Given the catchment pressures outlined in Table 9-15, all wetlands can provide these functional services, albeit with an impaired capacity due to the degree of modification. The residual functional value for each wetland informed the ecological context score under "Matter 4" of the EIANZ Guidelines. This was achieved through relating the probability score outlined in Table 9-16 to a value score under Matter 4 (Table 9-18), while considering the wetlands size and slope in relation to its catchment.

 Table 9-16 The likelihood of different functional wetland values generically associated with Hillslope seep

 wetlands connected to the stream network (Kotze et al., 2007)

Hydrologic	al/Functiona	al Importance	Description	Probability
ø			The spreading out and slowing down of floodwaters in the wetland, thereby reducing the severity of floods downstream	Likely
ti i		Streamflow regulation	Sustaining streamflow during low flow periods	Likely
benefits	Water Quality Enhancement		The trapping and retention in the wetland of sediment carried by runoff waters	Unlikely
supporting			Removal by the wetland of phosphates carried by runoff waters, thereby enhancing water quality	Unlikely
oddns		-	Removal by the wetland of nitrates carried by runoff waters, thereby enhancing water quality	Very likely
Regulating &			Removal by the wetland of toxicants (e.g. metals, biocides and salts) carried by runoff waters, thereby enhancing water quality	Very likely
Regu		-	Controlling of erosion at the wetland site, principally through the protection provided by vegetation.	Very likely
	Carbon storage		The trapping of carbon by the wetland, principally as soil organic matter	
			TOTAL OVERALL SCORE AND CONFIDENCE:	

Table 9-17 The likelihood of different functional wetland values generically associated with channelled valley bottom wetlands (Kotze et al., 2007)

Hydrologica	I/Functiona	al Importance	Description	Probability
ø2			The spreading out and slowing down of floodwaters in the wetland, thereby reducing the severity of floods downstream	Likely
Ę		Streamflow regulation	Sustaining streamflow during low flow periods	Likely
bene	nent		The trapping and retention in the wetland of sediment carried by runoff waters	Likely
orting	Regulating & supporting Water Quality Enhancen	-	Removal by the wetland of phosphates carried by runoff waters, thereby enhancing water quality	Likely
oddns		:	Removal by the wetland of nitrates carried by runoff waters, thereby enhancing water quality	Likely
lating &			Removal by the wetland of toxicants (e.g. metals, biocides and salts) carried by runoff waters, thereby enhancing water quality	Likely
Regu		:	Controlling of erosion at the wetland site, principally through the protection provided by vegetation.	Very likely
		Carbon storage	The trapping of carbon by the wetland, principally as soil organic matter	
			TOTAL OVERALL SCORE AND CONFIDENCE:	

4.2.4 Wetland Ecology - Value Assessment

Table 9-18 Ecological value assessment for wetland ecological features

			Ec	ological Fea	ture		
Attributes	TR-W1	TR-W2	TR-W3	TR-W4	TR-W5 & TR-W6	TR-W7	Justification
Representativeness (Wetland condition assessment)	2	2	2	2	2	2	-
Hydrological modification	-	-	-	-	-	-	-
Physico-chemical modification	-	-	-	-	-	-	-
Sediment and geomorphological modification	-	-	-	-	-	-	-
Biota	-	-	-	-	-	-	-
Wetland Condition Index Score	2	2	2	2	2	2	Wetland condition assessment consistent with large digression from benchmark for all wetlands. Hydrological integrity and wetland extent is generally retained, but wetland condition mainly affected by changes in water quality, browsing pressure and dominance of exotic species.
Rarity/distinctiveness	1	1	1	3	2	1	-
Species of conservation significance	-	-	-	-	-	-	-
Range restricted or endemic species	-	-	-	-	-	-	-
Wetland type (rare or distinctive)	1	1	1	3	2	1	All wetland types (except for TR-W4) common at any scale. TR-W4 likely spring fed.
Distinctive ecological values (ecosystem services) larger context	-	-	-	-	-	-	-
Diversity and pattern	2	2	1	3	2	2	-
Diversity of habitat types	2	2	1	3	2	2	Wetlands are > 500 m ² in size, permanent, temporary, seasonal areas of saturation present for TR-W1, W2 and

			Eco	ological Fea	ture		
Attributes	TR-W1	TR-W2	TR-W3	TR-W4	TR-W5 & TR-W6	TR-W7	Justification
							W4, W5 and W6. TR-W3 mainly seasonally saturated, while the relatively large proportion of W4 is represented by permanent saturation
Species diversity	1	1	1	1	1	1	Species diversity is not significant at any scale (exotic wetland).
Ecological context (ecosystem services, importance, and sensitivity)	3	3	3	3	3	2	-
Sensitivity to change in floods	-	-	-	-	-	-	-
Sensitivity to change in baseflows (low flows)	-	-	-	-	-	-	-
Sensitivity to change in water quality	1	1	1	1	1	1	No sensitivity to change in water quality.
Flood attenuation	2	2	2	3	3	1	Frequency with which stormflows are spread across the wetlands are estimated to be >1 per year and therefore frequently plays a role in flood attenuation. Variation in scores reflect differences in the ratio between catchment size and wetland size as well as wetland slopes.
Streamflow regulation	2	2	1	3	3	2	 TR-W1 and W2: Permanent & seasonal zones both present but collectively <30%. TR-W4, W5 and W6: Seasonal & permanent zone both present & collectively 30-60% of wetland (likely spring fed). TR-W3: Seasonal zone present but permanent zone absent.
Sediment trapping	3	3	2	1	3	1	All wetlands in the study area are associated with sediment yielding landuse. Differences in scores relate to wetland slope (TR-W4 approximately 9%) and more affectively drained wetlands (TR-W3).
Phosphate assimilation	-	-	-	-	-	-	-
Nitrate assimilation	3	3	3	3	3	2	Majority of local catchment associated with nutrient producing landuse. All the wetlands within the study area

			Eco	ological Feat	ture		
Attributes	TR-W1	TR-W2	TR-W3	TR-W4	TR-W5 & TR-W6	TR-W7	Justification
							have the capacity to perform nutrient treatment functions. TR-W7 drains the larges catchment relative to the wetlands size.
Toxicant assimilation	-	-	-	-	-	-	-
Erosion control	-	-	-	-	-	-	-
Carbon storage	-	-	-	-	-	-	-
Connectivity and migration	-	-	-	-	-	-	-
Protected status of the wetland	-	-	-	-	-	-	-
Ecological Value	Low	Low	Low	Moderate	Moderate	Low	

4.2.5 Wetland Ecology - Magnitude of Effect and Level of Effect Assessment

Table 9-19 Wetland ecology – magnitude of effect and level of effect assessment in terms of the EIANZ Guidelines

Phase	Wetland	Effect	Туре	zoi	Duration	Frequency	Likelihood	Reversibility	Magnitude (pre- mitigation)	Level of Effect (pre- mitigation)
Construction	TR-W1	Permanent loss/modification of habitat/ecosystem due to reclamation/culverting/other	Direct	3	Permanent (>25 years)	-	Definite	-	High	Low
	TR-W4	structures (e.g., bank armouring)	Direct	3	Permanent (>25 years)	-	Definite	-	High	Moderate
	TR-W1	Detrimental effects on habitats including plant composition and fauna due	Direct	4	Temporary (days or months)	-	Highly Likely	-	Moderate	Low
	TR-W2	to diversion, abstraction or bunding of watercourses and water level/ flow/ periodicity changes.	Direct	4	Temporary (days or months)	-	Highly Likely	-	Moderate	Low
	TR-W3			Direct	4	Temporary (days or months)	-	Likely	-	Low
	TR-W4		Direct	4	Temporary (days or months)	-	Highly Likely	-	Low	Low
	TR- W5&W6		Direct	4	Temporary (days or months)	-	Likely	-	Low	Low

Phase	Wetland	Effect	Туре	ZOI	Duration	Frequency	Likelihood	Reversibility	Magnitude (pre- mitigation)	Level of Effect (pre- mitigation)				
	TR-W7		Direct	1	Temporary (days or months)	-	Unlikely	-	Negligible	Very Low				
	TR-W1	Uncontrolled discharge leading to habitat and water quality degradation due	Direct	4	Temporary (days or months)	Frequently	Likely	-	Low	Very Low				
	TR-W2	earthworks (leading to sediment discharge), machinery use and chemical storage (leading to	sediment discharge), machinery use and chemical storage (leading to	Direct	4	Temporary (days or months)	Frequently	Likely	-	Low	Very Low			
	TR-W3	leaks/spills).	Direct	4	Temporary (days or months)	Frequently	Likely	-	Low	Very Low				
	TR-W4		Direct	4	Temporary (days or months)	Frequently	Likely	-	Low	Low				
	TR- W5&W6		Direct	4	Temporary (days or months)	Frequently	Likely	-	Low	Low				
	TR-W7		Direct	1	Temporary (days or months)	-	Unlikely	-	Negligible	Very Low				
Operation	TR-W1	Effect on downstream habitat (including erosion/sediment	Direct	3	Permanent (>25 years)	-	Unlikely	-	Negligible	Very Low				

Phase	Wetland	Effect	Туре	ZOI	Duration	Frequency	Likelihood	Reversibility	Magnitude (pre- mitigation)	Level of Effect (pre- mitigation)						
	TR-W2	discharge) due to change in hydrology (increase or decrease) due to gradual	Direct	3	Permanent (>25 years)	-	Unlikely	-	Negligible	Very Low						
	TR-W3	change in hydrology from the presence of the infrastructure/stormwater,	Direct	3	Permanent (>25 years)	-	Unlikely	-	Negligible	Very Low						
	TR-W4	including reclamations.	Direct	3	Permanent (>25 years)	-	Likely	-	Low	Low						
	TR- W5&W6		Direct	3	Permanent (>25 years)	Infrequently	Unlikely	-	Negligible	Very Low						
	TR-W1	Permanent degradation of wetland habitat and water	Direct	2	Permanent (>25 years)	Infrequently	Unlikely	-	Negligible	Very Low						
	TR-W2	 quality due to stormwater discharges - pollutants (such as heavy metals and 	Direct	2	Permanent (>25 years)	Infrequently	Unlikely	-	Negligible	Very Low						
	TR-W3	herbicides)	herbicides)	herbicides)	herbicides)	herbicides)	herbicides)	herbicides)	Direct	2	Permanent (>25 years)	Infrequently	Unlikely	-	Negligible	Very Low
	TR-W4		Direct	2	Permanent (>25 years)	Infrequently	Unlikely	-	Negligible	Very Low						
	TR- W5&W6		Direct	2	Permanent (>25 years)	Infrequently	Unlikely	-	Negligible	Very Low						

4.3 Terrestrial Ecology Results

4.3.1 ABM Weather Data

Table 9-20 Ecological value assessment for terrestrial ecological features (flora)

Date	Maximum overnight wind gust (km/h)	Average Nightly Windspeed (km/h)	Minimum temperature in first four hours after sunset (°C)	Total rainfall in first two hours after sunset (mm)	Suitable for ABM data to be used
1-Nov	36.0	13.7	9.2	0.0	No
2-Nov	23.8	9.2	11.0	0.0	Yes
3-Nov	22.3	7.8	8.7	0.0	No
4-Nov	18.0	5.8	11.0	0.0	Yes
5-Nov	17.3	5.1	7.7	0.0	No
6-Nov	15.5	2.6	14.8	0.0	Yes
7-Nov	23.8	5.7	14.6	0.0	Yes
8-Nov	23.8	7.6	18.1	0.0	Yes
9-Nov	41.8	14.7	17.0	0.0	Yes
10-Nov	45.7	16.7	13.1	4.2	No
11-Nov	33.8	12.5	11.3	0.0	Yes
12-Nov	29.2	7.0	5.4	0.0	No
13-Nov	18.4	4.1	11.4	0.0	Yes

Date	Maximum overnight wind gust (km/h)	Average Nightly Windspeed (km/h)	Minimum temperature in first four hours after sunset (°C)	Total rainfall in first two hours after sunset (mm)	Suitable for ABM data to be used
14-Nov	46.8	13.6	13.2	0.0	Yes
15-Nov	39.6	9.4	7.1	0.0	No
16-Nov	19.8	6.3	13.0	0.0	Yes
17-Nov	19.4	6.7	16.5	0.0	Yes
18-Nov	26.6	7.3	10.0	0.2	Yes

4.3.2 Terrestrial Ecological - Value Assessment

 Table 9-21 Ecological value assessment for terrestrial ecological features (flora)

Attributes to be considered	BF	EG	PL.1	PL.3	TL.3	Justification
Representativeness	1	1	4	2	2	
Typical structure and composition	1	1	2	1	1	BF, EG, ES, PL.3, TL.3: Habitats have been significantly altered by human activities (exotic dominated).PL.1: Habitat and species have been affected by human activities.
Indigenous representation	1	1	4	2	2	BF, EG: <10% of the species are indigenous. PL.3, TL.3: 10-50% of the species are indigenous. PL.1: >90% of the species are indigenous.
Rarity/distinctiveness	0	3	3	3	4	

Attributes to be considered	BF	EG	PL.1	PL.3	TL.3	Justification
Range restricted or endemic species	-	-	1	-	-	PL.1: One population (or taxon) judged to be unique at a local scale.
Species of conservation significance	_	3	3	3	4	 Long-tailed bat (Threatened – Nationally Critical, value score of 4) potentially using ecological features associated with the Project Area (TL.3). Bats were not detected within Project Area, however bats are present in wider landscape, therefore TL.3 likely to only provide infrequent stepping-stone habitat for bats. Non-TAR bird species expected to utilise EG, PL.1, PL.3, TL.3.
						No terrestrial TAR bird species expected to be reliant on terrestrial ecological features (BF, EG, PL.1, PL.3, TL.3) associated with the Project Area.
						Copper skink (At Risk - Declining, value score 3) likely to utilise ecological features within the Project Area (EG, PL.1, PL.3, and TL.3 (with appropriate understorey)).
Distinctive ecological values	-	-	1	1	1	PL.1, PL.3, TL.3: Habitat playing an important role in provisional or regulatory ecosystem services typically on Local scale.
Diversity and pattern	0	0	1	0	1	
Habitat diversity	-	-	1	-	1	Increased habitat diversity in areas with indigenous species present: PL.1 Increased habitat diversity in areas with late succession: TL.3
Species diversity	-	-	1	-	1	Increased species diversity in areas with indigenous species present: PL.1

Attributes to be considered	BF	EG	PL.1	PL.3	TL.3	Justification
						Increased species diversity in areas with late succession: TL.3
Patterns in habitat use	-	-	-	-	-	All habitats are not significant for lifecycle completion or periodic habitat utilisation on any scale.
Ecological context	0	0	0	0	1	
Size, shape, and buffering	-	-	-	-	-	All terrestrial ecology features are represented by small (or isolated) patches of habitat surrounded by pasture.
Sensitivity to change	-	-	-	-	-	Largely modified habitats.
Ecological networks (linkages, pathways, migration)	-	-	-	-	1	TL.3 likely to provide infrequent stepping-stone habitat for long-tailed bats.
Protected status	-	-	-	-	-	-
Ecological Value	Negligible	Negligible	Low	Low	Low	

 Table 9-22 Ecological value assessment for terrestrial ecological features (fauna)

Attributes to be considered	Long-tailed bat	Non-TAR bird	North Island fernbird	Copper skink	Justification
Representativeness	0	2*	0	0	
Typical structure and composition	-	2*	-	-	-
Indigenous representation	-	-	-	-	-
Rarity/distinctiveness	4	2	3	3	
Range restricted or endemic species	-	-	-	-	-

Attributes to be considered	Long-tailed bat	Non-TAR bird	North Island fernbird	Copper skink	Justification
Species of conservation significance	4	2*	3	3	NZ Conservation Status: Long-tailed bat: Threatened - Nationally Critical Copper skink: At Risk - Declining North Island fernbird: At Risk - Declining
Distinctive ecological values	-	-	-	-	-
Diversity and pattern	0	2*	0	0	
Habitat diversity	-	2*	-	-	-
Species diversity	-	-	-	-	-
Patterns in habitat use	-	-	-	-	-
Ecological context	0	2*	0	0	
Size, shape, and buffering	-	2*	-	-	-
Sensitivity to change	-	-	-	-	-
Ecological networks (linkages, pathways, migration)	-	-	-	-	-
Protected status	-	-	-	-	-
Ecological Value	Very High	Low	High	High	

Notes: * = Scores not representative of corresponding row, scores required to produce 'Low' combined value.

4.3.3 Terrestrial Ecology - Magnitude of Effect and Level of Effect Assessment

Table 9-23 Impact assessment for terrestrial ecological features (flora)

Phase	Ecological Feature	Effect	Туре	ZOI	Duration	Frequency	Likelihood	Reversibility	Magnitude of Effect (pre- mitigation)	Level of Effect (pre- mitigation)
Construction	BF	Vegetation removal: Permanent loss of	Direct	Local	Permanent (>25 years)	-	Definite	-	High	Very Low
	EG	habitat/ecosystem, fragmentation and edge effects due to vegetation	Direct	Local	Permanent (>25 years)	-	Definite	-	High	Very Low
	PL.1	removal.	Direct	Local	Permanent (>25 years)	-	Definite	-	High	Low
	PL.3		Direct	Local	Permanent (>25 years)	-	Definite	-	High	Low
	TL.3		Direct	Local	Permanent (>25 years)	-	Definite	-	High	Low
	disper	Earthworks: Weed dispersal to previously	Direct	Local	Short-term (<5 years)	Infrequently	Unlikely	-	Negligible	Very Low
	PL.1	unaffected areas of indigenous vegetation, reduction in terrestrial	Direct	Local	Short-term (<5 years)	Infrequently	Unlikely	-	Negligible	Very Low
	PL.3	biodiversity.	Direct	Local	Short-term (<5 years)	Infrequently	Unlikely	-	Negligible	Very Low
	TL.3		Direct	Local	Short-term (<5 years)	Infrequently	Unlikely	-	Negligible	Very Low

Phase	Ecological Feature	Effect	Туре	ZOI	Duration	Frequency	Likelihood	Reversibility	Magnitude of Effect (pre- mitigation)	Level of Effect (pre- mitigation)
Operation	EG	Presence of the infrastructure: Weed	Direct	Local	Permanent (>25 years)	Infrequently	Unlikely	-	Negligible	Very Low
	PL.1	dispersal to previously unaffected areas of indigenous vegetation,	Direct	Local	Permanent (>25 years)	Infrequently	Unlikely	-	Negligible	Very Low
	PL.3	reduction in terrestrial biodiversity due to the presence of the	Direct	Local	Permanent (>25 years)	Infrequently	Unlikely	-	Negligible	Very Low
	TL.3	infrastructure, use of infrastructure edges as dispersal corridors by invasive plant species.	Direct	Local	Permanent (>25 years)	Infrequently	Unlikely	-	Negligible	Very Low
	EG	Maintenance: Increased weed incursion,	Direct	Local	Permanent (>25 years)	Periodically	Likely	-	Low	Very Low
	PL.1	unintentional spray of indigenous vegetation due to maintenance, increased use of herbicides.	Direct	Local	Permanent (>25 years)	Periodically	Likely	-	Low	Very Low
	PL.3		Direct	Local	Permanent (>25 years)	Periodically	Likely	-	Low	Very Low
	TL.3		Direct	Local	Permanent (>25 years)	Periodically	Likely	-	Low	Very Low

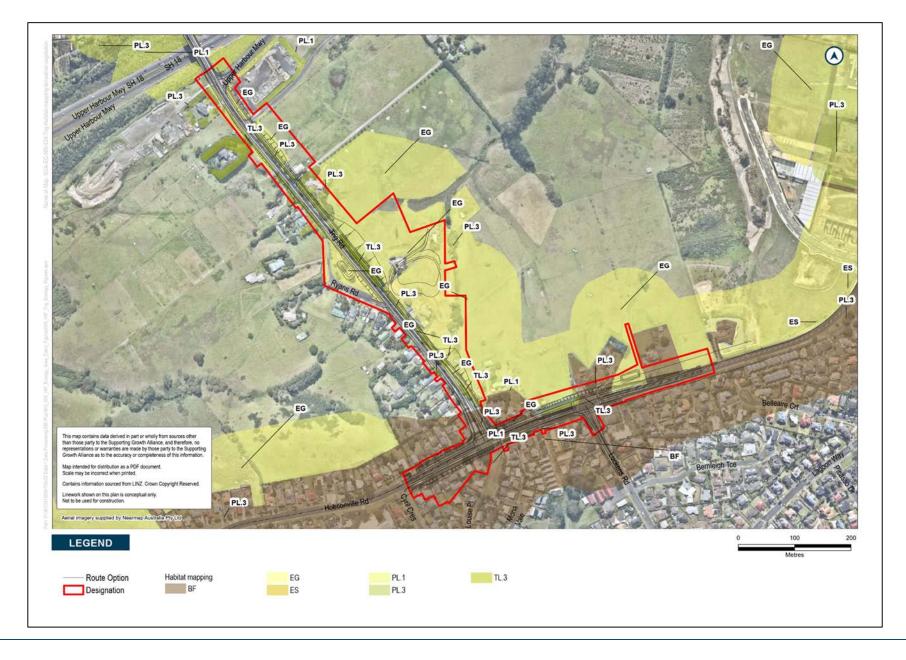
Phase	Ecological Feature	Effect	Туре	ZOI	Duration	Frequency	Likelihood	Reversibility	Magnitude (pre- mitigation)	Level of Effect (pre- mitigation)
Construction	Long-tailed bats	Disturbance and displacement to roosts and individuals (existing) due to construction activities (noise, light, dust etc).	Indirect	Local	Short-term (<5 years)	Periodically	Unlikely	Totally	Negligible	Low
		Vegetation removal: Loss of foraging and breeding habitat, fragmentation of habitat, causing adverse effects on population dynamics.	Direct	Local	Permanent (>25 years)	-	Unlikely	-	Negligible	Low
		Vegetation removal: Potential to kill/injure long- tailed bat, causing adverse effects on population dynamics.	Direct	Local	Short-term (<5 years)	Infrequently	Unlikely	Irreversible	Negligible	Low
	Non-TAR birds	Disturbance and displacement to roosts and individuals (existing) due to construction activities (noise, light, dust etc).	Indirect	Local	Short-term (<5 years)	Periodically	Highly Likely	Totally	Low	Very Low
		Vegetation removal: Nest loss.	Direct	Local	Short-term (<5 years)	-	Highly Likely	-	Low	Very Low

Table 9-24 Impact assessment for terrestrial ecological features (fauna)

Phase	Ecological Feature	Effect	Туре	ZOI	Duration	Frequency	Likelihood	Reversibility	Magnitude (pre- mitigation)	Level of Effect (pre- mitigation)
		Vegetation removal: Loss of foraging and breeding habitat, fragmentation of habitat, causing adverse effects on population dynamics.	Direct	Local	Permanent (>25 years)	-	Definite	-	High	Low
		Vegetation removal: Potential to kill/injure non- TAR birds, causing adverse effects on population dynamics.	Direct	Local	Short-term (<5 years)	-	Unlikely	Irreversible	Negligible	Very Low
	North Island fernbird	Disturbance and displacement to roosts and individuals (existing) due to construction activities (noise, light, dust etc).	Indirect	Local	Short-term (<5 years)	Periodically	Unlikely	Totally	Negligible	Very Low
		Vegetation removal: Nest loss.	Direct	Local	Short-term (<5 years)	-	Unlikely	-	Negligible	Very Low
		Vegetation removal: Loss of foraging and breeding habitat, fragmentation of habitat, causing adverse effects on population dynamics.	Direct	Local	Permanent (>25 years)	-	Unlikely	-	Negligible	Very Low
		Vegetation removal: Potential to kill/injure birds,	Direct	Local	Short-term (<5 years)	-	Unlikely	Irreversible	Negligible	Very Low

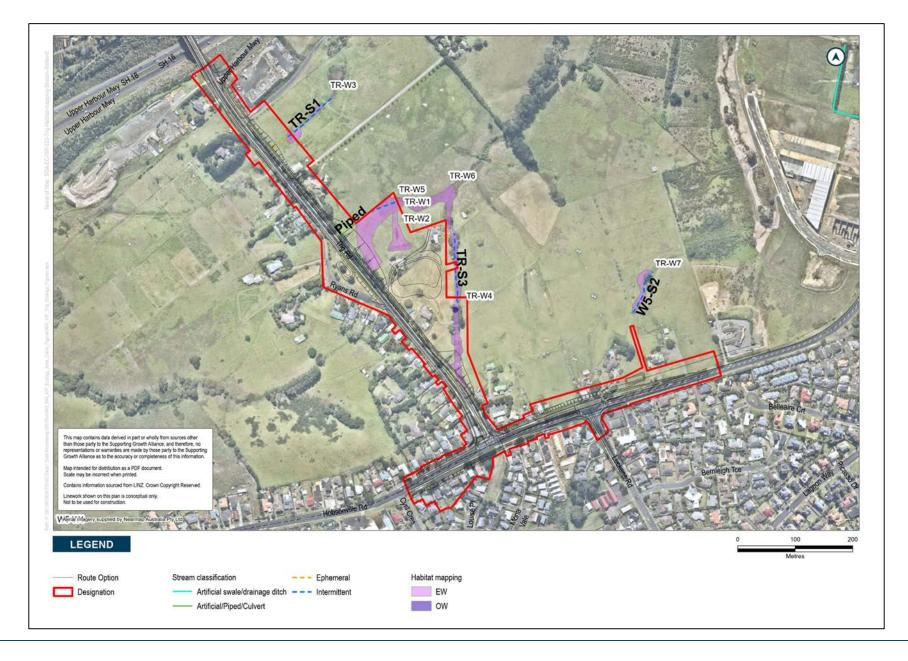
Phase	Ecological Feature	Effect	Туре	ZOI	Duration	Frequency	Likelihood	Reversibility	Magnitude (pre- mitigation)	Level of Effect (pre- mitigation)
		causing adverse effects on population dynamics.								
	Copper skink	Disturbance and displacement to individuals (existing) due to construction activities (noise, light, dust etc).	Indirect	Local	Short-term (<5 years)	Periodically	Unlikely	Totally	Negligible	Very Low
		Vegetation removal: Loss of foraging and breeding habitat, fragmentation of habitat, causing adverse effects on population dynamics.	Direct	Local	Permanent (>25 years)	-	Likely	-	Low	Low
		Vegetation removal: Potential to kill/injure copper skink, causing adverse effects on population dynamics.	Direct	Local	Short-term (<5 years)	-	Unlikely	Irreversible	Negligible	Very Low
Operation	Long-tailed bats	Disturbance and displacement of (new and existing) roosts and individuals due to lighting and noise/vibration.	Indirect	Local	Permanent (>25 years)	-	Unlikely	Irreversible	Negligible	Low
		Loss in connectivity due to permanent habitat loss, light, and noise effects	Indirect	Local	Permanent (>25 years)	-	Unlikely	Irreversible	Negligible	Low

Phase	Ecological Feature	Effect	Туре	ZOI	Duration	Frequency	Likelihood	Reversibility	Magnitude (pre- mitigation)	Level of Effect (pre- mitigation)
		from the road, leading to fragmentation of terrestrial habitat and influencing bat movement in the broader landscape								
	Non-TAR birds	Disturbance and displacement to roosts and individual birds (existing) due to the presence of the road (noise, light, dust etc.)	Indirect	Local	Permanent (>25 years)	-	Highly Likely	Irreversible	Moderate	Low
		Loss in connectivity due to permanent habitat loss, light and noise effects from the road, leading to fragmentation of terrestrial, wetland and riparian habitat due to the presence of the infrastructure.	Indirect	Local	Permanent (>25 years)	-	Unlikely	Irreversible	Negligible	Very Low
	North Island fernbird	Disturbance and displacement to roosts and individual birds (existing) due to the presence of the road (noise, light, dust etc.)	Indirect	Local	Permanent (>25 years)	-	Unlikely	Irreversible	Negligible	Very Low
		Loss in connectivity due to permanent habitat loss, light and noise effects from the road, leading to	Indirect	Local	Permanent (>25 years)	-	Unlikely	Irreversible	Negligible	Very Low



Phase	Ecological Feature	Effect	Туре	ZOI	Duration	Frequency	Likelihood	Reversibility	Magnitude (pre- mitigation)	Level of Effect (pre- mitigation)
		fragmentation of terrestrial, wetland and riparian habitat due to the presence of the infrastructure.								
	Copper skink	Disturbance and displacement of existing and future copper skink due to light, noise and vibration effects from the presence of the road.	Indirect	Local	Permanent (>25 years)	-	Unlikely	Irreversible	Negligible	Very Low
		Loss in connectivity due to permanent habitat loss, light and noise/vibration effects from the road, leading to fragmentation of terrestrial, wetland and riparian habitat due to the presence of the infrastructure.	Indirect	Local	Permanent (>25 years)	-	Unlikely	Irreversible	Negligible	Very Low

5 Appendix 5 – Ecological Habitat Maps


5.1 Terrestrial Habitat

5.2 Stream and Wetland Habitat

6 Appendix 6 – Desktop and Incidental Fauna Records

Table 9-25 Desktop bird records within 2 km of the Project Area

Common Name	Māori Name	Scientific Name	Conservation Status (Robertson et al., 2021)	Record Source
Banded dotterel	Pohowera	Charadrius bicinctus	At Risk - Declining	Desktop record - eBird (Bird Atlas)
Banded rail	Mioweka	Gallirallus philippensis assimilis	At Risk - Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
Barbary dove	-	Streptopelia risoria	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)
Bar-tailed godwit	Kuaka	Limosa lapponica bauer	At Risk - Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
Black shag	Māpunga	Phalacrocorax carbo	At Risk - Relict	Desktop record - iNaturalist
Black-billed gull	Tarāpuka	Larus bulleri	At Risk - Declining	Desktop record - iNaturalist
Blackbird	Manu pango	Turdus merula	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)
Canada goose	-	Branta canadensis	Introduced and Naturalised	Desktop record - eBird (Bird Atlas)
Caspian tern	Taranui	Hydroprogne caspia	Threatened - Nationally Vulnerable	Desktop record - iNaturalist/eBird (Bird Atlas)
Chaffinch	Pahirini	Fringilla coelebs	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)
Common pheasant	Peihana	Phasianus colchicus	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)
Dabchick	Weweia	Poliocephalus rufopectus	Threatened – Nationally Increasing	Desktop record - iNaturalist/eBird (Bird Atlas)

Te Tupu Ngātahi Supporting Growth

131

Common Name	Māori Name	Scientific Name	Conservation Status (Robertson et al., 2021)	Record Source
Domestic duck	-	Anas platyrhynchos domesticus	Introduced and Naturalised	Desktop record - iNaturalist
Dunnock	-	Prunella modularis	Introduced and Naturalised	Desktop record - eBird (Bird Atlas)
Goldfinch	-	Carduelis carduelis	Introduced and Naturalised	Desktop record - eBird (Bird Atlas)
Greenfinch	-	Carduelis chloris	Introduced and Naturalised	Desktop record - iNaturalist
Greylag goose	Kuihi	Anser anser	Introduced and Naturalised	Desktop record - eBird (Bird Atlas)
House sparrow	Tiu	Fringilla coelebs	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)
Lesser knot	Huahou	Calidris canutus rogersi	At Risk - Declining	Desktop record - eBird (Bird Atlas)
Lesser knot	Huahou	Calidris canutus rogersi	At Risk - Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
Little black shag	Kawau tūī	Phalacrocorax sulcirostris	At Risk – Naturally Uncommon	Desktop record - iNaturalist
Magpie	Makipae	Gymnorhina tibicen	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)
Mallard	-	Anas platyrhynchos	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)
Muscovy duck	-	Cairina moschata	Introduced, not established	Desktop record - eBird (Bird Atlas)
Myna	-	Acridotheres tristis	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)
New Zealand pipit	Нīоі	Anthus novaeseelandiae novaeseelandiae	At Risk – Declining	Desktop record - iNaturalist
North Island fernbird	Mātātā	Poodytes punctatus	At Risk – Declining	Desktop record - iNaturalist/eBird (Bird Atlas)

Common Name	Māori Name	Scientific Name	Conservation Status (Robertson et al., 2021)	Record Source
North Island kākā	Kākā	Nestor meridionalis septentrionalis	At Risk – Recovering	Desktop record - iNaturalist
Northern New Zealand dotterel	Tūturiwhatu	Charadrius obscurus aquilonius	At Risk - Recovering	Desktop record - eBird (Bird Atlas)
Pied shag	Kāruhiruhi	Phalacrocorax varius	At Risk – Recovering	Desktop record - iNaturalist/eBird (Bird Atlas)
Red-billed gull	Tarāpunga	Larus novaehollandiae scopulinus	At Risk - Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
Rock pigeon	-	Columba livia	Introduced and Naturalised	Desktop record - eBird (Bird Atlas)
Royal spoonbill	Kōtuku ngutupapa	Platalea regia	At Risk – Naturally Uncommon	Desktop record - iNaturalist/eBird (Bird Atlas)
Song thrush	-	Turdus philomelos	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)
South Island pied oystercatcher	Tōrea	Haematopus finschi	At Risk - Declining	Desktop record - iNaturalist/eBird (Bird Atlas)
Spotted dove	-	Streptopelia chinensis tigrina	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)
Variable oystercatcher	Tōrea pango	Haematopus unicolor	At Risk - Recovering	Desktop record - eBird (Bird Atlas)
White-fronted tern	Tara	Sterna striata	At Risk - Declining	Desktop record - eBird (Bird Atlas)
Wrybill	Ngutu parore	Anarhynchus frontalis	Threatened – Nationally Increasing	Desktop record - iNaturalist
Yellowhammer	-	Emberiza citrinella	Introduced and Naturalised	Desktop record - iNaturalist/eBird (Bird Atlas)

Table 9-26 Incidental bird species identified in the Project Area during the site investigation

Common Name	Māori Name	Scientific Name	Conservation Status (Robertson et al., 2021)
Australasian harrier	Kāhu	Circus approximans	Not Threatened
Blackbird	Manu pango	Turdus merula	Introduced and Naturalised
Canada goose	-	Branta canadensis	Introduced and Naturalised
Chaffinch	Pahirini	Fringilla coelebs	Introduced and Naturalised
Common pheasant	Peihana	Phasianus colchicus	Introduced and Naturalised
Eastern rosella	Kākā uhi whero	Platycercus eximius	Introduced and Naturalised
Goldfinch	Kōurarini	Carduelis carduelis	Introduced and Naturalised
Grey warbler	Riroriro	Gerygone igata	Not Threatened
Mallard	Rakiraki	Anas platyrhynchos	Introduced and Naturalised
Myna	Maina	Acridotheres tristis	Introduced and Naturalised
Pūkeko	Pūkeko	Porphyrio melanotus melanotus	Not Threatened
Skylark	Kairaka	Alauda arvensis	Introduced and Naturalised
Song thrush	Manu-kai-hua-rakau	Turdus philomelos	Introduced and Naturalised
Τατ	Τατ	Prosthemadera novaeseelandiae novaeseelandiae	Not Threatened
Welcome swallow	Warou	Hirundo neoxena	Not Threatened
White-faced heron	Matuku moana	Ergretta novaehollandiae	Not Threatened

Common Name	Māori Name	Scientific Name	Conservation Status (Hitchmough et al., 2016)	Record Source
Elegant gecko	Moko kākāriki	Naultinus elegans	At Risk – Declining	DoC
Copper skink	-	Oligosoma aeneum	At Risk – Declining	iNaturalist
Forest gecko	Moko pirirākau	Mokopirirakau granulatus	At Risk – Declining	iNaturalist
Green and golden bell frog	Poraka	Litoria aurea	Introduced and Naturalised	iNaturalist
Ornate skink	-	Oligosoma ornatum	At Risk - Declining	iNaturalist
Pacific gecko	Teretere	Dactylocnemis pacificus	Not Threatened	iNaturalist
Plague skink	-	Lampropholis delicata	Introduced and Naturalised	DoC, iNaturalist
Hochstetter's frog	Peketua	Leiopelma hochstetteri	At Risk - Declining	iNaturalist

Table 9-27 Desktop herpetofauna records within 2 km of the Project Area

Table 9-28 Desktop freshwater fish records

Common Name	Scientific Name	Conservation Status (Dunn et al., 2017)	Record Source
Shortfin eel	Anguilla australis	Not Threatened	NIWA, iNaturalist
Longfin eel	Anguilla dieffenbachii	At Risk - Declining	NIWA, iNaturalist
Grass carp	Ctenopharyngodon idella	Introduced and Naturalised	NIWA
Koi carp	Cyprinus rubrofascus	Introduced and Naturalised	iNaturalist
Banded kokopu	Galaxias fasciatus	Not Threatened	NIWA, iNaturalist
Īnanga	Galaxias maculatus	At Risk – Declining	NIWA, iNaturalist
Mosquito fish	Gambusia affinis	Introduced and Naturalised	NIWA, iNaturalist
Common bully	Gobiomorphus cotidianus	Not Threatened	NIWA, iNaturalist

Common Name	Scientific Name	Conservation Status (Dunn et al., 2017)	Record Source
Giant bully	Gobiomorphus gobioides	At Risk – Naturally Uncommon	iNaturalist
Freshwater shrimp	Paratya curvirostis	Not Threatened	NIWA

Table 9-29 Vegetation species identified during site investigation

Common Name	Scientific Name	Threat Class (de Lange et al., 2017)
Agapanthus	Agapantus praecox	Introduced
Bent grass	<i>Agrostis</i> spp.	Introduced
Titoki	Alectryon excelsus	Not Threatened
Sweet vernal	Anthoxanthum odoratum	Introduced
Oioi	Apodasmia similis	Not Threatened
Climbing asparagus	Asparagus scandens	Introduced
Bottlebrush	Callistemon citrinus	Introduced
Swamp oak	Casuarina glauca	Introduced
Karamu	Coprosma robusta	Not Threatened
Tī kōuka / cabbage tree	Cordyline australis	Not Threatened
Cotoneaster	Cotoneaster glaucophyllus	Introduced
Japanese cedar	Cryptomeria japonica	Introduced
Bermuda grass	Cynodon dactylon	Introduced
Umbrella sedge	Cyperus ustulatus	Not Threatened
Whekī	Dicksonia squarrosa	Not Threatened
Broadleaf	Griselinia littoralis	Not Threatened
Yorkshire fog	Holcus lanatus	Introduced
Soft rush	Juncus effusus	Introduced
Kānuka	Kunzea robusta	Threatened – Nationally Vulnerable
Mānuka	Leptospermum scoparium var. scoparium	Threatened – Nationally Vulnerable
Chinese privet	Ligsustrum sinense	Introduced

Common Name	Scientific Name	Threat Class (de Lange et al., 2017)
Tree privet	Ligustrum lucidum	Introduced
Ryegrass	Lolium perenne	Introduced
Pohutukawa	Metrosideros excelsa	Threatened – Nationally Vulnerable
Māpou	Myrsine australis	Not Threatened
Watercress	Nasturtium officinale	Introduced
Brush wattle	Paraserianthes lophantha	Introduced
Ironwood	Parrotia persica	Introduced
Water pepper	Persicaria hydropiper	Introduced
Harakeke	Phormium tenax	Not Threatened
Pine	Pinus radiata	Introduced
Karo	Pittosporum crassifolium	Not Threatened
Lemonwood	Pittosporum eugenioides	Not Threatened
Ribwort	Plantago lanceolata	Introduced
Totara	Podocarpus totara	Not Threatened
Poplar	Populus sp.	Introduced
Turkey oak	Quercus cerris	Introduced
Buttercup	Ranunculus repens	Introduced
Rose	Rosa spp.	Introduced
Curled dock	Rumex crispus	Introduced
Wooly nightshade	Solanum mauritianum	Introduced
Kowhai	Sophora microphylla	Not Threatened
Windmill palm	Trachycarpus fortunei	Introduced
Red clover	Trifolium pratense	Introduced
White clover	Trifolium repens	Introduced
Arum lily	Zantedeschia aethiopica	Introduced

7 Appendix 7 – Site Photographs (2019)

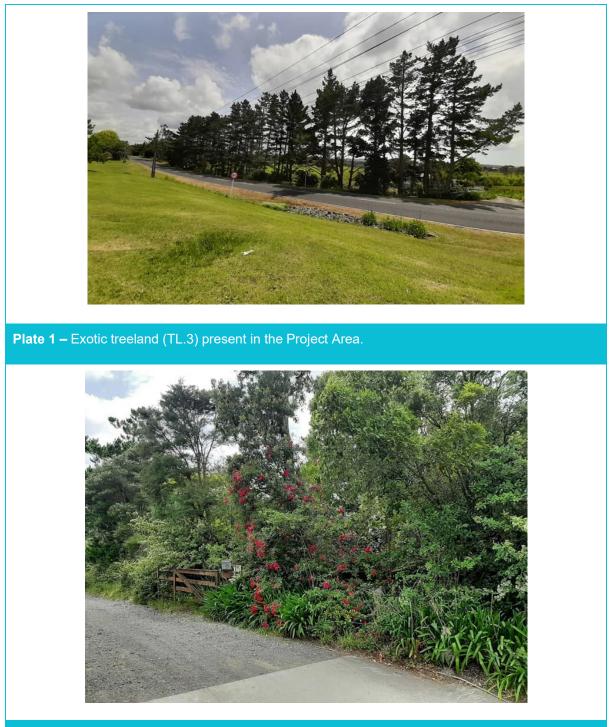


Plate 2 – Amenity garden planting (PL.3) present in the Project Area.

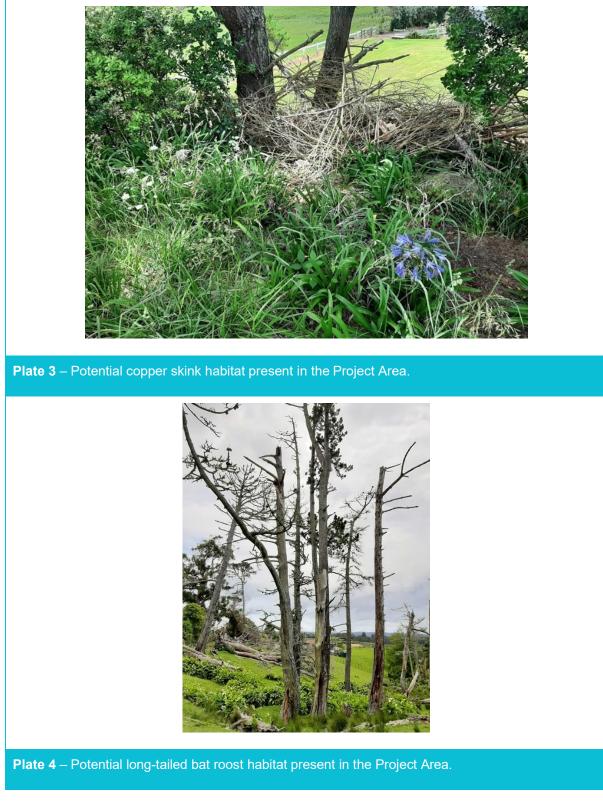
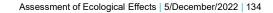


Figure 9-5 Site photographs (2019)



8 Appendix 8 – Wetland Offset & Conceptual Restoration Design

140

Memorandum

То:	Bridget O'Leary
From:	Michiel Jonker (Author) and Fiona Davies (Reviewer)
CC:	Fiona Davies
Date:	3 November 2022
Subject:	Trig Road Corridor Upgrade – Wetland Offset & Conceptual Restoration Design

1 Background

As part of the Assessment of Ecological Effects for the proposed Trig Road Corridor Upgrade notice of requirement (NoR) and application for resource consents, four modified wetlands were identified within the designation footprint (Figure 1). All four wetlands are dominated by exotic facultative wetland plant species and retain reasonably intact hydrological functionality so that they can be defined as wetlands. The Assessment of Ecological Effects identifies that construction of Trig Road will result in the permanent loss of 0.1 ha (1000 m²) of wetland TR-W1 and 0.078 ha (780 m²) of wetland TR-W4. Mitigation cannot be undertaken at the point of impact. As such, this results in a Low and Moderate residual level of effect respectively (owing to the differences in value between the two wetlands) that cannot be avoided, remedied, or mitigated. The policy direction (NES-FW) is for no loss in wetland extent, therefore both wetlands are included within this offset memo.

This memo presents offset modelling to identify the amount and type of wetland enhancement required to address the wetland loss at both wetlands. It also presents a conceptual restoration design.

It is expected that this memo shall provide guidance to the NoR and resource consent conditions and to the detailed Wetland Restoration and Enhancement Plan (WREP). The WREP shall, provide confirmation in detailed design that the wetland hydrological system allows for a wide range of indigenous wetland plants to establish and become a self-sustaining native wetland system.

Figure 1 Location and classification of TR-W1 and TR-W4

2 Ground rules for applying biodiversity offsetting and compensation

Biodiversity offsetting is defined by Maysek et al. 2018 as:

A measurable conservation outcome resulting from actions designed to compensate for residual adverse biodiversity effects arising from activities after appropriate avoidance, remediation, and mitigation measures have been applied. The goal of a biodiversity offset is to achieve no-net-loss and preferably a net-gain of indigenous biodiversity values¹.

Biodiversity compensation provides an option to address residual biodiversity losses that are not or cannot be offset, although it generally should be explored as a last resort. Although compensation does not require the same numerical rigour as biodiversity offsetting, outcomes can be improved by implementing offsetting principles and rules as a guideline when designing compensation packages.

The document 'Guidance on Good Practice Biodiversity Offsetting in New Zealand' provides a detailed and comprehensive account of the theory and possible application of the use of biodiversity offset mitigation in NZ (New Zealand Government et al., 2014). However, in the absence of clear over-arching policy and lack of practitioner consensus as to how biodiversity offsetting is defined and fits into the RMA context, ambiguity over how biodiversity offsetting should be implemented, monitored, and enforced is commonplace.

In New Zealand, offset models have generally only been used for large developments (e.g., wind farms, dams, and mines) where biodiversity matters are broad-ranging and offset models are correspondingly complex. However, a disaggregated condition-area model template has been developed for the Department of Conservation (Maseyk et al., 2015) which provides a more accessible, transparent, flexible, and structured means of assessing an offset proposal than those previously used in New Zealand for terrestrial and wetland ecosystems (Maseyk et al., 2016). The actual Accounting Model is a non-prescriptive, flexible 'empty shell' Microsoft Excel spreadsheet that the user populates by entering biodiversity measures, estimates, and discount rates². As stated in the User Guide, in summary the Accounting Model:

- Accounts only for 'like for like' biodiversity trades aimed at demonstrating no net loss (the model does not address 'like for unlike' exchanges);
- Relies on three hierarchical levels to categorise biodiversity (1: biodiversity types; 2: biodiversity components; 3: biodiversity attributes);
- Uses a disaggregated area/condition currency;
- Calculates net present biodiversity value (NPBV) for individual biodiversity attributes and average NPBV across the range of attributes representing a biodiversity component (as defined by Overton et al., 2013);
- Uses NPBV to estimate whether no net loss is achieved in the exchange with project level no net loss being demonstrated when all components demonstrate no net loss;
- Incorporates the use of a discount rate;
- Increases transparency of input values;
- Adjusts for uncertainty of success regarding the proposed offset actions; and

² Biodiversity offsets accounting system - Microsoft Excel template accessed 1 November 2022. Retrieved from: https://www.doc.govt.nz/aboutus/our-policies-and-plans/guidance-on-biodiversity-offsetting/biodiversity-offsets-accounting-system/

¹ ND: This definition differs slightly from that within the Good Practice Guidance as the terminology used in this definition has been altered to align with that of the RMA. The meaning and intent of the two definitions is the same.

- Includes in-model explanations to assist the user.

3 Application of a Biodiversity Offset Accounting Model for wetland loss

3.1 Model definitions and parameters

The Biodiversity Offset Accounting Model (BOAM) as developed by Maseyk et al. (2015) has been used to determine if no net loss of biodiversity values for wetlands TR-W1 and TR-W4 is likely to be achieved through downslope restoration of the remaining portions of wetland habitat associated with both wetlands. Section 4 outlines the conceptual restoration design.

The model is an accounting system/mathematical framework used to balance the losses at the impact site with the predicted gains at the offset site by comparing the value of biodiversity lost at the impact site (biodiversity value post-impact minus biodiversity value pre-impact) with the predicted value of biodiversity gained at the offset site (biodiversity value post-offset minus biodiversity value pre-offset).

The BOAM comprises an <u>Impact Model</u> and an <u>Offset Model</u>. Both need to be used to calculate the Net Present Biodiversity Value of each Biodiversity Attribute (NPBV) following the proposed Offset Action.

In this case the model has been used to calculate the NPBV for wetland condition attributes based on Clarkson et al. (2003) for TR-W1 and TR-W4 respectively. Condition attributes assessed included³:

- Hydrological integrity;
- Physico-chemical integrity;
- Ecosystem intactness;
- Browsing, predation and harvesting regimes;
- Dominance of native plants.

For each wetland the condition assessment was completed for the following scenarios:

- Impact Site Before Impact: condition of the wetland under baseline (current) conditions;
- Impact Site Potential: condition of the wetland given theoretical potential state. This assessment assumed current legal provisions for natural wetlands which mainly relate to stock exclusion;
- Impact Site After Impact: condition of the wetland after the impact occurred;
- Offset Site Baseline: The baseline condition of the wetland earmarked for restoration;
- Offset Site After Offset: the condition of the wetland after restoration.

A detail justification of the condition assessment is presented in **Attachment 2**. To simplify the use of the BOAM the wetland extent and condition for both wetlands were combined and averaged respectively. This was considered appropriate due to the similarities in wetland type and condition. The combined extent and average wetland condition scores are also presented in **Attachment 2** (Table 7) while the definitions and biodiversity attributes used are detailed in **Attachment 3**.

3.2 Impact Model results

Table 1 presents the output of the Impact Model as Biodiversity Value loss scores (expressed as five Biodiversity Attributes of Wetland Condition) resulting from 0.178 ha of wetland loss (TR-W1 = 0.1 ha

³ The catchment impact module for the wetland condition assessment has not been included in the condition assessment for purposes of the BOAM model. This is because the restoration actions mainly pertains to the wetland area.

and TR-W4 = 0.078 ha combined). **Attachment 3** (Table 8), provides detail on the definitions and justifications for each of the attribute cells.

Table 1 shows that within the 0.178 ha of proposed reclaimed wetlands, three of the five Biodiversity Attributes will be reduced to 0. Note that the measure score prior to impact represents the <u>potential</u> value of the wetlands. Thus, the <u>Biodiversity Value</u> is correspondingly reduced to a net negative value as shown in the last column of Table 1. These represent the residual adverse effects which require offsetting, as this loss cannot be directly avoided, remediated, or mitigated.

For 'Browsing pressure' and 'Dominance of native vegetation' no change in condition is predicted or shown in the Impact Model, as the decrease in the extent of the wetlands due to the road upgrades will not influence these attributes. Conversely, 'Ecosystem intactness' best represents the loss in wetland extent, while 'Hydrological integrity' and 'Physico-chemical parameters' have also been scored zero to account for the loss of wetland habitat within the condition assessment⁴. Refer to stormwater report for details on the groundwater treatment design.

The most ecologically intact state of wetland condition is expressed as a maximum value of 5 for each Biodiversity Attribute as shown in the <u>Benchmark</u> column, which is assessed against the current degraded (potential) state of for each wetland and then averaged for input into the Impact Model (**Attachment 3**). This benchmark becomes the aspirational restoration state, which is inputted into the Offset Model (discussed further below).

			rres which element ea, will be impacted		••	Biodiversit quantified, Inputs are de	erived from dir	e to the propo Biodiversity Va ect measures,	
	Biodiversity Component	Bio	diversitv Attribute	Measurement Unit	Area of Impact (ha)	Benchmark	Measure <u>prior</u> <u>to</u> Impact	Measure <u>after</u> Impact	Biodiversity Value
1.1	Habitat quality	1.1a	Hydrological integrity	Condition Rating	0.178	5	4	0	-0.14
		1.1b	Physico-chemical parameters	Condition Rating	0.178	5	3	0	-0.11
		1.1c	Ecosystem intactness	Condition Rating	0.178	5	3	0	-0.11
		1.1d	Browsing and predation	Condition Rating	0.178	5	4	4	0.00
			Dominance of native plants	Condition Rating	0.178	5	2	0	-0.07

Table 1 Results of Impact Model where 0.178 ha of wetland habitat is reclaimed

3.3 Offset Model results

Table 2 presents the results of the Offset Model. This assumes that a total of 0.37 ha (0.27 ha for TR-W1 and 0.1 ha for TR-W4) associated with the unaffected downstream portions of each wetland, is restored within the NoR designation (Figure 2)⁵, which is shown in the <u>Offset Area</u> column of the model. The detailed definitions of the Offset Model are shown in **Attachment 3** (Table 9).

⁴ Embedded controls (stormwater management and erosion and sediment controls) mitigate for the loss functional wetland values as they relate to the <u>receiving environment</u> including, flood control, water treatment and erosion control. Therefore, there is no 'indirect' effect on the condition of wetland habitat outside of the portion of each wetland that will be permanently reclaimed.

⁵ Buffer planting has not been presented on the figure. It is expected to be a 10 metre buffer planting around the offset areas (where possible within the designation boundary).

The Offset Model takes across the <u>Biodiversity Value at the Impact Site</u> and <u>Benchmark</u> scores from the Impact Model.

An NPBV discount rate of 3% has been applied to this restoration project in consideration of the time delay of the restoration being successfully realised. Further detail on how this rate was determined is provided in the User Manual (Maseyk et al., 2015).

Biodiversity Attribute measures prior to the Offset have been taken from the scores presented in condition assessment in the <u>Measure prior to Offset</u> column of the model. The likely improvement of wetland condition score has been provided for each Biodiversity Attribute in the <u>Measure after Offset</u> column of the model.

Benefits associated with planting, pest plant control and stock exclusion are expected to accrue within five years. This is expressed for each Biodiversity Attribute in the <u>Time till endpoint</u> column of the Offset Model.

The model determines the <u>Biodiversity Value at the Offset Site</u> for each Biodiversity Attribute and presents an <u>Attribute Net Present Biodiversity Value</u> for each of these attributes.

The final output of the Offset Model shows that the five key Biodiversity Attributes measuring wetland condition are improved through restoration and hence a <u>Component Net Present Biodiversity Value</u> of 0.00 is achieved after five years (Table 2).

This is a neutral NPBV value indicating that, if successfully implemented, restoration of 0.37 ha of unaffected downstream portions of TR-W1 and TR-W4 will offset the loss of 0.178 ha of the upstream portions of the same wetlands associated with the construction and operation of the Trig Road Corridor Upgrade.

Table 2 Results of Offset Model where 0.37 ha (consisting of 0.27 ha for TR-W1 and 0.1 ha for TR-W4) is restored as an offset (with a 3% discount rate applied)

	This section be accounted The info	for, a		nark value for	the Attribute.	These cells provide inform Offset	nation about t Actions	he proposed	a finite end yearly time years. Indica	can be made for point, or at five e-steps over 35 ate preference in	measure, existing data or models where available, or expert estimated predictions. Attribute Biodiversity Value at the Offset Site is compared to the Attribute Biodiversity Value at the Impact Site to calculate the Net Present							This is the av Present Bio Value fo Biodive Compo
	Biodiversity Biodiversity Meas Component Attribute Unit		Measurement Unit	t Benchmark	Proposed Offset Actions	Offset area (ha)	Confidence in Offset Actions			Measure prior to Offset	Measure <u>after</u>	Time till	Biodiversity Value at Offset Site	Biodiversity Value at Impact Site	Attribute Net Present Biodiversity Value		Component Ne Biodiversity Va	
1.	L Habitat quality	1.1a	Hydrological integrity	Condition Rating	1 5	Hydrology for offset wetlands will be maintained	0.37	Confident 75- 90%	Finite end point	Continue to Column M	4	4	5	0.00	-0.14	-0.14		0.00
		1.1b	Physico- chemical parameters	Condition Rating	1	Stock exclusion, fencing ,10 m buffer planting and wetland planting will improve Physico-	0.37	Confident 75- 90%	Finite end point	Continue to Column M	2	4	5	0.11	-0.11	0.00		
		1.10	Ecosystem	Condition Rating	5	Offset wetland extent will remain the same as baseline	0.37	Very confident >90%	Finite end point	Continue to Column M	3	3	5	0.00	-0.11	-0.11		
		1.1d	Browsing and predation	Condition Rating	1 5	Stock will permanently be excluded	0.37	Confident 75- 90%	Finite end point	Continue to Column M	1	5	5	0.21	0.00	0.21		
		1.1e	Dominance of native plants	Condition Rating	5	Replant with native wetland plants including 10 m native buffer planting and a 5 year	0.37	Low confidence >50% <75%	Finite end point	Continue to Column M	1	4	5	0.12	-0.07	0.05		

This is the average Net Present Biodiversity Value for the Biodiversity Component Component Net Present Biodiversity Value

0.00

Figure 2 Indicative location and extent of the proposed offset wetland areas

4 Conceptual restoration design

The proposed offset wetlands will be situated within the downslope portions of TR-W1 and TR-W4 (Figure 2). The BOAM demonstrated that a net gain (NPBV of 0.01) in wetland condition will be achieved through restoration of 0.37 ha of wetland habitat. This extent does not include an additional 10 m native buffer planting where practicable.

Subject to further ground survey, and detailed design in accordance with the final WREP, the following steps will be required to recreate wetland habitat in these locations:

- i. Confirmation in detailed design that the wetland hydrological system allows for a wide range of wetland plants to establish and become a self-sustaining native wetland system;
- ii. Measures to protect the wetland so it is protected in perpetuity and excludes stock;
- iii. Initial and ongoing plant pest control for a period of five years from establishment to minimise exotic plant cover in the wetland; and
- iv. Initial and infill planting of an array of wetland and wetland edge native plants to achieve a minimum 80% native wetland plant cover five years from establishment.

4.1 Hydrology

The final layout of the offset wetlands will be undertaken during detailed design by a suitably experienced and qualified ecologist in conjunction with the design engineers. Achieving an optimal hydrological regime in the wetland is critical to the success of the wetland plantings.

4.2 Plantings

The offset wetlands will contain a mosaic of permanently submerged wetland vegetation and lowgrowing shrubby species with thick, strong root systems that tolerate sediment deposition and frequent periods of inundation (Figure 3). This vegetation shall naturally establish or be planted. These plants will provide ideal wetland bird feeding habitat as well as preventing bank erosion and slowing down surface water flows. Along the margins riparian tree and shrub species will dominate. These trees will provide shade over the water, and habitat protection for wildlife.

Two benchmark wetland types are recommended to be re-created within the proposed offset area of TR-W1 and TR-W4:

- i. <u>Carex Machaerina swampland</u>: The majority of the wetland area should be planted with the aim of establishing a vegetation assemblage dominated by *Carex* and *Machaerina* sedges with harakeke, tī kōuka, manuka and *Coprosma* species interspersed throughout. This type of vegetation association is likely to have been present prior to European habitation of the area and subsequent drainage and clearance for farming. Target vegetation communities should therefore be dominated by native wetland species more suited to high levels of nutrients. Other species to plant include giant umbrella sedge, *Machaerina sinclarii, Astelia grandis,* raupō, and *Schoenoplectus tabernaemontani.*
- ii. <u>Kahikatea-dominated swamp forest</u>: Along the less saturated and riparian margins planting is intended to be restored to kahikatea-dominated swamp forest. As well as kahikatea, species such as tī kouka, toetoe, koromiko, putaputaweta, manuka, pukatea, and swamp maire should be utilised. Kahikatea can be planted at relatively high density but should be part of a mix which includes fast-growing small trees and shrubs which will provide some shelter to the larger trees when they are young. Kahikatea forest has a diverse understorey and groundcover flora which

includes small-leaved shrub species such as *Coprosma rigida, C. rotundifolia, Melicytus micranthus, Raukaua anomalus*, and *Melicope simplex* as well as a range of lianes, sedges, and fern species.

The dry, upper slopes of the wetlands will be somewhat restricted in plant selection by the presence of the road and other safety and landscape design restrictions. The target vegetation type here should be dominated by plantings of smaller flowering tree and species such as small-leaved kōwhai, wineberry, and koromiko, as well as occasional pūriri and tītoki where they are unlikely to pose a long-term hazard to the road.

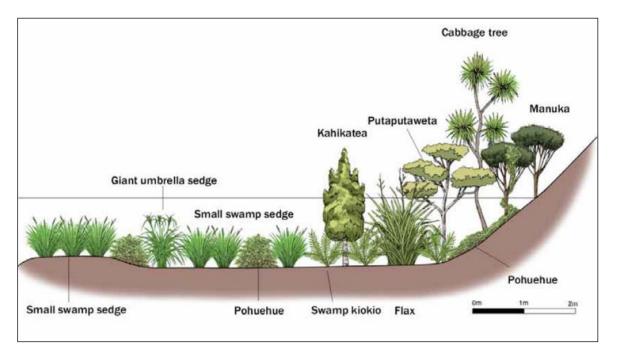


Figure 3 Generalised wetland planting cross-section (Auckland Regional Council, 2001)

Planting schedules and species appropriate for planting in each wetland benchmark community type will be required during detailed design. The planting schedules will need to specify those species that are suitable for initial plantings in each zone and will ensure a relatively fast canopy closure which will assist with weed control. The schedules will also need to include the proportion of the overall mix that each species should contribute to achieving the benchmark wetland communities, along with the recommended grade of plant.

In order to maintain the genetic integrity of the local area all plants used for the wetland project should be grown from seed of naturally occurring species growing in the locality or from other nearby sources within the Auckland Ecological District.

4.3 Maintenance and Pest Control

It is recommended that the wetland is maintained for a minimum period of five years following construction from the date planted to achieve at least 80% cover (over all strata) of indigenous species, with no more than 5% total cover of exotic species in any tier. The species shall be appropriate for all tiers found in a mature habitat, and shall include ground cover, sub canopy and canopy species (where applicable). If monitoring shows that 80% cover has not been achieved after five years of maintenance, the maintenance period shall be extended until that is achieved.

5 References

Auckland Regional Council. (2001). Riparian zone management: strategy for the Auckland Region: guideline: planting guide. Auckland Regional Council technical publication no. 148.

Clarkson, B., Sorrell, B., Reeves, P., Champion, P., Partridge, T. & Clarkson, B. (2004). Handbook for Monitoring Wetland Condition – Coordinated Monitoring of New Zealand Wetlands. Revised Edition.

Maseyk, F. J. F., Barea, L., Stephens, R. T. T., Possingham, H. P., Dutson, G. & Maron, M. (2016). A disaggregated biodiversity offset accounting model to improve estimation of ecological equivalency and no net loss (external site). Biological Conservation 204: 322- 332.

Maseyk, F. J. F., Maron, M., Dutson, G., Maron, M., Possingham, H., Seaton, R., Carlyon, G. & Beveridge, A. (2015). A Biodiversity Offsets Accounting Model for New Zealand - User Manual. The Catalyst Group. Prepared for the Department of Conservation, Hamilton.

Maseyk, F. J. F., Ussher, G., Kessels, G., Christensen, M. & Brown, M. (2018). Biodiversity Offsetting under the Resource Management Act - A guidance document. Prepared for Local Government NZ, Wellington.

New Zealand Government., Ministry for the Environment., Department of Conservation., Ministry for Primary Industries., Ministry of Business, Innovation & Employment. & Land Information New Zealand. (2014). Guidance on Good Practice Biodiversity Offsetting in New Zealand. New Zealand Government, Wellington.

Overton, J. M. C., Stephens, R. T. T. & Ferrier, S. (2013). Net present biodiversity value and the design of biodiversity offsets. AMBIO 42(1):100–110.

6 Limitations

Te Tupu Ngātahi has prepared this document for a specific purpose, as expressly stated in the document. No other party should rely on this document without the prior written consent of Te Tupu Ngātahi. Te Tupu Ngātahi undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on Te Tupu Ngātahi's experience, having regard to assumptions that Te Tupu Ngātahi can reasonably be expected to make in accordance with sound professional principles. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

1 **Attachment 1 - Figures**

Figure 4 Location and classification of TR-W1 and TR-W4

Figure 5 Indicative location and extent of the proposed offset areas

2 Attachment 2 – Wetland Condition Assessment

Table 3 Wetland condition scores for impact indicators and indicator components for TR-W1 (impact site and offset site)

Impact Indicator	Indicator Components	Impact Site: Before Impact (0.1 ha)	Impact Site: Potential (0.1 ha)	Impact Site: After Impact (0.1 ha)	Offset Site: Before Offset (0.27 ha)	Offsite Site: After Offset (0.27 ha)	Justification
Hydrological integrity	Impact due to manmade structures/drains /changes in water budget and changes to runoff characteristics	4	4	0	4	4	The hydrological integrity of TR-W1 remains largely intact with no observable changes to abstraction, impoundments, changes in hydroperiod (timing, duration, frequency), volumes, inundation of wetland habitats or groundwater changes to the wetland. A small change hydrology due to increased runoff from agricultural land and existing road is reflected in the impact score. Under the potential scenario (fencing and stock exclusion) no material improvement in wetland hydrology is expected. A very high degree of modification to hydrology is expected for post-impact scenario as the wetland will be occupied by the new road embankment. A small extent (<10%) of the offset wetland is affected by a farm pond but overall hydrological integrity remains similar to the impact wetland. The post-offset hydrological integrity expected to improve slightly due to increased surface roughness associated with buffer planting but likely to remain in the same score range.
	Water table depth	-	-	-	-	-	-
	Dryland plant invasion	-	-	-	-	-	-
Mean Score		4.0	4.0	0.0	4.0	4.0	-
Physico- chemical	Fire damage	-	-	-	-	-	-
parameters	Degree of sedimentation	-	-	-	-	-	-
	Nutrient levels	2	3	0	2	4	Point and diffuse sources of nutrients from agricultural landuse and road runoff. The potential wetland health can improve through stock exclusion.

Impact Indicator	Indicator Components	Impact Site: Before Impact (0.1 ha)	Impact Site: Potential (0.1 ha)	Impact Site: After Impact (0.1 ha)	Offset Site: Before Offset (0.27 ha)	Offsite Site: After Offset (0.27 ha)	Justification
							same catchment. The post-offset nutrient levels are expected to improve notably due to stock exclusion and additional filtration through buffer planting.
	Von Post index	-	-	-	-	-	-
Mean Score		2.0	3.0	0.0	2.0	4.0	-
Change in ecosystem intactness	Loss in area of original wetland	3	3	0	3	3	 Moderate increase in runoff due to surface roughness changes associated with agriculture likely resulted in some reduction in wetland extent relative to benchmark. No notable increase in wetland extent is considered achievable under the potential scenario (fencing of the wetland). Changes in wetland extent for the offset wetland (prior to actual offset) is similar to that of the impact wetland (prior to impact) as the offset wetland is an extension of the impact wetland. Offset action will not result in a notable increase in wetland extent and is therefore allocated the same impact score.
	Connectivity barriers	-	-	-	-	-	-
Mean Score		3.0	3.0	0.0	3.0	3.0	-
Change in browsing, predation, and harvesting regimes	Damage by domestic or feral animals	1	4	4	1	5	 Baseline wetland condition notably affected by grazing pressure. Stock exclusion through fencing under the potential scenario will improve wetland condition (although fencing alone will not prevent grazing by introduced pests such as possum, rabid and hare). Grazing pressure (under the impact scenario) scored the same for the pre-impact wetland as impact will not increase grazing pressure (therefore further deteriorating wetland habitat quality).

WAKA KOTAHI NZ TRANSPORT AGENCY

Impact Indicator	Indicator Components	Impact Site: Before Impact (0.1 ha)	Impact Site: Potential (0.1 ha)	Impact Site: After Impact (0.1 ha)	Offset Site: Before Offset (0.27 ha)	Offsite Site: After Offset (0.27 ha)	Justification
	Introduced predator impacts on wildlife	-	-	-	-	-	-
	Harvesting levels	-	-	-	-	-	-
Mean Score		1.0	4.0	4.0	1.0	5.0	-
Change in dominance of native	Introduced plants	1	2	0	1	4	The baseline cover for the wetland to be impacted is exotic grasses and shrubs with no native species contingent. Therefore, the highest (most severe) impact score is allocated).
plants							The wetland potential scenario presumes fencing which by itself will not increase the representation of native species. However, some native recruitment is likely through stock exclusion alone and a slightly higher category impact score is allocated for the potential wetland.
							The impact is not going to increase the representation of introduced species and is therefore allocated the same impact score as the baseline for the impact wetland.
							The offset wetland (prior to offset) have the same dominance of introduced plants as the impact wetland.
							Successful implementation of the restoration plan will result in native plant dominance. The Impact score reflects some contingency for resilient introduced plants.
	Introduced plant understorey cover	-	-	-	-	-	-
Mean Score		1.0	2.0	0.0	1.0	4.0	-
Total Wetlan Index/25	d Condition	11.0	16.0	2.0	11.0	20.0	-
Condition In	dex (%)	44.00%	64.00%	16.00%	44.00%	80.00%	-
Condition In	Condition Index Category		Moderately	Critically	Largely	Largely natural	-

Table 4 BOAM input summary for TR-W1

Impact Indicator	Impact Site TR-W1: Before Impact (0.1 ha)	Impact Site TR-W1: Potential	Impact Site TR-W1: Before Impact (0.1 ha)	Impact Site TR-W1: Potential	Impact Site TR-W1: Before Impact (0.1 ha)	
Hydrological integrity	4	4	0	4	4	
Physico-chemical parameters	2	3	0	2	4	
Ecosystem intactness retained	3	3	0	3	3	
Browsing, predation and harvesting regimes	1	4	4	1	5	
Dominance of native plants	1	2	0	1	4	

Table 5 Wetland condition scores for impact indicators and indicator components for TR-W4 (impact site and offset site)

Impact Indicator	Indicator Components	Impact Site: Before Impact (0.1 ha)	Impact Site: Potential (0.1 ha)	Impact Site: After Impact (0.1 ha)	Offset Site: Before Offset (0.27 ha)	Offsite Site: After Offset (0.27 ha)	Justification
Hydrological integrity	Impact due to manmade structures/drains /changes in water budget and changes to runoff characteristics	4	4	0	4	4	The hydrological integrity of TR-W4 remains largely intact with no observable changes to abstraction, impoundments, changes in hydroperiod (timing, duration, frequency), volumes, inundation of wetland habitats or groundwater changes to the wetland. A small change hydrology due to increased runoff from agricultural land and existing road is reflected in the impact score. Under the potential scenario (fencing and stock exclusion) no material improvement in wetland hydrology is expected. A very high degree of modification to hydrology is expected for post-impact scenario as the wetland will be occupied by the new road embankment. A small extent (<10%) of the offset wetland affected by a farm pond but overall hydrological integrity similar to the impact wetland. The post-offset hydrological integrity expected to improve slightly due to increased surface roughness associated with buffer planting but likely to remain in the same score range.

Impact Indicator	Indicator Components	Impact Site: Before Impact (0.1 ha)	Impact Site: Potential (0.1 ha)	Impact Site: After Impact (0.1 ha)	Offset Site: Before Offset (0.27 ha)	Offsite Site: After Offset (0.27 ha)	Justification
	Water table depth	-	-	-	-	-	-
	Dryland plant invasion	-	-	-	-	-	-
Mean Score		4.0	4.0	0.0	4.0	4.0	-
Physico- chemical	Fire damage	-	-	-	-	-	-
parameters	Degree of sedimentation	-	-	-	-	-	-
	Nutrient levels	2	3	0	2	4	Point and diffuse sources of nutrients from agricultural landuse and road runoff.
							The potential wetland health can improve through stock exclusion.
							Nutrient levels for the offset wetland is similar to the impact wetland as it drains the same catchment.
							The post-offset nutrient levels are expected to improve notably due to stock exclusion and additional filtration through buffer planting.
	Von Post index	-	-	-	-	-	-
Mean Score		2.0	3.0	0.0	2.0	4.0	-
Change in ecosystem intactness	Loss in area of original wetland	3	3	0	3	3	Moderate increase in runoff due to surface roughness changes associated with agriculture likely resulted in some reduction in wetland extent relative to benchmark.
							No notable increase in wetland extent is considered achievable under the potential scenario (fencing of the wetland).
							Changes in wetland extent for the offset wetland (prior to actual offset) is similar to that of the impact wetland (prior to impact) as the offset wetland is an extension of the impact wetland.

Impact Indicator	Indicator Components	Impact Site: Before Impact (0.1 ha)	Impact Site: Potential (0.1 ha)	Impact Site: After Impact (0.1 ha)	Offset Site: Before Offset (0.27 ha)	Offsite Site: After Offset (0.27 ha)	Justification
							Offset action will not result in a notable increase in wetland extent and is therefore allocated the same impact score.
	Connectivity barriers	-	-	-	-	-	-
Mean Score	·	3.0	3.0	0.0	3.0	3.0	-
Change in browsing, predation, and harvesting regimes	Damage by domestic or feral animals	1	4	4	1	5	Baseline wetland condition notably affected by grazing pressure. Stock exclusion through fencing under the potential scenario will improve wetland condition (although fencing alone will not prevent grazing by introduced pests such as possum, rabid and hare). Grazing pressure (under the impact scenario) scored the same for the pre- impact wetland as impact will not increase grazing pressure (therefore further deteriorating wetland habitat quality).
	Introduced predator impacts on wildlife	-	-	-	-	-	-
	Harvesting levels	-	-	-	-	-	-
Mean Score		1.0	4.0	4.0	1.0	5.0	-
Change in dominance of native	Introduced plants	1	2	0	1	4	The baseline cover for the wetland to be impacted is exotic grasses and shrubs with no native species contingent. Therefore, the highest (most severe) impact score is allocated).
plants							The wetland potential scenario presumes fencing which by itself will not increase the representation of native species. However, some native recruitment is likely through stock exclusion alone and a slightly higher category impact score is allocated for the potential wetland.
							The impact is not going to increase the representation of introduced species and is therefore allocated the same impact score as the baseline for the impact wetland.

Impact Indicator	Indicator Components	Impact Site: Before Impact (0.1 ha)	Impact Site: Potential (0.1 ha)	Impact Site: After Impact (0.1 ha)	Offset Site: Before Offset (0.27 ha)	Offsite Site: After Offset (0.27 ha)	Justification
							The offset wetland (prior to offset) have the same dominance of introduced plants as the impact wetland.
							Successful implementation of the restoration plan will result in native plant dominance. The Impact score reflects some contingency for resilient introduced plants.
	Introduced plant understorey cover	-	-	-	-	-	-
Mean Score		1.0	2.0	0.0	1.0	4.0	-
Total Wetland Condition Index/25		11.0	16.0	2.0	11.0	20.0	-
Condition Inc	dex (%)	44.00%	64.00%	16.00%	44.00%	80.00%	-
Condition Inc	lex Category	Largely	Moderately	Critically	Largely	Largely natural	-

Table 6 BOAM input summary for TR-W4

Impact Indicator	Impact Site TR-W4: Before Impact (0.078 ha)	Impact Site TR-W4: Potential (0.078 ha)	Impact Site TR-W4: After Impact (0.078 ha)	Offset Site TR-W4: Before Offset (0.1 ha)	Offset Site TR-W4: After Offset (0.1 ha)
Hydrological integrity	4	4	0	4	4
Physico-chemical parameters	2	3	0	2	4
Ecosystem intactness retained	3	3	0	3	3

Impact Indicator	Impact Site TR-W4: Before Impact (0.078 ha)	Impact Site TR-W4: Potential (0.078 ha)	Impact Site TR-W4: After Impact (0.078 ha)	Offset Site TR-W4: Before Offset (0.1 ha)	Offset Site TR-W4: After Offset (0.1 ha)	
Browsing, predation and harvesting regimes	1	4	4	1	5	
Dominance of native plants	1	2	0	1	4	

Table 7 BOAM input summary for combined extent and averaged scores for TR-W1 and TR-W4

Impact Indicator	Impact Site TR-W1 & TR- W2	Impact Site TR-W1 & TR- W4: Potential (0.178 ha)	Impact Site TR-W1 & TR- W4: After Impact (0.178 ha)	Offset Site TR-W1 & TR- W4: Before Offset (0.37 ha)	Offset Site TR-W1 & TR- W4: After Offset (0.37)
Hydrological integrity	4	4	0	4	4
Physico-chemical parameters	2	3	0	2	4
Ecosystem intactness retained	3	3	0	3	3
Browsing, predation and harvesting regimes	1	4	4	1	5
Dominance of native plants	1	2	0	1	4

3 Attachment 3 - Definition and attribute justifications for the Biodiversity Accounting Model

Model Inputs	Explanation (Maseyk et al., 2016)	Application for Trig Road Corridor Upgrade
Biodiversity Type	Biodiversity Type describes the key biodiversity features of concern found at the Impact Site and can include ecosystems, habitats, or species. Examples include: Lowland podocarp- hardwood forest, or a river and riparian ecosystem. Threatened and iconic species and rare or special features may also be listed as Biodiversity Types.	Palustrine wetland has been used as our biodiversity type, as this is the overarching hydro system classification of the wetlands.
Biodiversity Component	Identify and input Biodiversity Components to help describe what makes up the Biodiversity Type. Examples of components include: vegetation tiers, habitat types, related groups of indigenous species, or functional roles (insectivore/predator, nectarivore/pollinator and frugivore/seed disperser).	Wetland habitat quality has been used as the biodiversity component. Habitat quality is based on attribute categories that are aligned at both the impact and offset sites (Clarkson et al., 2003).
Biodiversity Attribute	Identify and input Biodiversity Attributes as measures of the condition or the quantity of the Biodiversity Component. The Biodiversity Attributes are the measures balanced in this accounting system to demonstrate no net loss.	 Attribute categories (based on Clarkson et al., 2003) included: Change in hydrological integrity. Change in physicochemical parameters. Change in ecosystem intactness. Change in browsing, predation and harvesting regimes. Change in dominance of native plants. These index scores have been directly inserted in the Input Model of the BOAM as suitable "Biodiversity Attributes" which are measures of the condition and the quantity of the wetlands Biodiversity Attributes.
Measurement Unit	Enter measurement Units for each Biodiversity Attribute. For example, if the Attribute is 'number of adults' the Measurement Unit would be a count. If the Attribute is 'spatial extent of a vegetation tier', the Measurement Unit might be percent. For each attribute, the same measurement units must be used in the Impact and Offset Models.	Impact scores for each attribute were as per Clarkson et al. (2004):Degree of modification in wetland:DescriptorScoreVery High1High2Medium3Low4Very Low5
Area of Impact (ha)	Measure and input the extent of habitat or area (ha) supporting the Biodiversity Type and over which the Biodiversity Attribute	Area of impact assumes the permanent loss of a portion of wetlands TR-W1 (0.1 ha) and TR-W4 (0.078 ha). Embedded

Table 8 Impact Model - data inputs used to determine an overall biodiversity loss score at the impact site

Model Inputs	Explanation (Maseyk et al., 2016)	Application for Trig Road Corridor Upgrade
	will be impacted by the proposal. For example, if the Biodiversity Type is a threatened plant species, the area of Impact is the total area (ha) of the vegetation community supporting that species that will be affected by the proposed impact, not just the summed area occupied by individual plants.	controls for stormwater management and erosion and sediment control during construction and operation mitigate for the 'indirect' effects associated with potential hydrology and water quality effects. Similarly, embedded controls also compensate for the loss of functional wetland services related to flood attenuation, sediment control and water purification. The area of impact is therefore limited to the permanent loss of wetland habitat directly associated with the construction footprint.
Benchmark	Input Benchmark values specific to each Biodiversity Attribute. Measurements of ecological condition or quality require reference to a benchmark state that reflects a 'natural' or 'pristine' or other desirable condition.Benchmarks are ideally measured, from a real site of the same vegetation community type of the Impact and Offset Site, and be a site that has been under sustained conservation management or be of the highest possible condition value.	Benchmark state equates to best possible examples of wetland ecosystem types currently present and the restoration potential of the site, e.g., a future state of mature indigenous wetland ecosystem types with the full potential complement of indigenous species. To be consistent with the Clarkson et al. (2003) wetland impact score, a benchmark score of 5 has been applied and represents a Very Low impact state.
Measure <u>prior to</u> Impact	Measure and input the measured value of the Biodiversity Attribute at the Impact Site prior to the proposed Impact occurring. This is the measure of biodiversity loss in the loss/gain calculation. The value is expressed in the stated Measurement Unit (Column F), using the same method of measurement as for the Benchmark. If the Impact to the Attribute is total loss, enter a value of zero.	Assessment of <u>potential</u> wetland habitat condition against the benchmark condition. This is a theoretical condition assessment based on expected improvements in wetland condition if stock is excluded from the wetland through fencing.
Measure <u>after</u> Impact	Estimate and input the predicted value of the Attribute at the Impact Site following the proposed Impact. The value is expressed in the stated Measurement Unit (Column F), using the same method of measurement as for the Benchmark. The quantum of Impact may be derived from the Assessment of Environmental Effects, or predictive models may be needed to inform this value. Experts with expertise relevant to each Biodiversity Attribute may be able to confidently estimate post Impact values.	Assumes the value of each condition attribute within the development footprint will be reduced to zero with total removal in the impact footprint. Attributes that will not be affected by the road construction (for example 'Browsing pressure' and 'Dominance of native plants' in the wetland have the same post impact scores).
Biodiversity value	This is the calculated value of the Biodiversity Attribute at the Impact Site following the Impact. Attribute biodiversity value is the measure of the Attribute after the Impact, relative to the measure prior to the Impact, and adjusted in proportion to the Benchmark. Any Attribute value greater than the Benchmark value is truncated to 1 within the equation. This	As per the output of the model's calculation.

Model Inputs	Explanation (Maseyk et al., 2016)	Application for Trig Road Corridor Upgrade
	change in biodiversity value is then multiplied across the area of proposed Impact.	

Table 9 Offset Model - data inputs used to determine an overall biodiversity gain at the restoration site

Model Inputs	Explanation (Maseyk et al., 2016)	Application for Trig Road Corridor Upgrade	
Biodiversity Type	The Offsets Model will auto populate this cell with the text entered the Impact Model.	No deviation from model explanation.	
Discount Rate	Enter a discrete discount rate before any other values are entered into the Offset Model. The same discount rate applies to all Biodiversity Types, Components, and Attributes in the Offset Model. For more discussion on discount rates see the Good Practice Guidance.	A discount rate of 3% has been applied. This rate is considered appropriate given the risk and uncertainty associated with this specific offset.	
Biodiversity Component	The Offsets Model will auto populate this cell within the text entered in the Impact Model.	No deviation from model explanation.	
Biodiversity Attribute	NOUEI.		
Measurement Unit			
Benchmark			
Proposed Offset Actions	Define and Input brief detail of the action(s) (management intervention) proposed to Offset Impact. Further detail can be provided in supporting documentation.	Broad restoration measures are presented in the memo and will be detailed in a WREP as part of the NoR/resource consent condition requirements. However, it is assumed that proposed offset actions include but are not limited to stock exclusion through fencing, native revegetation, or native enrichment plantings, weed pest control for five years (limited to invasive weeds and shrubs in accordance with commonly applied targets) and 10 m buffer planting around each wetland where practicable to do so.	
Offset area (ha)	Input the area (in hectares) over which the Offset activity related to this Biodiversity Attribute will be implemented. The same Offset activity, and therefore the same area over which the Offset activity is to be implemented, can apply to more than one Attribute.	Offset reach: TR-W1 - 0.27 ha Offset reach: TR-W4 - 0.1 ha Combined area applied in the BOAM - 0.37 ha	
Confidence in Offset Actions	Estimate and input the likelihood that the proposed Offset Action (Column H) will be successful within the specified time estimate (Column O). This reflects that even with proven management techniques some uncertainty around	Confidence levels were congruent with the likely success of the proposed offset and the time till endpoint: The following confidence levels were applied:	

Model Inputs	Explanation (Maseyk et al., 2016)	Application for Trig Road Corridor Upgrade
	outcomes is always present e.g., restoration plantings may fail due to unanticipated drought or pest pressures, or possum control targets may not be met due to bait interference by an unexpectedly high rat population. This confidence level does not include risk of default or failing to implement the proposed Offset Actions. Choose a confidence rating from the	Confidence 75-90% assigned to hydrological integrity, physico-chemical improvements and browsing pressure within five years. Residual uncertainty relates to other browsing pressure other than stock and the wetland vegetation response to stock exclusion Confidence >90% assigned to ecosystem intactness as it is relatively certain the the
	dropdown list, as follows: Low confidence : The proposed Offset Action uses methods that have either been successfully implemented in New Zealand or in the situation and context relevant to the Offset Site but infrequently, or the outcomes of the proposed Offset Action are not well proven or documented, or success rates elsewhere have been shown to be variable. Likelihood of success is > 50% but < 75%.	existing extent of the wetland will remain approximately the same. Confidence >50<75% assigned to dominance of native plants within a five year period.
	Confident : The proposed Offset Action uses well known and often implemented methods which have been proven to succeed greater than 75% of the time although enough complicating factors and/or expert opinion exists to not have greater confidence in this Offset Action. Likelihood of success is greater than 75% but less than 90%. Very confident : The proposed Offset	
	Action uses methods that are well tested and repeatedly proven to be very reliable for the situation and context relevant to the Offset Site; evidence-based expert opinion is that success is very likely. Likelihood of success is > 90%.	
Time period over which to calculate NPBV	Decide whether to run calculations across five yearly time-steps for 35 years, or at a finite, user defined end point. The time- step calculation is limited to 35 years to reflect the maximum life of a resource consent. The finite end point is not time restricted. It is important to consider that management required to maintain the Offset over the long-term may be necessary beyond the time taken to demonstrate no net loss.	Finite end point.
Measure <u>prior to</u> Offset	Measure and input the value of the Biodiversity Attribute at the Offset Site prior to the proposed Offset Action being implemented, expressed in the Measurement Unit (Column F). The methods/models used to measure the Attribute at the Offset Site need to be identical to those used to measure the same Attribute at the Impact Site.	Based on the average attribute condition scores (baseline) for the offset wetlands as per the condition assessment for each attribute.

Model Inputs	Explanation (Maseyk et al., 2016)	Application for Trig Road Corridor Upgrade
Measure <u>after</u> the Offset	Estimate and input the value of the Biodiversity Attribute at the Offset Site following the proposed Offset Action at the finite end point — the time at which the Offset Action is anticipated to have achieved the stated objective (Column O), expressed in the Measurement Unit (Column F). Predictive models may be needed to inform this measure. Experts with expertise relevant to each Biodiversity Attribute may be able to estimate future measures.	Based on the theoretical condition assessment for each of the attributes give the implementation of the proposed restoration plan.
Time till end point (years)	Predict and input the anticipated number of years (from the time of implementing the Offset Action) until the Offset Action is expected to achieve the Offset goal.	Time till endpoint (time between restoration action and biodiversity value realized) was allocated as five years.
Biodiversity Value at Offset Site	This is the difference between the future value of the Attribute after the Offset action (Column N) and the current value of the Attribute at the Offset Site prior to the Offset being implemented (Column M). This change in Attribute value is calculated as a proportion of the Benchmark (Column G). Any Attribute value greater than the Benchmark is truncated to 1. The proportional raw gain is adjusted to the level of confidence in the Offset Actions succeeding, by multiplying the raw gain by the midpoint of the confidence range (Column J). This calculation also incorporates the time preference discount rate (cell E11) and the time taken to reach the stated objective for the Offset Action (Column O). The gain in value is multiplied across the Offset Area (Column I) to give a final Attribute value.	No deviation in approach from model explanation.
Biodiversity Value at Impact Site	This value is imported from the corresponding Impact Model and feeds into the Offset Model spreadsheet (Column R).	
Attribute Net Present Biodiversity Value	The Net Present Biodiversity Value (NPBV) is determined for each Attribute by calculating the difference between the Attribute biodiversity value at the Offset Site and at the Impact Site to give the net change in biodiversity value over time. A no net loss biodiversity exchange is demonstrated when this value is equal to or greater than zero. Negative values demonstrate a net loss, positive values demonstrate a net gain. Where the five yearly time-step option is chosen (Offset Model_5 yearly), this cell is populated with the Attribute NPBV value at the point that is equal or greater than zero or, when a equal or greater than	

Model Inputs	Explanation (Maseyk et al., 2016)	Application for Trig Road Corridor Upgrade
	zero NPBV is not reached, the NPBV at Year 35.	
Component Net Present Biodiversity Value	The NPBV for each component is calculated by averaging the NPBV of all the Attributes used to account for the Biodiversity Component (whether they were calculated using a finite end point or a five yearly time-step). All Biodiversity Attributes are equally weighted.	

ATTACHMENT 19

TRIG ROAD CORRIDOR UPGRADE ASSESSMENT OF STORMWATER EFFECTS

Supporting Growth Trig Road Corridor Upgrade Assessment of Stormwater Effects

Version 1.0 December 2022

A KOTAHI

Assessment of Stormwater Effects

Document Status

Version no.	Responsibility	Name
2020 Draft	Author	Nadine Wolfaardt
	Reviewer	Roger Seyb Matthew Kerr-Ridge
1.0	Author	Anna H. Liu
	Reviewer	Mike Summerhays
	Approver	Bridget O'Leary

Revision Status

Version	Date	Reason for Issue
1.0	December 2022	Final for Lodgement

Table of Contents

1	Introduction				
	1.1 Bac	ckground	7		
	1.2 Purpose of this Report				
2	Project	Description	8		
	2.1 Pro	ject Location	8		
	2.2 Pro	ject Description	8		
	2.3 Pro	ject Features	9		
	2.3.1	Cross-Section	9		
	2.3.2	Stormwater Infrastructure	10		
	2.4 Indi	icative Construction Methodology	10		
	2.4.1	General Construction Overview	10		
3	Assessi	ment Criteria	12		
	3.1 Sta	tutory Context	12		
	3.1.1	Notice of Requirement	12		
	3.1.2	Regional Resource Consent Application	12		
	3.2 Rel	evant Standards and Guidelines	12		
4 Receiving Environment		14			
	4.1 App	proach to Receiving Environment	14		
	4.2 Exis	sting Stormwater Management	15		
	4.2.1	Existing Ground Conditions	15		
	4.2.2	Topography, Catchments, Drainage and Receiving Environments	16		
	4.2.3	Stormwater Quality	18		
	4.2.4	Existing Infrastructure	18		
	4.2.5	Flooding Hazards and Existing Issues	18		
	4.2.6	Stormwater Summary	19		
5 Methodology and Analysis		22			
	5.1 Ass	sessment Methodology			
	5.1.1	Design Software	22		
	5.2 Des	sign Criteria			
	5.3 Stormwater Management Methods/Infrastructure				
6	Assessi	ment of Stormwater Effects			

	6.1 Des	sign Parameters	26	
	6.2 Cha	anges to Catchment Runoff	26	
	6.2.1	Surrounding Catchments	26	
	6.2.2	Road Corridor Catchments	29	
	6.3 Rur	noff Quality	33	
7	Mitigatio	on	34	
	7.1 Atte	enuation	34	
	7.2 Stor	rmwater Treatment	37	
	7.2.1	Design parameters	37	
	7.2.2	Raingarden configurations	38	
	7.3 Prin	nary Stormwater System	39	
	7.3.1	Catchment 1	40	
	7.3.2	Catchment 2A	41	
	7.3.3	Catchment 2B	41	
	7.3.4	Catchment 3	41	
	7.3.5	Catchment 4	42	
	7.4 Gro	undwater	42	
	7.5 Ope	eration and Maintenance	43	
	7.5.1	Dry Pond	43	
	7.5.2	Raingardens	43	
	7.5.3	Manholes, Inlets and Outfalls	43	
	7.6 Sun	nmary of Effects and Recommended Mitigation	44	
8	Conclus	sions	47	
	General.		1	
	Model In	puts	1	
	Design F	Rainfall	2	
	Rainfall ⁻	Rainfall Temporal Pattern		
	Dry Pone	d Storage Capacity	3	
	Model Re	Model Results		
	Conclusi	ons	4	

Tables

Table 1: Existing and Future Environment Likelihood of Change	14
Table 2: Catchment Stream Quality	18

Table 3: 24hour rainfall depths and the applied climate change factors	
Table 4: Maximum Impervious Area for Trig Road surrounding catchments	27
Table 5: Culvert Size Upgrades	27
Table 6: Catchment Overview	29
Table 7: Changes to Impervious Area	30
Table 8: Pre and Post Development Runoff Data	32
Table 9: Water Quality Characteristics per Catchment	33
Table 10: Dry pond design summary	35
Table 11: Raingarden Sizing per Catchment	38
Table 12: Catchment Design Constraints	38
Table 13: Summary of Effects and Methods of Mitigation	44

Figures

Figure 1: Locality Plan	8
Figure 2: Whenuapai – Trig Road Corridor Upgrade	9
Figure 3: Indicative Trig Road Cross Section Error! Bookmark not defi	ned.
Figure 4: Existing / Future Zoning Scenarios	15
Figure 5: Whenuapai Catchment Boundary	
Figure 6: Trig Road surrounding overland flow paths, flood plains and receiving waterbodies	17
Figure 7: Existing Trig Road Corridor/Hobsonville Road Stormwater Infrastructure (AC - GEOMAP	·
Figure 8: Existing flood plain and flood prone areas along Trig Road (AC - GEOMAPS)	21
Figure 9: Pre-development catchments for culvert/pipe flows	28
Figure 10: Post-development catchments for culvert/pipe flows	28
Figure 11: Post-development catchment plan	31
Figure 12: Dry Pond location	37

Appendices

- Appendix 1. Relevant Matters of Discretion, Matters of Control, and Assessment Criteria
- Appendix 2. Stormwater Drawings

Appendix 3. HEC-HMS Model

Assessment of Stormwater Effects

Acronyms

Acronym/Term	Description
AEE	Assessment of Effects on the Environment
AEP	Annual Exceedance Probability
ARI	Annual Recurrence Interval = average period between exceedances of a given flow or rainfall
AT	Auckland Transport
AUP: OP	Auckland Unitary Plan Operative in Part 2016
СоР	Code of Practice
GD01	Stormwater Management Devices in the Auckland Region - Guideline Document 2017/001
HIRDS	High Intensity Rainfall Design System
MPD	Maximum Probable Development
NoR	Notice of Requirement
RMA	Resource Management Act 1991
SH18	State Highway 18
SMAF 1	Stormwater Management Area – Flow 1
SMAF 2	Stormwater Management Area – Flow 2
TDM	Transport Design Manual
TP108	Technical Publication 108: Guidelines for Stormwater Runoff Modelling in the Auckland Region
W3P	Whenuapai 3 Precinct

1 Introduction

1.1 Background

Auckland's population is growing rapidly; driven by both natural growth (more births than deaths) and migration from overseas and other parts of New Zealand. The Auckland Plan 2050 anticipates that this growth will generate demand for an additional 313,000 dwellings and require land for approximately 263,000 additional employment opportunities.

In response to this demand, the Auckland Unitary Plan Operative in Part 2016 (**AUP: OP**) identifies 15,000 hectares of predominantly rural land for future urbanisation. To enable the urban development of greenfield land, appropriate bulk infrastructure needs to be planned and delivered.

The Supporting Growth Programme is a collaboration between Auckland Transport (**AT**) and Waka Kotahi NZ Transport Agency, to investigate, plan and deliver the transport networks needed to support Auckland's future urban growth areas over the next 30 years.

1.2 Purpose of this Report

This report has been prepared to support AT's notice of requirement (**NoR**) and application for resource consents for the Trig Road Corridor Upgrade (the **Project**). The NoR under the Resource Management Act 1991 (**RMA**) is to designate land for the construction, operation and maintenance of the Project.

Trig Road, Whenuapai has been identified in the Supporting Growth Programme as a future arterial corridor that is needed to support the urban development of Whenuapai.

Funding for the upgrade of Trig Road between Hobsonville Road and State Highway 18 (**SH18**) has been made available through the Housing Infrastructure Fund (HIF)¹. As there is funding available for construction, AT are also applying for the necessary resource consents under the RMA, concurrently with the NoR process.

This report provides an assessment of stormwater effects associated with the construction, operation and maintenance of the Project. This assessment has been prepared to inform the Assessment of Environmental Effects (**AEE**) for the NoR and regional resource consent applications.

The key matters addressed in this report are as follows:

- (a) Identify and describe the existing stormwater environment;
- (b) Describe the actual and potential adverse stormwater effects of operation of the Project;
- (c) Describe the actual and potential adverse stormwater effects of construction of the Project;
- (d) Recommend measures as appropriate to avoid, remedy or mitigate potential adverse stormwater effects (including any conditions/management plan required); and
- (e) Present an overall conclusion of the level of potential adverse stormwater effects of the Project after recommended measures are implemented.

¹ See North West Housing Infrastructure Fund Assessment of Environmental Effects for further detail regarding the Housing Infrastructure Fund.

2 **Project Description**

2.1 Project Location

Trig Road is located in Whenuapai, a suburb in the North West area of Auckland. The full length of Trig Road is approximately 2.28km starting from the urban fringe of West Harbour, at the intersection on Hobsonville Road to the south, crossing SH18, and extending towards Brigham Creek Road intersection to the north.

The project area is shown in Figure 1 below, it covers the southern portion of Trig Road between Hobsonville Road and SH18 and a portion of Hobsonville Road between the intersection between Trig Road and Luckens Road.

Figure 1: Locality Plan

2.2 Project Description

The Project consists of the widening and upgrade of Trig Road transport corridor between the SH18 off-ramps and Hobsonville Road. The widening has capacity to provide for a two-lane arterial standard corridor including new footpaths on both sides of the road and a cycleway which is indicatively shown as a bi-direction cycleway on the eastern side of the corridor. The Project will upgrade the current rural standard corridor, currently 20m wide, to an urban standard, proposed to be approximately 22.4 to 24.8m wide, which is appropriate to support the soon to be urban environment on either side of Trig Road.

To safely tie into the existing road network, the Project also includes the signalisation of the intersections at Trig Road / Hobsonville Road and Luckens Road / Hobsonville Road and upgrade of Hobsonville Road between these intersections. This will require some localised widening of the road corridor along Hobsonville Road. The SH18 over-bridge will also be reconfigured to provide for a cycleway, and additional tie in works to the north of the over-bridge within the existing road reserve.

Assessment of Stormwater Effects

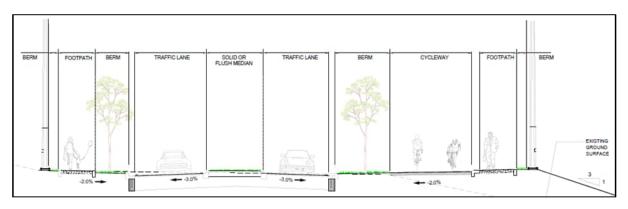


Figure 2: Whenuapai – Trig Road Corridor Upgrade

2.3 Project Features

2.3.1 Cross-Section

The indicative existing Trig Road corridor consists of a \pm 7m wide two-lane road and 1.5m footpath along the majority of the western side of the road length. While the final layout of the upgraded corridor will be confirmed as part of detailed design, a typical 24m wide cross-section has been developed for the corridor. Refer to Figure 3.

2.3.2 Stormwater Infrastructure

The upgrades to Trig Road will induce necessary upgrades to the existing stormwater infrastructure, allowing for upgrades to accommodate future urban development, and new stormwater management devices. In summary, the specific stormwater infrastructure elements associated with the upgrade of Trig Road will include the following:

- Replacement and upgrading of three existing stormwater culverts under Trig Road, including energy dissipating outfalls
- Construction of new primary stormwater network within the new Trig Road corridor, as well as for portions of Hobsonville Road to be widened
- Installation of new stormwater treatment devices
- Construction of a new dry attenuation pond with energy dissipating outfall to Trig Stream (wetland)

These elements will be discussed in further detail in chapters to follow and are shown in Appendix 2 Stormwater Drawings.

2.4 Indicative Construction Methodology

An indicative construction methodology has been prepared to inform the assessment of the Project and, while subject to change, assists in determining the envelope of effects. An overview of the construction methodology is set out in the AEE. The final construction methodology for the Project will be confirmed during the detailed design phase and finalised once a contractor has been engaged for the work.

A summary of the key components of the indicative construction methodology relevant for this report is outlined in the sub-sections below.

2.4.1 General Construction Overview

The total construction phase of the Project is expected to take approximately 18 to 24 months. It is anticipated that the works will be broken down into separate construction zones based on the type of works required and the nature of the work environment. These anticipated zones are:

- Zone 1: Trig Road North of the SH18 bridge
- Zone 2: Trig Road South including the SH18 bridge
- **Zone 3:** Hobsonville Road.

2.4.1.1 Construction Methodology

Each zone has different construction activities depending on the type of work to be done and the surrounding environment. In all cases the general sequence of construction is likely to be:

- 1. Divert or remove services
- 2. Construct permanent stormwater drainage crossings and environmental controls
- 3. Move traffic away from works longitudinally
- 4. Construct earthworks and retaining structures

- 5. Construct new longitudinal drainage
- 6. Construct new pavement to half of the road
- 7. Move traffic onto newly constructed pavement
- 8. Complete longitudinal drainage
- 9. Complete pavement and median
- 10. Move traffic to new alignment
- 11. Complete footpath and cycleway

3 Assessment Criteria

3.1 Statutory Context

3.1.1 Notice of Requirement

This assessment has been prepared to support the NoR process for the Project. Section 171 of the RMA sets out the matters that must be considered by a territorial authority in making a recommendation on a NoR. This includes consideration of the actual or potential effects (including positive effects) on the environment of allowing the requirement.

3.1.2 Regional Resource Consent Application

AT are also seeking regional resource consents under the AUP: OP and resource consent under the National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health and National Environmental Standard for Freshwater. The required consents are set out in Section 3.5 of the AEE.

Overall, the application is a Discretionary Activity, therefore in accordance with section 104B of the RMA, Council is not restricted in its discretion when assessing the actual or potential effects associated with the Project.

Notwithstanding Council's unrestricted discretion, the relevant matters of discretion, matters of control, and assessment criteria have been used as a guideline to direct the assessment of effects associated with each trigger for consent.

3.2 Relevant Standards and Guidelines

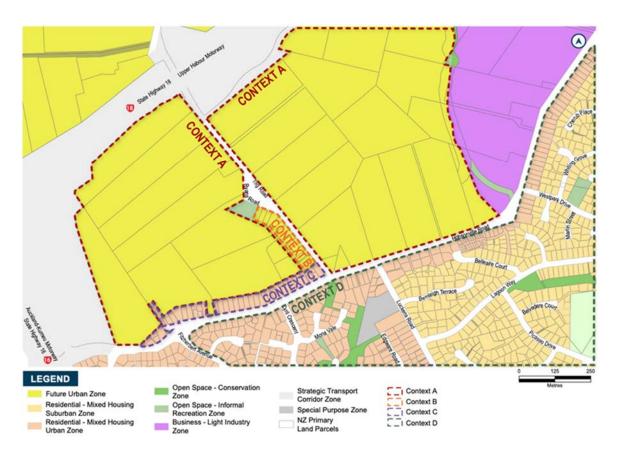
The following standard documents, guidelines and codes of practice were utilised in the stormwater design development process for the Project:

- AUP: OP Particularly with regard to:
 - Chapter E1: Water Quality and Integrated Management
 - Chapter E3: Lakes, Rivers, Streams and Wetlands
 - Chapter E8: Stormwater Discharge and Diversion
 - Chapter E9: Stormwater Quality High Contaminant Generating Car Parks and High Use Roads
 - Chapter E10: Stormwater Management Area Flow 1 and Flow 2 (SMAF 1 and SMAF 2)
 - Chapter E26: Infrastructure
 - Chapter E36: Natural Hazards and Flooding
- Auckland Council Stormwater Bylaw 2015
- Auckland Stormwater Network Discharge Consent
- Region-Wide Network Discharge Consent and Associated Catchment Plans
- Auckland Council Code of Practice (CoP) for Land Development and Subdivision, Chapter 1-General Requirement and Procedures
- Auckland Council CoP for Land Development and Subdivision, Chapter 4 Stormwater

- Auckland Council CoP for Land Development and Subdivision, Chapter 7 Green Infrastructure
- AT CoP for Land Development and Subdivision, Chapter 3 Transportation
- Transport Design Manual (**TDM**): Road Drainage and Surface Water Control
- Austroads: Guide to Road Design Part 5A: Drainage Road Surface, Networks, Basins and Subsurface
- Technical Publication No. 108: Guidelines for Stormwater Runoff Modelling in the Auckland Region
- Stormwater Management Devices in the Auckland Region Guideline Document 2017/001 (GD01)

4 Receiving Environment

4.1 Approach to Receiving Environment


A key objective of the Supporting Growth Programme is to protect land now to ensure that the transport networks required to support growth areas in the future, around Auckland, can be provided in an efficient and co-ordinated manner. This Project supports the development of housing in the immediate vicinity of Trig Road and has funding to be constructed in the near future.

In the context of an RMA assessment process, considering the environment as it exists today will not be a true reflection of the real-world environment in which the transport corridor will operate. Accordingly, when considering the environment within which the effects of the construction and operation of the transport corridor are likely to occur, this assessment considers both the existing environment and the likely future environment for the Project area.

Within the Project area there are a range of zones under the AUP: OP which influence the existing and likely future land use patterns for assessment purposes. The Whenuapai Structure Plan signals that the Future Urban zoned land adjacent to Trig Road is likely to contain new medium density and higher density housing. A large suburban park (between 3-5 hectares in size) is proposed on the Western side of Trig Road. Table 1 below provides a summary of the existing and likely future environment as it relates to the Project area.

Project area	Environment today	Current Zoning	Likelihood of Change	Likely Future Environment
Context A	Rural	Future Urban	High	Urban
Context B	Urban – Low Density	Future Urban	High	Urban
Context C	Urban – Medium Density	Urban	Moderate	Urban
Context D	Urban	Urban	Moderate	Urban

Table 1: Existing and Future Environment Likelihood of Change

Figure 4: Existing / Future Zoning Scenarios

4.2 Existing Stormwater Management

The stormwater design for Trig Rd aimed at achieving the Healthy Waters Regionwide Network Discharge Consent (NDC) requirements for quality (treatment) and quantity (attenuation). Treatment and attenuation have been allowed for the full proposed road carriageway to meet the NDC requirements.

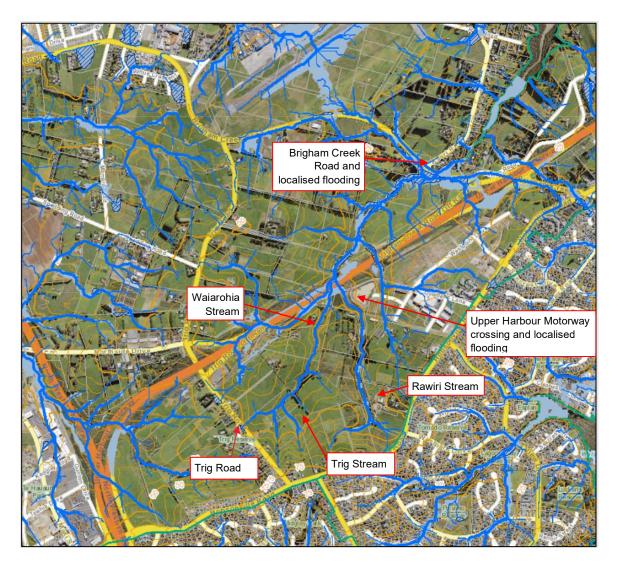
This section of the report will identify the existing stormwater environment of Trig Road and surrounds and identify:

- existing catchment receiving environments;
- existing stormwater management issues; and
- existing stormwater infrastructure.

4.2.1 Existing Ground Conditions

Soil classifications obtained from the New Zealand Geology Maps indicated two main soil groups in the Trig Road area. The two main soil groups are as follows (GNS Science, 2018):

- East Coast Bays Formation (Waitemata Group) forming in the steeper slopes. This group consists of a variation of interbedded, graded sandstone and siltstone, or mudstone and sandstone, as well as local intercalated volcanic grit.
- Puketoka Formation forming in the gentle slopes and low-lying areas. Undifferentiated alluvium can be found in gullies and within flood plains around streams.


These soils comprise of areas of both low permeability as well as pockets with high soakage potential.

4.2.2 Topography, Catchments, Drainage and Receiving Environments

The Whenuapai catchment topography has been identified as a predominately low-lying catchment, with mostly flat to rolling landscapes, with localised areas of steeper terrain mainly to the south. Figures 5 and 6 below indicate the contours, typical topographical flow paths and major receiving waterbodies for the Project area and its surrounding catchment areas with Trig Road highlighted in Figure 5 below.

Figure 5: Whenuapai Catchment Boundary

Figure 6: Trig Road surrounding overland flow paths, flood plains and receiving waterbodies

As depicted from the contours, the existing Trig Road alignment is predominately located on a ridge line with the surrounding catchment areas falling away from the road. Trig Road comprises of a steep fall from south-east to north west just off Hobsonville intersection (±8%) for ±300m, with the remaining road length towards the SH18 comprises flatter grades and localised low points.

The catchment area west of Trig Road has a general fall to the west, with two main sub-catchments draining into/forming into a head branch of Totara Creek, which subsequently drains to Brigham Creek.

The catchment area east of Trig Road (and those which form in smaller sub-catchments of localised low points along Trig Road) has a general fall to the east, with three main sub-catchments draining into/forming into head branches of predominately Trig Stream and Rawiri Stream, followed by Waiarohia Stream, all of which subsequently drain towards the Waiarohia Inlet.

Both Brigham Creek and Waiarohia Inlet discharge to the headwaters of the Waitemata Harbour.

A geotechnical study was carried out within the Project area and identified a highwater table and groundwater seepage at the south eastern branch head of Trig Stream (wetland), adjacent to Trig Road, with water encountered at ±800mm below ground level.

4.2.3 Stormwater Quality

The following summary of stream quality for the existing Waiarohia Catchment as shown in Table 2 below.

Table 2: Catchment Stream Quality

Stream Name	Condition	Water Quality	Biological Quality (Stream Ecological Valuation)	Native Fish
Waiarohia Stream	Modified with fine sediment loading Poor quality habitat	Low dissolved oxygen Elevated heavy metals	SEV Moderate	Observed
Trig Stream (wetland)	Slow flowing intermittent in places	Poor	SEV Moderate	No information

Detailed information on stream quality, health and ecological value can be found in the Assessment of Ecological Effects.

4.2.4 Existing Infrastructure

Trig Road drainage (as identified on Auckland Council GEOMAPS data) currently consists of minimal underground stormwater infrastructure, with drainage accommodation requirements limited to the road corridor runoff, localised low-lying catchment along the alignment and drainage from residential properties at the south-eastern end of Trig Road. Surrounding catchment areas currently drain away from the road corridor towards the streams identified above.

Stormwater runoff is collected by open channel drains parallel to Trig Road, diverted through culverts under Trig Road and subsequently discharged into Trig Stream (wetland) and Waiarohia Stream. A portion of underground stormwater network on the southernmost end of Trig Road (closest to Hobsonville Road intersection) discharges into the south eastern branch head of Trig Stream (wetland), where a high watertable has been identified.

Stormwater from the portions of Hobsonville Road included in the Project currently drains to the south via separate Ø225mm underground systems with eventual discharge into Waipateira Stream and Manutewha Stream. Figure 7 shows the existing stormwater layout.

4.2.5 Flooding Hazards and Existing Issues

Figure 7 below (as identified on Auckland Council GEOMAPS data) shows the predicted 1% AEP flood plain and flood prone areas. As depicted in Figure 7 there is generally a low risk for flooding within Trig Road and the surrounding catchments, with no significant identifiable hazard for future development within the surrounding areas.

AC flood prone areas are GIS created areas that allow for the low spot or depression area outlet to be blocked with the upstream flood prone area defined by the overtopping crest level of the surrounding ground.

Notably, there are two flood prone areas at the localised low points along Trig Road which are currently serviced to cater for the drainage requirements of the current land use. The existing drainage crossings will be upgraded as part of the Project, to better cater for these low-lying areas and mitigate any extended negative effects of flooding these areas might have on future urban development as a result of the road widening. This will still not remove the flood prone status but reduce the risk of flooding.

4.2.6 Stormwater Summary

The streams and coastal waters are of poor quality, degraded and sensitive to changes in land use and the consequential change to stormwater flows as a result of urbanisation. As such, according to the AUP: OP, stormwater treatment requirements and SMAF 1 has been applied to the precinct, and consideration for this control has been taken during the design process.

In summary, the following considerations for planning and development within the catchment are required:

Design Approach:

An integrated stormwater management/water sensitive design approach is essential for enabling the development of higher density greenfield sites. The integrated design approach is led by policies E1.3(8) - (10) of the AUP: OP. The integrated design should aim to mitigate or reduce the adverse effects (particularly in regard to increased flows and changes in water quality) of greenfield development on the receiving environment and where possible use the opportunity to enhance existing/degraded receiving environments.

Flood Hazards:

The approach for future development should be to ensure no new flood risks are created, and where possible use the opportunity to reduce the risk of existing flood prone areas through upgraded infrastructure and stormwater diversion.

Two dwellings at risk of flooding around Brigham Creek Road, along with a pump station within the flood plain were identified in previous studies and Geomaps. The stream passes through culverts under SH18 and then crosses Brigham Creek Road where the culverts are insufficient to pass the 100year event. Discussions with Healthy Waters have not yet confirmed whether or not 100year flow attenuation is required. At this stage, 100year attenuation is allowed for within the proposed dry pond to the east of Trig Road.

Stormwater Management Devices:

Various structural devices (i.e. provision of treatment, retention and detention devices, as well as outfalls or erosion mitigation measures) and non-structural management methods (i.e. stream protection/enhancement, retention/infiltration, application of SMAF principles etc.) can be used for an integrated/water sensitive design approach. A combination of the two should be considered for maximum efficiency, protection of the receiving environment and to allow for enhancement of current systems.

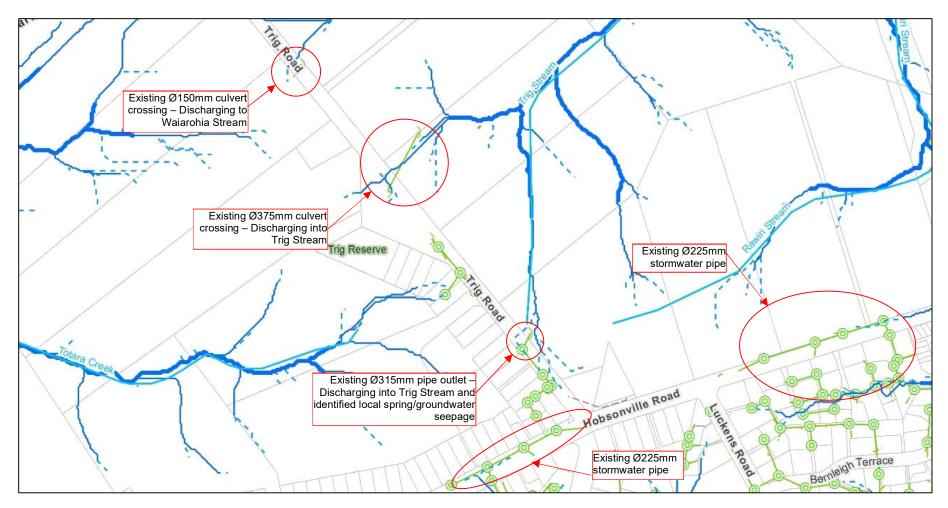


Figure 7: Existing Trig Road Corridor/Hobsonville Road Stormwater Infrastructure (AC – Geomaps 2022)

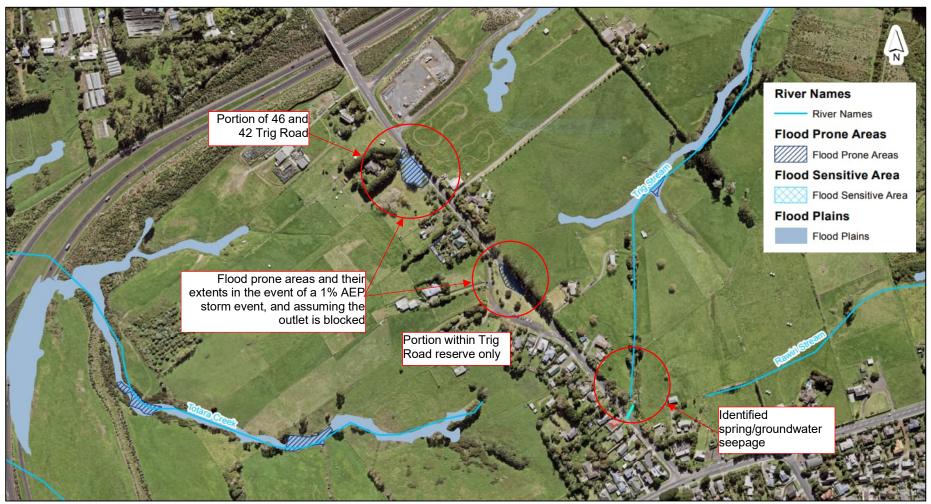


Figure 8: Existing flood plain and flood prone areas along Trig Road (AC – Geomaps 2022)

5 Methodology and Analysis

Chapter Summary

This chapter provides a description of the methodology/approach used in the assessment of the stormwater effects associated with the Project, the details of the design criteria/philosophy followed and the relevant statutory requirements, and the stormwater management methods evaluated under the regulatory guidelines.

In summary the methodology includes evaluation of existing standards and regulatory documents of the AUP: OP pertaining to stormwater and future development, assessment of existing conditions within the Project area, changes to arise through development in terms of impervious area change, subsequent increased runoff rates and water quality changes, followed by selection and design of methods and devices to mitigate the potential identified adverse effects thereof on the environment.

5.1 Assessment Methodology

The methodology used to assess the Project stormwater effects on the receiving environment can be summarised into the following key elements:

- a. Evaluation of existing stormwater receiving environments
- b. Evaluation of existing catchments and existing stormwater infrastructure
- c. Calculation of existing runoff and changes to runoff due to redevelopment of the road corridor
- d. Evaluation of water quality due to redevelopment
- e. Selection and design of attenuation to mitigate increased discharge effects on the receiving environment
- f. Selection of treatment devices to mitigate increase in contaminants entering the receiving environment
- g. Design of appropriate primary stormwater system to convey runoff from redevelopment of road corridor
- h. Identification of erosion and sediment control issues and determining the approach for mitigating the potential adverse effect thereof
- i. Summarising the potential adverse effects to the receiving environment and the proposed mitigation methods of each.

Through the above methodology the stormwater effects of the corridor redevelopment are determined, and appropriate mitigation of these effects are recommended.

5.1.1 Design Software

HEC-HMS Version 4.9 was used for the hydrological modelling for sizing the proposed dry pond in accordance with Auckland Council's Technical Publication 108 (TP108): Guidelines for Stormwater Runoff Modelling in the Auckland and AC's Stormwater Design CoP.

5.2 Design Criteria

The design criteria below were used for the stormwater runoff modelling and management device design, with the objective of satisfying the controlled, restricted discretionary and discretionary standards for resource consent.

Diversion and Discharge:

- A Water Sensitive Design approach has been adopted and application of SMAF 1 requirements.
- Post-development design flows for sub-catchments upstream of culvert crossings have been modelled to accommodate for the Maximum Probable Development (**MPD**) for the zones being urban.
- Peak flow control for specific works is achieved with the utilisation of an on-site detention pond, to enable mitigation of adverse effects on streams and major overland flows during discharge.
- The primary stormwater system collecting runoff from Trig Road has been designed to cater for the 10% AEP rainfall event, and from bridges the 20% AEP rainfall event.
- The secondary stormwater system has been designed to cater for the 1% AEP. The primary system has been used to convey the 1% AEP rainfall event where 1% AEP is diverted away from the road low point towards the dry pond for attenuation.
- TDM: Road Drainage and Surface Water Control was utilised as a guide to risk assessment for a system blockage of 50%.
- Energy dissipation/erosion control measures have been incorporated at pipe outfalls to mitigate scouring and erosion of receiving streams.
- Climate change of 2.1° temperature increase has been accommodated in all calculations.
- Stormwater devices incorporate a flow bypass to prevent overloading during larger storm events, whilst allowing for continued operation and maintenance.
- All stormwater infrastructure has been designed according to the standard requirements as per Auckland Council CoP, AT CoP, TDM: Road Drainage and Surface Water Control, and Austroads: Guide to Road Design Part 5A: Drainage.

Stormwater Quality:

- Stormwater treatment has been incorporated into the stormwater system at the source to cater for the increased runoff contaminants, mitigating the adverse effects to the receiving environment.
- GD01 has been used as the priority for the design and selection of stormwater devices for Trig Road. It provides guides to stormwater choice and design specific to the requirements of the AUP: OP.

Flooding Hazards:

With reference to the General Standards (E8.6.1) for compliance of stormwater diversion and discharge as highlighted in E8 of the AUP:OP (Stormwater – Discharge and Diversion), as well as that Trig Road is in the uppermost reaches of a mainly greenfield receiving environment, and the current zoning plan indicates higher density housing developments proposed for areas surrounding the receiving Trig Stream (wetland) and its associated flood plain, the following criteria have been accounted for in the design and assessment:

- No new/additional habitable floor areas are affected by flooding in the 1% AEP storm event
- No adverse effects on operation and structural integrity of infrastructure in the 1% AEP storm event
- No increase in inundation affecting upstream or downstream properties in the 1% AEP storm event

5.3 Stormwater Management Methods/Infrastructure

Stormwater management device selection and sizing was evaluated in terms of the guidelines laid out in Auckland Council Guidance Document 01 (GD01). A Water Sensitive Design approach has been applied as well as the SMAF 1 requirements. While the Project area is not shown in the AUP: OP as being subject to the SMAF 1 overlay SMAF 1 was adopted for the purposes of this assessment.

Device selection was based on the evaluation of the suggested considerations and devices within GD01 and the characteristic and constraints related to Trig Road.

For higher mitigation within greenfield developments as applicable to the Project area, GD01 suggests the following aspects to be considered (in the order of preference):

- Retention (infiltration) and detention
- Retention (water reuse) and detention
- Detention only

The GD01 suggested devices for retention and detention to satisfy SMAF 1 requirements (with the aim of protection of streams and recharge ground water) are as follows:

- Rainwater tanks (with reuse)
- Bioretention devices (unlined)
- Living roofs
- Pervious paving (unlined)
- Infiltration devices
- Wetlands
- Ponds (dry and wet)

Evaluation of the suggested retention devices against the nature of the Project:

- Rainwater tanks (with reuse) will be uneconomical and are not considered an effective stormwater management tool for the Project.
- Living roofs are not relevant for transport projects.
- Pervious pavement will not comply with the pavement and structural requirements of the Project as it is not suitable for traffic areas of high acceleration, decelerating or turning.
- Swales are not suitable due to the steep road grades, and lack of space due to adjacent residential driveways and future local roads expected off Trig Road.
- Due to potential low permeability of soils around Trig Road as mentioned in section 4.2.1, as well as the large fill embankments expected along the redeveloped corridor, sufficient infiltration rates through unlined devices may not be achievable and could, conceptually, pose stability risks along the embankments due to lateral seepage. The suitability of bioretention devices for achieving SMAF 1 retention requirements will be subject to further geotechnical study at detailed design stage, once these risks have been assessed.
- Permanent waterbodies pose the risk of bird strike within the airspace for Whenuapai Airbase, and as such, stormwater management devices (attenuation ponds) should be designed to optimise full drain down (i.e. dry for the majority of the time). In order to satisfy this requirement an unplanted dry pond has been selected as the most appropriate postdevelopment runoff attenuation method to mitigate the adverse effects on the additional peak

flows on the receiving streams. A dry pond however does not meet the retention or water quality treatment requirements of the AUP: OP and will therefore need to be supplemented with additional stormwater treatment.

- Raingardens for water treatment will be suitable for the majority of Trig Road with appropriate utilisable space and depth available within the proposed berm area on both sides of Trig Road (for varying portions) and within the undeveloped road reserve area west of the carriageway. No berm space is available within the Hobsonville Road portion of the development (east or west), as such, space outside the proposed corridor is considered for treatment devices, as well as redirecting of stormwater into Trig Road for treatment. Limitations and design considerations to accommodate for specific catchment conditions will be detailed in section 6 below. SMAF 1 retention could be incorporated into the raingardens but the suitability thereof would be subject to further geotechnical investigation as described above.
- The use of proprietary devices for treatment/detention/retention is a less economical approach for the Project, with likely increased maintenance costs and frequency, and is therefore not considered.

Selected stormwater management methods based on the above evaluation:

- Dry pond for attenuation for flood mitigation.
- Detention for SMAF 1 will be incorporated into the dry pond attenuation volume.
- Due to suitability of retention through infiltration being subject to further geotechnical investigation at detailed design stage, the 5mm runoff depth will be incorporated into the detention volume for the purpose of this assessment.
- Raingardens for water treatment.

Chapter Summary

This chapter details the physical changes to stormwater generation over the site as a result of redevelopment of Trig Road as well as the MPD expected to occur as a result of future zoning. Expected post-development impervious areas are calculated, compared with the existing conditions, and used to compute changes to the water quality flows and runoff conditions, and the level of effects on existing stormwater infrastructure and the receiving environment.

In summary of the assessment, flood modelling of upstream catchments for existing and future MPD land use indicate insufficient capacity in the existing crossings and subsequently redevelopment and upgrading of these pipe crossings will enhance current drainage as well as catering for future drainage. The extent of works and changes to the Trig Road and Hobsonville Road cross section result in a combined increase in impervious area of 45.5% and impervious area equating to >50% of the total site which dictates the method for runoff volume calculations as per the GD01.

6.1 Design Parameters

The Whenuapai rainfall depths utilised in the stormwater runoff modelling and stormwater infrastructure design were referenced from the Auckland Council Technical Publication 108: Guidelines for Stormwater Runoff Modelling in the Auckland Region (**TP108**).

As per the Auckland Council Stormwater CoP (2015), climate change is expected to alter the frequency and intensity of significant rainfall events, and as such rainfall depth are adjusted accordingly to cater for a 2.1° future temperature increase. Table 3 below depicts the selected rainfall depths and the applied climate factors:

ARI (years)	AEP (%)	TP108 24hr Rainfall Depth (mm)	Climate Change Increase (%)	Adjusted 24hr Rainfall Depth (mm)
10year	10%	135	13.2%	153
50year	2%	180	16.8%	210
100year	1%	200	16.8%	234

Table 3: 24hour rainfall depths and the applied climate change factors

Runoff volumes were calculated based on the adjusted 24hr rainfall depths in accordance with Auckland Council Technical Publication 108: Guidelines for Stormwater Runoff Modelling in the Auckland Region (**TP108**).

6.2 Changes to Catchment Runoff

6.2.1 Surrounding Catchments

A flood modelling study was completed as part of this Project for the surrounding catchments adjacent to Trig Road. The assessment evaluated existing development flows and the post-development flows considering the MPD including climate changes. Table 4 below indicates the maximum impervious areas utilised for the post-development runoff, with reference to the possible future zoning (signalled in the Whenuapai Structure Plan) around Trig Road, as discussed in section 4.1.

Development Type/Zone	Maximum Impervious Area (as a % of site)
Residential – Terrace Housing and Apartment Building Zone	70
Residential – Mixed Housing Urban Zone	60
Open Space – Informal Recreation Zone	10

Table 4: Maximum Impervious Area for Trig Road surrounding catchments

As discussed in section 4.2.4 and shown in Figure 7, there are two existing culverts crossings and one pipe outlet which was used in the assessment for the 1% AEP (100 Year ARI) rainfall event. The culverts convey runoff from upstream catchments, under Trig Road, and discharge into the overland flow paths east of Trig Road. The pipe outlet discharges the stormwater conveyed in the existing underground pipe network. The upstream catchments areas are indicated in Figure 9 (pre-development) and Figure 10 (post-development) below. The flood modelling results for the existing development indicated that the existing culverts are of insufficient size to cater for even pre-development flows, which is a probable cause for the flooding potential as highlighted in Figure 8. Using high level LIDAR information and invert levels derived from Auckland Council GEOMAPS, it was also determined that there is currently insufficient cover over the culverts.

The flood modelling for post-development (MPD impervious surfaces) concluded that there will be a minor increase in the 1% AEP flow rates, and appropriately sized pipes have been designed to cater for these flows. It should be noted that the existing cross section of Trig Road is cambered with half the road draining to swales and catering to the pipe crossing flows, whereas the upgraded corridor will drain to a new primary system and flows will not form part of the pipe flows, thus the catchment areas have been slightly reduced.

Table 5 below indicates the pre and post-development flows for each pipe and the existing and proposed pipe sizes. Upgrading of these pipes during the upgrade of Trig Road will essentially reduce the risk of flooding the flood prone areas. Due to the existing steep grades, there are currently higher than desirable velocities at the outfalls. Appropriately designed energy dissipation with the use of riprap and baffles is proposed and will mitigate downstream erosion and scouring, which will be further discussed in Chapter 7.

Table 5: Culvert Size Upgrades

	Pre 1% AEP Flow Rate (m³/s)	Existing Pipe Size	Post 1% AEP Flow Rate (m³/s)	Existing Pipe Grade (%)	Proposed Pipe Size
Pipe 1	0.242	1 x Ø150mm	0.375	2.5	1 x Ø525mm
Pipe 2	0.433	1 x Ø375mm	0.691	7.65	1 x Ø600mm
Pipe 3	0.122	1 x Ø315mm	0.118	17	1 x Ø300mm



Figure 9: Pre-development catchments for culvert/pipe flows

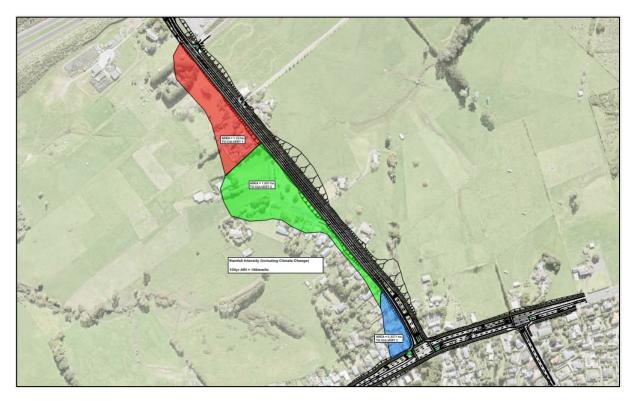


Figure 10: Post-development catchments for culvert/pipe flows

6.2.2 Road Corridor Catchments

The Project cross-section indicates an increase to the impervious areas within the corridor (applicable to Trig Road and the upgrades on Hobsonville Road). Through catchment delineation based on topographical information and the proposed vertical alignment of the roads, four major drainage catchments and their drainage low points were identified for calculation of post-development runoff and comparison to pre-development runoff.

Figure 11 shows the post-development catchments, and Table 6 below provides an overview of the catchment extents, catchment sizes and description of discharge location.

Catchment Description	Total Area (m ²)	Discharge Location
Catchment 1: Hobsonville Road (West)	1,764	Tie into existing underground stormwater network
<i>Catchment 2.A:</i> Hobsonville Road (East)	3,383	Piped stormwater runoff diverted into raingarden/detention pond for treatment and attenuation north of Hobsonville Road, prior to discharge into Rawiri Stream overland flow path
Catchment 2.B: Hobsonville Road (East)	2,013	Tie into existing underground stormwater network
<i>Catchment 3:</i> Portion of Hobsonville Road Trig Road (South)	15,596	Portion of Hobsonville Road's (west) piped stormwater runoff to be diverted into Trig Road underground stormwater network. Underground stormwater network to discharge into raingarden at low point west of Trig Road (unless treated within berm raingarden) and into Dry-Pond east of Trig Road for attenuation, prior to discharge into a tributary to Trig Stream
Catchment 4: Trig Road (North) (Minor works beyond SH18 bridge to be handled as discussed at the end of section 6.2)	8,489	Piped stormwater runoff, post treatment by raingardens within the berm, diverted to Catchment 3 low point for discharge into Dry-Pond for attenuation, prior to discharge into a tributary to Trig Stream

Table 6: Catchment Overview

Based on the intended scope of physical works depicted in the Project cross-section, changes to impervious area have been calculated based on the increased width of corridor, inclusion of footpaths, cycleways, medians and vehicle stacking lanes. Table 7 below provides an overview of the increase in impervious area for each catchment, used in the calculations for pre- and post-development runoff.

	Catchment	P	Pre-Developmer	nt	Р	ost-Developme	nt
	Area (m²)	Pervious (m²)	Impervious (m²)	% Impervious ness	Pervious (m²)	Impervious (m²)	% Impervious ness
Catchment 1: Hobson- ville Road (West)	1,764	756	1,008	57%	378	1,386	79%
Catchment (2.A):	3,385	2 200	2 105	58%	258	3,125	92%
(2.B):	2,010	2,290	3,105	30%	110	1,902	95%
Catchment 3: Trig Road (South)	15,596	8,436	7,160	40%	4,806	10,790	65%
Catchment 4: Trig Road (North)	8,490	5,070	3,420	40%	3,010	5,480	65%
Total	31,245	16,550	14,695	47%	8,564	22,680	73%

Table 7: Changes to Impervious Area

The total redeveloped site area equates to 31,245m², with the percent of imperviousness increase from 47% in pre-development condition to 73% in post-development condition. The 22,680m² post-development impervious area equates to >50% of the total catchment area and dictates the method for runoff volume calculations as per the GD01.

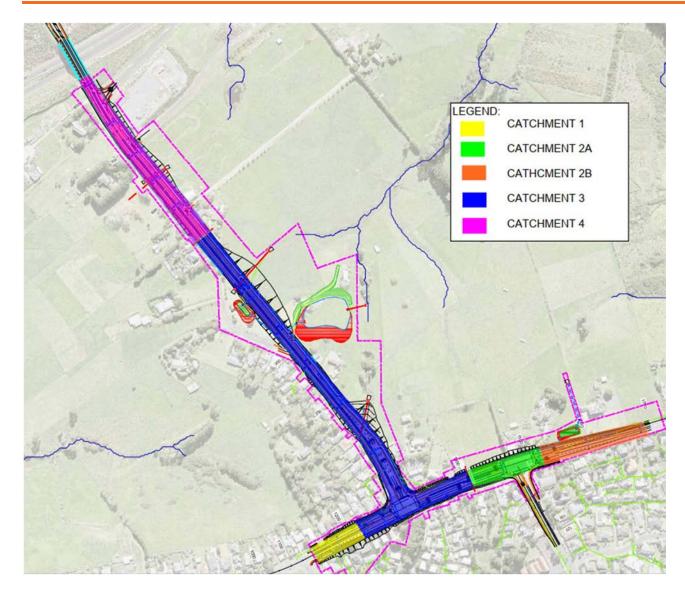


Figure 11: Post-development catchment plan

Pre and post-development runoff has been calculated based on the above pervious and impervious areas, as well as based on proposed discharge locations and areas where flows have been diverted to join other catchments. Volumes are calculated in accordance with TP108. Table 8 provides an overview of the pre- and post-development peak flow rates and runoff volumes for the 1% and 10% AEP storms, 95th percentile storm for stream protection, and water quality volumes for each catchment.

Based on the identified soil description in section 4.2.1 and the TP108 Hydrological Soil Classification, a Group C SCS Soil Group was selected for pre-development runoff modelling purposes. Whenuapai is located in a pasture area with good grass cover, and thus the curve number selected for typical Auckland conditions is 74 (Table 3.3-TP108).

	Pre-Dev	elopment	Post-Dev	velopment	Post less Pre	-Development
	Peak Flow Rate (m³/s)	Runoff Volume (m³)	Peak Flow Rate (m³/s)	Runoff Volume (m³)	Peak Flow Rate (m³/s)	Runoff Volume (m³)
		Catchmen	it 2A (Hobsonvi	lle Road east)		
WQV	0.008	45	0.011	65	0.003	20
SP (95th)	0.012	70	0.016	97	0.004	27
10% AEP	0.071	417	0.079	483	0.008	66
2% AEP	0.101	601	0.110	678	0.009	77
1% AEP	0.114	677	0.123	752	0.009	75
		Catch	ment 3 (Trig Ro	ad South)		
WQV	0.03	178	0.04	239	0.01	61
SP (95 th)	0.047	280	0.061	363	0.014	83
10% AEP	0.311	1824	0.339	2025	0.028	201
2% AEP	0.453	2658	0.481	2901	0.028	243
1% AEP	0.512	3004	0.539	3236	0.027	232
		Catch	ment 4 (Trig Ro	ad North)		
WQV	0.015	89	0.021	124	0.006	35
SP (95 th)	0.024	141	0.032	188	0.008	47
10% AEP	0.166	966	0.181	1080	0.015	114
2% AEP	0.243	1418	0.258	1554	0.015	136
1% AEP	0.275	1605	0.290	1735	0.015	130

Table 8: Pre and Post Development Runoff Data

Catchments 1 and 2B (which is tying into existing stormwater systems to the south of Hobsonville Road) have been excluded from Table 8 as the resultant post-development impervious and pervious catchment areas draining into the existing system are significantly less than the predevelopment areas.

As indicated on Preliminary Layout 1 of the attached stormwater drawings in Appendix 2, minor works and amendments to Trig Road continue along SH18 bridge and approximately 210m north of the bridge. These changes include realignment of lanes and road markings within the area of the existing bridge resulting in no change to existing impervious area. The works also involves reconfiguring an existing footpath to incorporate an adjacent cycle path on the western road edge, and an additional stretch of cycle/foot path adjacent the eastern road edge.

The existing road alignment, lanes and kerb and channel configuration will remain predominantly the same, with the addition of ±430m² of impervious area change as a result of the addition of cycle paths. Cycle/foot paths are not considered a high contaminant generating activity and therefore do not contribute adversely to runoff quality nor require treatment.

Runoff from SH18 bridge and the ±210m length of corridor north of the bridge beyond does not contribute towards catchment 4 as above, and the existing drainage (contained within kerbs, discharge into roadside swales) can remain unchanged. Additional runoff volumes generated by the impervious cycle/foot paths are minor and can be discharged into the road and existing system without adverse effects.

6.3 Runoff Quality

As per E9 of the AUP: OP: Stormwater Quality – High Contaminant Generating Activity, stormwater runoff from Trig Road is required to be treated by stormwater management devices, in accordance with GD01 or similarly approved methods.

The Water Quality Volume is typically designed as a function of the "first flush", with the concept that the initial runoff from a surface during a flood event will contain the highest level of contaminant when compared to later periods of the storm. This provides the most practical and cost-effective approach for treatment, focusing on treatment device design for the high-level contaminants flows, as opposed to treating the entire storm event volume of diluted/low contaminants. As per GD01 the following parameters are utilised as a function of the Water Quality Volume/Flow calculations:

Water Quality Volume (WQV):	90th Percentile of the 24-hour storm event (±25mm)
Water Quality Flow:	10mm/hr
Water Quality Management:	Design performance based
Water Quality Target Areas:	High Contaminant Generating Car Parks and Roads

The rational method was used in the determination of the peak discharge for a 10mm/hr constant rainfall intensity (equivalent to \pm 90% of the annual rainfall), and for sizing of the water quality device. Table 9 below indicates the calculated water quality flow per catchment for contaminant treatment and device selection.

	Catchment 2A	Catchment 3	Catchment 4
High use road area only	2160m ²	6720m²	2400m²
WQV	45	139	50
Water Quality Flow (m³/s)	0.0057	0.0165	0.0063

Table 9: Water Quality Characteristics per Catchment

7 Mitigation

Chapter Summary

This chapter provides solutions to mitigating the potential effects induced by the changes to the stormwater conditions, such as stormwater attenuation for peak flow control prior to discharging into the receiving Trig Stream (wetland), stormwater treatment to mitigate the effects of increased contaminants entering the receiving environment and primary stormwater system pipe requirements for conveyance of the new stormwater flows.

In summary of solutions, a dry pond was selected in order to satisfy the design constraints relating to potential bird strike at the nearby Whenuapai Airbase and peak flow control, catering for detention up to 1% AEP rainfall and subsequently mitigating downstream flood potential. Raingardens were selected as an effective means for stormwater treatment within the Project area considering road geometry, available space within the corridor and a water sensitive design approach. Stormwater runoff will be contained within the road reserve, collected in standard catchpits or dropped kerb inlets into raingardens, before being conveyed within an underground pipe system for discharge into the dry pond. There is allowance for overland escape during larger storms at low points along Trig Road.

7.1 Attenuation

Two buildings within the catchment have been identified in previous studies as being susceptible to habitable floor flooding during a 1% AEP rainfall event, located in the vicinity of Brigham Creek Road near Waiarohia Stream into which Trig Stream (wetland) feeds. It also highlights the reduction of stormwater runoff from increased impervious areas, by retention and detention as essential to minimising further erosion to the Waiarohia Stream and its tributaries.

To mitigate the contribution to additional downstream flooding of properties at Brigham Creek Road, as well as for protection of the existing Waiarohia stream, stormwater runoff from the redeveloped Trig Road up to the 1% AEP rainfall event will be attenuated. Due to the infiltration constraints described in section 5.3 and only water quality treatment being provided for in the raingardens, retention and detention of the 95th percentile storm (for stream protection) will be incorporated into the dry pond for attenuation.

As mentioned previously, in accordance with the stormwater pond design restrictions relate to potential bird strike at the Whenuapai airfield. Consequently, a dry pond has been selected for attenuation of additional post-development peak flows and meeting the water sensitive design requirements. The minimum design requirements for the dry pond reduces the attractiveness of the area to birds thus mitigating against the risk of bird strike. The minimum design requirements are as follows:

- fully drain down within 48 hours of a 2% AEP storm event; and
- have side slopes at least as steep as 4 vertical to 1 horizontal (4:1) except for:
 - any side slope treated with rock armouring; or
 - any area required for vehicle access, provided that such vehicle access has a gradient of at least 1 vertical to 8 horizontal (1:8)

To satisfy the requirements to minimise bird roosting and mitigate bird strike risk, the pond has been sized to meet the full drawdown requirements. The pond base will also be shaped and graded to fall from the inlet through to intake manhole outlet. This will facilitate in concentrating frequent storm low

flows towards the outlet, preventing runoff spread and subsequent frequent wetting of the full pond base which is likely to encourage unwanted plant growth.

The pond has been designed with 1V:5H internal side slopes for maintenance purposes and to allow for mowing of grass. The steep 4V:1H slopes suggested are not practical for the Project environment and would require retaining walls/reinforced earth in order to construct, presenting a considerable cost increase over the engineered earthworks embankment of a 1V:5H slope. With the overall objective of the specific design requirements aiming to minimise bird roosting, the adopted design achieves this through easily maintainable, unplanted grass slopes and the concentrating of frequent storm low flows to ensure a drier pond base to minimise natural plant growth and bird attraction.

The dry pond was designed using HEC-HMS Version 4.9. Please refer to Appendix 3 for details of HEC-HMS model. The HEC-HMS model may be refined at detailed design stage.

The storage volume includes catchments 3 and 4 into the sizing, catering for a total peak storage volume for the post development less pre-development 1% AEP rainfall event, with a discharge allowance at the outfall to match pre-development peak flows into the existing Trig Stream (wetland) overland flow path. The treated water quality flows from all the raingardens in catchment 4 will be discharged into the overland flow path at the low point of catchment 4, and thus only overflows from the raingardens will be directed to the dry pond. Only catchment 3's existing pre-development peak flow was used as the discharge requirement from the dry pond given that catchment 4's overflow runoff from the raingardens will be redirected from its original overland flow path towards the dry pond for attenuation. That is, flows from both catchment 3 and 4 will be directed to the dry pond with the allowable peak outflow rate set at the catchment 3 pre-development peak outflow rate. Table 10 below provides summary of dry pond design, including the pond post-development peak inflow volumes, allowable peak discharge rates, post-development peak discharge rates, inflow volume and peak storage volumes for the 95th Percentile, 10%, 2% and 1% AEP design rainfall events.

	95 th Percentile (SP)	10% AEP	2% AEP	1% AEP	Remarks
Post-Development Peak Inflow (m³/s)	0.092	0.52	0.74	0.83	
Allowable Peak Discharge (m³/s)	0.047	0.31	0.453	0.51	See Note 1
Post-Development Peak Discharge (m³/s)	0.013	0.16	0.26	0.29	See Note 2
Post-Development Inflow Volume (m³)	551	3105	4455	4971	
Post-Development Peak Storage (m³)	276	1259	1654	1807	
Pond Emptying Duration (Hr:min)	27hr:30min	38hr:10	40hr:10min	40hr:20min	See Note 3

Table 10: Dry pond design summary

Notes:

1. Allowable peak discharge rate is set at the catchment 3 pre-development peak outflow rate.

- 2. The post-development peak discharge rate is less than the allowable peak discharge rates.
- 3. Pond emptying duration is the duration to fully drain down the dry pond from the start of the storm event. The dry pond meets the design criteria that it can be fully drained down within 48 hours of a 2% AEP storm event. Please refer to Appendix 3 for more details on dry pond flow charts.

The dry pond has been designed using HEC-HMS model with following parameters and key design elements:

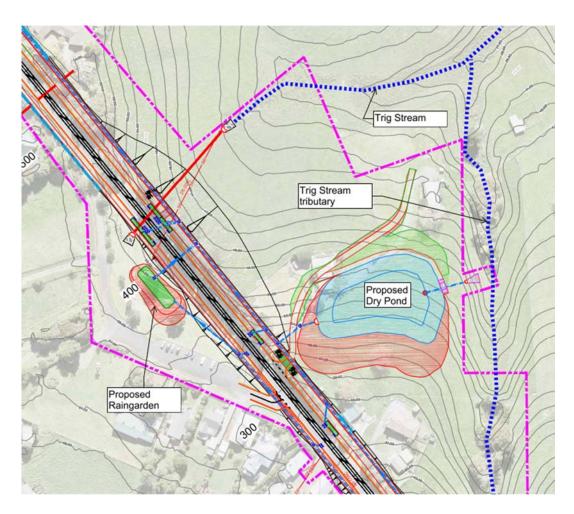
Dimensions:

•	Total catchment:	24,085m ³
•	Total peak storage volume for 1% AEP:	±1,807m ³
•	Total peak storage water depth:	0.91m
	Side slopes:	1V:5H
•	Total pond depth:	1.8m (including freeboard)
•	Selected freeboard:	300mm

Inlet Pipe into Dry Pond (from primary system):

- Post developed Flow (100year ARI): 0.83m³/s (100yr post-dev.)
- Selected slope: 0.5%
- 750mm Dia. RCRRJ. with an appropriate wingwall outfall structure complete with baffle blocks, safety grate and downstream riprap protection

Outlet Pipe from Dry Pond (Into Trig Stream (wetland)):


- Allowable discharge flow (100year ARI): 0.51m³/s (100yr pre-dev.)
- Selected slope:
- 600mm Dia. RCRRJ. with an appropriate wingwall outfall structure complete with baffle blocks, safety grate and downstream riprap protection

2%

The dry pond will include a scruffy dome type intake tower/manhole with throttled discharge from the dry pond to match outflows to the 95th percentile (SP), 10% AEP and 1% AEP pre-development flows discharging into a tributary of Trig Stream. The primary stormwater system (discussed in section 7.3) collecting catchment 3 and 4 road drainage has been designed for discharge into the dry pond.

The dry pond will be located at 7 Trig Road, which is approximately 90m south of the lowest point of Trig-Road, between chainage 280 to 340, to ensure total catchment drainage into the pond mitigating upstream flooding potential, as well as allowing for an overland flow bypass from Trig Road to the attenuation pond during storms greater than that which can be contained within the road reserve, minimising flood risk within the road and accompanying vehicle hazard and damage to infrastructure. The dry pond will be discharged into the tributary to Trig Stream, as indicated in Figure 12 below.

Due to lack of available capacity within the stormwater network south of Hobsonville Road, Catchment 2A will discharge north of Hobsonville Road into the Rawiri overland flow path. Attenuation prior to discharge will be allowed for with the storage volume catered for within the proposed raingarden area. This will be discussed in section 7.2 below.

Figure 12: Dry Pond location

7.2 Stormwater Treatment

From guidelines followed in GD01, raingardens were selected as the primary treatment device throughout the Project. Due to topographical, road vertical alignment and space limitations on site, various raingarden configurations were utilised to suit.

7.2.1 Design parameters

As per GD01, the following methodology was used in sizing the raingarden footprint for treatment:

- WQF of 10mm/hr was determined based on the high use road impervious area, as indicated in Table 9, section 6.3.
- Treatment footprint area was determined by the following equation:

$$A = \frac{WQF}{(0.5 \times K \text{ (media)})}$$

based on the WQF of 10mm/hr passing through a specialised filter media with a standard depth of 500mm and an infiltration rate of max. 1m/hr;

where A

- Area of bioretention media bed

WQF	- Water Quality Flow (m³/hr)
K _(media)	- Infiltration rate of bioretention media (m/hr)
Safety factor for clogging	- 0.5

• Calculated footprint area was compared with the minimum footprint of 2% of total impervious catchment suggested for raingardens to operate efficiently in terms of maintenance requirements, to ensure sufficient sizing.

Table 11 below indicates the calculated footprint for each catchment using the equation above against the minimum required footprint of 2% of total impervious catchment. For all catchments, the calculated footprint was below the recommended value, therefore the 2% sizing was utilised. If confirmed through geotechnical study that both retention and detention is suitable for incorporation into the raingardens, a minimum footprint of 5% of total impervious catchment would be expected as indicated in the table.

	Calculated Treatment Footprint	Min. 2% of Total Impervious Catchment (Treatment Only)	Min. 5% of Total Impervious Catchment (Treatment, Retention and Detention)
C (2A)	43m²	63m²	156m²
C (3)	138m²	216m ²	540m²
C (4)	59m²	110m²	274m²

Table 11: Raingarden Sizing per Catchment

7.2.2 Raingarden configurations

Catchments 2A, 3 and 4 will require treatment prior to discharging into the receiving environment. Each catchment presented various constraints/limitations for sizing and location selection for raingardens, as described in Table 12 below. Refer to the stormwater layouts in Appendix 2 for size and locations described in this section. Required footprint is derived from Table 11 above.

Table 12: Catchment Design Constraints

		Design constraints		Design solution	Raingarden sizing
C (2.A)	•	Corridor design width constraints resulted in either small berms or no available berm space either side of carriageway to cater for required raingarden footprint requirements Catchment area requires attenuation prior to discharge into receiving Rawiri stream overland flow path	•	One larger raingarden will be located northeast of the catchment and will allow for a deeper ponding depth to cater for attenuation prior to discharging into the overland flow path	Required footprint = 63m ² Design size to accommodate for treatment and 100 Year ARI attenuation (peak storage of 71m ³) = 248m ² Pond base 1:4 Internal slopes 1:3 External slopes 0.6m Deep
C (3)	•	More than 50% of Catchment 3's vertical	•	A series of stepped raingardens will be used along the steeper	Required footprint = 216 m ²

		alignment is >4% and up to 8%, which does not allow		grade of the south eastern road edge	Hobsonville Road portion (to larger raingarden) = 82m²
	•	for sufficient infiltration time across raingardens thus ineffective in providing treatment at grade Residential properties are located on the southwestern side of Trig Road with direct driveway access, therefore berm length along this side of road will be too short and impractical for raingardens. Stormwater will be piped and require treatment further downstream at depth Hobsonville Road has insufficient berm space for treatment requirements. Stormwater drains into Trig Road via an underground system and will require treatment further downstream at depth where pipe can daylight.	•	A larger raingarden will be located at the low point of catchment 3 in the available space west of Trig Road, and will cater for piped stormwater runoff from the portion of Hobsonville Road and from the southwestern side carriageway Raingardens can be utilised both sides of the carriageway for the northern side of catchment 3	 <i>Trig Road South portion = 134m</i>² Minimum raingarden area each side of road = 134/2 = 67m² Raingarden area per inlet (6 inlets per road side) 67/6 = 11m² Selected raingarden size in berm: 6m long x 2m wide = 12m² or 12m long x 1m wide = 12m² <u>Proposed raingarden footprint</u> Eastern road edge: (5 raingarden inlets) = 12 x 5 = 60m² Western road edge: (2 raingarden inlets) = 12 x 2 = 24m² Larger raingarden on west side: (1 inlet from east side + 4 inlet from west side) = 12 x 5 = 60m² Hobsonville Road raingarden requirement = 82m² Minimum area of larger raingarden = 60+82= 142m² Total proposed raingarden footprint
			•	Raingardens can be	=60+24+142 = 226m ²
C (4)	•	No significant design constraints	•	tilised both sides of the carriageway	 Footprint required= 110m² Minimum raingarden area each side of road = 110/2 = 55m² Raingarden area per inlet (5 inlets per road side) = 55/5 = 11m² Selected raingarden size in berm: 6m long x 2m wide = 12m²

Dropped kerb inlets to raingardens will be included along the kerb line on each side of the road. Raingardens will receive a dropped kerb outlet to cater for overflow from raingardens, discharging back into the road. This overflow will be collected in standard catchpits and conveyed via the stormwater pipe network to the dry pond for attenuation. Treated flows from the raingardens in Catchment 3 will be conveyed to discharge into the dry pond. Treated flows from the raingardens in Catchment 4 will be conveyed to discharge into the existing overland flow path at Catchment 4's low point.

Where stepped raingardens are required due to steeper road grades, widths are limited to 2m within the berm to allow for sufficient width for the height transition between the raingarden and adjacent cycle path.

7.3 Primary Stormwater System

The primary stormwater system is designed to accommodate for the 10% AEP rainfall event, and all system elements have been designed to cater for each specific delineated catchment 10% AEP post

less pre-development flows as tabulated in the section 6.2.2. Relevant CoP's as stipulated in section 3.2 were used in the design process. The system elements have been designed based on a preliminary approach and will be subject to further detailed design prior to construction.

The following critical assumptions were made for preliminary design of the primary underground system:

Inlets/Catchpits:

- Longitudinal gutter slope for entire catchment taken as equal to the minimum alignment slope for that specific catchment
- Maximum gutter spread = 1.00m
- Manning's n Value = 0.015
- Road Crossfall = 3%
- Gutter Crossfall = 10%
- Gutter Width = 0.3m

Pipe sizing:

- Longitudinal pipe slope for entire catchment taken as equal to the minimum alignment slope for that specific catchment
- Manning's Value for concrete pipes = 0.012
- Pipes designed to be in parallel to the road centreline
- Pipes are reinforced concrete rubber ring joint type (RCRRJ) with 1050mm manholes

Based on the assumptions a maximum flow of 17I/s correlates to a spread width of 1.25m based on Manning's law. According to AT CoP, a standard 460mm by 675mm catchpit should be able to accommodate a nominal inlet capacity of 28I/s when installed on a gradient. Therefore, a standard 460mm by 675mm catchpit installed in accordance with the AT CoP/TDM will be sufficient to provide drainage required for the proposed road upgrades.

The proposed stormwater network will consist of standard catchpit inlets along the kerb line, collecting either road surface runoff or overflow from raingardens, and discharging into the piped underground system for conveyance to the attenuation devices. Each catchment's proposed primary system configuration is described below and should be read in conjunction with the attached stormwater layouts in Appendix 2 and catchment diagram in Figure 11.

7.3.1 Catchment 1

Catchment 1 consists of the remainder of Hobsonville Road west that won't be diverted into Trig Road's stormwater system and will include standard 460mm by 675mm catchpits installed either side of the carriageway, discharging into new stormwater pipes on the southern road edge, tying into the existing stormwater network.

- 10 Year ARI post-development flow = 0.145m³/s (0.073m³/s each side of road)
- Min. road longitudinal slope = 1.4%
- Max. pipe size required = Ø300mm
- Approximate catchpit spacing for max. gutter spread = ±40m

Post-development flow contribution to the existing system will be significantly less due to diversion of a portion of runoff into Trig Road stormwater system, thus sufficient capacity in the existing system is assumed.

7.3.2 Catchment 2A

Catchment 2A consists of the upper portion of Hobsonville Road east. Due to insufficient capacity in the existing downstream network to cater for the full redeveloped impervious area of Hobsonville Road east and lack of space within the corridor for treatment devices/attenuation, a portion of the catchment runoff will be diverted outside of the corridor for treatment, attenuation and discharge. The stormwater system will have double catchpits installed on the southern side of the road only, discharging into a stormwater pipe on the northern road edge for conveyance to the proposed raingarden/attenuation device north of Hobsonville Road.

- 10 Year ARI post-development flow = 0.079m³
- 10 Year ARI pre-development flow = 0.071m³
- Min. road longitudinal slope = 2.3%
- Max. pipe size required = Ø300mm
- Storage volume allowed for = 200m³
- Approximate double catchpit spacing max. gutter spread = ±50m

The raingarden/attenuation device will include a scruffy dome overflow manhole with piped outlet to the Rawiri Stream overland flow path.

7.3.3 Catchment 2B

Similar to Catchment 1, Catchment 2B consists of the remainder of Hobsonville Road east that won't be diverted to discharge outside of the road corridor and will include standard 460mm by 675mm catchpits installed either side of the carriageway, discharging into new stormwater pipes on the northern road edge, tying into the existing stormwater network.

- 10 Year ARI post-development flow = 0.042m³ (0.021m³ each side of road)
- Min. road longitudinal slope = 5.3%
- Max. pipe size required = Ø300mm
- Approximate catchpit spacing each side of road for max. gutter spread = ±80m

Post-development flow contribution to the existing system will be significantly less due to diversion of a portion of runoff outside of the corridor, thus it is concluded there is sufficient capacity in the existing system.

7.3.4 Catchment 3

Catchment 3 includes a combination of treatment at source via raingardens within the berm space (where space is available) as well as treatment downstream in a larger raingarden at the end of pipe run (where treatment within the road corridor is not possible).

Dropped kerb inlets will be used to discharge channel runoff into the berm raingardens, with dropped kerb outlets to cater for overflow above the required 200mm ponding depth. Treated runoff from the raingarden drainage layer will discharge into the new stormwater pipe network. Raingarden overflow will discharge back into the road where it will be collected in catchpits and conveyed via the new stormwater pipe network for subsequent discharge into the proposed dry pond for attenuation.

The portion of Hobsonville Road contributing to Catchment 3 will include catchpit inlets discharging into a stormwater pipe along the south western edge of Trig Road, conveying runoff to the larger raingarden located downstream, west of Trig Road low point. All stormwater runoff along the south western carriageway (as well as the upper portion of Trig Road near the intersection) will also be collected via catchpit inlets and discharged into the larger raingarden downstream.

- 10 Year ARI post-development flow = 0.34m³/s (0.17m³/s each side of road)
- Min. road longitudinal slope (northern side of low point) = 1.1%
- Max. road longitudinal slope (southern side of low point) = 8%
- Max. pipe size discharging into larger raingarden = Ø450mm
- Max. pipe size discharging into dry pond (combined flow for entire catchment) = Ø750mm
- Approximate catchpit spacing road for max. gutter spread (Trig Road) = Varies (see layouts)
- Approximate catchpit spacing road for max. gutter spread (Hobsonville Road) = ±45m
- Dropped kerbed inlets and raingarden locations as indicated on layout to suit available berm space.

7.3.5 Catchment 4

Catchment 4 includes treatment via raingardens within the berm space at source, on both sides of the road. Dropped kerbed inlets will be used to discharge channel runoff into these raingardens, with dropped kerb outlets to cater for overflow above the required 200mm ponding depth. Treated runoff from the raingarden drainage layer will discharge directly into the existing overland flow path at the Catchment 4 low point. Raingarden overflow will discharge back into the road where it will be collected in catchpits and conveyed via the new stormwater pipe network for subsequent discharge into the proposed dry pond for attenuation.

A low point is located at the centre of catchment 4, however road surface runoff (excluding raingarden treated flows) will be diverted towards the dry pond for attenuation. As such, the stormwater pipes from the low point will be upsized to cater for 1% AEP flows.

- 10 Year ARI post-development flow = 0.18m³/s (0.09m³/s each side of road)
- Min. road longitudinal slope = 1%
- Max. pipe size required = Ø450mm (for 100 Year ARI post-dev. Flow, combined both sides)
- Dropped kerbed inlets as indicated on layout to suit available berm space

7.4 Groundwater

As mentioned in section 4.2.2, groundwater seepage was encountered just off the eastern side of Trig Road at the upper branch of Trig Stream (wetland) overland flow path and discharge point for the underground stormwater system near the intersection to Hobsonville Road.

The Project results in a large fill embankment over this seepage area, and appropriate groundwater management will be required to capture and convey the constant groundwater feed out of the fill embankment footprint. This will typically be achieved by the following, to be designed at detailed design stage and approved by the geotechnical engineer:

- In-situ slope drainage using herringbone counterfort drains, daylighting at proposed new headwall
- Mid-height lateral sand drainage blanket laid within fill new fill embankment

The general counterfort drain configuration is shown on Layout 3 of Appendix 2.

7.5 Operation and Maintenance

7.5.1 Dry Pond

Structural elements to facilitate safety and ease of maintenance of the dry pond will be confirmed during detailed design stage and will incorporate at a minimum a 3.0m wide vehicle access no steeper that 1:8, as well as safe access for maintenance workers to inlets and outlets.

Inlets and outfalls should be inspected regularly, as well as specifically after major storm events to clear excess debris build-up or obstructions, and for scour protection maintenance to ensure functional stormwater conveyance and protection of the receiving streams.

Grass should be mowed to maintain aesthetics, and any plant species should be maintained to ensure ecological function.

7.5.2 Raingardens

Raingardens are located within the berm adjacent foot paths, cycle ways or outside of the road corridor where safe access should be achievable. Planting of raingardens should consider on-going maintenance requirements such as weeding/grass cutting frequency and potential of plant growth encroaching into the adjacent footpaths and cycle ways. Raingardens should be regularly inspected, as well as specifically after large storm events to clear excess debris, check for blockages, maintain vegetation and media layers.

7.5.3 Manholes, Inlets and Outfalls

Inlets/catchpits will be provided with a sump to trap heavier/faster settling sediments and debris before connecting the stormwater pipeline and should be regularly maintained by means of a vacuum loading truck (or similar) to remove sediment and debris build up.

Pipes, inlets and outlets should be inspected regularly, as well as specifically after major storm events to clear excess debris build-up or obstructions, and for scour protection maintenance to ensure functional stormwater conveyance and protection of the receiving streams.

Manholes (designed to regulatory standards) will be located where possible outside of trafficable lanes to ensure safe access during maintenance works.

7.6 Summary of Effects and Recommended Mitigation

The table below provides a summary of the stormwater related effects the Project will have on the receiving environment, and how these effects are mitigated and satisfy the requirements under the AUP: OP.

Works Activity/Trigger for Resource Consent	Potential Effect on Receiving Environment	Mitigation Method	Conclusion
E8 of the AUP: OP: Stormwater - Discharge and Diversion "(A5) Diversion and discharge of stormwater runoff from additional impervious areas greater than 5000m ² of road": Redevelopment of Trig Road and the new impervious area to accommodate the new traffic lanes, foot paths and cycleways exceeds 5,000m ² of impervious area post- development)	 The 45% increase in impervious area has resulted in a significant peak runoff flow increase across the development, which will be discharged into the downstream receiving Trig Stream (wetland). The receiving environment and surroundings are zoned for mixed-housing development in future. Given the location of the Project in the upper reaches of a greenfield area and the uncertainty of the future developments to be implemented, the increase in discharge may in the future development scenario have the potential to cause: an increase in scouring or erosion at the discharge point and downstream thereof adverse effects to stream health and biodiversity as a result of increased cumulative flows flooding of properties in storm events up to 10% AEP inundation of buildings on properties in storm events up to 10% AEP damage to properties or other infrastructure 	 On-site stormwater attenuation is included for peak flow control to ensure discharge of post- development runoff into the receiving environment at a maximum that matches that of pre-development runoff Stream protection flow has been accounted for and allowed for within the attenuation pond discharge outlet Outfall structure of attenuation pond will include baffle blocks and rip-rap energy dissipation for ensuring acceptable, non-scouring velocities The primary stormwater system has been designed to effectively convey the 10% AEP storm event The 1% AEP storm event will be contained within the road reserve with appropriate bypass allowance from the road low point to the attenuation pond The existing secondary system/overland flow paths and crossings under Trig Road will be maintained 	An on-site attenuation pond for up to the 1% AEP storm event and the appropriately designed outfall structure allows for stream protection flow release, stream protection by energy dissipation at outfall to minimise scouring and erosion, and controlled discharge into the stream during large storm events to prevent downstream flooding. Damage to properties and other infrastructure is avoided by collection and conveyance of runoff within the road and via underground pipe systems, and by ensuring pipe crossings have sufficient capacity for effectively draining upstream catchments for future MPD.

Table 13: Summary of Effects and Methods of Mitigation

		•	The upgrading/upsizing of the crossings for the MPD during the new Trig Road upgrade will allow for enhanced flood control, minimising the potential for flooding as indicated in the flood prone areas	
E9 of the AUP: OP: Stormwater Quality – High Contaminant Generating Activity "(A7) Development of a new or redevelopment of an existing high use road greater than 5,000m ² ": Redevelopment area of Trig Road to accommodate the new traffic lanes, foot paths and cycleways exceeds 5,000m ²	 The 45% increase in impervious area (as a redevelopment of high use road) has the potential to increase the concentration of contaminants with the potential to cause: oils, grease, suspended materials or floating objects to enter the receiving stream change in colour or visual clarity of receiving stream release odour generating contaminants into the receiving stream These may result in rendering the water source unfit for consumption by fauna and flora, or have adverse effects on aquatic life and the general ecology of the receiving 	•	Water treatment has been designed and selected with consideration of GD01 Raingardens were selected for "at source" treatment within the berms along the carriageway as well as "end of pipe" treatment in larger raingardens, and meet equivalent treatment requirements as per GD01	Raingardens effectively deal with water quality volumes from high contaminant generating roads, removing contaminants from runoff to regulatory requirements prior to discharging into the environment, with ease of incorporation within the project area and its specific constraints.
Minimise bird strike risk through the design of stormwater ponds/wetlands	 Permanent waterbodies attract bird life and present risk of bird strike within the New Zealand Defence Force Airspace Restriction Designation Overlay, and the need for stormwater attenuation within the overlay has the potential to increase the attraction of bird life due to large stored water volumes 	•	Dry pond design selected over wet pond for attenuation of additional post development run-off ensuring no additional permanent waterbody is allocated within the risk zone Designed for 1% AEP storm event, fully draining within 24 hours of storm event, resulting in no free-standing water for potential habitation and attraction of bird life.	A fully draining pond will result in no free-standing water for prolonged periods, thus reducing habitability by bird life.

E26 of the AUP:OP: Infrastructure "(A55) Stormwater detention/retention ponds/wetlands": A new stormwater detention pond is proposed for attenuation of post- development runoff, to be located at 19 Trig Road. (Not applicable as a trigger for resource consent. Used as a guideline for design)	 Interference with public use and enjoyment of open space Potential safety hazard during maintenance works and/or with lack of appropriate access Potential health and safety effects on public 	 Dry pond is not located on existing recreational open space Dry pond design choice over wetpond provides aesthetic and amenity potential, with potential for open green space usage during storm events / dry periods Dry pond provides easier maintenance opportunities and safe access between storm events to structure inlets and outlets Safe access will be provided into dry pond area No permanent standing water in dry pond ensures lesser potential for pests, mosquitos and vermin Dry pond side slopes graded at flatter 1:5 slope to reduce the risk of getting stuck and minimising the need for a dedicated perimeter fence
---	--	--

8 Conclusions

The stormwater design approach, elements/infrastructure and concept network layout have been developed to satisfy the regulatory standards and water sensitive design requirements. While subject to refinement in detailed design stage the indicative design demonstrates the stormwater needs of the Project can be met, whilst catering to both current land use and for the expected future development upstream and downstream of the Project area.

The stormwater system will allow for enhancement of the drainage of the upstream catchments along Trig Road and will reduce potential flood effects up to the 100year rainfall event in future development scenarios as well associated with the Trig Rd development. The downstream receiving environment will be protected from additional flood risk by attenuation and by water quality improvement devices. Attenuation will also reduce flood risk to future development downstream of Trig Road.

Through this assessment, the triggers for resource consent have been identified and the potential effects evaluated, and the most well-suited methods and design elements have been selected for mitigation of these effects.

Appendix 1. Relevant Matters of Discretion, Matters of Control, and Assessment Criteria

From the Auckland Unitary Plan

E3. LAKES, RIVERS, STREAMS AND WETLANDS

(A48) Extension of an existing lawful reclamation or drained area.

Activity Status: Non-complying

Assessment Matters: N/A

E8. STORMWATER – DISCHARGE AND DIVERSION

(A5) Diversion and discharge of stormwater runoff from additional impervious areas greater than 5,000m2 of road (which include road ancillary areas that are part of a road, motorway or state highway operated by a road controlling authority) or rail corridor that complies with Standard E8.6.1 and Standard E8.6.4.1

Activity Status: Restricted Discretionary

E8.6.4. Restricted discretionary activity standards:

Activities listed as restricted discretionary in Table E8.4.1

Activity table must comply with the following restricted activity standard. E8.6.4.1. Diversion and discharge of stormwater runoff from additional impervious areas greater than 5,000m2 of road (which include road ancillary areas that are part of a road, motorway or state highway operated by a road controlling authority) or rail corridor

(2) Any road ancillary area must not be used for:

(a) storage of roading and building materials that are not inert for more than 30 days continuously;

(b) works / building yards.

(3) Where stormwater runoff from an impervious area is discharged into a stream receiving environment, it must be managed by a stormwater management device to meet the hydrology mitigation requirements specified in Table E10.6.3.1.1 Hydrology mitigation requirements.

(4) Stormwater management devices must be provided to reduce or remove contaminants from stormwater runoff.

E8.8. Assessment - restricted discretionary activities

E8.8.1. Matters of discretion

The Council will restrict its discretion to all of the following matters when assessing a restricted discretionary resource consent application:

(1) for diversion of stormwater runoff from lawfully established impervious areas directed into an authorised stormwater network or a combined sewer network that does not comply with Standard E8.6.2.1:

(a) measures to mitigate additional stormwater flows and potential increases in overflows from the combined sewer network, including future connection to a stormwater network should one become available;

(b) alternative methods of disposal;

(c) effects on the operation and management of the combined sewer network;

- (d) operations and maintenance requirements;
- (e) monitoring and reporting;
- (f) the duration of the consent and the timing and nature of reviews of consent conditions.

(2) for diversion and discharge of stormwater runoff from additional impervious areas greater than 5,000m2 of road (which include road ancillary areas that are part of a road, motorway or state highway operated by a road controlling authority) or rail corridor:

(a) the methods proposed for the management of the adverse effects on receiving environments, including cumulative effects, having regard to:

(i) the nature, volume and peak flow of the stormwater runoff discharge;

(ii) the sensitivity of the receiving environment to stormwater runoff contaminants and flows;

(iii) the extent to which opportunities to reduce existing adverse effects and enhance receiving environments have been identified and utilised; Auckland Unitary Plan Operative in part 7 E8 Stormwater – Discharge and diversion

(iv) where stormwater runoff is discharged to a stream receiving environment, the extent to which the diversion and discharge is managed to achieve the following: • maintain baseflow and interflow at the predevelopment conditions; • reduce the duration and intensity of flows which will cause erosion and habitat degradation; • reduce runoff volumes to pre-development conditions; and • utilise natural flow paths and streams to help slow down water flows; and

(v) the extent to which effects on marine sediment quality, are avoided, remedied or mitigated.

(b) the measures proposed for the management of the adverse effects of the stormwater runoff diversion and discharge on receiving environments having regard to best practicable options;

(c) the measures proposed for the implementation of stormwater management devices and other measures and programmes that give effect to the best practicable option;

(d) the methods proposed for the management and mitigation of flood effects and flood risks, including effects on buildings and property;

(e) the likely effectiveness of the proposed methods and measures to avoid land instability, erosion, scour and flood risk to buildings and property;

(f) the likely effectiveness of the proposed location, design and method of the discharge in managing or mitigating potential adverse effects on the environment;

(g) the methods proposed for the management of stormwater flow and contaminants and for the implementation of stormwater management devices and other measures;

(h) the proposed methods for stormwater runoff disposal through soakage, or infiltration having regard to the need for managing water levels in underlying peat soils and for ground stability, where those conditions are relevant;

(i) the extent to which effects on Mana Whenua values are avoided remedied or mitigated;

(j) the likely effectiveness of the proposed operations and maintenance requirements in ensuring the ongoing and long-term management of adverse effects on the environment; Auckland Unitary Plan Operative in part 8 E8 Stormwater – Discharge and diversion

(k) the extent to which proposal for monitoring and reporting are likely to be sufficient to ensure that any performance failures are addressed without undue delay; and

(I) the proposed duration of the consent and the timing and nature of reviews of consent conditions having regard to:

(i) the need to periodically reassess the consent to take account of any changes in the nature of the discharge or the receiving environment; and

(ii) the need to set duration and review periods having regard to efficiency and effectiveness.

E8.8.2. Assessment criteria

The Council will have regard to the following policies when considering the matters listed above:

(1) for diversion of stormwater runoff from lawfully established impervious areas directed into an authorised stormwater network or a combined sewer network that does not comply with Standard E8.6.2.1:

(a) policies E1.3 (8), (9), (10), (11), (13), (14) and (20) in E1 Water quality and integrated management

(2) for diversion and discharge of stormwater runoff from additional impervious areas greater than 5,000m2 of road (which include road ancillary areas that are part of a road, motorway or state highway operated by a road controlling authority) or rail corridor:

(a) policies E1.3(1) to (14) in E1 Water quality and integrated management.

E9. STORMWATER QUALITY – HIGH CONTAMINANT GENERATING CAR PARKS AND HIGH USE ROADS

(A7) Development of a new or redevelopment of an existing high use road greater than 5,000m2

Activity Status: Controlled

E9.6.2. Controlled activity

All controlled activities in Table E9.4.1 Activity table must comply with the following activity specific standards:

E9.6.2.2. Development of a new or redevelopment of an existing high use road greater than 5,000m2

(1) Stormwater runoff from the impervious area is treated by stormwater management device(s).

(2) Stormwater management device(s) must meet the following:

(a) the device or system must be sized and designed in accordance with Auckland Councils Technical Publication 10: Design Guideline Manual for Stormwater Treatment Devices (2003); or

(b) where alternative devices are proposed, the device must demonstrate it is designed to achieve an equivalent level of contaminant or sediment removal performance to that of Technical Publication 10: Design Guideline Manual for Stormwater Treatment Devices (2003).

E9.7. Assessment - controlled activities

E9.7.1. Matters of control

The Council will reserve its control to all of the following matters when assessing a controlled activity resource consent application:

(2) for the development of a new or redevelopment of an existing high use road greater than 5,000m2:

(a) the effectiveness of the stormwater management device(s) in meeting Standard E9.6.2.2(2);

(b) the potential for adverse effects from the discharge of contaminants on the receiving environment;

(c) the proposed methods for operating and maintaining the stormwater treatment processes and devices to ensure their continued and ongoing effectiveness in meeting Standard E9.6.2.2(2);

(d) the proposed methods for monitoring and reporting on the effectiveness of the treatment process;

(e) the duration of the consent and the timing and nature of reviews of consent conditions; and

(f) the treatment of stormwater runoff from existing high use road impervious areas discharging to the same network.

E9.7.2. Assessment criteria

The Council will consider the relevant assessment criteria below for controlled activities:

(2) for the development of a new, or redevelopment of an existing high use road greater than 5,000m2:

(a) the extent to which the proposed stormwater management device minimises adverse effects on the environment having regard to the nature and sensitivity of the receiving environment;

(b) whether the stormwater management device is appropriately designed, sized and operated for the site and contaminants of concern;

(c) whether the stormwater quality device is durable and will achieve the performance requirements in the long term;

(d) the extent to which operation and maintenance plans have been provided to manage the stormwater management device(s);

(e) whether it is practical to treat existing high use road areas discharging to the same drainage network point and being treated by the same treatment device having regard to all of the following:

(i) site and operational constraints;

(ii) requirements to provide for other utility services;

(iii) the function of roads as overland flow paths conveying stormwater runoff from surrounding land uses which the road controlling authority has limited ability to control;

(iv) safety and operational constraints of the road or discharges; and

(v) topographical limitations and geotechnical and structural requirements; and

(f) the extent to which there is a requirement in the Plan to reconstruct the existing drainage network.

E26. INFRASTRUCTURE

(A55) Stormwater detention/retention ponds/wetlands

Activity Status: Controlled

E26.2.6. Assessment – controlled activities

E26.2.6.1. Matters of control

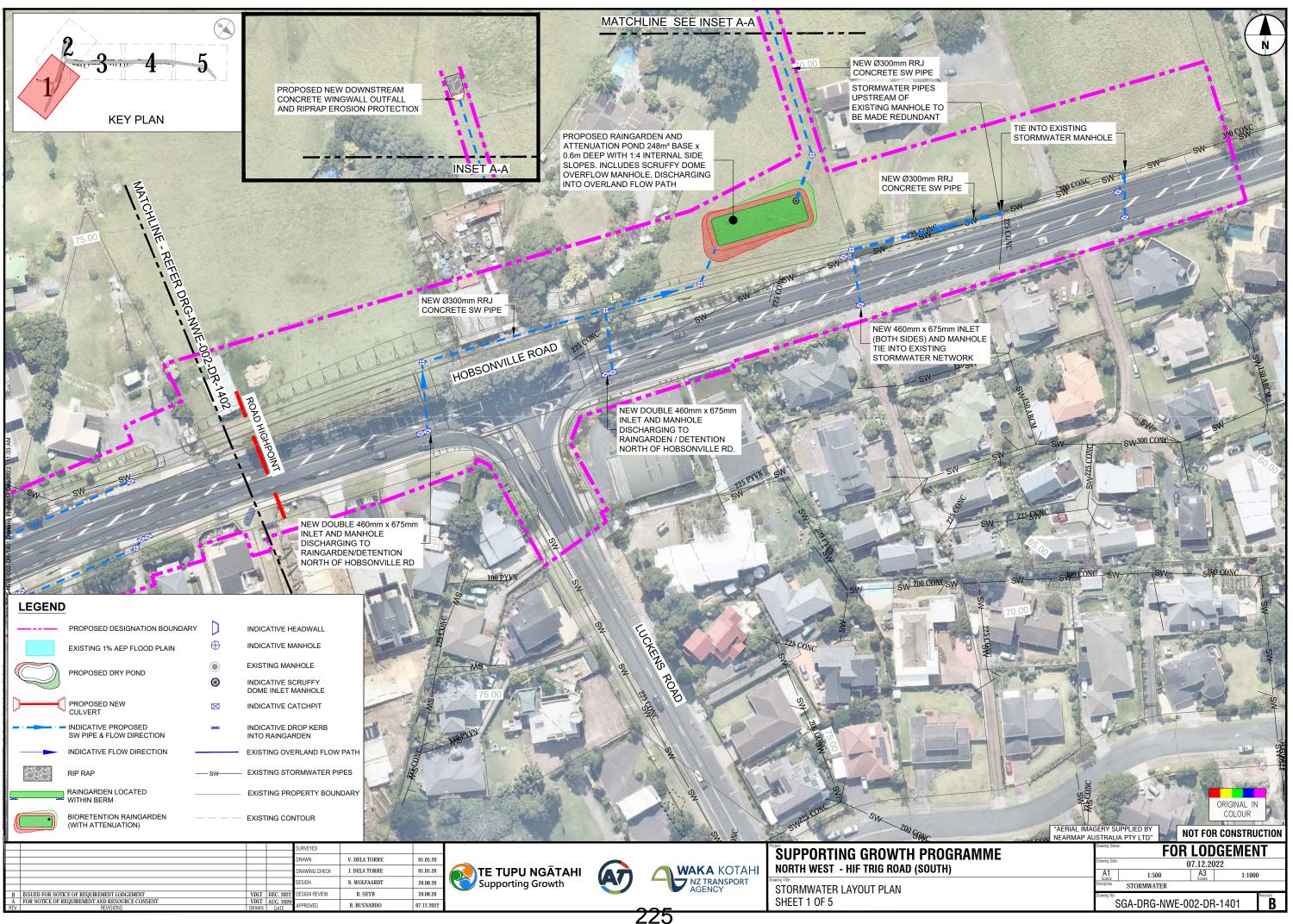
The Council will reserve its control to all the following matters when assessing a controlled activity resource consent application:

(2) stormwater detention and retention ponds and wetlands:

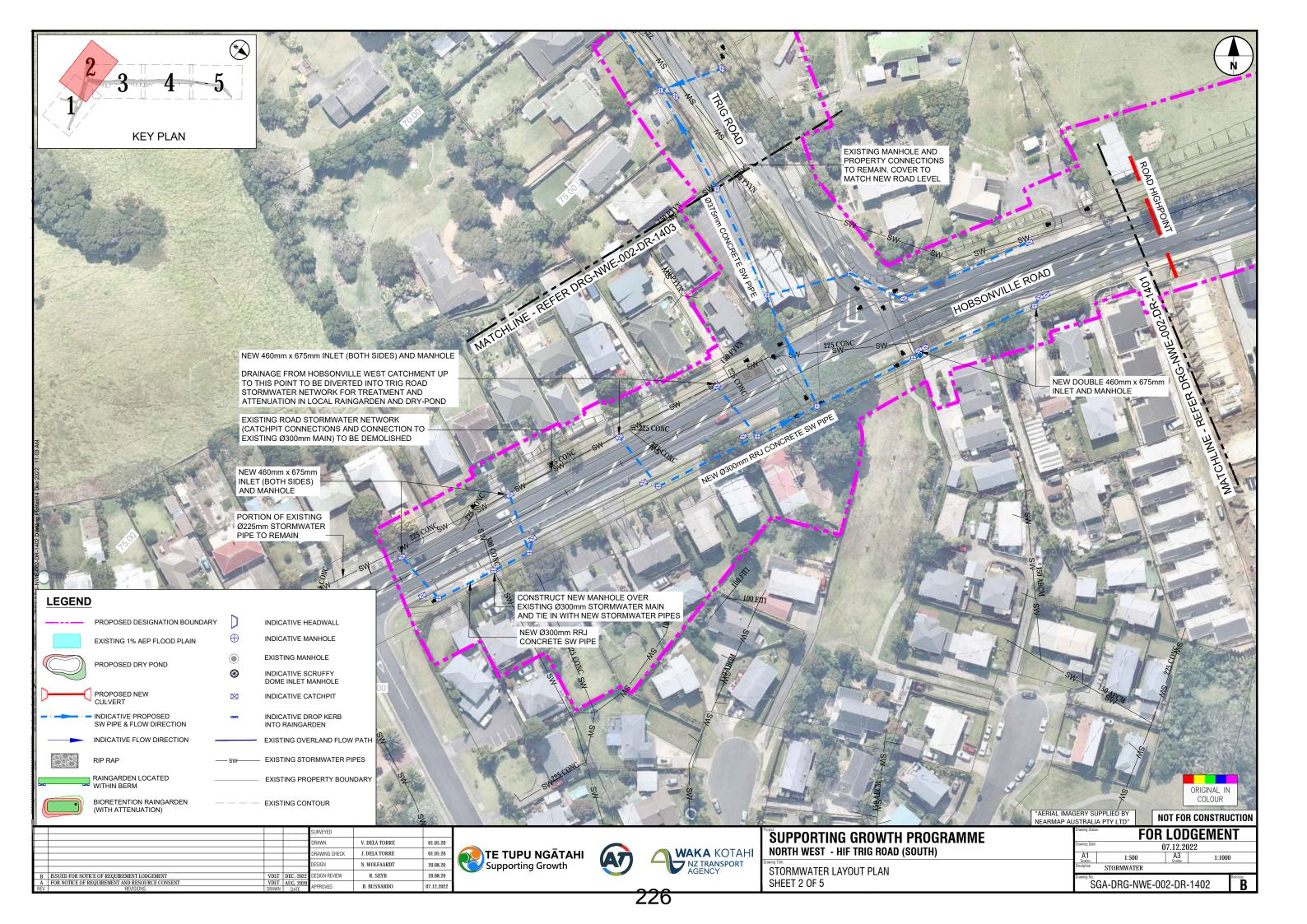
- (a) effects on the use of open space;
- (b) provision of safe access for maintenance; and
- (c) effects on health and safety.

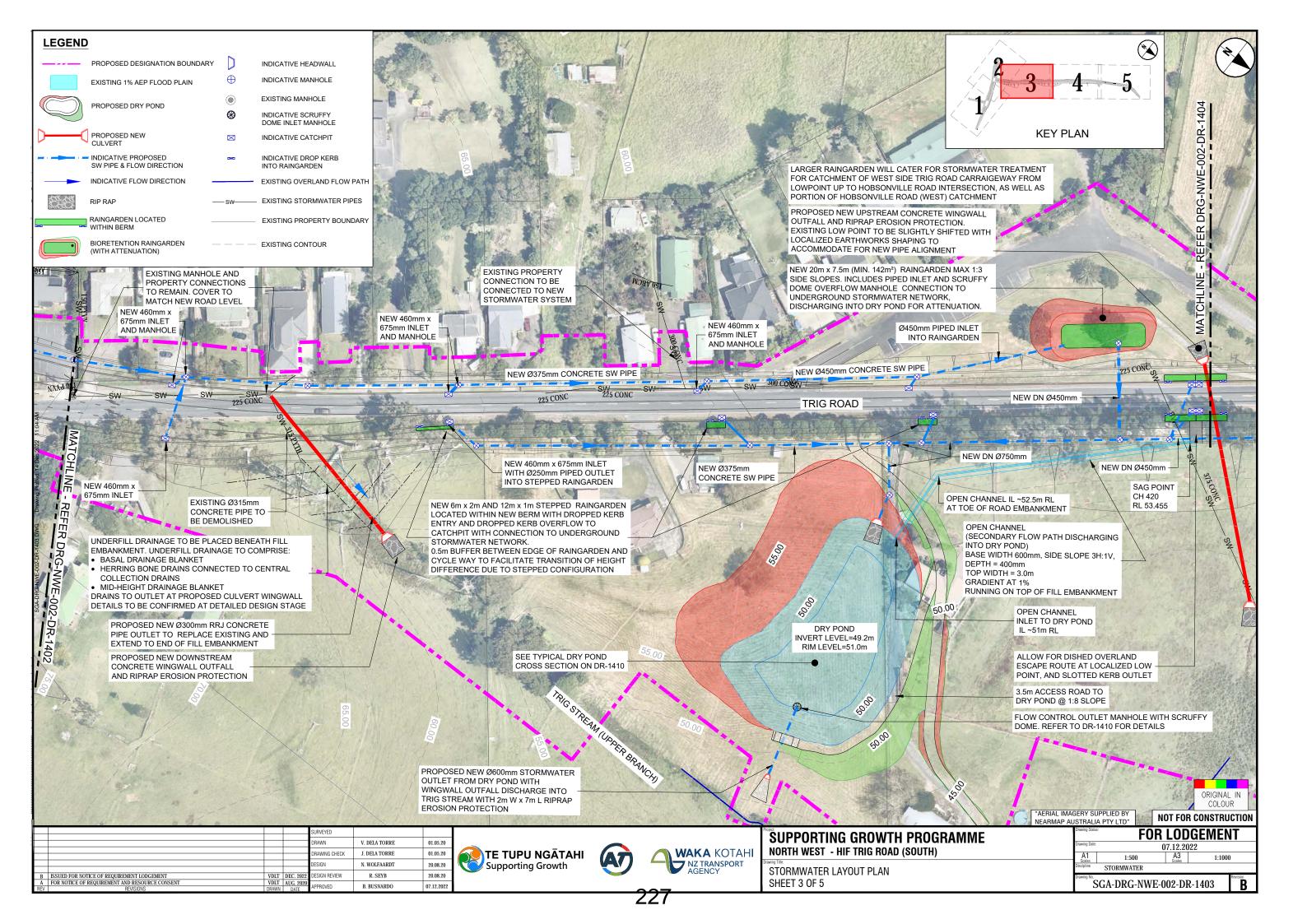
E26.2.6.2. Assessment criteria

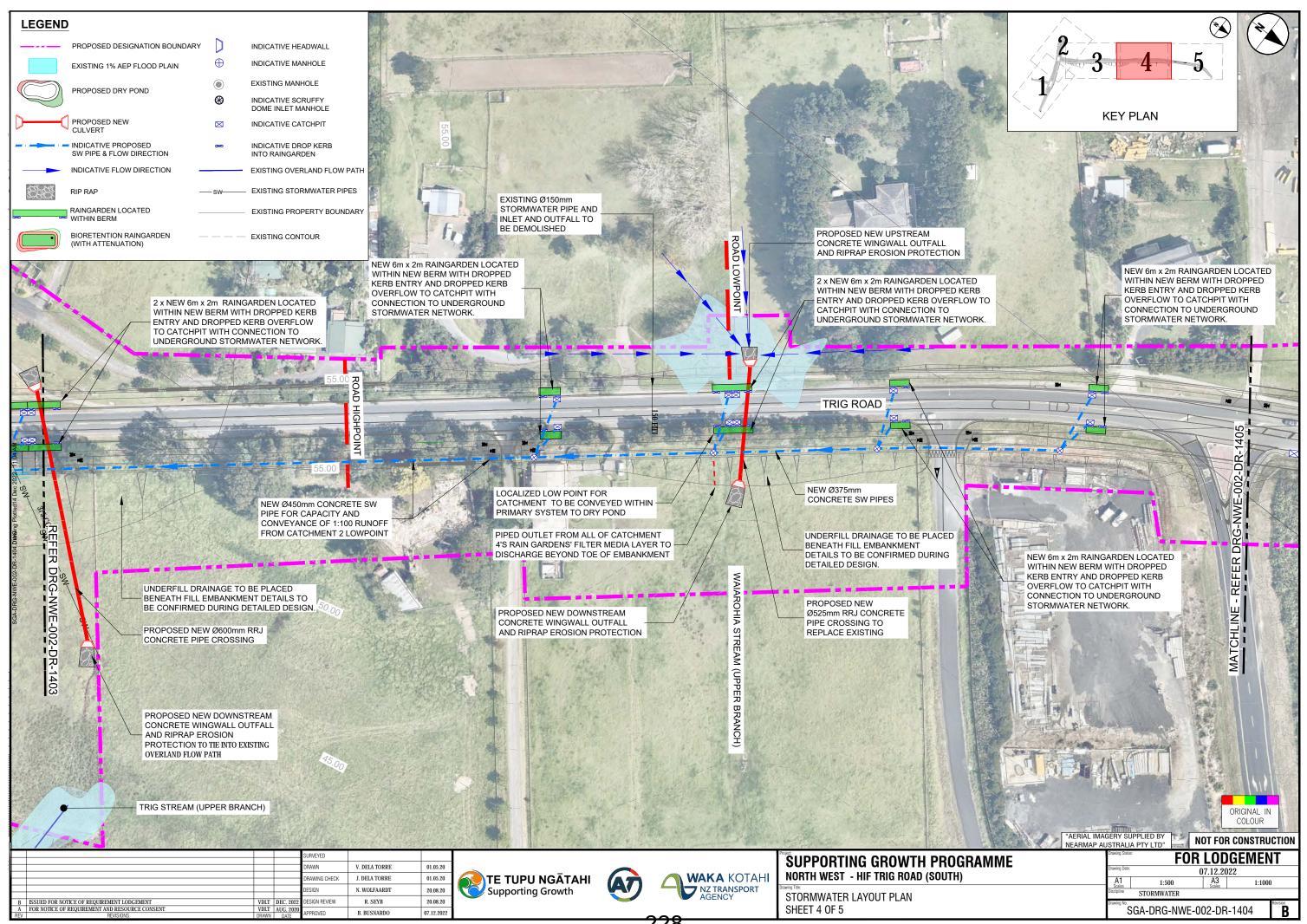
The Council will consider the relevant assessment criteria for controlled activities from the list below:

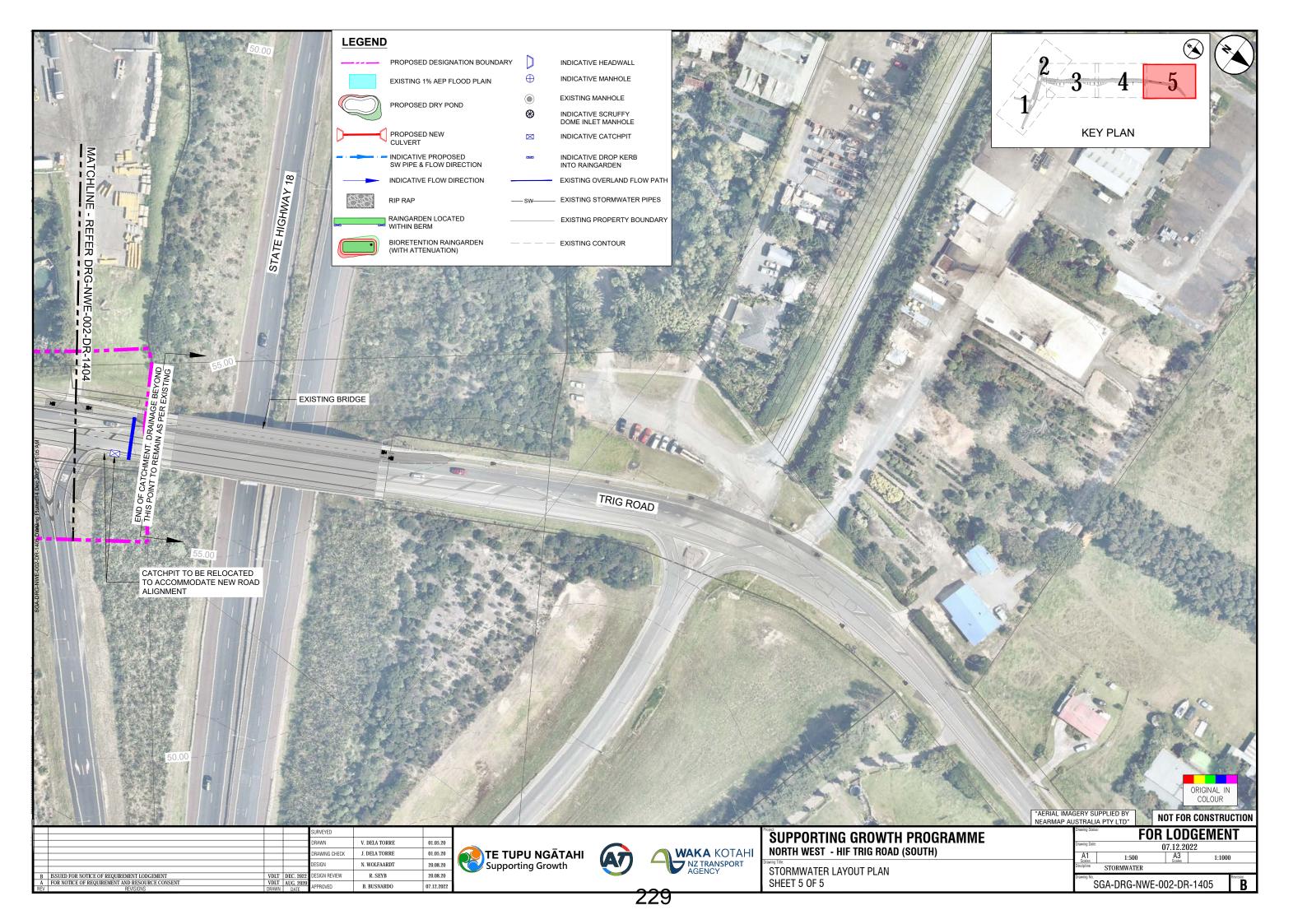

(2) stormwater detention and retention ponds and wetlands:

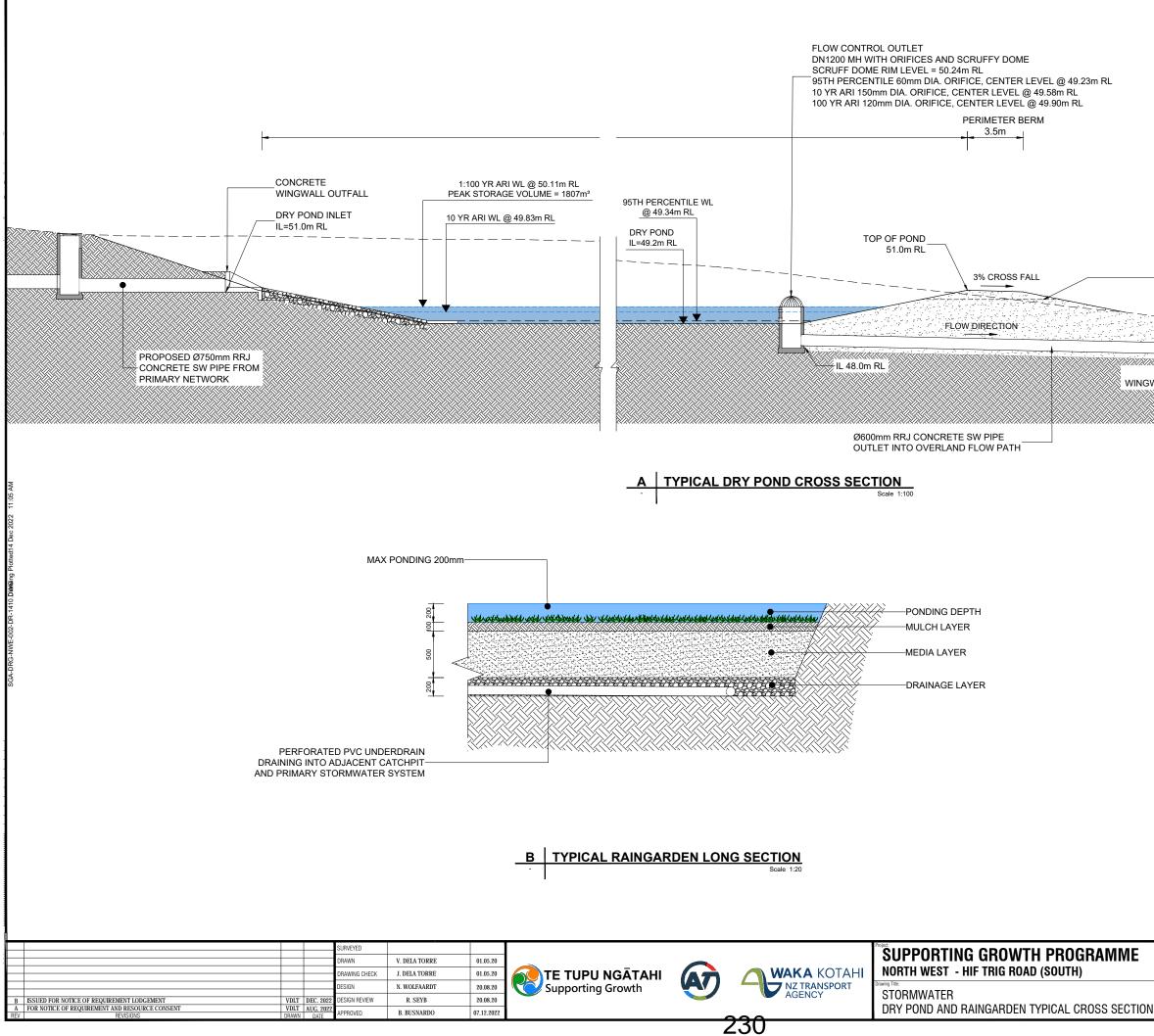
(a) the extent to which interference with public use and enjoyment of open space is minimised where stormwater detention and retention ponds and wetlands are located in public open space;


(b) whether safe and direct access can be provided to enable the maintenance of stormwater detention and retention ponds and wetlands; and


(c) whether there will be health and safety effects associated with stormwater detention and retention ponds and wetlands and the extent to which these can be mitigated through measures such as fencing.

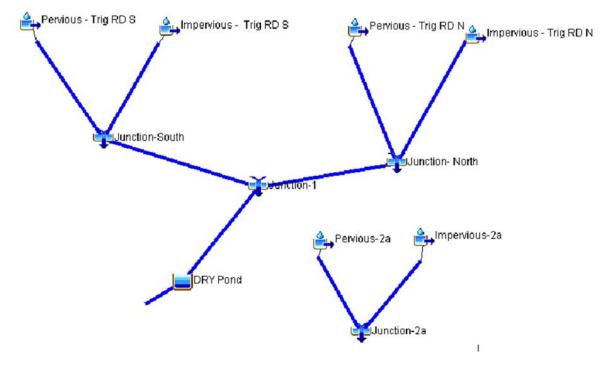

Appendix 2. Stormwater Drawings




STORMWATER LAYOUT P	ľ
SHEET 1 OF 5	

EMERGENCY SPILL	NAY
4m BASE WIDTH, 4H	:1V SIDE
IL @ 50.5m RL	
	/IL 47.5m RL
CONCRETE	CARL PROPERTY AND A STATE
IGWALL OUTFALL	
	ORIGINAL IN
	ORIGINAL IN COLOUR
	FUR LUDGEWIENI Drawing Date: 07.12.2022
	A1 AS SHOWN A3 HALF SCALE Discipline STORMWATER
ONS	Drawing No. SGA-DRG-NWE-002-DR-1410

Appendix 3. HEC-HMS Model


General

The hydrological model was built using HEC-HMS v4.9 to reflect the proposed development and associated imperviousness within the catchment. The modelling was done in accordance with . for sizing the proposed dry pond in accordance with Auckland Council's Technical Publication 108 (TP108): Guidelines for Stormwater Runoff Modelling in the Auckland and AC's Stormwater Design CoP.

The HEC-HMS model may be revised in detailed design phase for optimisation.

Model Inputs

The post-development HEC-HMS basin model is shown in Figure A3-1 below, where Trig Road South is equivalent to Catchment 3 and Trig Road North is equivalent to Catchment 4 in Figure 6-3 in the main report.

Figure A3-1. HEC-HMS basin model for Trig Road – Post Development

A pre-development basin model was run to estimate pre-development flows.

Design Rainfall

Design storm Event Description	AEP (%)	24hr Rainfall Depth (mm)	Climate Change Increase (%)	Adjusted 24hr Rainfall Depth (mm)	Reference source
10year ARI	10%	135	13.2%	153	AC TP108
50year ARI	2%	180	16.8%	210	AC TP108
100year ARI	1%	200	16.8%	234	AC TP108
WQV rainfall	N/A	25	N/A	N/A	AC GD01 – 90 th percentile rainfall depth
95 th Percentile rainfall	N/A	35	N/A	N/A	AC GD01

Five design storm events were modelled in HEC-HMS and the following is the design rainfall depth

Rainfall Temporal Pattern

The rainfall temporal pattern was applied in accordance with the *Auckland Code of Practice for Land Development and Subdivision, Chapter 4: Stormwater*, Version 3.0, January 2022. The pattern is shown in Table 2 below for the existing and future rainfall scenarios.

Table 2: TP108 Normalised 24-hour temporal rainfall intensity profile

Time (here wind)	Time interval	TP108 normalise	d rainfall intensity (I/I24)
Time (hrs: mins)	(min)	Existing condition	Future climate change
0:00 - 6:00	360	0.34	0.33
6:00 - 9:00	180	0.74	0.73
9:00 - 10:00	60	0.96	0.95
10:00 - 11:00	60	1.40	1.40
11:00 - 11:30	30	2.20	2.20
11:30 - 11:40	10	3.80	3.82
11:40 - 11:50	10	4.80	4.86
11:50 - 12:00	10	8.70	8.86
12:00 - 12:10	10	16.20	16.65
12:10 - 12:20	10	5.90	5.95
12:20 - 12:30	10	4.20	4.24
12:30 - 13:00	30	2.90	2.92
13:00 - 14:00	60	1.70	1.70
14:00 - 15:00	60	1.20	1.19
15:00 - 18:00	180	0.75	0.75
18:00 - 24:00	360	0.40	0.39

* Assuming 2.1°C increase in temperature

Dry Pond Storage Capacity

Elevation-area function as shown in table below was used to estimate the storage capacity of the dry pond in HEC-HMS model. Linear interpolation is assumed in elevation between pond invert and rim.

Elevation (m RL)	Area (1000 m²)	Remarks
49.2	1.243	Pond invert level
51.0	2.863	Pond rim level

The dry pond was designed and 3D-modelled in Civil3D software to obtain cut-fill extent and set invert and rim level. The areas at the pond invert level of 49.2m RL and at the rim level of 51.0m RL were measured from Civil3D.

Model Results

Table below show the HEC-HMS model results for the dry pond's water level, peak discharge rate, peak storage volume, and emptying duration for the five design storm events. Pond emptying duration is the duration to fully drain down the dry pond from the start of the storm event.

Design Storm Event	Water Level (m RL)	Peak Inflow (m³/s)	Peak Discharge (m³/s)	Peak Storage Vol (m³)	Inflow Vol (m ³)	Pond Emptying Duration (Hr:min)
WQV	49.30	0.06	0.01	190	363	25hr:50min
95th Percentile	49.34	0.09	0.01	276	551	27hr:30min
10% AEP	49.83	0.52	0.16	1259	3105	38hr:10min
2% AEP	50.03	0.74	0.26	1654	4455	40hr:10min
1% AEP	50.11	0.83	0.29	1807	4971	40hr:20min

Figures A3-2 and A3-3 below show the inflow and outflow graphs for 2% AEP and 1% AEP design storm event for 48 hours duration.

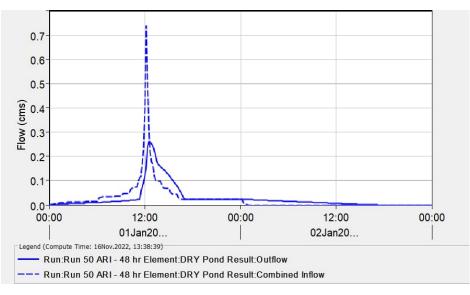
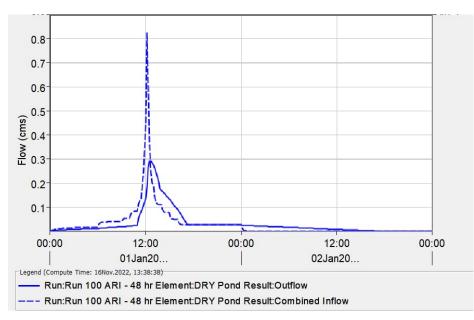



Figure A3-2. Dry Pond – 2% AEP (50yr ARI) Inflow and Outflow Graph (Post-Development)

Assessment of Stormwater Effects

Conclusions

The HEC-HMS model results indicated that the dry pond meets the attenuation requirements by having the peak post-development discharge rates are less than the allowable peak discharge rates as shown in table below. The dry pond also meets the design criteria that it can be fully drained down within 48 hours of a 2% AEP storm event.

Design Storm Event	Allowable Peak Discharge (m³/s)	Post-Dev Peak Discharge (m ³ /s)
95th Percentile	0.047	0.01
10% AEP	0.31	0.16
2% AEP	0.45	0.26
1% AEP	0.51	0.29

There will be opportunities to optimise the dry pond design in detailed design phase. The current dry pond is likely to be oversized by comparing the attenuated discharge flow rate vs. pre-development allowable peak discharge flow rate.

ATTACHMENT 20

TRIG ROAD CORRIDOR UPGRADE EROSION AND SEDIMENT CONTROL PLAN

Supporting Growth Trig Road Corridor Upgrade **Erosion** and Sediment Control Plan

Version 1.0 December 2022

Document Status

Version	Responsibility	Name
2020 Draft	Author	Nadine Wolfaardt
	Reviewer	Roger Seyb
1.0	Author	Anna Liu
	Reviewer	Mike Summerhays
	Approver	Bridget O'Leary

Revision Status

Version	Date	Reason for Issue
1.0	December 2022	Final for issue

Table of Contents

1	Introdu	ction	6
	1.1 Ba	ckground	6
	1.2 Pu	rpose of this Report	6
2	Project	Description	8
	2.1 Pro	pject Location	8
	2.2 Pro	pject Description	8
	2.3 Pro	oject/Site Features	9
	2.3.1	Cross-Section	9
	2.3.2	Stormwater Infrastructure	12
	2.3.3	Existing Ground Conditions	12
	2.3.4	Topography, Catchments, Drainage and Receiving Environments	12
	2.3.5	Contaminated Land Assessment	13
3	Statuto	ry Context	15
	3.1 No	tice of Requirement	15
	3.2 Re	gional Resource Consent Application	15
	3.2.1	Relevant Standards and Guidelines	15
4		ve Construction Methodology	
		neral Construction Overview	
		nstruction Methodology	
	4.3 Pla	int and equipment	17
5	Princip	les of ESC	19
	5.1 Ke	y Objectives	19
	5.2 Erc	osion and Sediment Prevention/Sources Control Measures	20
	5.3 Ge	neral ESC measures	21
	5.4 Est	tablishment	23
	5.5 De	commissioning	
6	Specifi	c ESC Measures	24
	6.1 Zoi	ne 1	24
	6.1.1	Clean water diversion	24
	6.1.2	Silt fences/silt socks	24
	6.2 Zoi	ne 2	25
	6.2.1	Catchment 1	25

6.2.2	Catchment 2	. 26
6.2.3	Catchment 3	. 27
6.3 Zon	e 3	. 28
6.3.1	Silt socks/silt fences/sand logs	. 28
6.3.2	Decanting earth bund	. 28
6.4 Dev	vatering	. 28
6.5 Stre	am protection	. 29
6.6 Sto	ckpiling	. 29
6.7 Stal	pilisation	. 29
6.8 Spe	cific Controls Summary	. 31
Monitori	ng and Maintenance	32
WOILTON		52
Conclus	ion	. 34

Tables

7

8

9
17
18
20
21
31
31
32

Figures

Figure 1: Locality Plan	8
Figure 2: Whenuapai – Trig Road Corridor Upgrade	
Figure 3: Indicative Trig Road Cross Section	11
Figure 4: Trig Road surrounding overland flow paths and receiving waterbodies	13

Appendices

Appendix 1. Indicative Erosion Control Plans

Acronyms

Acronym/Term	Description		
AUP:OP	Auckland Unitary Plan Operative in Part 2016		
AT	Auckland Transport		
AEE	Assessment of Effects on the Environment		
GD05	Erosion and Sediment Control Guide for Land Disturbing Activities in the Auckland Region – Guideline Document 2016/005		
ESC	Erosion and Sediment Control		
NoR	Notice of Requirement		
Project	Trig Road Corridor Upgrade		
RMA	Resource Management Act 1991		
SH18	State Highway 18		
SRP	Sediment Retention Pond		

1 Introduction

1.1 Background

Auckland's population is growing rapidly; driven by both natural growth (more births than deaths) and migration from overseas and other parts of New Zealand. The Auckland Plan 2050 anticipates that this growth will generate demand for an additional 313,000 dwellings and require land for approximately 263,000 additional employment opportunities.

In response to this demand, the Auckland Unitary Plan Operative in Part 2016 (**AUP:OP**) identifies 15,000 hectares of predominantly rural land for future urbanisation. To enable the urban development of greenfield land, appropriate bulk infrastructure needs to be planned and delivered.

The Supporting Growth Programme is a collaboration between Auckland Transport (**AT**) and Waka Kotahi NZ Transport Agency, to investigate, plan and deliver the transport networks needed to support Auckland's future urban growth areas over the next 30 years.

1.2 Purpose of this Report

Trig Road, Whenuapai has been identified in the Supporting Growth Programme as a future arterial corridor that is needed to support the urban development of Whenuapai.

This report has been prepared to support AT's notice of requirement (**NoR**) and application for resource consents for the Trig Road Corridor Upgrade (the **Project**). The NoR under the Resource Management Act 1991 (**RMA**) is to designate land for the construction, operation and maintenance of the Project.

Funding for the upgrade of Trig Road between Hobsonville Road and State Highway 18 (**SH18**) has been made available through the Housing Infrastructure Fund¹. As there is funding available for construction, AT are also applying for the necessary resource consents under the RMA, concurrently with the NoR process.

This report outlines the Erosion and Sediment Control (**ESC**) approach for the Project, with regards to reducing and isolating environmental effects associated with the earthworks, construction works and future functioning of the Project on the receiving environment. This report has been prepared in conjunction with the Assessment of Stormwater Effects and the indicative construction methodology, to inform the Assessment of Effects on the Environment (**AEE**).

The report provides the framework for the construction of ESC measures and provides site specific detail. The Report describes the methods and practices to be implemented to ensure the effects of erosion and sediment generation are minimised and managed, and degradation to the receiving environment is avoided.

¹ See North West Housing Infrastructure Fund Assessment of Environmental Effects for further detail regarding the Housing Infrastructure Fund.

The Erosion and Sediment Control Guide for Land Disturbing Activities in the Auckland Region – Guideline Document 2016/005 (**GD05**) was used as a reference for the appropriate methods and practices applied.

This report is a draft report only and will be subject to a contractor preparing a final ESC Plan and obtaining certification from Auckland Council.

2 **Project Description**

2.1 Project Location

As shown in Figure 1 below, the full length of Trig Road is located in Whenuapai, a suburb in the North West area of Auckland. Trig Road is approximately 2.28km, starting from the urban fringe of West Harbour, at the intersection on Hobsonville Road to the south, crossing SH18, and extending towards Brigham Creek Road intersection to the north.

Figure 1: Locality Plan

2.2 Project Description

The Project consists of the widening and upgrade of Trig Road transport corridor between the SH18 off-ramps and Hobsonville Road. The widening has capacity to provide for a two-lane arterial standard corridor including new footpaths on both sides of the road and a cycleway which is indicatively shown as a bi-direction cycleway on the eastern side of the corridor. The Project will upgrade the current rural standard corridor, currently 20m wide, to an urban standard, proposed to be approximately 22.4 to 24.8m wide, which is appropriate to support the soon to be urban environment on either side of Trig Road.

To safely tie into the existing road network, the Project also includes the signalisation of the intersections at Trig Road / Hobsonville Road and Luckens Road / Hobsonville Road and upgrade of Hobsonville Road between these intersections. This will require some localised widening of the road corridor along Hobsonville Road. The SH18 over-bridge will also be reconfigured to provide for a cycleway, and additional tie in works to the north of the over-bridge within the existing road reserve.

Table 1 below provides a breakdown of the earthworks coverage and cut/fill volumes expected across Trig Road and Hobsonville Road. A hypothetical maximum allowance for site clearance and earthworks remediation for the remaining designation area, outside of the road corridor, has also been provided for as included in the table, although there is a possibility that not all of this area will be disturbed, and these values may be lower.

Table 1: Earthworks volumes and areas

	Approx. Cut	Approx. Fill	Approx. Area
Site Clearance	17,000m ³	17,000m ³	61,000m ²
Corridor Earthworks	3,000m³	35,000m³	45,000m²

ute Option Designation

Figure 2: Whenuapai – Trig Road Corridor Upgrade

2.3 Project/Site Features

2.3.1 Cross-Section

The indicative existing Trig Road corridor consists of a \pm 7m wide two-lane road and 1.5m footpath along the majority of the western side of the road length. While the final layout of the upgraded

corridor will be confirmed as part of detailed design, a typical cross-section has been developed for the corridor. The indicative cross section for the road alignment includes:

Trig Road:

• 2 x 3.5m wide traffic lanes divided by a 3m wide median

Trig Road - Adjacent to western road edge:

- 1.5 2.7m wide berm containing trees and raingardens
- 1.8m wide footpath
- 0.5m wide berm containing street lighting

Trig Road - Adjacent to eastern road edge:

- 2.7m wide berm containing trees and raingardens
- 4m wide cycleway adjacent to the eastern berm
- 1.8m wide footpath
- 0.5m wide berm containing street lighting

Trig Road – SH18 bridge:

• Provision for a new footpath and cycleway crossings along the existing SH18 bridge crossing (within the corridor of the existing bridge)

Hobsonville Road and Intersections:

 Localised widening around the upgraded intersections at Trig Road/Hobsonville Road and Hobsonville/Luckens Road to accommodate vehicle stacking and tie-ins of new footpaths and cycleways

General

• Batter slopes and retaining walls to tie the corridor into the surrounding ground level.

An indicative cross-section for Trig Road is provided in Figure 3.

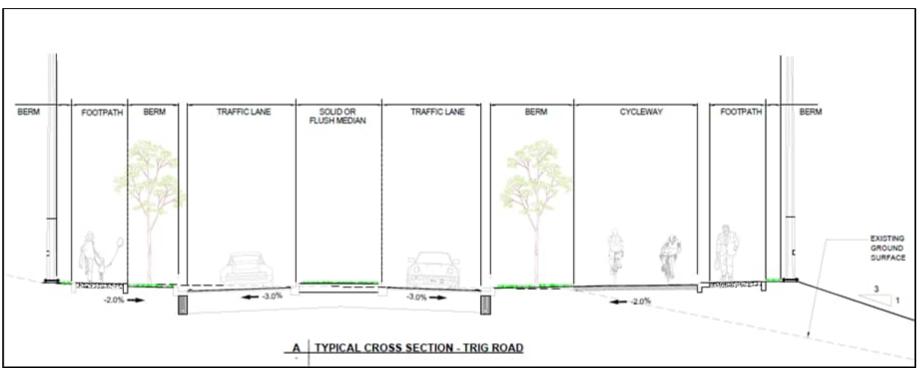


Figure 3: Indicative Trig Road Cross Section

2.3.2 Stormwater Infrastructure

The upgrades to Trig Road will induce necessary upgrades to the existing stormwater infrastructure, allowing for upgrades to accommodate future urban development, and new stormwater management devices. In summary, the specific stormwater infrastructure elements associated with the upgrade of Trig Road will include the following:

- Replacement and upgrading of three existing stormwater culverts under Trig Road, including energy dissipating outfalls
- Construction of new primary stormwater network within the new Trig Road corridor, as well as for portions of Hobsonville Road to be widened
- Installation of new stormwater treatment devices
- Construction of a new detention pond with energy dissipating outfall to Trig Stream (wetland)

Assessment of the construction of these elements will be evaluated in terms of ESC in the sections to follow.

2.3.3 Existing Ground Conditions

Soil classifications obtained from the New Zealand Geology Maps indicated two main soil groups in the Trig Road area. The two main soil groups are as follows (GNS Science, 2018):

- East Coast Bays Formation (Waitemata Group) forming in the steeper slopes. This group consists of a variation of interbedded, graded sandstone and siltstone, or mudstone and sandstone, as well as local intercalated volcanic grit.
- Puketoka Formation forming in the gentle slopes and low-lying areas. Undifferentiated alluvium can be found in gullies and within flood plains around streams.

These soils comprise of areas of both low permeability as well as pockets with high soakage potential.

2.3.4 Topography, Catchments, Drainage and Receiving Environments

The greater Whenuapai 3 precinct topography has been identified as a predominately low-lying catchment, with mostly flat to rolling landscapes, with localised areas of steeper terrain mainly to the south. Figure 4 below indicates the contours, typical topographical flow paths and major receiving waterbodies for the Project area and its surrounding catchment areas.

Figure 4: Trig Road surrounding overland flow paths and receiving waterbodies

As depicted from the contours, the existing Trig Road alignment is predominately located on a ridge line with the surrounding catchment areas falling away from the road. Trig Road comprises of a steep fall from south-east to north west just off Hobsonville intersection (±8%) for ±300m, with the remaining road length towards the SH18 comprises flatter grades and localised low points.

The catchment area west of Trig Road has a general fall to the west, with two main sub-catchments draining into/forming into a head branch of Totara Creek, which subsequently drains out of the Whenuapai 3 Precinct, discharging into Brigham Creek. The catchment area east of Trig Road (and those which form in smaller sub-catchments of localised low points along Trig Road) has a general fall to the east, with three main sub-catchments draining into/forming into head branches of predominately Trig Stream and Rawiri Stream, followed by Waiarohia Stream, all of which subsequently drain towards the Waiarohia Inlet.

A geotechnical study was carried out within the Project area and identified a highwater table and groundwater seepage at the south eastern branch head of Trig Stream (wetland), adjacent to Trig Road, with water encountered at ±800mm below ground level.

Waiarohia Stream and Trig Stream (and related wetlands) will be the most directly affected environmental areas of significance during construction works due to large fill embankments encroaching into the watercourse and the upgrades to the existing stormwater crossing discharging into these streams.

2.3.5 Contaminated Land Assessment

Previous studies and site investigations carried out within the Whenuapai area, as mentioned within the Whenuapai Structure Plan (2016) and Whenuapai 3 Precinct Stormwater Management Plan (a technical document supporting Council's Proposed Plan Change 5), past applications of pesticides and fertilisers for agricultural activities present the potential for elevated contaminations of soil within

the general area, and a historical landfill site has been identified just east of the Whenuapai Air Base which is the only notable/specific land contaminant point of interest near Trig Road.

A Preliminary Site Investigation has been completed for the Project. Contaminated land should be managed in accordance with the recommendations of that report.

3 Statutory Context

3.1 Notice of Requirement

This assessment has been prepared to support the NoR process for the Project. Section 171 of the RMA sets out the matters that must be considered by a territorial authority in making a recommendation on a NoR. This includes consideration of the actual or potential effects (including positive effects) on the environment of allowing the requirement.

3.2 Regional Resource Consent Application

AT are also seeking regional resource consents under the AUP:OP and resource consent under the National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health. Consents are required to a number of activities including bulk earthworks.

Overall, the application is assessed as a Discretionary Activity.

3.2.1 Relevant Standards and Guidelines

The following standard documents and guidelines were utilised in the development of a suitable ESC Plan for the Project:

- AUP:OP Particularly with regard to:
 - o Chapter E3: Lakes, Rivers, Streams and Wetlands
 - o Chapter E11: Land disturbance Regional
 - Chapter E12: Land disturbance District
 - o Chapter E26: Infrastructure
- GD05
- Technical Publication No. 108: Guidelines for Stormwater Runoff Modelling in the Auckland Region

4 Indicative Construction Methodology

An indicative construction methodology has been prepared to inform the assessment of the Project and, while subject to change, assists in determining the envelope of effects. An overview of the construction methodology is set out in the AEE. The final construction methodology for the Project will be confirmed during the detailed design phase and finalised once a contractor has been engaged for the work.

A summary of the key components of the indicative construction methodology is outlined in the subsections below and plays an integral role in the development of a suitable ESC Plan for the Project.

4.1 General Construction Overview

The total construction phase of the Project is expected to take approximately 18 to 24 months. It is anticipated that the works will be broken down into separate construction zones based on the type of works required and the nature of the work environment. These anticipated zones are:

- Zone 1: Trig Road North of the SH18 bridge
- Zone 2: Trig Road South including the SH18 bridge
- Zone 3: Hobsonville Road.

4.2 Construction Methodology

Each zone has different construction activities depending on the type of work to be done and the surrounding environment. In all cases the general sequence of construction is likely to be:

- 1. Divert or remove services
- 2. Construct permanent stormwater drainage crossings and environmental controls
- 3. Move traffic away from works longitudinally
- 4. Construct earthworks and retaining structures
- 5. Construct new longitudinal drainage
- 6. Construct new pavement to half of the road
- 7. Move traffic onto newly constructed pavement
- 8. Complete longitudinal drainage
- 9. Complete pavement and median
- 10. Move traffic to new alignment
- 11. Complete footpath and cycleway

The activities for each zone are summarised in Table 2 below.

Zone	Construction Activity
1	 Site clearance Remarking of existing road and bridge deck New cycleway and footpath on west side New cycleway crossing
2	 Site clearance Diversion of overhead services on west of Trig Road Construction of three new drainage culverts Construction of new dry pond for stormwater attenuation Cut/fill earthworks New retaining walls to the front of properties on the west of Trig Road Construct new berm and footpath on the west of Trig Road Construct new berm, footpath and cycleway on the east of Trig Road New road surface and median Line marking Lighting and road furniture
3	 Site clearance Divert services Cut/fill earthworks Construct new stormwater drainage New retaining walls to the front of existing property Construct new cycleway and footpath on both sides of Hobsonville Road New road surface and median Lighting and road furniture

Table 2: Trig Road Corridor Upgrade Construction Activities Summary

All three zones consist of works for which ESC measures will be applied with varying magnitude. The construction works in Zone 2 consist of the majority of earthworks and stormwater drainage upgrades and will have the greatest potential impact on the downstream receiving environment and watercourses to be addressed.

The current construction methodology and programme is based on works being constructed concurrently across all 3 zones to achieve the shortest construction period.

Environmental controls will be set up prior to start of site clearance within each zone and be maintained for the duration of works and until such time that any exposed surfaces have been stabilised. General ESC measures to be expected on site as well as specific ESC measures for each zone will be discussed in section 5 and 6 respectively.

4.3 Plant and equipment

Table 3 provides an indicative list of plant and equipment which may be required for the construction across the three zones.

Table 3: Trig Road Corridor Upgrade Plant and Equipment Summary

Construction Type	Construction Activity
Typical across all works	 Site facility Light vehicles Hiab truck Small tools and plant
Clearing	 20T excavator Mulcher Tandem tipper
Overhead line relocation	 Line crew Elevated work platform or cherry picker Directional drilling equipment
Bulk Earthworks	 30T excavator 20T excavator Compactor/Sheepsfoot roller Water cart Tippers/ADT's
Drainage	 20T excavator Trench shields Tandem tipper Loader Plate compactor
Pavement Construction	 Grader Smooth drum roller Tandem tippers Kerbing machine Plate compactor Paver

5 Principles of ESC

Erosion and the associated effects of sediment deposition has the potential to cause both physical and ecological disturbance within a watercourse/stream, and control measures both during construction and within the design of permanent structures needs to be considered. This should be in accordance with GD05, which supersedes the previously used Technical Publication 90.

This section outlines the objectives of implementing ESC measures, and describes the typical methods utilised during various construction activities. Section 6 following will provide site specific erosion control measures in order to achieve these objectives.

5.1 Key Objectives

Key objectives of the ESC Plan for the Project and associated works include the following:

Construction methodology/staging of works:

Selection and implementation of appropriate construction methods to facilitate staged construction works. This allows for more manageable ESC measures by confining works to smaller sections, making it easier to monitor and maintain, particularly when multiple measures are in place. Staging also means that the areas of exposed soils during earthworks is minimised or limited to only the specific area where works are taking place, minimising erosion of loose soils by wind and runoff, and facilitating dust management. Staging earthworks allows for progressive stabilisation during the construction period.

Minimising disturbance

Minimising disturbance by keeping earthworks and area of works to a minimum during operations, ensuring stability of surrounding slopes and structural integrity of nearby infrastructure is maintained. This is applicable to both vegetation removal, earthworks required to carry out cut/fill operations and works within existing watercourses during stormwater crossing upgrades.

Protection of existing watercourses

Diversion of clean water away from areas of disturbance and diversion of sediment laden runoff from disturbed areas/exposed soils during earthworks to prevent sediment laden runoff discharging into watercourses and adversely affecting downstream stream health (both ecological and physical).

Pollutants and debris/construction materials should also be carefully controlled so that these are not deposited within the bed, with the potential to be conveyed downstream along with sediment.

Minimising earthworks and vegetation removal around and within watercourses to reduce the exposure of soils, and consequential erosion potential from scouring or wind during stormwater crossing upgrades.

Protection of receiving streams is also applicable for the permanent structures. Outfalls will be designed to ensure stormwater discharges have minimal erosion and scouring impacts.

Protection and stabilisation of embankments

Protection of steep embankments by means of clean water diversion, contour channels along embankments, and progressive rapid stabilisation with the application of temporary straw mulch, geotextiles or similar, and hydro-seeding/grassing for permanent measure.

Protection of existing watercourse embankments by limiting vegetation removal and earthworks during stormwater crossing upgrades.

• Retention devices to allow for settlement of suspended solids/sediment laden runoff

Allow for sediment laden runoff to be detained and treated to facilitate the settlement of solids prior to discharging back into downstream watercourses.

• Monitoring and maintenance

ESC measures should be monitored and maintain throughout the construction works so that they remain operational and fit for purpose, and modified accordingly to suit changes on site.

5.2 Erosion and Sediment Prevention/Sources Control Measures

Non-structural ESC principles applied from the start of a project can reduce the need for structural controls. Preventing erosion is considered more effective that managing the consequences of it. The following general measures can be taken to facilitate in preventing erosion and sediment generation/transport at its source:

Source/Activity	Source Control Measure
General site management	 Schedule construction works with wet and dry seasons taken into consideration. Plan according to climate/weather forecast to account for heavy rainfall/wind
	 Stage earthworks within the construction methodology to allow for more manageable sections of works and keep exposed surfaces to a minimum as far as practically possible
	 Stabilise work areas with high sediment generation potential by placing geotextile or using other approved methods prior to commencement of works
	 Provide unobstructed and stabilised overland flow paths prior to rainfall events
	Regularly sweep or remove any accumulated sediment associated with the works
	 Provide stabilised permanent entranceways/exits to the site with aggregate, and optionally incorporate a wheel wash system to provide additional prevention of sediment transfer outside of the construction area
	 Use water sprinkling from water carts to minimise wind distribution of sediments/dust
Stockpiles	Stockpiles are to be in construction areas serviced by ESC measures only
	 Stockpiles should not be located near overland flow paths or within floodplains
	 Removal and handling of contaminated material must follow a prescribed Soil Management Plan
	 Stockpiles of fine material are to be wetted to reduce the potential for windblown sediments, or receive temporary coverings such as geotextile fabric during periods of inactivity

Table 4: Erosion and Sediment Source Control Measures

Sediment transport due to runoff from external catchments entering the construction site	 Construct cut off channels/diversion bunds to divert clean upstream runoff away from the site, and prevent exposed soils being lifted and washed downstream Use clean water diversions (e.g. sandbags, compacted earth) where there is steep terrain uphill of the works area to reduce the volume of water requiring management
Works within a watercourse or watercourse/replacement of existing stormwater crossings	 Upstream and downstream sandbag coffer dams to be used to isolate work areas or temporarily divert flow, to allow for dry construction works, or where possible opt for offline construction only, and diversion of flow to new structure after completion Temporary pipes and culverts to be used to divert flows Erosion and scour protection (e.g. rip rap or geotextile) to be used at temporary and permanent outlets
Erosion due to runoff over reinstated ground	Maintain ESC structures in place after completion of works until stabilisation has been established

5.3 General ESC measures

The following general measures can be applied for different types of construction activities in the Project to control erosion and sediment transport, manage sediment deposition and subsequently prevent adverse effects thereof to the receiving environment.

ESC Measures	Application
Catchpit/ Stormwater inlet protection	Install permeable silt socks/coir logs or small silt fences as a ring around stormwater inlets to act as a barrier for filtering out sediment fines from channel flow runoff. Can also be installed in series upstream of the stormwater inlet to act as check dams. Additionally gratings/inlets can be covered with a geotextile to filter sediment laden runoff before discharging into the stormwater network. These methods are to be used in conjunction with other sediment control measures.
Chemical Treatment	Used to improve the efficiency of sediment retention devices by dosing sediment laden runoff with coagulant reagents to assist in flocculation of particles and faster settlement of sediment fines. This treatment method requires a high level of monitoring and maintenance to ensure safe and effective usage on site, and its viability as a treatment method is dependent on soil type. The two main methods of treatment/dosing are batch dosing and rain activated dosing.

Table 5: General ESC Measures

Contour drains	Install/construct across the contours of long and/or steep exposed slopes, as a temporary measure only, during earthworks to break sheet flow by reducing slope length, subsequently reducing flow velocities and the erosive power of thereof. Contour drains should have erosion protected outlets and drain towards diversion channels/bunds.
Decanting earth bund	Smaller than, however similar to, sediment retention ponds (SRP) in function, decanting earth bunds are enclosed areas used to collect and retain runoff and allow for sediments to settle out of water before being discharged off site. Used for catchments, <0.3ha, with high concentrations of sediment laden runoff, where runoff treatment is required, and where silt fences cannot be used due to steeper than appropriate slopes.
Diversion channel/bund	Clean water diversion channel/bund:
	 Install upstream of site of works to prevent clean runoff entering site of works, washing over exposed soils and transporting sediments downstream.
	Dirty water diversion channel/bund:
	• Install downstream of the site of works/bottom of catchment/embankment slope to collect sediment laden runoff and transport to appropriate retention site to allow for settlement of solids. Can be used with drop out pits along channel to allow for heavier sediments to settle prior to entering a sediment retention device, reducing the load on the device.
Geotextiles and erosion control blankets	Permeable geotextile blankets or biodegradable fabrics installed as a form of temporary rapid stabilisation on slopes or in channels where permanent vegetation is slow to establish, or where conventional methods such as mulching does not provide sufficient erosion resistance due to high flow velocities.
	Installed temporarily at inlets/outlets of SRP, within diversion channels or as covers over slopes/batters or stockpiles during periods of inactivity. Plastic covers can also be utilised for covers over stockpiles, stockpiled contaminated soils or material for reuse.
Grass seeding	Temporary or permanent stabilisation by seeding grass to provide vegetative cover for exposed soils, to protect against raindrop impact, reduce runoff velocities and assist in binding of loose soils. Rapid-growing annual grass can provide quicker coverage with rapid establishment for short term stabilisation, and perennial grass can provide for permanent stabilisation.
Hydroseed	Stabilisation method by application of seed and fertiliser mix in the form of a slurry, to allow for seeding and revegetation on steep, inaccessible slopes or in areas with minimal/no existing topsoil to facilitate seeding.
Mulching	Typically, straw applied to the soil surface as a protective layer for short to medium rapid stabilisation to assist in erosion protection from raindrop impact or wind on exposed soils/embankments (not within channels or overland flow paths). Assists in retaining moisture to facilitate vegetation regrow.

Silt fence	A fence of woven geotextile fabric installed along contours, downstream of disturbed areas to intercept and slow down sediment laden sheet flows, temporarily detain the runoff and allow for larger sediment to settle out of water. Best used on sites with flatter grades, in confined areas, areas with smaller contributing catchments, around water courses, bush reserves etc. These are not to be installed across watercourses or in areas of highly concentrated flows.
Silt socks	Tubular socks filled with filter material (compost, wood, straw, bark etc) used to intercept and filter sediment laden runoff, ideal for very small or isolated catchments for short term sediment control (or for stormwater inlet protection as described above). It can also be filled with sand and used to divert runoff or overland flow to allow for works within existing streams.
SRP	Large ponds used as an end of line sediment control structure in order to collect sediment laden runoff from diversion bunds etc, and allow for settlement of sediment through retention and regulated outflow. Ideally combined with chemical treatment for improved settlement efficiency. Most appropriate end of line sediment control method for sites of 0.3ha to 5ha.

5.4 Establishment

ESC mitigation measures will be installed by the contractor prior to the start of any vegetation clearance, site set up or earthworks.

The contractor is responsible for updating the ESC Plan once the construction and traffic management methodology has been confirmed and resubmitting the updated ESC Plan to Auckland Council for certification, prior to the commencement of works.

5.5 Decommissioning

Decommissioning of ESC measures should only be carried out once the site/contributing catchment surface areas are deemed to be stabilised, with a resistance to erosion typically by mulch, geotextile mats, grassing or a combination of the above. Typically for grassing/vegetation stabilisation, 80% coverage established is considered sufficient for allowing decommissioning of temporary controls. Upon removal of controls, any accumulated sediment deposits must be cleared and disposed of appropriately, and any disturbed areas left by the controls themselves after removal should be stabilised.

6 Specific ESC Measures

This section is to be read in conjunction with the indicative ESC Plan Layouts provided in Appendix 1, with a detail of the SRP included. The measures described for each zone are based off the indicative construction methodology at the time of AEE development. The contractor's final methodology may differ based on final design detail changes and future staging requirements, as such, the contractor will be responsible (on behalf of AT) for seeking certification of a revised ESC Plan to reflect the final detailed design and construction works thereof.

All environmental/management controls are to be set up prior to construction works occurring in that zone and to be assessed and certified for its suitability by Auckland Council.

6.1 Zone 1

Zone 1 includes all works on the SH18 bridge crossing and works north of the bridge. The construction activities consist of widening the existing corridor to incorporate a new cycle and footpath extension from the western road edge to ± 180 m north of the bridge (including crossing), and a new cycle and footpath extension from the eastern edge for a shorter ± 60 m portion. Works on the SH18 bridge consist only of modifications to the road markings to accommodate a cycle and footpath.

6.1.1 Clean water diversion

Upstream runoff currently flows overland, across the western road edge and into the carriageway. The scale of works within this zone is relatively minor, with minimal earthworks, minimal cut/fill batters and low volumes of adjacent upstream runoff is expected over the site. Diversion of clean upstream runoff can be managed mainly with sand bags/logs, and at worst low level hotmix diversion bunds.

The first ±100m of cycle/foot path works lies adjacent to an existing bund/mound with an existing scruffy dome inlet collecting majority of upstream runoff. Cutting into the existing mound will be required for the width extension and a shallow diversion trench connecting to the existing field inlet can be used to divert minor flows and prevent runoff over new layerworks for the cycle path. Alternatively, if upstream runoff potential is found to be minor, temporary sand bags/logs can be used instead.

Sand bags/logs can be used for the remaining western edge works to divert upstream runoff away from the new layerworks and expected exposed soils, and onto existing impervious driveway surfaces for drainage into the carriageway.

6.1.2 Silt fences/silt socks

Silt socks should be used downstream of and adjacent to the new cycle and footpath extension works along the western road edge to prevent sediment laden runoff entering the carriageway. A silt fence should be used on the eastern road edge, downstream of the ±60m long cycle and footpath extension to capture any runoff from this area of work. Only minor works to the existing berm and kerbs can be expected on the remainder of the eastern edge, for which runoff can be managed with silt socks/coir logs.

Two existing inlets within the Zone 1 carriageway should receive silt sock/coir log rings for additional inlet protection.

6.2 Zone 2

Zone 2 includes all works south of the SH18 bridge crossing up to the intersection of Hobsonville Road. The construction activities in this zone includes redevelopment of Trig Road from an existing 2-lane carriageway to a 2-lane carriageway with centre median, footpath along the western edge and 2-way cycle lane and footpath on the eastern edge.

The majority of the corridor widening occurs on the downstream eastern edge resulting in fill embankments over 5m high. Earthworks of this nature, particularly occurring in and around existing watercourses where diversions are required, needs the construction methodology to be carefully planned and a high level of monitoring carried out during construction so that the control measures are in place and operating correctly prior to them being needed.

The area of works consists of three low points/watercourses downstream, each of which will receive different management and control measures.

6.2.1 Catchment 1

Catchment 1 includes all works and activities upstream of, and with the potential to affect the receiving Waiarohia Stream.

6.2.1.1 Stabilised entranceway

The existing greenfield areas adjacent to the Waiarohia Stream overland flow path will be used for site establishment, with access off the existing service roads. Entranceways from Trig Road into the site establishment and into the adjacent greenfield area will be stabilised in accordance with GD05, with minimum 50mm aggregate placed 150mm thick. Wheel washing may also be incorporated within this area to minimise transfer of sediments between work areas and site establishment.

6.2.1.2 Clean water diversion

Two clean water diversion bunds/channels will be required upstream of Trig Road to direct clean runoff from the upstream catchment (total ±1.3ha) towards the existing inlet and Ø150mm pipe crossing into the gully leading to Waiarohia Stream and prevent runoff towards new fill embankments and over new cut embankments. Initial diversion bunds should be placed so as to divert runoff past the new pipe crossing location to allow for dry, off line construction works. Once the new pipe crossing has been established the diversion bunds should be reconstructed to divert all runoff into the new inlet and allow for offline decommissioning of the existing crossing.

6.2.1.3 Silt fences

A silt fence will be required downstream of the fill embankment on the eastern side of Trig Road, to manage sediment laden runoff expected after these earthworks are completed, constructed behind the new stormwater pipe crossing headwall when crossing upper Waiarohia Stream. The silt fence should incorporate short returns to accommodate for slope grades as well as a minimum 5m grass buffer either end at Waiarohia Stream discharge. The initial placement of the silt fence should be further downstream to allow for vehicle access during embankment construction, shifted up on completion of earthworks and stabilisation. A perimeter silt fence should also be installed along the downstream boundaries of the site establishment yard to manage sediment laden runoff from construction vehicles and stockpiling sources, preventing washing off into the overland flow path.

6.2.2 Catchment 2

Catchment 2 includes all works and activities upstream of, and with the potential to affect the receiving Trig Stream.

6.2.2.1 SRP and chemical treatment

The stormwater drainage system for Trig Road incorporates a dry pond for on-site attenuation. This pond will be utilised temporarily as a SRP for the duration of the construction works, allowing for collection of runoff from dirty water diversion bunds, runoff retention, treatment and settlement of fines for a portion of catchment 2 earthworks.

All piped stormwater flow is designed to drain into the dry pond from various catchments, thus any sediment laden runoff collected from the carriageway during the construction period will be diverted to the pond for retention and settlement of fines. All catchpit inlets and dropped kerb inlets into raingardens should receive protection by use of silt socks regardless.

The dry pond has been designed to accommodate a peak attenuation volume of $1220m^3$, fully draining. As per GD05 requirements the SRP will cater for minimum 3% of the contributing catchment volume which equates to $\pm 205m^3$ for the immediate bunded earthworks area catchment and a maximum total of $\pm 1075m^3$ for the catchment including runoff from the carriageway directed to the pond through the piped network.

The SRP will be designed to allow for level spreading of sediment laden runoff entering in from the dirty water diversion bunds, and the intake manhole will be designed to allow for 30% retention volume. Upon decommissioning of the SRP, modifications will be made to restore dry pond functionality as per detail design.

Appendix 1 includes details for the SRP components in accordance with GD05 standards. The SRP design is to be finalised once detailed design for the Project has been completed in future and the final dry pond location/size is clarified. The SRP pond is to incorporate GD05 standards while making use of the proposed dry pond structure. All final SRP details must be outlined in a revised ESC Plan for certification by council prior to commencement of works.

The SRP will include chemical treatment (typically by the rainfall activated method) in its process to assist with settlement of sediment and improve its efficiency. Bench testing will be carried out and details of the selected reagents and dosing procedures must be specified in a separate flocculation management plan to be required under conditions of consent for certification by Auckland Council.

The SRP must be constructed prior to all works commence, along with the construction of its own required sediment control measures.

6.2.2.2 Clean water diversion

Similarly to catchment 1, two diversion bunds/channels will be required upstream of Trig Road to direct clean runoff from the upstream catchment (total ±1.95ha) towards the existing inlet and Ø375mm pipe crossing into Trig Stream and prevent runoff into the proposed raingarden excavation area, towards new fill embankments and over new cut embankments. Initial diversion bunds should be placed to divert runoff past the new pipe crossing location to allow for dry, offline construction works.

Once the new pipe crossing has been established the diversion bunds should be reconstructed to divert all runoff into the new inlet and allow for offline decommissioning of the existing crossing. This diversion bund should extend along the boundary of the proposed raingarden excavation to allow for dry works area. A clean water diversion bund should also be incorporated south east of the SRP, upstream of the pond cut embankment.

6.2.2.3 Dirty water diversion

Dirty water diversion bunds/channels will be utilised for transporting sediment laden runoff from the fill embankment on the eastern side of Trig Road towards the SRP to allow for treatment and settlement of fines prior to discharge.

Dirty water diversion bunds will also be required along the toe of the SRP fill embankment, these will drain towards a decanting earth bund for settlement of fines prior to discharge.

6.2.2.4 Decanting earth bund

A decanting earth bund will be placed at the base of the SRP, adjacent to the SRP outlet, for collection and retention of only the runoff from the pond fill embankment, sized to accommodate a minimum 2% of the contributing catchment volume (±30m³) and constructed in accordance with GD05 requirements.

6.2.2.5 Silt fences/silt sock

A silt fence will be required along the downstream side of the proposed fill embankment off the western road edge to prevent sediment laden runoff entering the existing adjacent residential properties.

6.2.3 Catchment 3

Catchment 3 includes all works and activities upstream of, and with the potential to affect the receiving Trig Stream (upper branch).

6.2.3.1 Dirty water diversion

Dirty water diversion bunds will be utilised for the collection and transport of sediment laden runoff from the large fill embankment within the upper branch of Trig Stream, and discharge into a decanting earth bund adjacent to the new stormwater pipe outlet. The diversion bund will cut across the embankment above the new headwall outlet.

Given the long slope length, a temporary cut-off drain should be used mid-way of the slope when high rainfall is expected, to intercept sheet flow. A silt fence should be incorporated at the base of the embankment adjacent to the stream for additional protection.

6.2.3.2 Decanting earth bund

A decanting earth bund will be placed at the base of the fill embankment for collection and retention of runoff from the fill embankment, sized to accommodate a minimum 2% of the contributing catchment volume (±60m³) and constructed in accordance with GD05 requirements.

6.2.3.3 Silt fences/silt sock

A silt fence will be required along the downstream side of the proposed fill embankment off the western road edge to prevent sediment laden runoff entering the existing adjacent residential properties.

6.3 Zone 3

Zone 3 includes all works within Hobsonville Road associated with corridor widening to accommodate for new cycleways and footpaths, new turning lanes to accommodate for the Trig Road intersection, new raingarden and temporary laydown yard north of Hobsonville Road, and an additional lane for a portion of Luckens Road. Construction activities in this area are to be to be managed to reduce the effects on adjacent residential properties, on the downstream piped stormwater network and Rawiri overland flow paths north of Hobsonville Road.

6.3.1 Silt socks/silt fences/sand logs

Erosion and sediment will mainly arise from activities during corridor extension and associated cut /fill operations for new road layerworks, and trench excavations for stormwater pipe installation.

A combination of silt fences and/or sand logs are to be used to divert clean runoff from properties away from site excavations, discharging into the carriageway downstream outside out the area of works, or to prevent sediment laden runoff from the site entering onto adjacent properties. These measures are to be utilised either side of Hobsonville Road and along the western edge of Luckens Road.

A perimeter silt fence should be installed around the proposed raingarden excavation area and outlet piped down to Rawiri overland flow path. The silt fence should also extend east to incorporate the proposed temporary laydown area north of Hobsonville Road.

Silt sock rings must be installed around all existing stormwater inlets within Hobsonville Road and Luckens Road area of works, as well as further downstream to ensure no sediment laden runoff from the site enters the existing stormwater network.

6.3.2 Decanting earth bund

The proposed new raingarden includes a 600mm deep, 200m³ attenuation capacity which can be utilised as a temporary treatment device for settlement of sediment laden runoff from the nearby works.

6.4 Dewatering

Dewatering will be applicable across all three zones for a combination of works including trench excavations for stormwater pipes, excavations for manhole and catchpit construction, and dewatering of sediment control devices for maintenance or decommissioning, with water originating from either surface runoff after rainfall events or ground water or a combination.

Minimal dewatering is expected in Zone 1. Dewatering in Zone 2 from stormwater structure excavations can be pumped to silt fenced areas downstream for small volumes, or into dirty water bunds/channels for subsequent drainage into decanting earth bunds or the SRP for larger volumes.

Dewatering from excavations in Zone 3 can be pumped to localised devices such as turkey nests for treatment prior to discharge or pumped through dewatering bags or pipe socks for smaller volumes. All water discharged off site should have a minimum water clarity of 100mm. Minimising long runs of open trenches and ensuring trenches/excavations are backfilled as soon as practicable will decrease the volume of dewatering required.

As noted in section 2.3.4, a continuous groundwater feed should be expected within the large fill embankment area on the south eastern side of Trig Road. In-situ counterfort drains and drainage layers will be installed as part of these construction works to cater for groundwater flows and subsequently, a constant sediment laden runoff should be expected to be managed during the in-situ drainage installation.

6.5 Stream protection

Construction works within Zone 2 consists of activities directly within the upper gullies leading to existing watercourses (catchment 1 – Waiarohia Stream, catchment 2 – Trig Stream/wetland, catchment 3 – Trig Stream/wetland upper branch) with potential to cause adverse effects to ecological health of the streams.

All three stormwater culvert crossing upgrades/extensions under Trig Road can be completed offline given their realignment, therefore typical control measures such as bunds/silt/sand logs should be used to prevent loose soil runoff into the adjacent watercourse.

Outlets will be constructed in approximately similar positions downstream as existing structures and some water diversion from existing outlets with the use of sandbags may be required to allow for dry working space while the existing outlets remain functional. Silt fences should be used around the downstream perimeter of outlet construction areas. Water diversion and sediment control measures are to be used progressively as required and adapted to suit changes to conditions on site.

The earthworks operations will be handled with controls as described above. Tree removal will be required on Trig Stream upper branch to accommodate for the embankment fill, and measures should be taken to minimise disturbance to surrounding vegetation and soils, followed up with compaction and temporary stabilisation of the area to cater for the period prior to continuance of earthworks.

6.6 Stockpiling

Stockpiles consisting of spoil or materials to be used in the construction activities will for the most part be located in the allocated construction yards (indicatively identified at 19 Trig Road and 80 Hobsonville Road), alternatively small stockpiles can be located adjacent to immediate areas of work. As far as practical, measures should be taken to ensure materials are only stockpiled for short periods of time and are located clear of overland flow paths, watercourses and construction vehicle traffic. Stockpile height should be kept to a minimum and placed in areas sheltered from wind.

Cut/fill material should receive immediate cover once stockpiled for extended periods by use of plastic covers or geotextiles blankets. Larger stockpiles should receive bunds/perimeter silt fencing if high rainfall is expected.

6.7 Stabilisation

All cut/fill embankments will be progressively stabilised by mulching or geotextiles/biodegradable fabric covers upon completion of individual sections of work or during periods of inactivity for short term stabilisation. Grass seeding will be required for long term/permanent stabilisation, for which hydroseeding can be utilised for more inaccessible slopes. All sediment control measures are to be kept in place until vegetation coverage has been 80% established.

6.8 Specific Controls Summary

Table 6 and 7 below provide a summary of the larger/significant environmental/sediment control methods, catchment sizes and expected flow rates for clean and dirty water respectively.

Table 6: Clean water controls

Zone	Catchment Size	Control/Method	Size	5% AEP Storm Flow Rate (m³/s)	1% AEP Storm Flow Rate (m³/s)
2 (Catchment 1)	9500m²	Diversion bund	See typical detail	0.175m³/s	0.240m³/s
2 (Catchment 2)	17560m³	Diversion bund	See typical detail	0.323m³/s	0.445m³/s
2 (Catchment 2)	2255m³	Diversion bund	See typical detail	0.041m³/s	0.057m³/s

Table 7: Dirty water controls

Zone	Catchment Size	Control/Method	Size	5% AEP Storm Flow Rate (m³/s)	1% AEP Storm Flow Rate (m³/s)
2 (Catchment 1)	1950m³	Silt Fence	See typical detail	0.046m³/s	0.062m³/s
2 (Catchment 2)	6800m³	Diversion bund/channel	See typical detail	0.160m³/s	0.215m³/s
	6800m³ + 28700m³ (Including new road footprint)	SRP	1075m ³ (new dry pond structure to be used as temporary SRP including baffles to achieve desired length to width ratio)	0.160m³/s + 0.625m³/s	0.215m³/s +0.824m³/s
2 (Catchment 2 - SRP	1430m ³	Diversion bund/channel	See typical detail	0.034m³/s	0.045m³/s
Embankment)	1430m ³	Decanting earth bund	±30m³	0.034m³/s	0.045m³/s
2 (Catchment 3)	2825m³	Diversion bund/channel	See typical detail	0.066m³/s	0.089m³/s
	2825m³	Decanting earth bund	±60m³	0.066m³/s	0.089m³/s

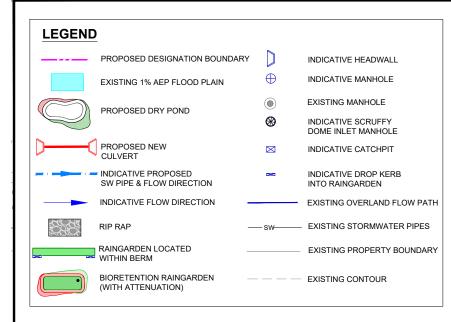
7 Monitoring and Maintenance

The contractor will identify the person on site responsible for the ESC measures (most likely the Site Supervisor or Specialist Environmental/ ESC Manager). The contractor will keep daily records of site inspections and any erosion or sediment issues that may arise. The records will be included with other site information required under the contract and will be available for inspection by the Engineer to the contract. These records will be retained for the duration of the contract.

All silt fences, bunds, dewatering mechanisms and site specific measures constructed for the purpose of ESC will be inspected on a daily to weekly basis and after rainfall events. Details of the inspection schedule will include, but not be limited to, the following as described in Table 8 below.

ESC	Inspection/Maintenance Requirements	Frequency	
Chemical Treatment	 Rainfall activated treatment system will require on-going adjustments to suit runoff and site characteristics. 	Weekly & before and after rainfall	
	• To be serviced as outlined in an approved management plan.		
Clean & Dirty Water Diversion Bunds	 Check for scour and areas where a breach may or has occurred – repair immediately. 	Weekly & after rainfall	
and Channels	Remove sediment build up deposited in the channel.		
	 Check inlets/outlets to ensure they are free from scour and erosion. 		
	 Check for low spots, formation of gullies or debris – repair immediately. 		
Dewatering Devices	• Check for a minimum of 100mm water clarity before pumping treated water directly offsite. It can be measured using a black target (e.g. black disc).	Daily, before & after rainfall	
	 Ensure that outlet of any pumped water pipes is not creating erosion issues. 		
	 Ensure dosing rates and batch dosing methodology is accurate for flocculant treatment. 		
SRP	 Remove accumulated sediment deposits once volume reaches 20% of total pond volume using high capacity sludge pumps. 	Daily, before & after rainfall	
	 Clean out forebay area after each rainfall event if sediment is present. 		
	 Dispose of pumped sediment in a contained location away from overland flow paths and watercourses. 		
	 Check for and repair any damages to the SRP caused by construction activities or erosion. 		
	Check inlets and outlets for obstructions and erosion.		

Table 8: Monitoring and Maintenance Requirements


Silt Fence	 Check geotextile material for tears, broken support wires, undercutting and other damages – repair immediately. 	Weekly & after rainfall
	• Silt build up removal required when bulges in the fabric occur, overtopping or when sediment accumulation reaches 20% of fabric height.	
	• Dispose of cleared sediment in a location away from overland flow paths and watercourses.	
Silt Sock	Check to ensure sediment control efficiency is maintained.	Regularly & after
	 Accumulated sediment greater than 20% of the silt sock height should be removed, or another silt sock can be placed on top of existing. 	rainfall
	Check integrity of silt sock and media prior to reuse elsewhere on site.	
Stabilised areas	<u>Varies with stabilisation method:</u> Hydroseeding/grass seeding: • Apply fertilisers as required after initial hydroseeding.	Daily & after rainfall
	Water regularly to promote growth.	
	 Protect from being washed away by heavy rainfall or reseed where necessary. 	
	 Mulching: Replace mulch in areas of damaged cover, particularly after heavy rainfall or strong winds. 	
	Geotextiles/covers/blankets:Check for tears, damage or displacement and repair, replace or reapply and secure as required.	
Stabilised Entranceway	• Check quantity of aggregate and geotextile for sediment build up and deterioration – apply more aggregate as required to ensure ability of entranceway to prevent sediment leaving the site is maintained.	Weekly & after rainfall
	 Ensure structures used to trap runoff are cleaned out regularly as required. 	
	 Where additional flows from wheel wash are generated, ensure sediment retention devices can accommodate additional flows. 	
	Regularly sweep or vacuum sealed pavements to removed sediment.	
Stormwater Inlet Protection	Check for damage, blockages and leaks – repair immediately. Remove accumulated sediment immediately.	Daily, before & after rainfall
Weather forecast	 Check weather and rainfall forecast. Set up site stabilisation and prepare controls for high rainfall suitability. 	Daily

8 Conclusion

The ESC measures outlined in this report satisfy the regulatory standards and effectively implement the guidelines specified in GD05 for minimising impact to the receiving environment, addressing the triggers for resource consent.

This report has been development for preliminary design stage and to support the AEE as part of the NoR and resource consent application process. A finalised ESC Plan must be compiled and submitted for certification to Auckland Council prior to construction commencement, amended to suit the final detailed design and the contractor's final construction methodology.

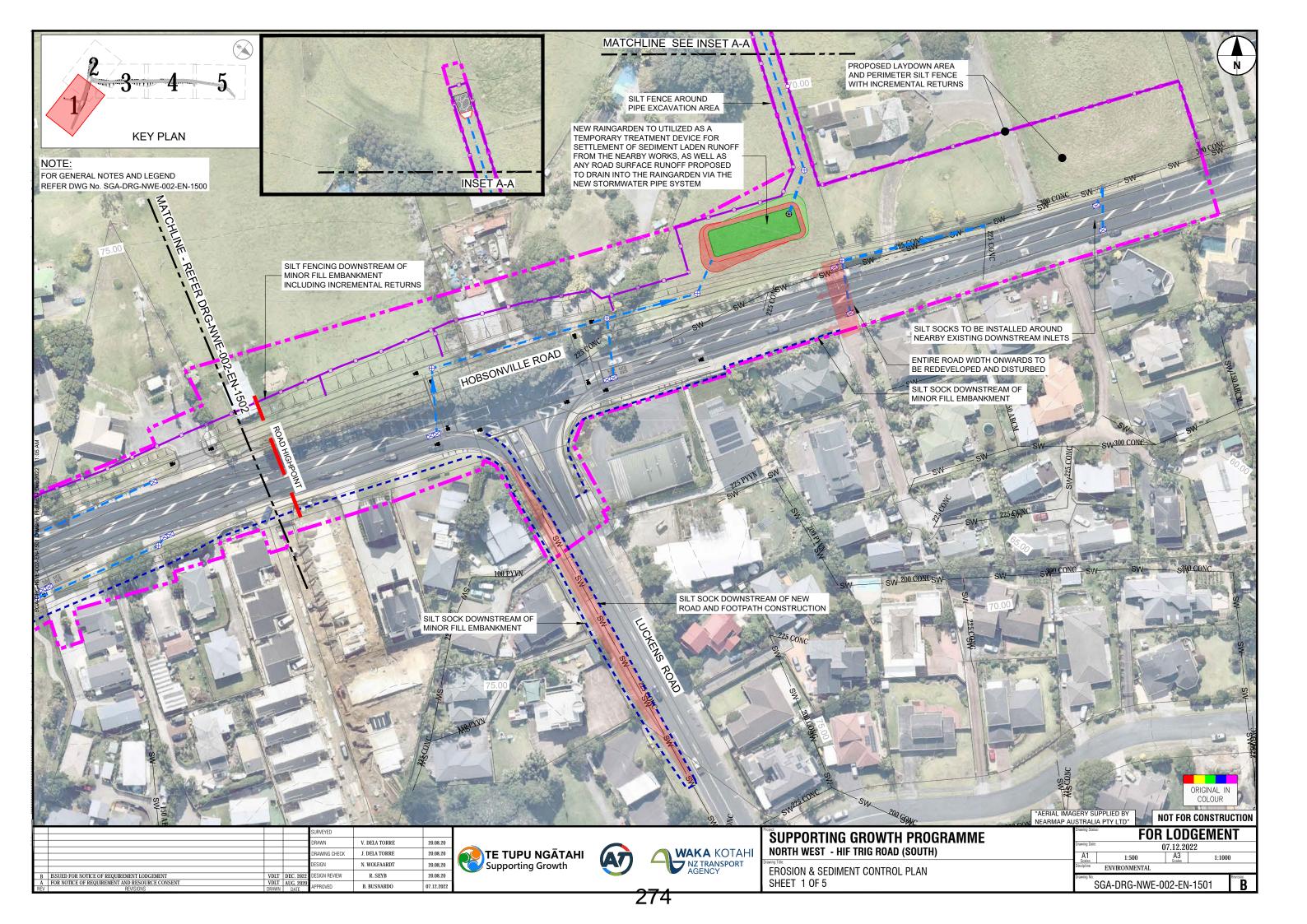
Appendix 1. Indicative Erosion Control Plans

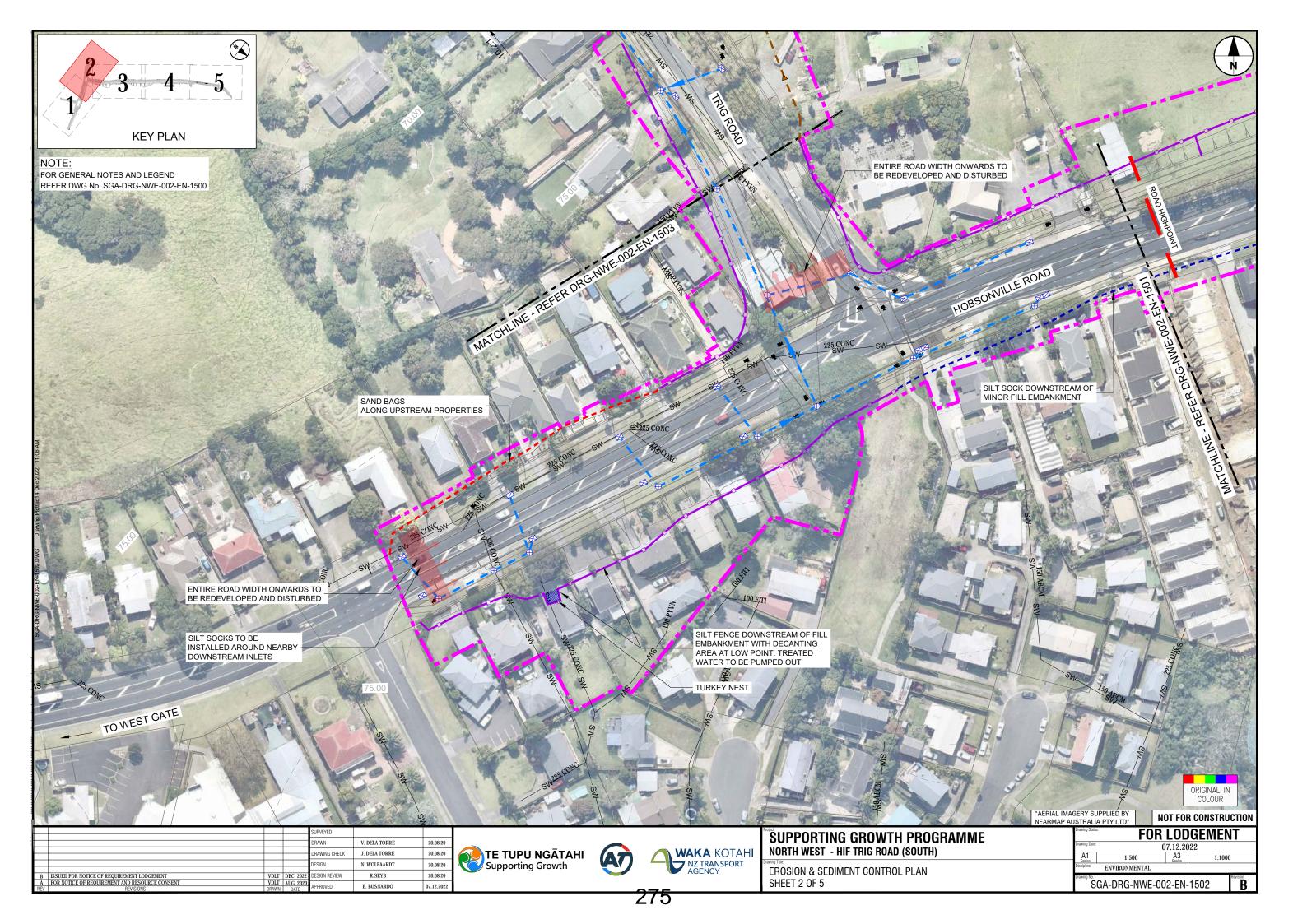
ESCM LEGEND

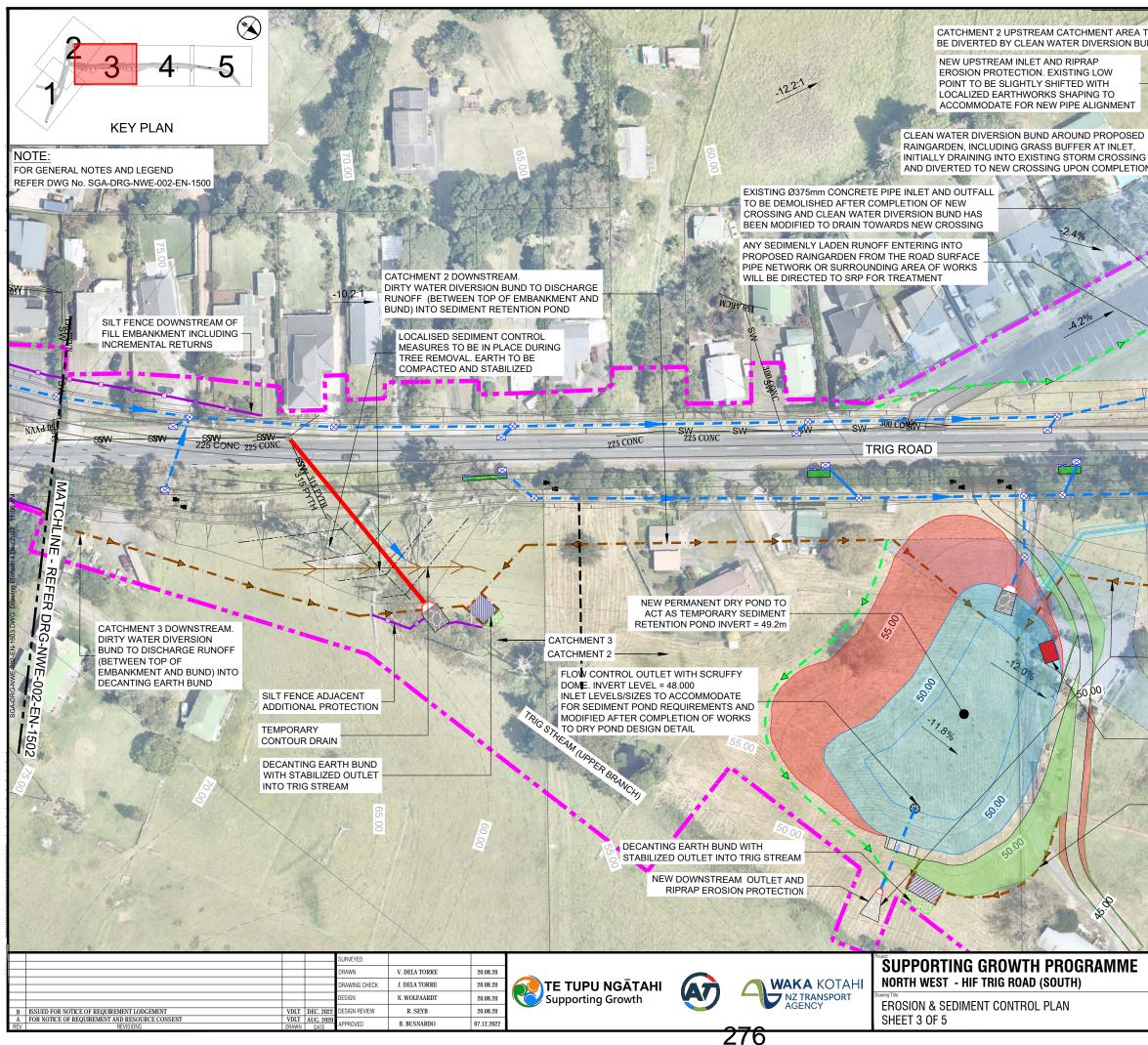
- EXISTING SWALE CLEAN WATER DIVERSION BUND
- 'DIRTY' WATER DIVERSION BUND
- SILT FENCE

SAND BAG/LOG

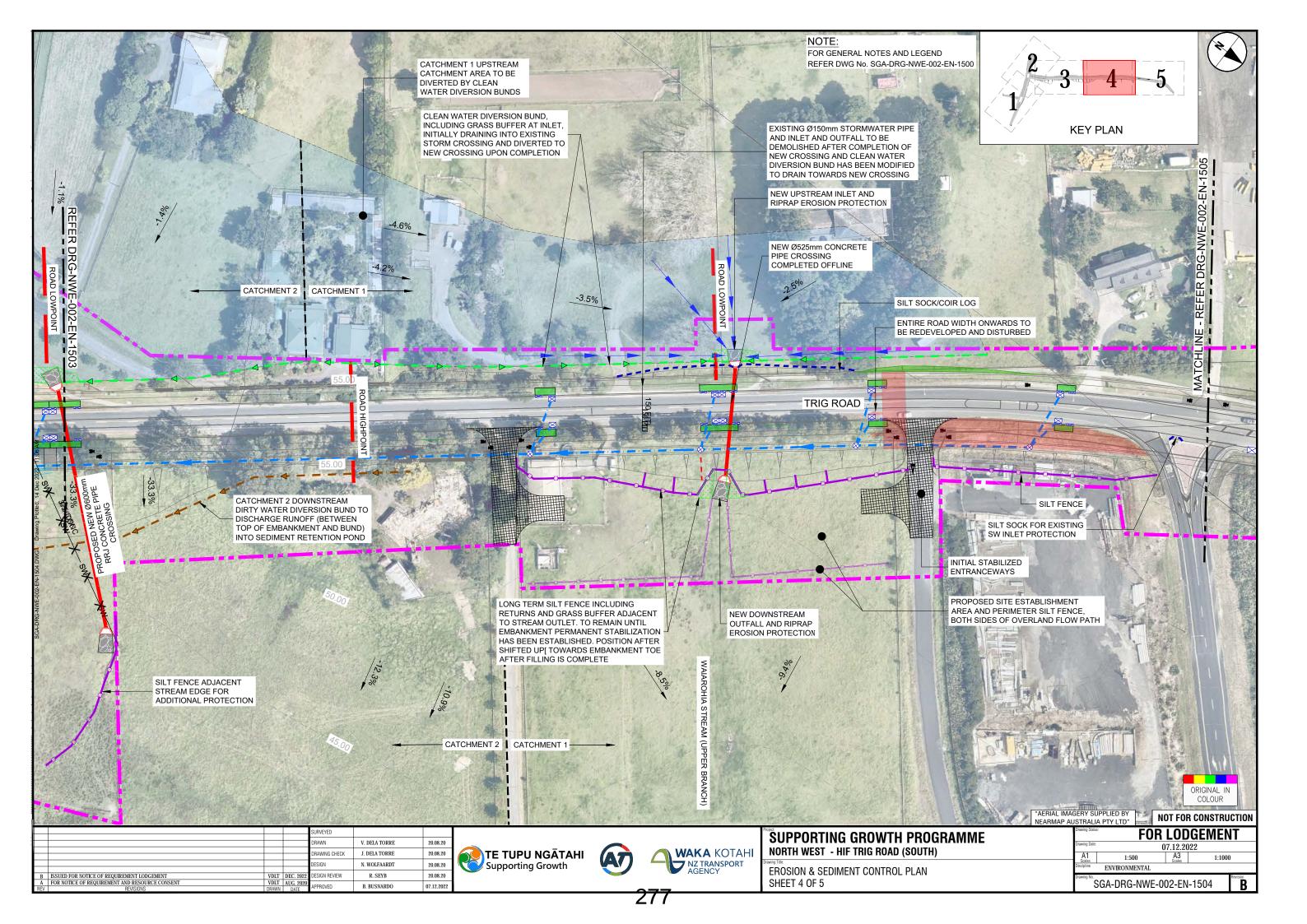
- SILT SOCK
 - CONTOUR DRAIN
 - SILT STABILIZED ENTRANCEWAY
 - DECANTING EARTH BUND

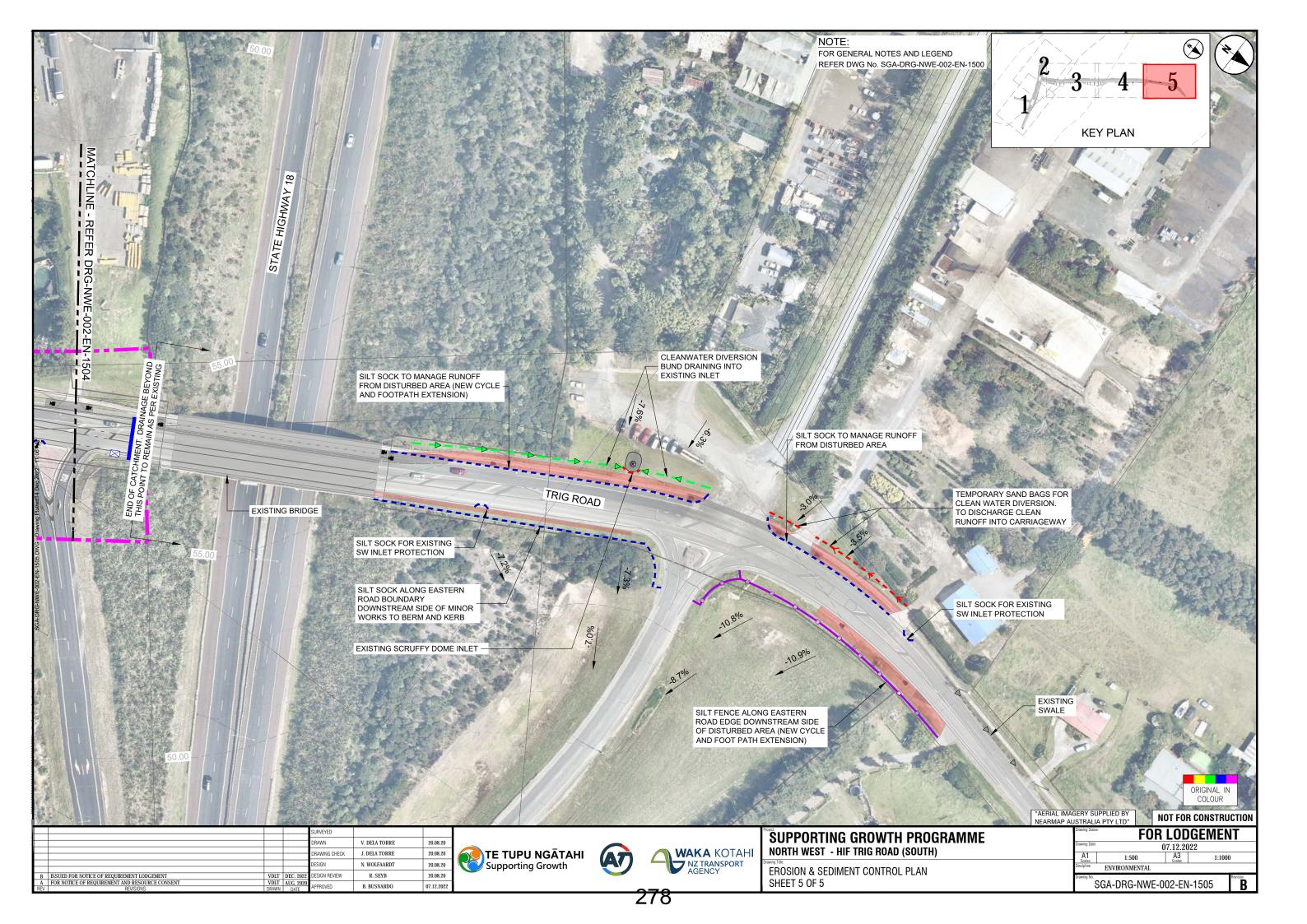

EXTEND SURFACING/LAYERWORKS (DISTURBED AREAS) APPLIES TO FULL LENGTH OF TRIG ROAD AND HOBSONVILLE ROAD AS INDICATED

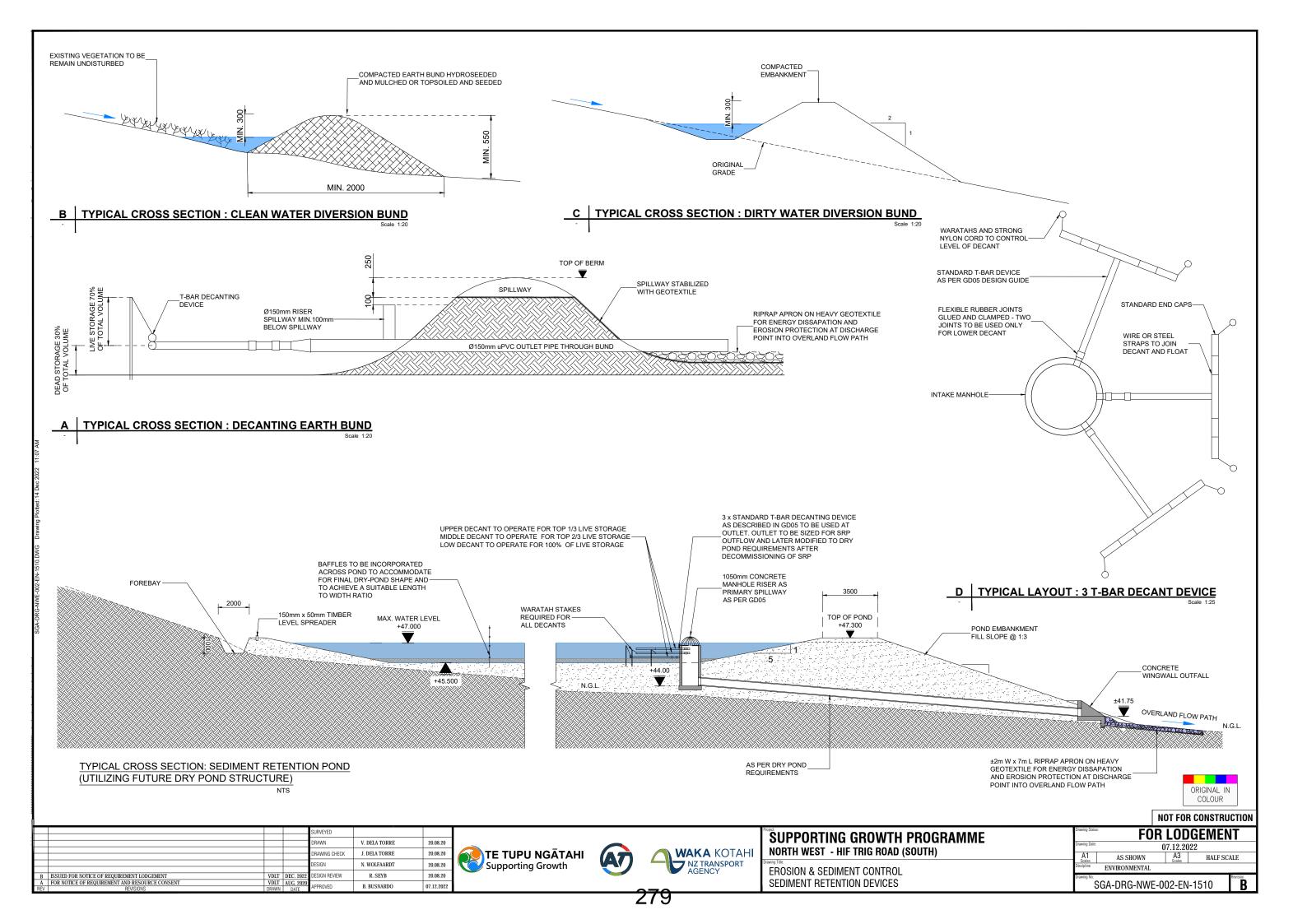

GENERAL NOTES (APPLICABLE TO ALL LAYOUTS):


- ALL ENVIRONMENTAL CONTROLS TO BE SET UP PRIOR TO COMMENCEMENT OF WORKS AND APPROVED FOR SUITABILITY BY ENGINEER
- CLEAN WATER DIVERSION BUNDS TO DIRECT RUNOFF TO EXISTING 2. CROSSINGS UNTIL OFFLINE CONSTRUCTION OF NEW STORMWATER CROSSINGS HAVE BEEN COMPLETED, INCLUDING OUTFALL AND EROSION PROTECTION, AFTER WHICH CLEAN RUNOFF WILL BE DIVERTED TO NEW STORMWATER CROSSINGS.
- 3. STORMWATER CROSSINGS UNDER TRIG ROAD TO BE CONSTRUCTED OFFLINE ALONG NEW ALIGNMENT. DOWNSTREAM DISCHARGE FROM EXISTING CROSSINGS TO BE TEMPORARILY DIVERTED TO ALLOW FOR DRY WORKS AREA AT NEW OUTFALL POSITION.
- WHERE EXISTING STORMWATER PIPES TIE INTO NEW NETWORK, ENSURE 4 DOWNSTREAM STORMWATER PIPES AND OUTFALLS ARE COMPLETED PRIOR TO CONNECTION.
- TRAFFIC MANAGEMENT PLAN TO BE SUPPLIED BY CONTRACTOR FOR ZONE 2 AND 3 OF WORKS FOR WHICH FULL ROAD RECONSTRUCTION IS EXPECTED WITH DETAILS OF PROGRESSIVE CHANGES TO SEDIMENT CONTROL METHODS WITHIN THE CARRIAGEWAY.
- WORKS AND ASSOCIATED EROSION AND SEDIMENT CONTROL MEASURES TO BE STAGED TO MAINTAIN ACCESS TO EXISTING PROPERTIES THROUGHOUT.
- 7. USE CUT AND COVER METHOD FOR OPEN TRENCH INSTALLATION.
- 8. ALL STOCKPILES TO BE COVERED DURING PERIODS OF INACTIVITY.
- ALL EXISTING STORMWATER INLETS AND NEW INLETS DRAINING INTO EXISTING STORMWATER SYSTEMS, TO RECEIVE SEDIMENT PROTECTION.
- 10. ALL SEDIMENT CONTROL MEASURES TO REMAIN IN PLACE POST CONSTRUCTION UNTIL >80% STABILIZED SURFACES HAVE BEEN ESTABLISHED.
- 11. ANY SEDIMENT LADEN RUNOFF COLLECTED OFF THE TRIG ROAD SURFACE AREA WILL BE COLLECTED VIA THE NEW STORMWATER PIPE NETWORK AND DISCHARGED INTO THE SEDIMENT RETENTION POND FOR TREATMENT.
- 12. ANY SEDIMENT LADEN RUNOFF COLLECTED OFF THE ROAD SURFACE OF HOBSONVILLE ROAD, JUST EAST OF THE INTERSECTION, WILL BE COLLECTED VIA THE NEW STORMWATER PIPE NETWORK AND DISCHARGED INTO THE PROPOSED ATTENUATION POND / RAINGARDEN (TO USED AS A TEMPORARY TREATMENT DEVICE DURING CONSTRUCTION) FOR TREATMENT.
- 13. NEW SLOTTED KERB ENTRY INTO AND OUT OF THE PROPOSED RAINGARDENS WITHIN THE BERM ARE TO BE ADDED ONLY AFTER FULL SITE STABILIZATION IS ACHIEVED AND ROAD SURFACE RUNOFF IS NO LONGER SEDIMENT LADEN. RAINGARDENS ARE TO RECIEVE PERIMETER SEDIMENT PROTECTION MEASURES AND TEMPORARY COVERS DURING THIS PERIOD UNTIL OPEN FOR USE.

			SURVEYED						
			DRAWN	V. DELA TORRE	20.08.20				SUPPORTING GROWTH PROGRAMME
			DRAWING CHECK	J. DELA TORRE	20.08.20	ΑΝΤΕ ΤUPU NGĀTAHI		MAKA KOTAHI	NORTH WEST - HIF TRIG ROAD (SOUTH)
			DESIGN	N. WOLFAARDT	20.08.20	Supporting Growth			Drawing Title:
B ISSUED FOR NOTICE OF REQUIREMENT LODGEMENT	VDLT	DEC. 2022	DESIGN REVIEW	R. SEYB	20.08.20			AGENCY	EROSION & SEDIMENT CONTROL
A FOR NOTICE OF REQUIREMENT AND RESOURCE CONSENT		AUG. 2020		B. BUSNARDO	07.12.2022				LEGEND AND GENERAL NOTES
REV REVISIONS	DRAWN	DATE	ATTIOVED	D. DUSHARDO	07.12.2022				


ORIGINAL IN COLOUR
NOT FOR CONSTRUCTION
Drawing Status: FOR LODGEMENT
Drawing Date: 07.12.2022
A1 NTS A3 NTS
Discipline ENVIRONMENTAL
Drawing No. SGA-DRG-NWE-002-EN-1500





TO JNDS		IMATCHLINE - REFER DRG-NWE-002-EN-1504
-33.3%	-33.3%	
AS SEDIMENT RE	D OUTLET TO BE UTILIZED TENTION POND OUTLET, TRIG STREAM INCLUDING PROTECTION	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
CHEMICAL TI	REATMENT DOSING STATI	ON
DIRTY WATER DIV DISCHARGE RUNG EMBANKMENT INT		ND
1	1	ORIGINAL IN COLOUR
	JOTRALIA FITEID	T FOR CONSTRUCTION
	Drawing Date: 07	A3 1:1000
	Scales 1.300 Discipline ENVIRONMENTAL Drawing No.	Scales Revision
	SGA-DRG-NWE-00	02-EN-1503 B

ATTACHMENT 21

TRIG ROAD CORRIDOR UPGRADE PRELIMINARY SITE INVESTIGATION

Supporting Growth Trig Road Corridor Upgrade Preliminary Site Investigation

Version 1.0 August 2020

283

KOTAHI

Document Status

Version no.	Responsibility	Name
1.0	Author	Zoe Lightfoot (2020)
	Reviewer	Emma Trembath (2020) Matthew Kerr-Ridge (2020)
	This report was authored in 2020 by Zoe Lightfoot and reviewed by Emma Trembath and Matthew Kerr Ridge. It has been assessed for issue in 2022 by Phillip Ware. Some aspects of the investigation require updating and additional content in line with the updated MFE Contaminated Land Guidelines. The matters requiring update are not considered to change the overall assessment of risk or approach to further investigation and management and can be addressed during the proposed Detailed Site Investigation.	
	Reviewer	Phillip Ware (2022)
	Approver	Bridget O'Leary (2022)

Revision Status

Version	Date	Reason for Issue
1.0	August 2020	Final

Table of Contents

1	Intro	oduction	1
	1.1	Project Background	1
	1.2	Project Area	1
	1.3	Purpose of this Report	2
	1.4	Scope	2
	1.5	Terms of Reference	3
2	Env	ironmental Setting	4
	2.1	Topography	4
	2.2	Sensitive Ecological Receptors	4
	2.3	Geology	4
	2.4	Hydrogeology	4
3	Sun	nmary of Current Landuse Activity	5
	3.1	Current Aerial Photography	5
	3.2	Walkover Observations	5
	3.3	Summary	5
4	Sun	nmary of Historical Aerial Photographs	6
	4.1	Historical Aerial Photography	6
	4.2	Summary	7
5	Sun	nmary of PSI Findings	8
6	Rec	ommendations1	0
7	Con	taminated Land Regulatory Assessment1	1
8	Con	clusions1	2
9	Ref	erences1	3

Tables

Table 1: Current Aerial Photograph Review	5
Table 2: Historical Aerial Photograph Review	
Table 3: Summary of PSI Findings	

Acronyms

Acronym/Term	Description
AT	Auckland Transport
AUP:OP	Auckland Unitary Plan Operative in Part 2016
DSI	Detailed Site Investigation (contaminated land)
HAIL	Hazardous Activities and Industries List
MfE	Ministry for the Environment
PSI	Preliminary Site Investigation (contaminated land)
SH18	State Highway 18

1 Introduction

1.1 Project Background

Auckland's population is growing rapidly; driven by both natural growth (more births than deaths) and migration from overseas and other parts of New Zealand. The Auckland Plan 2050 anticipates that this growth will generate demand for an additional 313,000 dwellings and require land for approximately 263,000 additional employment opportunities.

In response to this demand, the Auckland Unitary Plan Operative in Part (**AUP:OP**) identifies 15,000 hectares of predominantly rural land for future urbanisation. To enable the urban development of greenfield land, appropriate bulk infrastructure needs to be planned and delivered.

The Supporting Growth Programme is a collaboration between Auckland Transport (**AT**) and Waka Kotahi NZ Transport Agency to investigate, plan and deliver the transport network needed to support Auckland's future urban growth areas over the next 30 years.

1.2 Project Area

Trig Road, Whenuapai has been identified in the Supporting Growth Programme as a future arterial corridor which is needed to support the urban development of Whenuapai. AT is progressing a Notice of Requirement to provide route protection for the Trig Road Corridor Upgrade (hereinafter referred to as the Project or Project area).

The Project consists of the widening and upgrade of Trig Road between the State Highway 18 (**SH18**) off-ramps and Hobsonville Road. The Project area extends along the southern extent of Trig Road starting adjacent to the property located at 82 Trig Road down to the intersection with Hobsonville Road to the south. The Project area also extends along a section of Hobsonville Road between adjacent properties 60 and 78 Hobsonville Road and the northern extent of Luckens Road down to the adjacent property at 5 Luckens Road. Refer to Figure 1 for plan illustrating the extent of the Project area.

The Project is currently in preliminary phases and the final extent of land disturbance activities is yet to be defined. For the purposes of this Preliminary Site Investigation (**PSI**) we have assumed land disturbance to the extent as illustrated in black on Figure 1.

Figure 1: Project Area Plan

1.3 **Purpose of this Report**

The purpose of this PSI (contaminated land) is to:

- Provide a preliminary understanding of the nature and extent of historical and current landuse activities, and whether such activities may have adversely impacted soil contaminant conditions within the Project area.
- Provide recommendations with respect to any potential contaminated land issues or constraints.
- Provide an understanding of the contaminated land resource consents required to be sought in support of the Project.

1.4 Scope

In order to meet the purpose, the following scope has been undertaken:

- Review of available environmental and geotechnical records for the Project area.
- Completion of a Project area walkover.
- Review of historical aerial photographs for the period 1940 through to present day as made available through public information sources.

Property files, certificates of title, and review of Auckland Council groundwater records were not included in scope of the PSI. The exclusion of this information is not considered to materially impact upon the recommendations or conclusions of this report.

1.5 Terms of Reference

This PSI has been completed in general accordance with the following guidelines:

- Ministry for the Environment (MfE). Contaminated Land Management Guidelines No. 1: Reporting on Contaminated Site in New Zealand, revised 2011 (hereinafter referred to as MFE Guideline 1).
- Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (hereinafter referred to as the NES).

2 Environmental Setting

2.1 Topography

Topography across the study corridor is at its highest elevation along Hobsonville and Luckens Roads, decreasing in elevation towards the north-west along Trig Road. In summary:

- The section along Luckens Road has an elevation ranging between 76 and 78 m above sea level.
- The section along Hobsonville Road has an elevation ranging between 73 and 79 m above sea level.
- The section along Trig Road has an average elevation of 55 m above sea level, decreasing to approximately 50 m above sea level at the centre of the Trig Road.

2.2 Sensitive Ecological Receptors

A number of streams are located within a 1 kilometre radius of the Project area including, Pikau Stream and Waiarohia Stream to the north, Trig Stream and Rawiri Stream to the east, Waipateira Stream and an unknown tributary of Manutewhau Stream to the south and Totara Creek to the west. The nearest surface water body to the Project area is Trig Stream located on the eastern side of Trig Road.

2.3 Geology

The key geologic unit recorded within the study corridor is Tauranga Group material (GNS, 2001). The Tauranga Group deposits are noted on the map to form the majority of the study area and are part of the Puketoka Formation. This is described as pumiceous mud, sand and gravel interbedded with muddy peat and lignite, rhyolite pumice, including non-welded ignimbrite, tephra and alluvial pumice deposits.

There is a geological boundary at the southern end of the proposed arterial upgrade on Luckens Road. The key geologic unit at this location is Waitemata Group material comprising deposits from the East Coast Bays Formation. This is described as alternating sandstone and mudstone with variable volcanic content and interbedded volcaniclastic grit beds.

Geological borelogs for historical investigations completed within the Project area, as well as a map indicating the locations is included in Appendix A.

2.4 Hydrogeology

Boreholes advanced in the area have recorded groundwater between 3 and 4 m below ground level (refer Appendix A). Locally groundwater may flow north east towards areas of lower elevation and the Trig Stream located on the eastern side of Trig Road. Regional groundwater flow is likely south towards the Waitemata Harbour.

3 Summary of Current Landuse Activity

3.1 Current Aerial Photography

Table 1 presents a summary of landuse activity adjacent to the Project area as derived from the review of current aerial photographs (2019) provided in the Auckland Council GIS platform.

Table 1: Current Aerial Photograph Review

Direction	Summary of Observations
North	Pastoral landuse is visible to the north east and a mixture of horticultural and pastoral landuse is visible to the north west.
NorthPastoral landuse is visible to landuse is visible to the north Trig Road section of the Proj properties.EastTrig Road section of the Proj properties.SouthHobsonville Road beyond with Predominantly pastoral landus	Trig Road section of the Project: Pastoral landuse is predominant with some residential properties.
properties.	
West	Predominantly pastoral landuse with horticultural activities visible directly west of the northern extent of the Project area. A number of residential properties are visible adjacent to the south west section of Trig Road.

3.2 Walkover Observations

A walkover of the Project area was completed on 14 January 2020. A photographic log is included in Appendix B. A summary of key observations is as follows:

- Horticultural nurseries were observed at 62 and 82 Trig Road.
- An electrical substation was observed at 1 Trig Road.
- Electrical transformers were observed on the grass verges outside 12 and 40 Trig Road.
- A Watercare pump station for potable water is located at 74 Hobsonville Road.

3.3 Summary

The review of current landuse activity within the Project area has identified that activities classified on the MfE Hazardous Activities and Industries List (**HAIL**) are being undertaken i.e., horticultural nurseries, electrical substation, and electrical transformers. Refer to Appendix C for a copy of the HAIL.

4 Summary of Historical Aerial Photographs

4.1 Historical Aerial Photography

Table 2 presents a summary of observations derived from the review of historical aerial photographs made available by Retrolens and Auckland Council via their GIS platform. Copies of historical aerials are provided in Appendix D.

Table 2: Historical Aerial Photograph Review

Year	Summary of Observations
1940	The alignment of Trig, Hobsonville and Luckens Roads appear as they do at present day. Land surrounding the Project area is largely cleared and appears to have been used for pastoral activities. Hedgerows are present along the eastern side of Trig Road and both sides of Hobsonville and Luckens Road within the Project area. Several houses associated with farming activities are visible along Trig and Luckens Road. A water tank is visible on the corner of Trig and Hobsonville Roads. Properties on the eastern side of Luckens Road and western side of Trig Road appear subject to
1950	horticultural landuse (orchard or market gardening). The 1950 aerial photograph appears similar to the 1940 aerial photograph. Properties on the western side of Luckens Roads and the northern extent of Trig Road (western side) are now also subject to horticultural landuse (orchard or market gardening).
1963	A number of residential properties are visible along the south-western side of Trig Road, northern and southern sides of Hobsonville Road and southern end of Luckens Road. Horticultural landuse activities (orchard or market gardening) remain visible near the intersection of Luckens Road and Hobsonville Road.
1972	The 1972 aerial photograph appears similar to the 1963 aerial photograph.
1988	Residential landuse activity within the Project area has intensified since the 1972 aerial photograph. Two commercial nurseries including glasshouses (still present today refer Section 3) have been established on the western side of Trig Road (northern extent of Project area). An electrical substation (still present today refer Section 3) has been established on the corner or Trig and Hobsonville Roads. Horticultural activity (market gardening) appears to have been established on the northern side of Hobsonville Road. The horticultural activity formally observed at the corner of Luckens Road appears to have ceased.
2000	Residential landuse activity within the Project area has intensified since the 1988 aerial photograph. The former horticultural properties on the corner of Luckens Road have been redeveloped for residential lanudse purposes. A commercial nursery including glasshouses has been established on the eastern side of Trig Road. Horticultural activity (orchard) is visible on the western side of Trig Road.
2008	The 2008 aerial photograph appears similar to the 2000 aerial photograph. The commercial nursery established on the eastern side of Trig Road appears to have ceased operation. The water tank formerly observed near the corner of Trig and Hobsonville Roads has been removed. The horticultural activity formally on the northern side of Hobsonville Road appears to have ceased.

2010	The 2010 aerial photograph appears similar to the 2008 aerial photograph.
2010	SH18 is under construction.

4.2 Summary

The review of historical landuse activity within the Project area has identified that activities classified on the MfE HAIL were historically undertaken i.e., horticulture and market gardening.

5 Summary of PSI Findings

The PSI has identified that activities classified on the MFE HAIL have historically been completed or are currently being undertaken on properties within the Project area. Refer to Table 3 for a summary of these key findings.

Table 3: Summary of PSI Findings

HAIL Activity	ClassificationConcern associated with the HALL Activityorticultural urseryA10Heavy metals including arsenic, lead, copper, and mercury.orchard larket GardeningPersistent pesticide bulk storage or use including sports turfs, market gardens, orchards, glass houses or spray sheds.Heavy metals including arsenic, lead, copper, and mercury.Wide range of organic compounds including acidic herbicides, organophosphate and organochlorines.Wide range of organophosphate and organochlorines.	HAIL Activity Inside or Outside of Project Area	Likely Extent of Soil Impact & Associated Risk	
Horticultural Nursery Orchard Market Gardening	Persistent pesticide bulk storage or use including sports turfs, market gardens, orchards, glass houses or	including arsenic, lead, copper, and mercury. Wide range of organic compounds including acidic herbicides, organophosphate and organochlorines. Asbestos containing materials	Inside. Former and current horticultural properties located on both Trig and Hobsonville Roads are within the current extent of the proposed road widening activities.	Direct application of hazardous substances to ground as part of operations. Impact likely restricted to shallow soil profile but may have been tilled to greater depth as part of crop preparation. Spray drift of chemicals across property boundaries as part of operations. Impact likely limited to surficial soils. The risk profile to human health and the environment is low, however this has not yet been assessed by way of soil sampling.
Electrical Substation	B4 Power stations, substations or switchyards.	Polychlorinated biphenyls. Hydrocarbons. Heavy metals including boron and arsenic. Asbestos containing materials (associated with building structures and other electrical equipment).	Inside. The front of the property is within the current extent of the proposed road widening activities.	Accidental discharge or leakage of hazardous substances to ground as part of operations. Impact likely limited to shallow soil profile. As only the front of the property is within the current extent of the proposed road widening activities it is unlikely that

				soil impact will be encountered. The risk profile to human health and the environment is low, however this has not yet been assessed by way of soil sampling.
Electrical Transformers	B2 Electrical transformers including the manufacturing, repairing, or disposing of electrical transformers or other heavy electrical equipment.	Polychlorinated biphenyls. Hydrocarbons. Heavy metals including boron and arsenic. Asbestos containing materials (associated with building structures and other electrical equipment).	Inside. The electrical transformers may need to be relocated as they are within the proposed area of road widening.	Accidental discharge or leakage of hazardous substances to ground as part of operations. Impact likely limited to shallow soil profile. The risk profile to human health and the environment is low, however this has not yet been assessed by way of soil sampling.

6 Recommendations

The PSI has identified that activities classified on the HAIL have historically been completed or are currently being undertaken on properties that are within the proposed road widening area of the Project. It is therefore recommended that a Detailed Site investigation (**DSI**) (contaminated land) be completed. Through the completion of a soil sampling exercise, the DSI would act to provide an understanding of actual soil contaminant conditions within the Project area. The results of the DSI would inform:

- Contaminated land resource consent requirements.
- Human health and environmental controls for implementation during land disturbance activities associated with the Project.
- Soil reuse and off-site disposal requirements i.e., classification status as cleanfill, managed fill or landfill.

7 Contaminated Land Regulatory Assessment

Based on the results of this PSI, and as soil samples have not been analysed which would indicate whether soil contaminant conditions (the DSI results, refer section 6) meet the Permitted Activity criteria of the AUP:OP or NES; Table 4 presents a current assessment of contaminated land regulatory requirements.

Table 4: Summary of Required Consents Relating to Contaminated Land

Regulation	Regulation / Rule	Activity	Status
Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011	Ianagement (National htal Standard for and Managing hts in Soil to Protect Ith) Regulations 2011This regulation applies to an activity described in any regulation 5(2) to (6) on a piece of land described in regulations 5(7) or (8) that is not a permitted activity, controlled activity, or restricted discretionary activity.Discretionary11(2)This activity is a discretionary activity.Discharges of Contaminants 		
	11(2)		
Auckland Unitary Plan Operative in Part	E30.4.1(A7)	into air, or into water, or onto or into land not meeting	Discretionary

It is recommended that the above consents are applied for, and conditions imposed requiring a DSI to be undertaken and for a Contaminated Soil Management Plan to be prepared for the management and monitoring of any contaminated soil confirmed by the DSI.

8 Conclusions

Trig Road, Whenuapai has been identified in the Supporting Growth Programme as a future arterial corridor which is needed to support the urban development of Whenuapai. The Project consists of the widening and upgrade of Trig Road between the SH18 off-ramps and Hobsonville Road.

A PSI (contaminated land) was completed in support of the Project. As part of the PSI the following tasks were undertaken:

- Review of available environmental and geotechnical records for the Project area.
- Completion of a Project area walkover.
- Review of historical aerial photographs for the period 1940 through to present day as made available through public information sources.

The PSI identified that activities classified on the MFE HAIL have historically been completed or are currently being undertaken on properties within the proposed road widening area. These activities include:

- 1. Category A10: persistent pesticide bulk storage or use including sports turfs, market gardens, orchards, glass houses or spray sheds.
- 2. Category B2: electrical transformers including the manufacturing, repairing, or disposing of electrical transformers or other heavy electrical equipment.
- 3. Category B4: power stations, substations or switchyards.

Based on the findings of the PSI, the completion of a DSI (contaminated land) is recommended. Through the completion of a soil sampling exercise, the DSI would act to provide an understanding of actual soil contaminant conditions within the Project area. The results of the DSI would inform:

- Contaminated land resource consent requirements.
- Human health and environmental controls for implementation during land disturbance activities associated with the Project.
- Soil reuse and off-site disposal requirements i.e., classification status as cleanfill, managed fill or landfill.

Given the findings of the PSI and the fact that a DSI has not yet been undertaken for the Project, it is recommended that the following contaminated land resource consents are required to be sought in support of this Project:

- Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011: Discretionary Activity consent under Regulation 11(2).
- AUP:OP: Discretionary Activity consent under Rule E30.4.1(A7).

9 References

Auckland Council, 2016 (Updated 15 November 2019). The Auckland Unitary Plan Operative in Part.

Institute of Geological & Nuclear Sciences Limited, 2001. 1:250,000 Geological Map 3.

Ministry for the Environment, April 2012. National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health.

Ministry for the Environment, 2004. Contaminated Land Management Guidelines No. 5: Site Investigation and Analysis of Soils. Revised 2011.

Ministry for the Environment, 2001. Contaminated Land Management Guidelines No. 1. Reporting on Contaminated Sites in New Zealand. Revised 2011.

Appendix 1. Geological Information

JOB No.: 28773.213

BOREHOLE LOG

CO-ORDINATES: 5924976.76 N R.L. GROUND: 54.60m

1744441.61 E R.L. COLLAR: 54.60m

BOREHOLE No .:

В	Н	 Ľ	5	6
	• •	•	-	~

SHEET: 1 OF 8

DRILLED BY: McMillan Drilling LOGGED BY: PRMM

START DATE: 23/11/2015

LOCATION: 52 Trig Road, Hobsonville			CTION E FRO		но	oriz.:	-	0° 90°					ND 1946 Id GPS	START DAT	E: 24	/11/2	2015	
SOIL: Classification, colour, consistency / density, moistur ROCK: Weathering, colour, fabric, name, strength, cemen	1 2	:	Rock Strength	Sampling Method	Core Recovery (%)	Testing	RL (m)	Depth (m)	Graphic Log	Defect Log	Fracture Spacing (mm)	RQD (%)			Water Loss (%)	0	Casing	Installation
Organic SILT; dark brown. Stiff, dry, non plastic.[Topsoil]		00000 00000 00000	o SN SN SN SN SN SN SN SN SN SN SN SN SN					-	≜ ≜ TS									
SILT, with some clay, trace rootlets; dark orange brown. Very stiff, moist, low plast	t brown and icity.			UGER			54	-										
Clayey SILT; light grey mottled orange b streaked red. Very stiff, moist, low plastic	rown, sity.			HAND AUGER	100			- 1 - - - - - -										
doog				Ha3	23		52	2								▲ 1/2015		
				PUSH TUBE	100		-	3 -					3.00m: , Atter Test	berg & Consol		23/1	J	
Clayey SILT, trace pumiceous coarse sa grey, streaked red and orange brown. So moderate plasticity.				SPT	100	0/0 0/0 0/0 N=0	51	- - - -	× × ×				slipped out. F following core	e run. ng with no water				
				HQ3	100		-	- - - -	× × ×									
4.5-5m: Push Tube.				PUSH TUBE	100		- 20-	-										

NZGD 10: BH_100368

BOREHOLE LOG

BOREHOLE No .:

Bl	Η-	Т	5	6
		-	-	-

SHEET: 2 OF 8

DRILLED BY: McMillan Drilling LOGGED BY: PRMM

	B No.: 28773.213 CATION: 52 Trig Road, Hobsonville		ECTIC		ЛНС		441.61 0 -90	DAT	UM:		KLA dhe	ND 1946 Id GPS	START DATE FINISH DATE CONTRACTO	E: 24	/11/2	2015	5	in
GEOLOGICAL UNIT	DESCRIPTION OF CORE SOIL: Classification, colour, consistency / density, moisture, plasticity ROCK: Weathering, colour, fabric, name, strength, cementation	Rock Weathering	Rock Strength	Sampling Method	Core Recovery (%)	Testing	RL (m) Denth (m)	Graphic Log	Defect Log	Fracture Spacing (mm)	R (%) ROB		TS scription al Observations	Water Loss (%)	Water Level	Casing	Installation	
Tauranga Group	Clayey SILT, with trace coarse pumiceous sand; light grey streaked orange brown and red. Soft, moist, moderate plasticity.			SPT	100	0/0 1/1 1/1 N=4	-	× × ×						- 75				
	Clayey SILT; grey. Firm to stiff, moist, high plasticity. Clayey SILT, with some fine sand; grey, streaked orange brown. Firm, moist, low plasticity.			HQ3	100		- 49 -	× × × × × × × × ×										
	6-6.5m: Push Tube.	-		PUSH TUBE	100		- 6	-										
	Clayey SILT; grey streaked orange brown. Firm, moist, moderate plasticity. Interbedded sandy SILT; grey. Stiff, moist, non- plastic; moderately thinly bedded with SILT, with minor clay; grey. Very stiff, moist, low plasticity. Thinly bedded.	-		SPT	100	0/0 1/1 1/1 N=4	- 48											
u				HQ3	100		-											
East Coast Bays Formation				SPT	100	1/1 1/2 2/2 N=7	47					7.50m: , Drilli rotation.	ng with water and					
Weathered Ea	SILT, with minor clay; grey. Very stiff, moist, low plasticity. Thin sub-horizontally bedded.					-	- 8	×× ×× ×× ×× ×× ××							24/11/2015	210111		
	8.5-9m: CORE LOSS.			HQ3	52		- 46 -											
-	Interbedded sandy SILT; grey. Stiff, moist, non- plastic; moderately thinly bedded with SILT, with minor clay; grey. Very stiff, moist, low plasticity. Thinly bedded.			SPT	100	1/1 2/2 2/4 N=10	- 9											
	9.50m: SILT, with minor clay, grades moderately thinly bedded, sandy silt is thinly bedded with carbonaceous laminations throughout.			HQ3	76		45	x x x x x x x x x x x x x x x x x x										

Hole Depth 35.3m NZGD ID: BH_100368

JOB No.: 28773.213

BOREHOLE LOG

CO-ORDINATES: 5924976.76 N R.L. GROUND: 54.60m

1744441.61 E R.L. COLLAR: 54.60m

BOREHOLE No .:

SHEET: 3 OF 8

DRILLED BY: McMillan Drilling LOGGED BY: PRMM

•	
	 \sim

CHECKED: JWY

LOCATION: 52 Trig Road, Hobsonville		RECTIO		I HC	ORIZ.:		0° 90°	DAT		: AUC	KLA	AND 1946 eld GPS	START DAT FINISH DAT CONTRACT	E: 24	/11/2	2015	5
SOIL: Classification, colour, consistency / density, moistu ROCK: Weathering, colour, fabric, name, strength, ceme	ure, plasticity X X X X X X X X X X X X X X X X X X X	ES vs ww EW	Sampling Method	Core Recovery (%)	Testing	RL (m)	Depth (m)	Graphic Log	Defect Log	2000 Fracture 600 Spacing (mm) 200 Spacing (mm)	R (%) RQD (%)	De & Addition	TS scription al Observations	25 50 Water Loss (%) 75	Water Level	Casing	Installation
Interbedded sandy SILT; grey. Stiff, moi plastic; thinly bedded with carbonaceou throughout. With moderately thinly bedd minor clay; grey. Very stiff to moist, low 10.25-10.5m: CORE LOSS. Silty, fine SAND; grey. Medium dense, r Moderately thinly bedded with thin to mi interbeds of grey hard SILT. Sub-horizo with carbonaceous laminations through	ist, non- s laminations led SILT, with plasticity. moist. oderately thin ntally bedded		_	100 76	2/2 2/3 4/4 N=13	44											
			HQ3	100	•	43	111										
12.00m: Silty, fine SAND, moderately thickly skeg tseoo 12.50m: Silty, fine SAND and SILT, thinly bee			SPT	100	2/2 4/4 4/5 N=17	42	- 12 - - - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
Weathered E			HQ3	100		-	- - - 13 - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
			SPT	100	3/3 4/4 5/6 N=19	41	- - - 14 -	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
14.55m: Silty, fine SAND, moderately thinly b	vedded.		HQ3	100		40	-	2 2 2 2									

Hole Depth 35.3m 303

NZGD ID: BH_100368

BOREHOLE LOG

BOREHOLE No .:

В	Η	-	Г5	6
			_	-

SHEET: 4 OF 8

DRILLED BY: McMillan Drilling

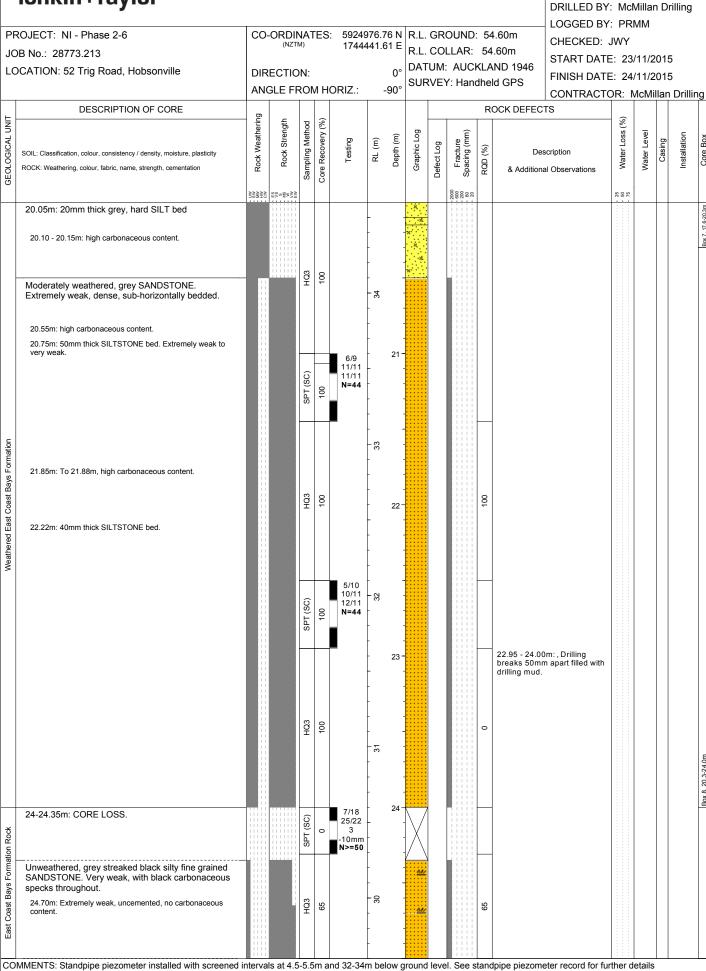
J	ROJECT: NI - Phase 2-6 DB No.: 28773.213 DCATION: 52 Trig Road, Hobsonville	DIR	(NZT	^{M)} DN:		: 59249 1744 ORIZ.:	441.6		R.L. DAT	CO UM	LLAR: : AUC	54 KLA	LOGGED B CHECKED: START DAT FINISH DAT CONTRACT	JWY E: 23 E: 24	/11/2 /11/2	2018	5	ng
GEOLOGICAL UNIT	DESCRIPTION OF CORE SOIL: Classification, colour, consistency / density, moisture, plasticity ROCK: Weathering, colour, fabric, name, strength, cementation	WW WW MW Cock Weathering	ES vs ms Rock Strength	Sampling Method	Core Recovery (%)	Testing	RL (m)	Depth (m)	Graphic Log	Defect Log	-2000 Fracture - 2000 Fracture - 2000 Spacing (mm)	RQD (%) A	TS scription al Observations	- ²⁵ - ⁵⁰ Water Loss (%)	Water Level	Casing	Installation	Core Box
	Silty, fine SAND; grey. Medium dense, moist. Moderately thinly bedded with thin to moderately thin interbeds of grey hard SILT. Sub-horizontally bedded with carbonaceous laminations throughout.			SPT	100	3/4 4/5 5/8 N=22	-		****									
	Silty, fine SAND; grey. Medium dense, moist. 15.50 - 15.65m: high carbonaceous content.			HQ3	100		- 68	16 -	*****									
	16.25 - 16.33m: high carbonaceous content.					2/4 4/4 5/5	38		× × ×									
East Coast Bays Formation	16.88m: 20mm thick grey, very stiff SILT bed. Sub-horizontal. 17.00m: 20mm thick grey, hard SILT bed. Sub-horizontal.			SPT	100	N=18	-	17-	*******									Box 6, 15.0-17.6m
Weathered East Coast				HQ3	100	2/4	37		2 2 2 2 2 2 2									Box 6,
	18.30m: 40mm thick grey, hard, SILT bed. Sub-horizontal.			SPT	100	5/5 8/9 N=27	36		× × ×									
	19.25m: 10mm thick grey, hard SILT bed. Sub-horizontal.			НДЗ	100		-	19 ⁻	× × ×									
	19.50m: - grades dense.					4/6 8/9 11/11	35	-	*									
	19.75 - 19.77m: high carbonaceous content, very closely spaced laminations.	inter		SPT	100	N=39		lo	*				otor rooord for f	urth or -1	otoile			

COMMENTS: Standpipe piezometer installed with screened intervals at 4.5-5.5m and 32-34m below ground level. See standpipe piezometer record for further details tole Depth 35.3m 304

NZGD 10: BH_100368

BOREHOLE LOG

BOREHOLE No .:


В	Η	-	Г	56	3

Core Box

17.6-20.3m Box 7,

Box 8, 20.3-24.0n

SHEET: 5 OF 8

General Log - 3/05/2016 5:24:10 p.m. - Produced with Core-GS by GeRoc Hole Depth 35.3m NZGD ID: BH_100368

305

JOB No.: 28773.213

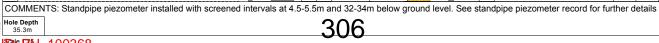
BOREHOLE LOG

CO-ORDINATES: 5924976.76 N R.L. GROUND: 54.60m (NZTM) 1744441.61 E R.L. GROUND: 54.60m

1744441.61 E R.L. COLLAR: 54.60m

BOREHOLE No .:

В	Η	-7	Г5	6
_				_


SHEET: 6 OF 8 DRILLED BY: McMillan Drilling

LOGGED BY: PRMM

CHECKED: JWY

LC	0B No.: 28773.213 0CATION: 52 Trig Road, Hobsonville		ECTIC)N:				0°		UM:	AUC	KLA	ND 1946	START DAT					
	-		GLE FF		ΛН	ORIZ.:	-	-90°	SUF	RVE	(: Han	dhe	ld GPS	CONTRACT					n
Ŀ	DESCRIPTION OF CORE	bu	ء		(R	OCK DEFEC	rs	()				
GEOLOGICAL UNIT	SOIL: Classification, colour, consistency / density, moisture, plasticity ROCK: Weathering, colour, fabric, name, strength, cementation	www. Rock Weathering	Seck Strength	Sampling Method	Core Recovery (%)	Testing	RL (m)	Depth (m)	Graphic Log	Defect Log	52000 600 Fracture 200 Spacing (mm)	RQD (%)		cription Il Observations	25 50 Water Loss (%) 75	Water Level	Casing	Installation	
	25.05-25.5m: CORE LOSS.							_											
				HQ3	65		-	-				65							
	Unweathered, grey, silty, fine grained SANDSTONE. Very weak.			SPT (SC)	100	7/15 15/16 17/2 -5mm N>=50	- 53	-											
	25.95m: 10mm thick grey, very weak SILTSTONE bed. 26.00m: - grades extremely weak, uncemented, fine to medium SANDSTONE, with trace coarse grains.						-	- 26 - -											
	26.55m: - grades very weak SANDSTONE. 26.70m: - grades fine to medium SANDSTONE.			HQ3	100		28	-				100							
	26.7 - 26.74m: high carbonaceous content.					7/23	-	- - - 27 –											
Formation Rock	 27.20m: 10mm thick grey, very weak SILTSTONE bed. 27.25m: - grades fine to medium SANDSTONE. 27.40m: To 27.55m, convoluted siltstone beds and carbonaceous laminations. 			SPT (SC)	100	24/20 6 -20mm N>=50	-	-											
East Coast Bays	27.8-28.5m: CORE LOSS.			3			27	-											
				HQ3	53		-	- 28				53							
	Unweathered, silty, fine to medium grained SANDSTONE, with trace coarse sand grains. Very weak						26	-											
				НДЗ	100		-	- 29- -				100							
					-		25	-											
	Unweathered, grey, silty, fine grained SANDSTONE. Very weak, moderately thinly bedded, with thin interbeds of grey, very weak SILTSTONE. Sub- horizontally bedded. MMENTS: Standpipe piezometer installed with screened							-											_

Hole Depth 35.3m NZGD 10: BH_100368

JOB No.: 28773.213

BOREHOLE LOG

CO-ORDINATES: 5924976.76 N R.L. GROUND: 54.60m

1744441.61 E R.L. COLLAR: 54.60m

BOREHOLE No .:

SHEET: 7 OF 8 DRILLED BY: McMillan Drilling

LOGGED BY: PRMM

CHECKED: JWY

START DATE: 23/11/2015 EINISH DATE: 24/11/2015

	DCATION: 52 Trig Road, Hobsonville		RECTIC		ΜН	ORIZ.:	1	0° -90°	DAT	UM:		KLA	AND 1946 eld GPS	START DAT FINISH DAT CONTRACT	E: 24	/11/2	2015	5	١g
GEOLOGICAL UNIT	DESCRIPTION OF CORE SOIL: Classification, colour, consistency / density, moisture, plasticity ROCK: Weathering, colour, fabric, name, strength, cementation	Rock Weathering	Rock Strength	Sampling Method	Core Recovery (%)	Testing	RL (m)	Depth (m)	Graphic Log	Defect Log	Fracture Spacing (mm)	RQD (%)	Des & Additiona	TS scription al Observations	Water Loss (%)	Water Level	Casing	Installation	Core Box
	Unweathered, medium to coarse grained SANDSTONE, trace fine gravel sized siltstone lithics. Very weak. 30.70m: - grades silty, fine to medium SANDSTONE. 31.65m: fine to medium SANDSTONE, with trace coarse sand and fine gravel sized siltstone lithics. 30.9-31.5m: CORE LOSS.		03° x 92 ≥ 3 	HQ3	100		24				- 2000 	60							
East Coast Bays Formation Rock	Unweathered, grey, silty, fine to medium grained SANDSTONE. Extremely weak.			Наз	100		22	32-				100	32.40m: UCS (0.23					Box 10. 27.5-31.8m
	33.35m: - grades very weak. Unweathered, grey SILTSTONE. Very weak. Sub- horizontally bedded, with carbonaceous laminations, very closely spaced. Unweathered, grey, silty, fine to medium grained SANDSTONE. Very weak.			НФЗ	100		21	33 -				100							
	 34.10m: - grades medium to coarse grained SANDSTONE. 34.20m: - grades fine to medium grained SANDSTONE. Extremely weak, uncemented. 34.30m: - grades very weak. 34.55m: - grades extremely weak, uncemented. 34.90m: - grades fine to medium SANDSTONE. Very weak. 			HQ3	100		20					100	34.10m: , Sto hard ground. becoming co 34.30m: UCS	re bound					

COMMENTS: Standpipe piezometer installed with screened intervals at 4.5-5.5m and 32-34m below ground level. See standpipe piezometer record for further details Hole Depth 35.3m

NZGD 10: BH_100368

BOREHOLE LOG

BOREHOLE No .:

BH-T56

SHEET: 8 OF 8

DRILLED BY: McMillan Drilling LOGGED BY: PRMM

	OJECT: NI - Phase 2-6		(NZT	M)		: 59249	444 0							CHECKED:	JWY				
JOI	B No.: 28773.213		(1421	111)		1744	441.0	I E			LLAR:			START DAT		/11/2	201	5	
LO	CATION: 52 Trig Road, Hobsonville	DIR	ECTIC	DN:				0°					ND 1946 d GPS	FINISH DAT					
		AN	GLE FI	RO	МН	ORIZ.:	-	90°	305		r. nano	uner	u GFS	CONTRACT	OR: I	McMi	illar	n Dril	11
_	DESCRIPTION OF CORE	D										RC	OCK DEFEC						
GEOLOGICAL UNIT		Rock Weathering	Rock Strength	sthod	Core Recovery (%)			(бc		(L				Water Loss (%)	e		Ę	
BICAL	SOIL: Classification, colour, consistency / density, moisture, plasticity	Wea	st Str	Dg Me	scove	Testing	RL (m)	Depth (m)	Graphic Log	Log	cture ng (m	(%)	De	scription	er Lo	Water Level	Casing	Installation	
5 5	ROCK: Weathering, colour, fabric, name, strength, cementation	Rock	Ro	Sampling Method	re Re	Ţ	L CC	Del	Grap	Defect Log	Fracture Spacing (mm)	RQD (%)	& Addition	al Observations	Wat	Wat	0	Inst	
5					Ŭ														
Rok		56520	NS SS S												25 50				
Bays Formation				НQ3	100		ŀ	-				100							
Talk COM																			
	35.3m: END OF BOREHOLE						-	-											
							ł	-											
							-6	-											
								-											
							-	_											
							ł	36 -											
							F	-											
							[-											
							-	-											
							-	-											
							- 8	-											
							ŀ	-											
								-											
							ŀ	37-											
							ł	-											
							ŀ	-											
							[-											
							ŀ	-											
							-1-	-											
							ŀ	-											
							Į												
							Ļ	38 -											
							ŀ	-											
							ŀ	-											
							Ī	-											
							-16	-											
							ł	-											
							Ī	-											
							[39-											
							ŀ												
							ŀ	-											
							t	-											
							[-											
							15	-											
							ł	-											
							ŀ	-											
							ľ	-											

		60025015 HA CH 1	19	30	/130Lma07
Proje				neet	
	hole Lo	· · · · · · · · · · · · · · · · · · ·			Vane Shear
Chair	-	11930 Offset: 130L Lithologic		5	Strength (KP
		707571.57 N 287225.59 E RL: 45.48 Key	2	Groundwater	Corrected
	ice Con		Depth (m)	- Apu	(Per NZGS Guide
lit	Depth (m)		ept	lno	Field vane (
	t	L FILL TOP SAND CLAY SILT SILT SILT ORGANIC		Ū	Remoulded
Geol. Unit	Dep	FILL TOP SAND CLAY SILT SILT SILT ORGANIC SOIL clayey sandy soils			50 100 15
	_	TOPSOIL			
		溢 [*]SILT, very stiff, moist, non plastic, orange, mottled brown	+		
		$x^{(3)}$	\vdash		
	×,	×*: **	_		
	- x	SILT, very stiff, moist, non plastic, orange, mottled brown	-		89
			-		
	×	Clayey, very stiff, moist, mod to highly plastic, light grey,			
↓ │	1-	za za za za za za za za za za za za za z	<u> </u> 1		
			+ '		70
	×		L		
		Slightly clayey, very stiff, moist, slightly plastic, light grey,	\vdash		·
z o		* mottled orange	\vdash		
10			E	1	97
∢	×, ×,	* [*] Clayey, very stiff, moist, mod plastic, light grey/purple,	_		1.47
R M	2	mottled brown, orange	- -		147
- O L	2	CLAY, silty, very stiff, moist, highly plastic, light grey, mottled	-2		
			_		94
∢		3	-		133
0 K		== == Light grey, mottled orange and red			
н Ш	-[]		_		71
$\mathbf{\Sigma}$		몇	_	~	
ΡΠ	_==	Mod to highly plastic, light grey, mottled orange and red	_	200	112
-	3		-3	Ι.	
				Ibel	49
		==1 ==\$SILT, clayey, very stiff, moist, slight to mod plastic, light grey,	_	September	105
		mottled orange	\vdash	Sep	105
				٩	52
			\vdash	3rd	
		Slightly clayey, very stiff, moist to wet, non to slightly plastic,			110
	4— [*]	ight grey, mottled orange	-4		
	- ×,		+ -	-	70
	,			1	
		Clayey, stiff, moist, slight to mod plastic, light grey, mottled	-	1	81
		and see a s	<u> </u>		
					52
			-		104
		Very stiff, mod to highly plastic, light grey, mottled orange	┝┏		104
Γİ	5	End of Borehole 5.0m (Target Depth)	<u></u> −5		32
	-	Note: Logged in accordance with 'The guidelines for the classification and description of soil and rock			
	_	for engineering purposes' Dec 2005 as outlined by The NZ Geotechnical Society Inc. Note: The subsurface data described above has been determined at this specific borehole location. Such data will not identify any variations away from this location	_		
	Method	Hand Auger Observations	N	lau	nsell Ltd
	Drilled	3 Sept 2007 Shearvane Correction Value for DTM DR 4529 is 1.623			rge St, Newmarket
Drille	d By r Vane				4241 Auckland

309

NZGD ID	Туре	Reference	Date	X (NZTM)	Y (NZTM)	RL	Vertical datum	Total depth	GW measured	GW depth	GW date
63712	Borehole	State Highway 16 & 18 - (AGD7506)	15/01/2000	1744375.7	5925051.1	55.4	Ellipsoidal (GPS)	22.5	No	-	-
65478	Borehole	Upper Harbor Cooridor - (AGD1891)	1/12/2001	1744434.7	5925010.8	55.6	Ellipsoidal (GPS)	19.5	No	-	-
65479	Borehole	Upper Harbor Cooridor - (AGD1892)	1/12/2001	1744408.7	5925042.8	55	Ellipsoidal (GPS)	20	No	-	-
67590	HandAuger	Waitakere #2 Upgrade - (AGD518)	21/07/2004	1744979.1	5924390.5	78	Auckland 1946 (MSL)	4	No	-	-
67591	HandAuger	Waitakere #2 upgrade - (AGD519)	9/07/2004	1744986.4	5924408.3	78	Auckland 1946 (MSL)	4	No	-	-
67592	HandAuger	Waitakere #2 Upgrade - (AGD520)	9/07/2004	1744988.8	5924415.3	78	Auckland 1946 (MSL)	1.2	No	-	-
67593	HandAuger	Waitakere #2 Upgrade - (AGD521)	9/07/2004	1744990.5	5924421.8	78	Auckland 1946 (MSL)	4	No	-	-
96780	CPT	A-CPT17	9/05/1999	1744431.4	5924972.9	0	Auckland 1946 (MSL)	15.3	No	-	-
96781	CPT	D-CPT16	26/07/2001	1744395.3	5925056.8	55.4	Auckland 1946 (MSL)	18	No	-	-
96785	CPT	F-CPT22	30/11/2005	1744406.4	5925079.9	54.88	Auckland 1946 (MSL)	16.5	No	-	-
96786	CPT	F-CPT23	30/11/2005	1744430.7	5925038.4	55.62	Auckland 1946 (MSL)	18.5	No	-	-
96787	CPT	F-CPT24	30/11/2005	1744457.6	5924992.5	55.11	Auckland 1946 (MSL)	23	No	-	-
96891	Borehole	A-BH4	14/04/1999	1744375.6	5925051.5	55.427	Auckland 1946 (MSL)	22.5	No	-	-
96892	Borehole	D-BH21	4/07/2001	1744433.8	5925010.6	56.26	Auckland 1946 (MSL)	19.5	No	-	-
96893	Borehole	D-BH22	26/06/2001	1744407.5	5925041	55.79	Auckland 1946 (MSL)	20	No	-	-
96897	Borehole	F-12120 50L	1/12/2005	1744441.4	5924985	55.01	Auckland 1946 (MSL)	18.44	No	-	-
96898	Borehole	F-12120 50R	29/11/2005	1744389.3	5925070.2	55.85	Auckland 1946 (MSL)	19.6	No	-	-
97058	HandAuger	H-11930 130L	2/09/2007	1744625.6	5925006.3	45.48	Auckland 1946 (MSL)	5	Yes	4	3/09/2007
100368	Borehole	BH-T56	24/11/2015	1744441.6	5924976.8	54.6	Auckland 1946 (MSL)	35.3	Yes	3	23/11/2015
110816	HandAuger	5122	10/07/2003	1745229	5924294		Not Available	5	No	-	-

Appendix 2. Photographic Log

			PHOTOGRAPHIC LOG
Client Nam	e: Auckland Transport	Project: Trig Road PSI	Project No. 60558831
Photo No. 1 Address: 82 Trig Roa Whenuapai, 0618 Descriptior Lyndale Nur north-west.	Auckland		
Photo No. 2 Address: 62 Trig Roa Whenuapai, 0618 Descriptior Touch of the Nursery, fac west.	, Auckland n: e Tropics		<image/>

			PHOTOGRAPHIC LOG
Client Nam	e: Auckland Tra	sport Project: Trig Road PSI	Project No. 60558831
Photo No. 3	Date: 14/01/2020		
Address: 23-25 Trig F Whenuapai, 0618	Road, Auckland		
the southerr	uipment a adjacent to		
Photo No. 4	Date: 14/01/2020		
Address: 19-21 Trig Road, Whenuapai, Auckland 0618			#F
Description: Pond (potentially associated with former nursey), facing north- east.			

			PHOTOGRAPHIC LOG
Client Name: Auckland Transport		port Project: Trig Road PSI	Project No. 60558831
Photo No. 5 Address: Grass verge Trig Road, V Auckland 06 Description Transformer south-east.	Whenuapai, 518 1:		
Photo No. 6 Address: Grass verge Trig Road, V Auckland 06 Description Transformer south-east.	Whenuapai, 518 1:	<image/>	

			PHOTOGRAPHIC LOG
Client Nam	e: Auckland Tra	sport Project: Trig Road PSI	Project No. 60558831
Photo No. 9	Date: 14/01/2020		
Address: 74 Hobsonv West Harbo 0618	rille Road, ur, Auckland		
Description Watercare p (potable wat	oump station		
Photo No . 10	Date: 14/01/2020		
Address: 6 Luckens Road, West Harbour, Auckland 0618 Description: Dental Specialists Limited, facing east.			

				PHOTOGRAPHIC LOG
Client Name: Auckland Transport		ansport	Project: Trig Road PSI	Project No. 60558831
Photo No. 11	Date: 14/01/2020	1000		
Address: Outside 16 I Road, West Auckland 06 Description Luckens Ro north-west.	Harbour, 618 1:			

Appendix 3. Ministry for the Environment Hazardous Activities and Industries List and Summary of Likely Contaminants

Hazardous Activities and Industries List (HAIL)

October 2011

A Chemical manufacture, application and bulk storage

- 1. Agrichemicals including commercial premises used by spray contractors for filling, storing or washing out tanks for agrichemical application
- 2. Chemical manufacture, formulation or bulk storage
- 3. Commercial analytical laboratory sites
- 4. Corrosives including formulation or bulk storage
- 5. Dry-cleaning plants including dry-cleaning premises or the bulk storage of dry-cleaning solvents
- 6. Fertiliser manufacture or bulk storage
- 7. Gasworks including the manufacture of gas from coal or oil feedstocks
- 8. Livestock dip or spray race operations
- 9. Paint manufacture or formulation (excluding retail paint stores)
- 10. Persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, glass houses or spray sheds
- 11. Pest control including the premises of commercial pest control operators or any authorities that carry out pest control where bulk storage or preparation of pesticide occurs, including preparation of poisoned baits or filling or washing of tanks for pesticide application
- 12. Pesticide manufacture (including animal poisons, insecticides, fungicides or herbicides) including the commercial manufacturing, blending, mixing or formulating of pesticides
- 13. Petroleum or petrochemical industries including a petroleum depot, terminal, blending plant or refinery, or facilities for recovery, reprocessing or recycling petroleum-based materials, or bulk storage of petroleum or petrochemicals above or below ground
- 14. Pharmaceutical manufacture including the commercial manufacture, blending, mixing or formulation of pharmaceuticals, including animal remedies or the manufacturing of illicit drugs with the potential for environmental discharges
- 15. Printing including commercial printing using metal type, inks, dyes, or solvents (excluding photocopy shops)
- 16. Skin or wool processing including a tannery or fellmongery, or any other commercial facility for hide curing, drying, scouring or finishing or storing wool or leather products
- 17. Storage tanks or drums for fuel, chemicals or liquid waste
- 18. Wood treatment or preservation including the commercial use of anti-sapstain chemicals during milling, or bulk storage of treated timber outside

B Electrical and electronic works, power generation and transmission

1. Batteries including the commercial assembling, disassembling, manufacturing or recycling of batteries (but excluding retail battery stores)

- 2. Electrical transformers including the manufacturing, repairing or disposing of electrical transformers or other heavy electrical equipment
- 3. Electronics including the commercial manufacturing, reconditioning or recycling of computers, televisions and other electronic devices
- 4. Power stations, substations or switchyards

C Explosives and ordinances production, storage and use

- 1. Explosive or ordinance production, maintenance, dismantling, disposal, bulk storage or re-packaging
- 2. Gun clubs or rifle ranges, including clay targets clubs that use lead munitions outdoors
- 3. Training areas set aside exclusively or primarily for the detonation of explosive ammunition

D Metal extraction, refining and reprocessing, storage and use

- 1. Abrasive blasting including abrasive blast cleaning (excluding cleaning carried out in fully enclosed booths) or the disposal of abrasive blasting material
- 2. Foundry operations including the commercial production of metal products by injecting or pouring molten metal into moulds
- 3. Metal treatment or coating including polishing, anodising, galvanising, pickling, electroplating, or heat treatment or finishing using cyanide compounds
- 4. Metalliferous ore processing including the chemical or physical extraction of metals, including smelting, refining, fusing or refining metals
- 5. Engineering workshops with metal fabrication

E Mineral extraction, refining and reprocessing, storage and use

- 1. Asbestos products manufacture or disposal including sites with buildings containing asbestos products known to be in a deteriorated condition
- 2. Asphalt or bitumen manufacture or bulk storage (excluding single-use sites used by a mobile asphalt plant)
- 3. Cement or lime manufacture using a kiln including the storage of wastes from the manufacturing process
- 4. Commercial concrete manufacture or commercial cement storage
- 5. Coal or coke yards
- 6. Hydrocarbon exploration or production including well sites or flare pits
- 7. Mining industries (excluding gravel extraction) including exposure of faces or release of groundwater containing hazardous contaminants, or the storage of hazardous wastes including waste dumps or dam tailings

F Vehicle refuelling, service and repair

- 1. Airports including fuel storage, workshops, washdown areas, or fire practice areas
- 2. Brake lining manufacturers, repairers or recyclers
- 3. Engine reconditioning workshops
- 4. Motor vehicle workshops
- 5. Port activities including dry docks or marine vessel maintenance facilities

322

- 6. Railway yards including goods-handling yards, workshops, refuelling facilities or maintenance areas
- 7. Service stations including retail or commercial refuelling facilities
- 8. Transport depots or yards including areas used for refuelling or the bulk storage of hazardous substances

G Cemeteries and waste recycling, treatment and disposal

- 1. Cemeteries
- 2. Drum or tank reconditioning or recycling
- 3. Landfill sites
- 4. Scrap yards including automotive dismantling, wrecking or scrap metal yards
- 5. Waste disposal to land (excluding where biosolids have been used as soil conditioners)
- 6. Waste recycling or waste or wastewater treatment
- H Any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment
- I Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment

HAIL contaminants

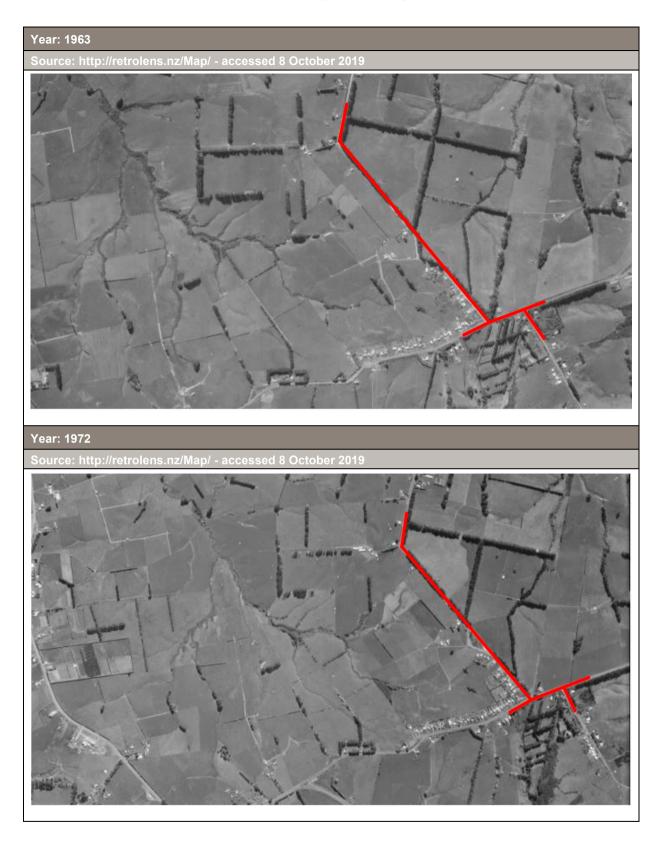
The table below lists the kind of hazardous substances that are typically associated with each of the activities and industries listed on the HAIL (Hazardous Activities and Industries List).

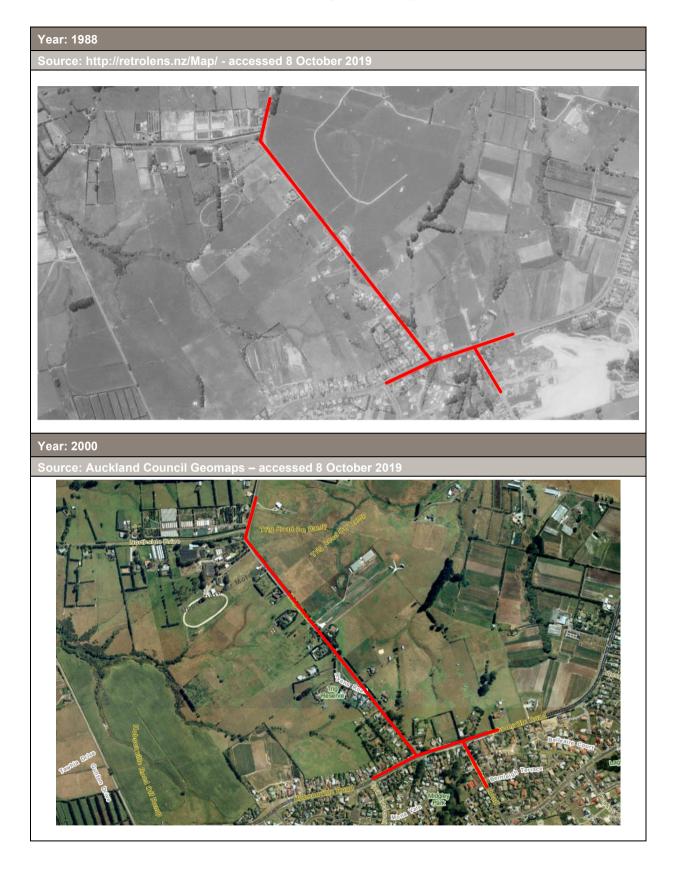
The fact that an activity or industry is on the HAIL does not mean that hazardous substances were used or stored everywhere on that land, nor that any hazardous substances that were used or stored there have contaminated the land.

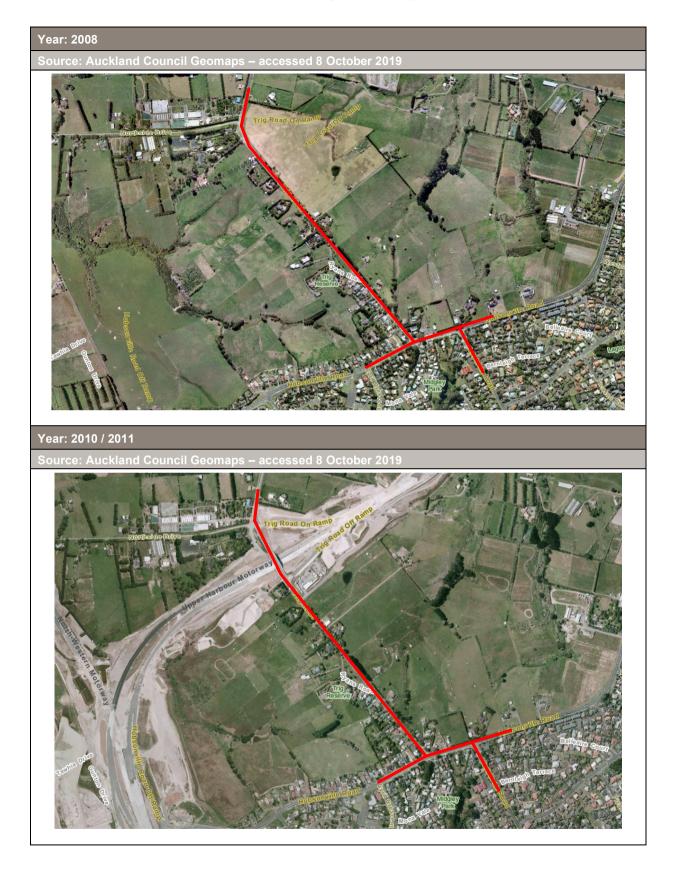
The hazardous substances listed in the table below for each activity or industry are provided as a guide only. The NES for assessing and managing contaminants in soil to protect human health requires a suitably qualified and experienced practitioner to decide which substances to check for in soil samples taken as part of a detailed site investigation.

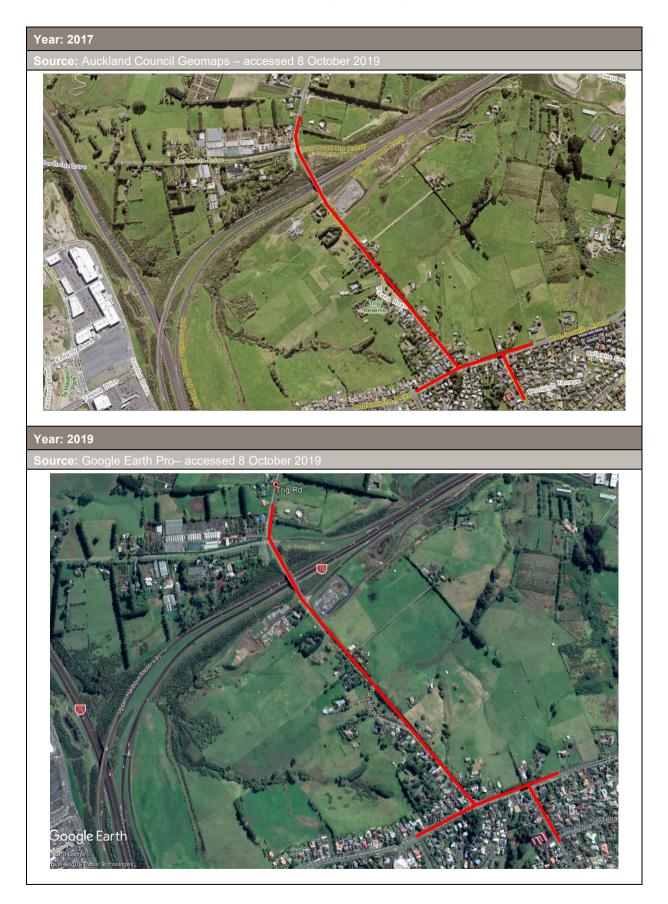
Activity or industry on the HAIL	Hazardous substances likely to be associated with that activity or industry
Agrichemicals including commercial premises used by spray contractors for filling, storing or washing out tanks for agrichemical application	Arsenic, lead, copper; wide range of organic agrichemicals including organochlorine pesticides, organophosphate pesticides, herbicides, fungicides, carbamates, and synthetic pyrethroids; compounds may be mixed with diesel before spraying
Chemical manufacture, formulation or bulk storage	Wide range of organic and inorganic compounds
Commercial analytical laboratory sites	Wide range of organic and inorganic compounds including solvents, acids, metals, and mercury
Corrosives including formulation or bulk storage	Mercury, sulphuric, phosphoric, hydrochloric and nitric acids, sodium and calcium hydroxide, ammonia and ammonium hydroxide
Dry-cleaning plants including dry-cleaning premises or the bulk storage of dry-cleaning solvents	Volatile hydrocarbons including trichloroethylene 1,1,1- trichloroethane tetrachlorothene (also known as PCE), and carbon tetrachloride
Fertiliser manufacture or bulk storage	Calcium phosphate, calcium sulphate, copper chloride, sulphur, sulphuric and phosphoric acid, molybdenum, selenium, iron, cadmium, nitrates, and ammonia
Gasworks including the manufacture of gas from coal or oil feedstocks	Polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene and xylenes (BTEX), phenolics, metals (particularly arsenic, lead, copper, chromium), boron, cyanide compounds, sulphides and sulphates, thiocyanates, ammonia, nitrates, and coke
Livestock dip or spray race operations	Arsenic, organochlorines (eg, aldrin, dieldrin, DDT, lindane) and organophosphates, carbamates, and synthetic pyrethroids
Paint manufacture or formulation (excluding retail paint stores)	Solvents, resins, metals including arsenic, cadmium, copper, nickel, lead, zinc, and mercury
Persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, glass houses or spray sheds	Arsenic, lead, copper, mercury; wide range of organic compounds including acidic herbicides, organophosphates, and organochlorines (eg, endosulfan on golf and bowling greens)
Pest control including the premises of commercial pest control operators or any authorities that carry out pest control where bulk storage or preparation of pesticide occurs, including preparation of poisoned baits or filling or washing of tanks for pesticide application	Arsenic, cyanide, strychnine, mercury, phosphorus, 1080, organochlorines and organophosphates, carbamates, synthetic pyrethroids, and other commercial preparations

Activity or industry on the HAIL	Hazardous substances likely to be associated with that activity or industry
Pesticide manufacture (including animal poisons, insecticides, fungicides or herbicides) including the commercial manufacturing, blending, mixing or formulating of pesticides	Wide range of insecticides, herbicides and fungicides, including arsenic, lead, mercury, copper, tin, chromium, organochlorines, organonitrogens, organophosphates, acid herbicides, and carbamates. Dioxin may be present as an impurity
Petroleum or petrochemical industries including a petroleum depot, terminal, blending plant or refinery, or facilities for recovery, reprocessing or recycling petroleum- based materials, or bulk storage of petroleum or petrochemicals above or below ground	Hydrocarbons including BTEX, PAHs, and solvents; lead and other metals, particularly if waste oil handled
Pharmaceutical manufacture including the commercial manufacture, blending, mixing or formulation of pharmaceuticals, including animal remedies or the manufacturing of illicit drugs with the potential for environmental discharges	Wide range of chemicals and solvents
Printing including commercial printing using metal type, inks, dyes, or solvents (excluding photocopy shops)	Solvents, acids, alkalis, and metals
Skin or wool processing including a tannery or fellmongery, or any other commercial facility for hide curing, drying, scouring or finishing or storing wool or leather products	Chromium (including hexavalent Cr), manganese, copper, ammonia, nitrite, sulphides, acids, sodium hydroxide, lime, formaldehyde, solvents, cyanide, detergents, pesticides, and bleaching agents (eg, hydrogen peroxide)
Storage tanks or drums for fuel, chemicals or liquid waste	Wide range of chemicals (organic and inorganic), and biological hazards
Wood treatment or preservation including the commercial use of anti-sapstain chemicals during milling, or bulk storage of treated timber outside	Pentachlorophenol (PCP), copper, arsenic, chromium, boron, PAHs, phenolics (creosote), antisapstain, organochlorine pesticides, fungicides, and tributyltin (TBT)
Batteries including the commercial assembling, disassembling, manufacturing or recycling of batteries (but excluding retail battery stores)	Metals (lead, mercury, zinc, cadmium, nickel, antimony, silver, and manganese), and sulphuric acid
Electrical transformers including the manufacturing, repairing or disposing of electrical transformers or other heavy electrical equipment	Polychlorinated biphenyls (PCBs), hydrocarbons, copper, tin, lead, and mercury
Electronics including the commercial manufacturing, reconditioning or recycling of computers, televisions and other electronic devices	Metals (eg, copper, tin, lead, mercury, cadmium, nickel, silver, zinc, and beryllium), solvents, and PCBs
Power stations, substations or switchyards	PCBs, asbestos, metals including boron, arsenic (in fly ash), water treatment chemicals (thermal stations), and hydrocarbons (eg, diesel in generators)
Explosive or ordinance production, maintenance, dismantling, disposal, bulk storage or re-packaging	Acetone, nitric and sulphuric acid, ammonium nitrate, PCP, nitroglycerine, lead, mercury, copper, aluminium, silver, sodium hydroxide, and explosives; fuel oils, solvents and metals (associated with workshops)
Gun clubs or rifle ranges, including clay targets clubs that use lead munitions outdoors	Metals (lead, antimony, copper, zinc, tin, and nickel)
Training areas set aside exclusively or primarily for the detonation of explosive ammunition	Explosives, lead, copper, arsenic, antimony (firing ranges), and hydrocarbon storage
Abrasive blasting including abrasive blast cleaning (excluding cleaning carried out in fully enclosed booths) or the disposal of abrasive blasting material.	Metals (iron, lead, chromium, aluminium, zinc). Dependent on material being removed and substrate
Foundry operations including the commercial production of metal products by injecting or pouring molten metal into moulds	Metals, particularly iron, aluminium, lead, zinc, copper, tin, nickel, chromium and oxides, chlorides, fluorides and sulphates of these, acids, coke, and fuel oils
Metal treatment or coating including polishing, anodising, galvanising, pickling, electroplating, or heat treatment or finishing using cyanide compounds	Metals (zinc, aluminium, cadmium, chromium, lead, copper, and tin), acids (sulphuric, nitric, hydrochloric, and phosphoric), cyanide; flourine and barium (from Al processing)
Metalliferous ore processing including the chemical or physical extraction of metals, including smelting, refining, fusing or refining metals	Metals and associated oxides, fluorides and chlorides; cyanide compounds
Engineering workshops with metal fabrication	Metals and oxides of iron, nickel, copper, chromium, magnesium and manganese; range of organic compounds used for cleaning including BTEX, solvents


Activity or industry on the HAIL	Hazardous substances likely to be associated with that activity or industry
Asbestos products manufacture or disposal including sites with buildings containing asbestos products known to be in a deteriorated condition	Asbestos
Asphalt or bitumen manufacture or bulk storage (excluding single-use sites used by a mobile asphalt plant)	Petroleum hydrocarbons and PAHs
Cement or lime manufacture using a kiln including the storage of wastes from the manufacturing process	Lime, calcium hydroxide, alkalis; boron and arsenic in fly ash
Commercial concrete manufacture or commercial cement storage	Cement, calcium hydroxide, alkalis, and ammonia
Coal or coke yards	Hydrocarbons (particularly PAHs), boron, and arsenic
Hydrocarbon exploration or production including well sites or flare pits	Hydrocarbons including PAHs, metals (barium, cadmium, zinc, mercury, lead), and vanadium
Mining industries (excluding gravel extraction) including exposure of faces or release of groundwater containing hazardous contaminants, or the storage of hazardous wastes including waste dumps or dam tailings	Arsenic, mercury, cyanides, sulphides, and metals and hydrocarbons associated with fuel storage
Airports including fuel storage, workshops, washdown areas, or fire practice areas	Petroleum hydrocarbons including lube oils; metals and PAHs in fire practice areas, potential for dioxins in fire practice areas
Brake lining manufacturers, repairers or recyclers	Asbestos and copper
Engine reconditioning workshops	Hydrocarbons including solvents, and metals contained in waste oil
Motor vehicle workshops	Hydrocarbons including PAHs, solvents, and metals contained in waste oil
Port activities including dry docks or marine vessel maintenance facilities	Metals, paint residues (tin, and lead), tributyltin (TBT), and hydrocarbons associated with fuel storage
Railway yards including goods-handling yards, workshops, refuelling facilities or maintenance areas	Hydrocarbons including PAHs, solvents, creosote/phenols, and metals
Service stations including retail or commercial refuelling facilities	Petroleum hydrocarbons (BTEX, PAHs) and lead
Transport depots or yards including areas used for refuelling or the bulk storage of hazardous substances	Wide variety of chemicals, dependent on products being transported
Cemeteries	Nitrates, lead, mercury, formaldehyde, and biological hazards
Drum or tank reconditioning or recycling	Wide range of chemicals from drums; hydrocarbons used to wash drums
Landfill sites	Dependent on original waste composition, wide range of hydrocarbons and metals, organic acids, landfill gas, and ammonia
Scrap yards including automotive dismantling, wrecking or scrap metal yards	Metals, petroleum hydrocarbons (particularly lube oils), solvents used for cleaning, and PCBs
Waste disposal to land (excluding where biosolids have been used as soil conditioners)	Depends on type of waste – biological hazards (bacteria, viruses), metals, PAHs, semi- volatile organic compounds, and solvents
Waste recycling or waste or wastewater treatment	Depends on type of waste – biological hazards (bacteria, viruses), metals, PAHs, semi- volatile organic compounds, and solvents.
Any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment	Dependent on contaminants associated with adjacent property
Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment	Dependent on contaminants associated with spill


The New Zealand Institute of Chemistry (NZIC) has published a series of articles on many industries in New Zealand at <u>http://www.nzic.org.nz/ChemProcesses/chem processes.html</u>. These articles provide a good chemical background for many of the industries listed on the HAIL.


Appendix 4. Historical Aerial Photographs


Historical Aerial Photograph Review

ATTACHMENT 22

NORTH-WEST HIF TRIG ROAD GEOTECHNICAL FACTUAL REPORT

Factual Report

Date Prepared: 24th January 2020

Prepared by: Max Davis

Northwest HIF - Trig Road Geotechnical Factual Report

Purpose

This Factual Report has been prepared in order to present geotechnical information from the preliminary investigation undertaken at Trig Road, Whenuapai.

Document Status

Responsibility	Name	Signature
Author	Max Davis	them, 1
Reviewer	James Burr	-lan 12
Approver	Rob Mason	Affina

Revision Status

Version	Date	Reason for Issue
0.1	24/01/2020	Issue to Client
0.2		
0.3		

Disclaimer

9

This is a draft document for review by specified persons at Auckland Transport and the New Zealand Transport Agency. This draft will subsequently be updated following consideration of the comments from the persons at Auckland Transport and the New Zealand Transport Agency. This document is therefore still in a draft form and is subject to change. The document should not be disclosed in response to requests under the Official Information Act 1982 or Local Government Official Information and Meetings Act 1987 without seeking legal advice.

336

Table of Contents

1	Intro	oduction1
	1.1	Object and Scope of the Investigation1
	1.2	Site Location and Description1
	1.3	Site Geology2
	1.4	Previous Investigations
2	Site	Investigation4
	2.1	Machine Boreholes4
	2.2	Hand Auger Hole5
	2.3	Test Pits5
	2.4	Groundwater
3	Lab	oratory Testing6
4	Арр	licability Statement7
5	Refe	erences7

Appendices

Appendix 1.	Figures
Appendix 2.	Machine Borehole Logs and Photographs
Appendix 3.	Hand Auger Logs and Photographs
Appendix 4.	Test Pit Logs and Photographs
Appendix 5.	Laboratory Testing

1 Introduction

The Supporting Growth project aims to identify the transport networks required to connect Auckland's future growth areas over the next 30 years. A coordinated approach with land use development running in parallel with infrastructure planning is required.

An early indication of the viability of preferred networks is required to identify geotechnical opportunities and constraints to developing land.

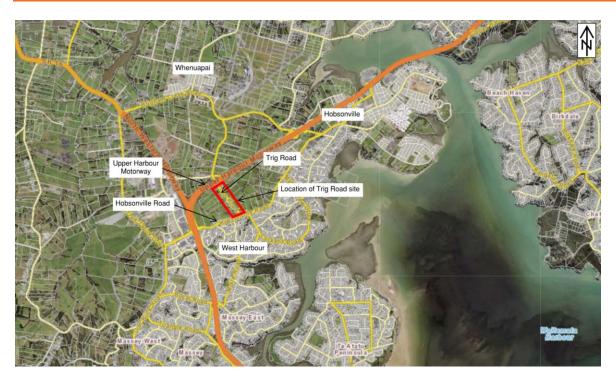
The 'preferred networks' require the following criteria to be met:

- Include improved accessibility and transport options,
- Strong focus on public transport, including walking and cycling facilities,
- Connections to the wider strategic transport network, and
- Maximum benefit and value in management of existing network infrastructure

This report provides the factual results of the preliminary geotechnical site investigation for the proposed development of Trig Road in the Northwest area.

1.1 Object and Scope of the Investigation

The initial scope of this preliminary geotechnical investigation comprised two machine boreholes and four test pits along Trig Road. Due to constraints with land owner access along Trig Road, the investigation needed to be separated into stages with the first stage comprising just the machine boreholes, followed later by the test pits and a hand auger, which replaced one of the test pits. The investigation targeted areas along Trig Road where significant cut/fill is proposed.


This report presents the results of both stages of the geotechnical investigations undertaken between 23rd October 2019 and 13th November 2019.

1.2 Site Location and Description

The site is located along Trig Road, which trends in a north-west south-east direction from Hobsonville Road in the south to Brigham Creek Road in the north. The proposed Trig Road upgrade extends approximately 850m from Hobsonville Road in the south to Upper Harbour Highway in the North. The site is bound by residential properties to the south and grass paddocks to the east and west. Refer to the Location Plan shown in Figure 1 below. An overall Site Plan is also shown in Appendix 1.

Trig Road runs along a minor north to south trending ridge with slopes within the area considered flat to gently sloping, at less than 5°. Slopes up to 20° occur in localised areas immediately adjacent to the road alignment. Three streams are present within the site and exist on the eastern and western sides of Trig Road and are named Totara Stream, Trig Stream, and Rawiri Stream with various ephemeral water courses feeding into them. The proposed road alignment upgrade involves various cut and fill operations which will require retaining walls to support adjacent properties. Refer to Geometric Plans attached in Appendix 1.

338

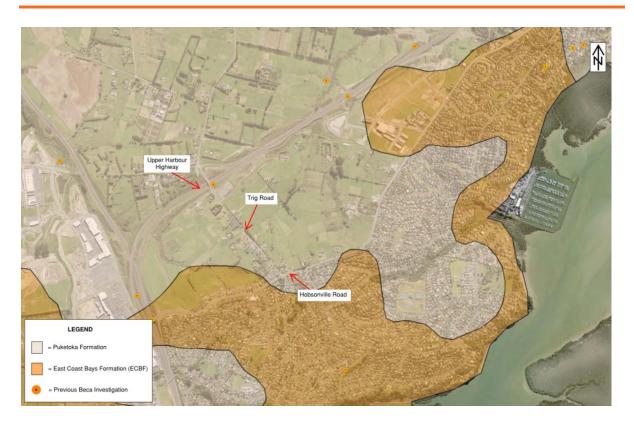


Figure 1: Trig Road Location Plan

1.3 Site Geology

The published 1:250,000 geological map (QMAP) of the Auckland area (Edbrooke, 2001) indicates that the area comprises two main geological units (Figure 2). Puketoka Formation alluvial deposits belonging to the Tauranga Group and comprising "pumiceous mud, sand and gravel" underly most of the site. Residually weathered soils of the East Coast Bays Formation (ECBF) belonging to the Waitemata Group and comprising "alternating sandstone and mudstone" are shown to the south and southwest of Trig Road.

The nearest mapped active fault in the GNS Active Faults Database is the Wairoa North fault, approximately 39 km south east of the site (GNS Science, 2019).

Figure 2: Trig Road Geology (QMaps, 2019)

1.4 Previous Investigations

Several geotechnical investigations have been carried out along Upper Harbour Highway. A Beca investigation is shown in our reports database, however the locations of the individual investigation points are a long way from this Trig Road site. The New Zealand Geotechnical Database (NZGD) shows several investigation points at the northern end of the site adjacent to the Upper Harbour Highway (Figure 3). These are summarised below:

- Five machine boreholes and five Cone Penetrometer Tests (CPT's) at the northern end of the site
- Machine boreholes encounter varying amounts of fill ranging from 0.5m to 2.5m thick.
- Puketoka Formation alluvials underly the fill to approximately 5.6m below ground level (bgl) to 15mBGL and overly residual ECBF. The ECBF residual soil varies from approximately 5.6mBGL to 24mBGL and overlies ECBF Rock. ECBF rock varies from approximately 12mBGL to 35.3mBGL.
- CPT results indicate soft soils from ground level to around 8 13mBGL with cone resistance of 0 – 2 mPa.
- CPT's reach refusal from around 15 23mBGL.

Figure 3 – Trig Road NZGD Investigation Points.

2 Site Investigation

As noted previously, the investigation was carried out in two stages, with the Machine Boreholes drilled on 23 and 24 October 2019, and the test pits and hand auger completed on 13 December 2019. The site investigations were observed full-time by a Beca Geotechnical Engineer. Unless otherwise stated, all soil and rock logging has been undertaken by a Beca Geotechnical Engineer. All logs have been verified by a Beca Senior Engineering Geologist.

2.1 Machine Boreholes

Machine boreholes were drilled by Pro Drill using a SLG 2 drilling rig. Drilling was undertaken using both Open Barrel and HQ Triple Tube drilling. A summary of all machine boreholes undertaken are given in Table 1 below.

BH No.	Location	Easting	Northing	R.L. ground (m)	Total Depth (m)	Borehole Inclination (degrees from horizontal)	Backfill Details
BH101/19	Trig Road Shoulder	1,744,858	5,924,484	68.0	12.95	-90	Gravel
BH102/19	Trig Road Land Reserve	1,744,732	5,924,611	58.0	21.88	-90	Gravel
Notes: All su	irvey coordinates are giv	ven in NZTM2	000				

Table 1: Summary of Boreholes Drilled

Field testing undertaken during drilling of the machine boreholes comprised:

- Standard Penetration Tests were typically carried out at nominal 1.5m centres and the uncorrected N-values are recorded on the borehole logs. SPT hammer efficiencies are presented on the borehole log sheets.
- Hand held shear vane tests were carried out within the end of the core barrel in cohesive soils.
 The corrected and uncorrected shear vane values are reported on the machine borehole logs.
- Two push tubes were taken within BH101/19 at depths of 3.0 m and 6.0 m

All core samples were logged on site by a Beca Geotechnical Engineer. Machine borehole logs and core photographs are presented in Appendix 2. After the core samples had been logged, they were wrapped in plastic to reduce moisture loss and placed in labelled core boxes before being transferred to the Beca office for storage. Some natural desiccation and degradation of the core samples will occur through time following storage. Upon completion, all boreholes were backfilled with gravel and placed over with a topsoil and grass cover.

2.2 Hand Auger Hole

A hand auger was drilled and logged on site by Beca staff. The hand auger location is shown on the Site Plan in Appendix 1, the log and photographs are shown in Appendix 3.

In-situ testing comprised:

- Down-hole hand held shear vanes, undertaken at 500mm centres;
- Scala penetrometer tests were undertaken from the ground surface to 900mm below ground level (bgl), and from the base of the hand auger hole (3.5m bgl) to 4.4m bgl. The test was undertaken with a maximum of 1 rod length/900mm per test. Scala tests were carried out in general accordance with the methods described in NZS4402

A summary of the hand auger hole undertaken is given in Table 2 below.

HA No.	Location	Easting	Northing	R.L. ground (m)	Total Depth (m)			
HA101/19	40 Trig Road	1,744,643	5,924,720	55.5	3.5			
Notes: All survey coordinates are given in NZTM2000								

Table 2: Summary of Hand Auger Hole

2.3 Test Pits

Abernethy Contractors Ltd. were contracted to excavate test pits using a 6T excavator. The pits were approximately 800mm wide in plan area and ranged from 2.3m to 3.5m depth. Material excavated from the test pit was logged and sampled by a Beca Engineering Geologist. The test pit logs and photographs are presented in Appendix 4.

In-situ testing comprised:

- Hand-held shear vanes were undertaken using samples excavated from the test pits, at approximately 500mm centres.
- Scala penetrometer testing was carried out from the ground surface to 0.9m and from 1.0m to 1.9m depth.

A summary of the test pits undertaken are given in Table 3 below.

HA No.	Location	Easting	Northing	R.L. ground (m)	Total Depth (m)				
TP101/19	1 Trig Road	1,744,898	5,924,477	64.75	3.5				
TP102/19	9 Trig Road	1,744,741	5,924,679	47.2	3.5				
TP103/19	19 Trig Road	1,744,588	5,924,899	52.25	2.3				
Notes: All s	Notes: All survey coordinates are given in NZTM2000								

2.4 Groundwater

Both boreholes were dipped following completion of drilling. At the time of the measurements the boreholes were fully open. Only borehole BH101/19 was able to be left to allow for dissipation of drilling muds or other fluids. Borehole BH102/19 was dipped following completion of drilling. The water level is indicative only and does not allow for the interpretation of water levels or vertical gradients between individual units.

Test pit 101/19 encountered groundwater at approximately 800mm depth. This test pit is located adjacent to an ephemeral watercourse and groundwater will likely be elevated at this location. Groundwater was measured at 3.0m below ground level in borehole BH101/19, and 2.5m below ground level in borehole BH102/19. Table 4 below summarises these observations

Borehole/ Piezometer ID	Date of measurement	Depth to water (mBGL)	Level of water (mRL)	Type of Measurement (Borehole or Piezometer)
BH101/19	24/10/2019	3.0m	65.0 mRL	Borehole
BH102/19	24/10/2019	2.5m	55.5 mRL	Borehole
TP101/19	13/12/2019	0.8m	62.2	-

Table 4: Groundwater Measurements

3 Laboratory Testing

Two undisturbed push tube samples were collected from machine borehole BH101/19 and SPT samples were taken from both boreholes for testing.

Beca carried out testing of these samples. The tests undertaken, and the testing specifications, were as follows:

- Natural Moisture Content: NZS4402, 1986; test 2.1
- Atterberg Limits: NZS4402, 1986; tests 2.2, 2.3 and 2.4
- Hydrometer Grading: NZS4402, 1986, test 2.8.4
- Consolidation Test: NZS4402, 1986; test 7.1

The results of the laboratory testing are given in Appendix 5 together with a summary of the tests carried out.

4 Applicability Statement

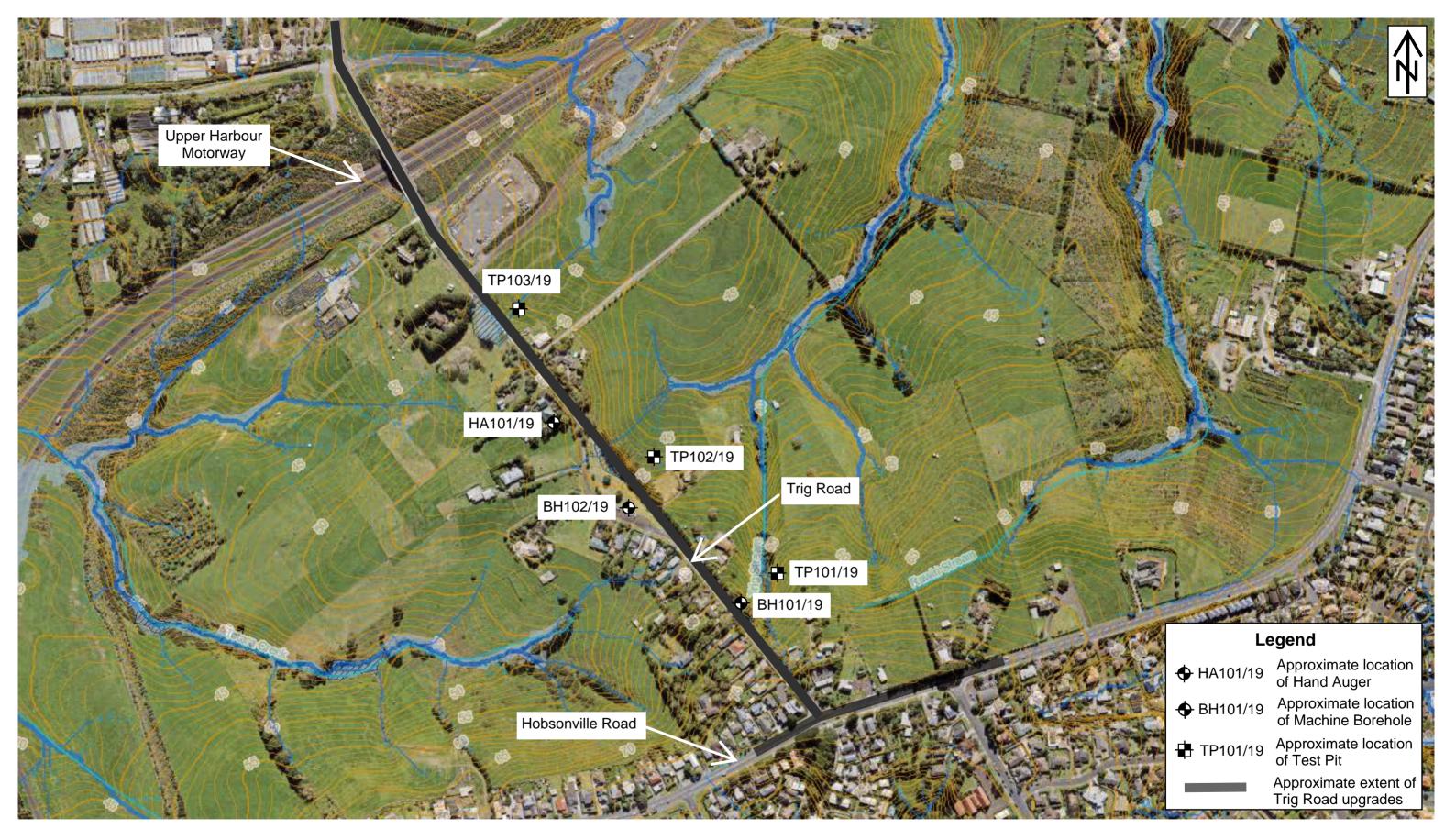
This report has been prepared on the specific instructions of our Client. It is solely for our Client's use for the purpose for which it is intended in accordance with the agreed scope of work. Any use or reliance by any person contrary to the above, to which we have not given its prior written consent, is at that person's own risk.

This is a factual report of site investigation and laboratory testing. The site investigation has been undertaken at discrete locations and no inferences about the nature and continuity of ground conditions away from the investigation locations are made. Furthermore, logs are provided presenting description of the soils and geology based on our observation of the samples recovered in the fieldwork and may not be truly representative of the actual underlying conditions.

No interpretation of the investigation results has been made in this report. Should you be in any doubt as to the applicability of this report for the proposed development described herein, it is essential that you carry out independent investigations to satisfy your needs.

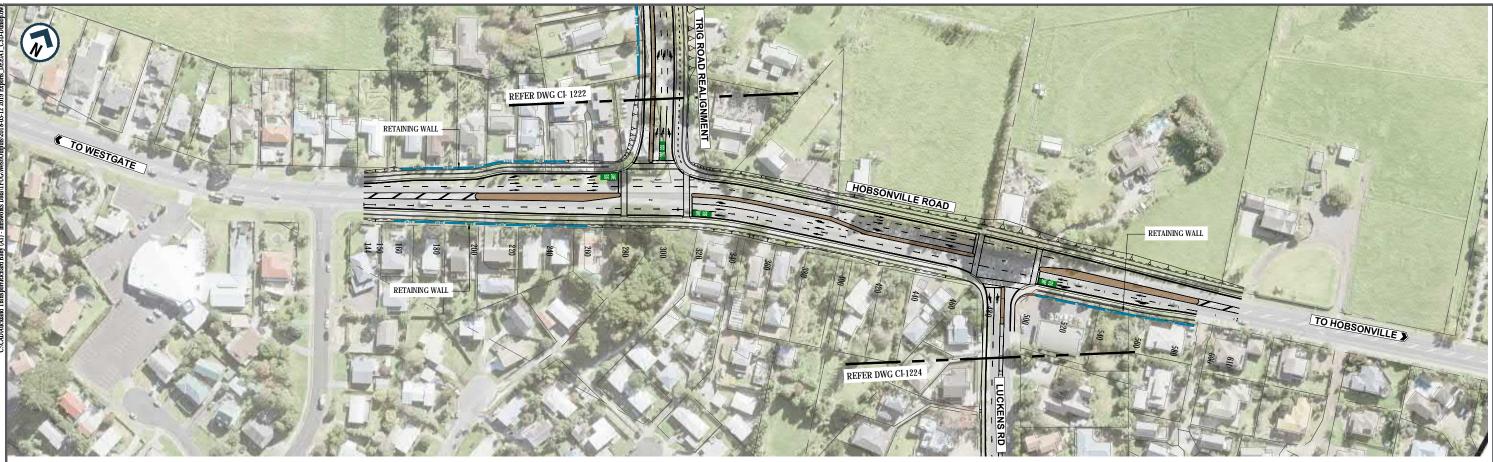
5 References

ASTM D 1586-11 Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils

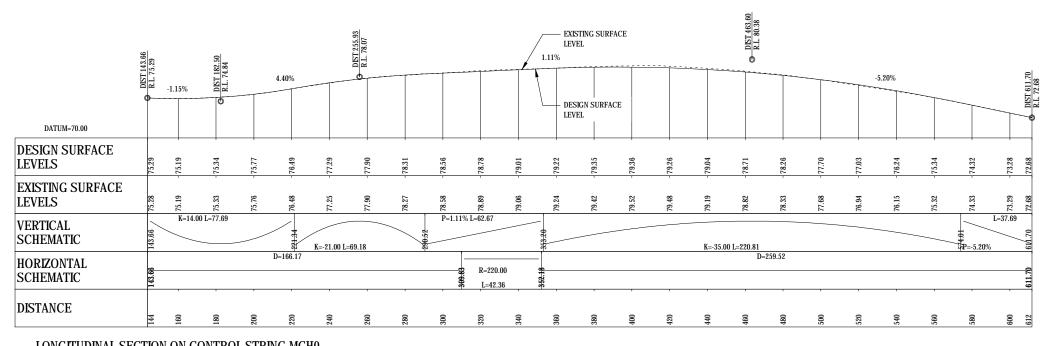

British Standard (BS1377: 1990 Part 9, 4.4) (in situ – geonor vane)

NZ Geotechnical Society, 2005: Field Description for Soil and Rock. Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes.

NZ Geotechnical Society, 2001: Guidelines for the Hand Held Shear Vane Test

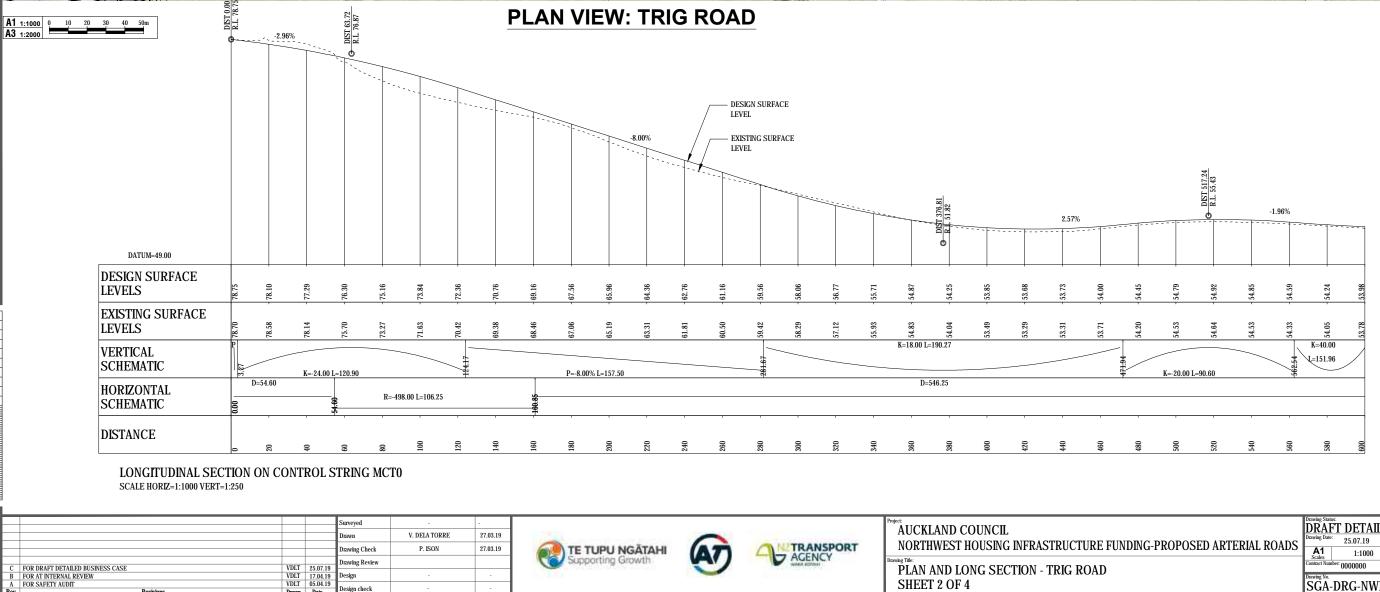

NZ Standard 4402, 1986, Methods of Testing Soils for Civil Engineering Purposes

Appendix 1. Figures


Beca-3810934/100

Overall Site Plan

A1 1:1000 0 10 20 30 40 50m A3 1:2000


PLAN VIEW: HOBSONVILLE ROAD

LONGITUDINAL SECTION ON CONTROL STRING MCH0 SCALE HORIZ=1:1000 VERT=1:250

			Surveyed	-	-				Project AUCKLAND COUNCIL	Drawing Status: DRAFT DETAILED BUSINESS C	ASE
۲			Drawn	V. DELA TORRE	27.03.19	the second state of the provide dispersion of the	~			Drawing Date: 25.07.19	
2			Drawing Check	P. ISON	27.03.19	TE TUPU NGĀTAHI	(AT)		NORTHWEST HOUSING INFRASTRUCTURE FUNDING-PROPOSED ARTERIAL ROADS	A1 1:1000 A3 1:2000	J
S T			Drawing Review			Cal Supporting Growth		AGENCY	Drawing Tale:	Contract Number: 0000000	
C FOR DRAFT DETAILED BUSINESS CASE B FOR AT INTERNAL REVIEW		25.07.19 17.04.19	Design	-	-				PLAN AND LONG SECTION - HOBSONVILLE ROAD	Drawing No. Rev	/ision
A FOR SAFETY AUDIT Rev Revisions	VDLT Drawn	05.04.19 Date	Design check	-				40	SHEET 1 OF 4	SGA-DRG-NWE-002-CI-1221	C
							3	48			

┢

INAL

esign check

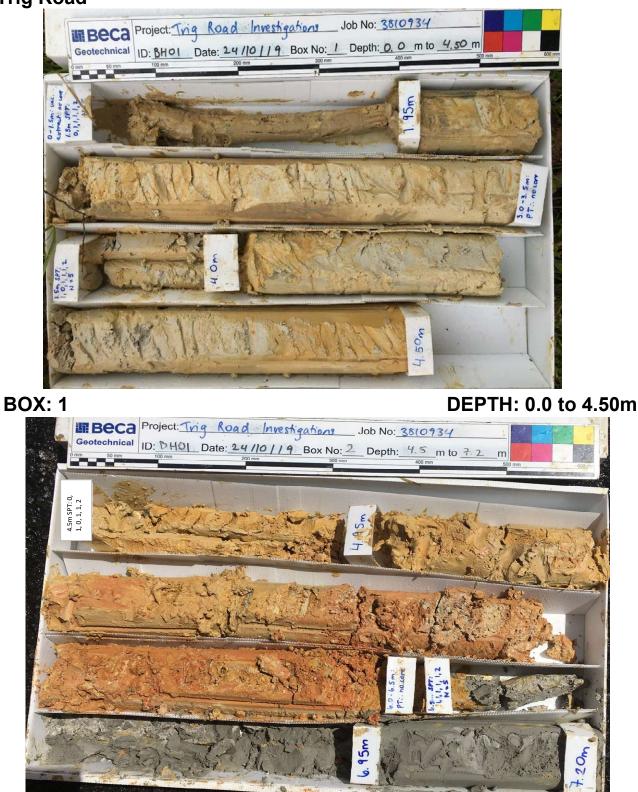
349

G-PROPOSED ARTERIAL ROADS	Drawing Status DRAF Drawing Date:	T DETAILED 25.07.19	BUSI	NESS CASE
	A1 Scales Contract Number	1:1000 er: 0000000	A3 Scales	1:2000
	Drawing No. SGA-I	DRG-NWE-0	02-CI-	1222 C

Appendix 2. Machine Borehole Logs and Photographs

BOREHOLE NO: BH101/19

SHEET 1 of 2


PROJECT		North	west	HIF			JOB NUMBER: 3810934				
SITE LOC				Whenu	apai. A	Aucklar		ance			
CIRCUIT: COORDIN		NZTM	,484.43	3 m	BOREHOLE LOCATION: Trig Road RP 0.191 opposite 16 Trig Road R L: 68 m COORDINATE ORIGIN: hhGP DATUM: NZVD2016 ACCURACY: ±5m						
DRIL	LING										
FLUID LOSS DAILY WATER LEVEL CORE RECOVERY	METHOD CASING	IN D SV	-SITU TES	STS	DEPTH (m)	GRAPHIC LOG	SOIL / ROCK DESCRIPTION 0.00 - 1.50m: no recovery - vacuum extracted.	GEOLOGICAL UNIT			
% 0	VE			0							
% 100 %	OB SPT			1 1 1 2 N=5	2	× × × × × × × ×	Stiff, clayey SILT, trace organics; orange mottled white; moist, high plasticity. Organics: amorphous and fibrous (rootlets). 1.95m: no organics; bands of white.				
3:15:00 PM	PT C	58/38	84/54	1	3		3.00 - 3.50m: no recovery - undisturbed tube.				
//2019	3 SPT			0 1 1 1 2	4 —		Stiff, clayey SILT, trace organics; orange with white bands; moist, high plasticity. Organics: fibrous (wood).				
24/10 100 % 100 %	SPT OB	50/32	72/46	N=5 0 1 0 1	-		4.40m: orange. 4.70m: alternating bands of orange and white <5mm. 4.90m: red oxide staining.	Tauranga Group			
100 %	OB	30/8	43/12	1 N=3			4.95m: trace coarse sand, trace fine gravel. Gravel: highly weathered, subangular, SILTSTONE. 5.50m: red mottled white, flecks of iron oxide. Firm, SILT, some clay, trace fine sand, trace fine gravel; red mottled white; moist, high	μ			
100 %	РТ			1	6 —		plasticity. Gravel: highly weathered, subangular, SILTSTONE.				
0 % 100 %	OB SPT			1 1 1 2 N=5	7 -		 Firm, clayey SILT, trace fine gravels; grey mottled white; moist, high plasticity. Gravel: slightly weathered, subrounded, greywacke. 6.70m: no gravel; grey. 				
100 % 100	SPT 0	38/20	54/30	1 1 1 1 2			7.50m: trace fine sand. Hard, clayey SILT; grey; moist, high plasticity. [Extremely weak, completely weathered, grey, SILTSTONE].				
100 %	OB			2 N=6	8 —	× × × × × × × × × × × × × × × × × × ×		Waitemata Group			
% 100 %	SPT			3 3 4 6 7 7	9	× × ×	Medium dense, silty fine SAND; grey; moist, non plastic. [Extremely weak, completely weathered, grey, fine to medium SANDSTONE]. 9.45m: [moderately weathered].	Waitem			
100 %	F			N=24	-	· · · · · · · ·					
DATE STAR DATE STAR DATE FINIS OGGED B DEAR VAN	SHED: Y:	24/10/19 24/10/19 RLR GEO613		DRILLED EQUIPME DRILL ME DRILL FLU	NT: THOD:	Pro -Drill SLG-02 OB/PT/SF Water	PT/TT/VE				
				DIAMETEI	R/INCLIN/	ATION:	-/ 90°				
JK EXPLAN	IA LION OF	SYMBOLS A	AINU ABBF	KEVIA HONS	SEE KEY S	DHEEI					

BOREHOLE NO: BH101/19

Stress Stress <thstres< th=""> <thstres< th=""> Stres</thstres<></thstres<>												ACHINE BOREHOLE LOG SHEET 2 of 2			
DRCUTT NZTM DOREHOLE LOCATION: The Road RP 0.191 exposule 15 Trip Food. COORDINATE: 1.524.44.54.37 BOREHOLE LOCATION: The Road RP 0.191 exposule 15 Trip Food. COORDINATE ORIGIN: https://doi.org/10.101/101/101/101/101/101/101/101/101/															
COORDINATES: N 5.524.484.45 m R.L: 68 m COORDINATES (RINK HodPS ORLING: I.1.44.85.1 m DATUM: KX/D2016 ACCURACY: 1901 Interview Image: State of the stat				ION			Road,	, Whe	nua	pai, /					
NUMBER NUMER NUMER NUMER NUMER	CIR CO(ORDI	NAT		Ν	5,924	,484.4 ,858.1	3 m 9 m	1		BOI	R L: 68 m COORDINATE ORIGIN: hhGi	PS	1	
Image: Section of the sectio		2 2	_	G									ЦЦ		
Image: Second	FLUID LOSS	UAILY WATER LEVEL	METHOD	CASING	RQD		τ	SPT	SAMPLES	DEPTH (m)	GRAPHIC LOG	SOIL / ROCK DESCRIPTION	GEOLOGICAL L	R L (m)	
S0 E S0 Find Garys SitT Toker, Toker help flasticly, Externely weak, moderately weathered, Texternely weak, moderately weathered, Texternel							(_	· · · · · · · · · · · · · · · · · · ·			-	
Image: Second		100 %								-		\grey, SILTSTONE.] Medium dense. silty fine SAND: grey: moist. non plastic. [Extremely weak, moderately		-	
B C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>		% U	sPT	-				5 6		- 11 -			Group	57-	
B C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2					9 9		-		weathered, grey, fine to coarse SANDSTONE].	/aitemata	-	
st b a a a b		100						6		12 — -	× × × × × × × × × × × ×	Hard, clayey SILT; grey; moist, high plasticity. [Extremely weak, moderately weathered, grey, SILTSTONE].	5	- 56 -	
DATE STARTED: 24/10/19 DRILLED BY: Pio-Drill SIG-02 COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pio-Drill SIG-02 COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pio-Drill COMMENTS: SIG-02 DATE STARTED: 24/10/19 DRILLED BY: Pio-Drill COMMENTS: SIG-02 DATE STARTED: 24/10/19 DRILLED BY: Pio-Drill COMMENTS: SIG-02 DATE STARTED: 24/10/19 DRILLED BY: Pio-Drill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pio-Drill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pio-Drill COMMENTS:		% U	SPT					8 8		-		12.50 - 12.95m: no recovery - solid SPT.		-	
DATE STARTED: 24/10/19 DRILLED BY: Pro-Drill COMMENTS:								12 15		13 -		END OF LOG @ 12.95 m		55-	
DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE FINSHED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE FINSHED: 24/10/19 DRILL BUD: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: DATE FINSHED:	21-21-21-21-21-21-21-21-21-21-21-21-21-2							[140-47]		-	-			-	
DATE STARTED: 24/10/19 DRILLED BY: Pro-Drill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Drill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Drill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Drill COMMENTS: DATE FINSHED: 24/10/19 DRILLED BY: Pro-Drill COMMENTS: DATE FINSHED: 24/10/19 DRILL MUTHOD: OB/PT/SPTTT/VE DIAMETER/INCLINATION: -/ 90°	o- poor fr									-				- 54-	
DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE FINSHED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE FINSHED: 24/10/19 DRILL BUD: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: DATE FINSHED:										-				- 14	
DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE FINSHED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE FINSHED: 24/10/19 DRILL BUD: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: DATE FINSHED:	t. 00-1									_				-	
DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE FINSHED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE FINSHED: 24/10/19 DRILL BUD: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: DATE FINSHED:										- 15 -				53-	
DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 5 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill 44 DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE STARTED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE FINSHED: 24/10/19 DRILLED BY: Pro-Dnill COMMENTS: DATE FINSHED: 24/10/19 DRILL BUD: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: SLG-02 DATE FINSHED: 24/10/19 DRILL PUID: UPMENT: DATE FINSHED:										-				-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°										-				-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°	50.00									16 — -				52-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°										-	-			-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°	21007									- 17 -				- 51-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill COMMENTS: DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°	Rimero									-	-			-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°	0.07									-				-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill COMMENTS: DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°										18 –				50-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill COMMENTS: DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°										-	-			-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill COMMENTS: DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°										-				-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill COMMENTS: DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°										19 — -	-			49-	
DATE STARTED: 24/10/19 DRILLED BY: Pro -Drill COMMENTS: DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°										-				-	
DATE FINISHED: 24/10/19 EQUIPMENT: SLG-02 LOGGED BY: RLR DRILL METHOD: OB/PT/SPT/TT/VE SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90° 00°														-	
SHEAR VANE No: GEO613 DRILL FLUID: Water DIAMETER/INCLINATION: -/ 90°	DAT	E FIN	ISHE		24	4/10/19		EQUIP	MEN	Г:	SLG-02				
				No:				DRILL	FLUI	D:	Water				
A Scale 1:50 353	<u>د</u>		NATI	ON OF	SYN	/IBOLS A	ND ABB								

Trig Road

BOX: 2


調Beca

DEPTH: 4.50 to 7.20m

BH101/19

Machine Borehole Photos

Trig Road

BOX: 4

調Beca

DEPTH: 9.70 to 12.95m

BH101/19

Machine Borehole Photos

BOREHOLE No: BH102/19

SHEET 1 of 3

IRC	UIT			NZ	ZTM			and the set	, Aucklar BOI	CLIENT: Supporting Growth Alli REHOLE LOCATION: Trig Road RP 0.338 Council Reserve on Ryan's Roa R L: 58 m COORDINATE ORIGIN: hhd		
COORDINATES: N 5,924,611 m E 1,744,732 m										DATUM: NZVD2016 ACCURACY: ±5m		
DAILY	Ϋ́	-	CASING	RaD	IN-	SITU TE	STS SPT 'N'	SAMPLES	DEPTH (m) GRAPHIC LOG	SOIL / ROCK DESCRIPTION	GEOLOGICAL UNIT	
	100 % 0 %		-				1 1 1 1 2			0.00 - 1.50m: vacuum extracted - no recovery. Stiff, clayey SILT; light orange mottled white; moist, high plasticity. Stiff, clayey SILT; bands of white and streaked orange red; moist, high plasticity.	Fill	
	9 0.00.00 AMIN 78 % 52 %		_		60/40	87/57	2 N=6 1 1 2 1			2.95m: orange mottled white. 2.50 - 3.00m: no recovery. Stiff, clayey SILT; bands of white and streaked orange red; moist, high plasticity.	_	:
100101110	86.9	ō	_		45/12	63/18	2 2 N=7			 3.50m: wet. 3.60m: grey mottled red; moist. 3.70m: orange mottled white. 4.00m: trace fine sand. Stiff, SILT, minor clay, trace fine sand; orange; moist, low plasticity. 	_	
	86 % 100 %	SP SP	_				1 1 1 2 N=5			4.50m: some clay, trace fine to medium sand; high plasticity. Firm, clayey SILT, minor fine to medium sand; orange; moist, high plasticity.	nga Group	
	% 100 %	SP	-	60/22	28/10	40/15	1 0 1 2 1 N=4			5.95m: trace fine to coarse sand; orange mottled grey. 6.45m: no sand; grey.	Tauran	
	100 % 91	ō	_		60/22	87/32	1 1 2 1 2			7.40m: stiff		:
	% 06 %		-		UTP	UTP	3 N=8 2 2			8.15m: trace organics. Organics: amorphous.		
	100 % 100	0B SP					2 3 4 4 N=13			Hard, SILT, minor clay; grey; moist, low plasticity.		
ATE OGG	STA FINI GED E R VA	SHEI 3Y:	D:	23 R	3/10/19 3/10/19 LR EO613		DRILLEI EQUIPM DRILL M DRILL F	ient: Iethod Luid:	Water	COMMENTS: Hole terminated at target depth.		

BOREHOLE NO: BH102/19

											1717	ACHINE BOREHOLE LOG SHEET 2 of 3				
PRO	OJE	CT					west					JOB NUMBER: 3810934				
SITI	ELC)CA	ATIO	N:	Т	rig R	oad,	Wher	nuap	apai, Auckland CLIENT: Supporting Growth Allia						
CIRCUIT: NZTM COORDINATES: N 5,924,611 m E 1,744,732 m										BOREHOLE LOCATION: Trig Road RP 0.338 Council Reserve on Ryan's Road R L: 58 m COORDINATE ORIGIN: hhGF DATUM: NZVD2016 ACCURACY: ±5m						
			ING		_								UNIT			
FLUID LOSS	DAILY WATER LEVEL	CORE RECOVERY	METHOD	CASING	RQD		SITU TE		SAMPLES	DEPTH (m)	GRAPHIC LOG	SOIL / ROCK DESCRIPTION	GEOLOGICAL U			
Ξ (-	%		0	ž	SV	(kPa)	SPT 'N'	۵ ا	ä	× × ×	Hard, clayey SILT, grey, moist, high plasticity.	ō			
		100	SPT OB			UTP	UTP	2 2 3		-		10.20m: minor fine sand.				
		-						4 5 6 N=18		11 — - -						
		100 %	B							_	$\hat{\times}$	11.50m: 50mm bed of black clayey SILT; trace organics.				
		100 %	SPT			UTP	UTP	3 4 5 6		- 12 -	× × · · · · · · · · · · · · · · · · · ·	Hard, silty fine to medium SAND, some clay; grey, moist, high plasticity. [Extremely weak, grey, SANDSTONE]. 12.00m: closely spaced 10mm thick carbonaceous bands.				
		86 %	F					7 7 N=25		-	\times \times \times \times	Very stiff, clayey SILT; grey; moist, high plasticity. [Extremely weak, grey, SILTSTONE].				
		100 %	E							- 13 — -		Medium dense, silty fine SAND; grey; moist, non plastic. [Extremely weak to very weak, grey, fine SANDSTONE].				
		10(F					4		- - 14	×××					
		100 %	SPT					4 4 7		-	$\begin{pmatrix} \times & \times \\ \times & \times \\ \times & \times \end{pmatrix}$	Very stiff, clayey SILT; grey; moist, high plasticity. [Extremely weak, grey, SILTSTONE].				
		% 06	F					6 9 N=26		- - 15	× × ×	Medium dense, silty fine SAND; grey; moist, non plastic. [Extremely weak, grey, fine SANDSTONE].	Vaitemata Group			
	-	100 %	SPT					5 4 6 9		-	× × · · · · · · · · · · · · · · · · · ·		Wait			
								11 12 N=38		16 — -	$\times \times \times$	Hard, clayey SILT; grey; moist, high plasticity. [Extremely weak, moderately weathered, SILTSTONE].				
		100 %	F							-	$\frac{x}{x}$	Medium dense, silty fine SAND; grey; moist, non plastic. [Extremely weak, grey, fine SANDSTONE]. Hard, clayey SILT; grey; moist, high plasticity. [Extremely weak, grey, SILTSTONE].				
	-	3878 %	SPT					4 5 6		- 17 -	×	Medium dense, silty fine SAND; grey; moist, non plastic. [Extremely weak, grey, fine to medium SANDSTONE]. 17.00 - 17.45m: no recovery.				
								7 8 10 N=31		-		Hard, clayey SILT; grey; moist, high plasticity. [Extremely weak, grey, SILTSTONE].				
		100 %	F							- 18 — -	× > × · · · ·	Dense, silty fine SAND; grey; moist, non plastic. [Extremely weak, grey, fine SANDSTONE]. 20mm bed of black bands.				
		100 %	SPT					8 9 9 12		-	× × × × × × × × × × × ×	18.30m: 50mm bed of SILTSTONE. Extremely weak, moderately weathered, grey, SILTSTONE.				
		% (E					14 15 N=50+		19 — - -	· · · · · · · · · · · · · · · · · · ·	Extremely weak to very weak, moderately weathered, grey, fine to coarse SANDSTONE.				
		60						_		-		Extremely weak to very weak, moderately weathered, grey, fine SANDSTONE.				
AT OG	E ST E FII GGED	NISH D BY	HED:	 :	23. RL	/10/19 /10/19 .R EO613	<u> </u>	7 DRILLE EQUIPI DRILL DRILL	MENT METH FLUID	T: HOD: D:	Pro -Drill SLG-02 OB/SPT/1 Water					
00	EXPL	ANA		OFS	SYM	BOLS A	ND ABBI									

BOREHOLE NO: BH102/19

SHEET 3 of 3

PF	ROJE	CT: Northwest HIF										JOB NUMBER: 3810934				
SITE LOCATION: Trig Road, Whenuapai, Auckland										oai, A	ucklan	CLIENT: Supporting Growth Alliance				
CI C(RCL DOR	IIT: DIN	ATI	ES:	Ν	ZTM 5,924 1,744	,611 m ,732 m	า เ			BOI	REHOLE LOCATION: Trig Road RP 0.338 Council Reserve on Ryan's Road R L: 58 m COORDINATE ORIGIN: hhGP DATUM: NZVD2016 ACCURACY: ±5m	PS			
		DRIL	LING	;									F			
FLUID LOSS	DAILY WATER LEVEL	CORE RECOVERY	METHOD	CASING	RQD	IN: sv	-SITU TE τ (kPa)	STS	SAMPLES	DEPTH (m)	GRAPHIC LOG	SOIL / ROCK DESCRIPTION	GEOLOGICAL UNIT	R L (m)		
		100 %	SPT				()	11 10		_		Extremely weak to very weak, moderately weathered, grey, fine SANDSTONE.				
		96 % 10	т s					13 18 9/35mm N=50+		- - 21 —		20.41m: slightly to moderately weathered, fine to coarse.	Waitemata Group	- - - 37—		
		100 %	SPT					8 11 13 16		-		21.80m: 50mm bed of SILTSTONE.	Wait	-		
								21 N=50+		22 — _		END OF LOG @ 21.88 m		36		
										-				_		
										23 —				35—		
										-				_		
01-71-4107										-				-		
07 /07 10										24 — _				34— _		
an (i - 1 - 1 - 1 - 1										-				_		
0-01 07 #										- 25 —				- 33—		
0. 0604 1.07										- 25				- 35		
- 100										_				_		
										- 26				- 32—		
Daigei Lab ailu III										-				-		
500000										_				_		
01.00										 27 —						
01071107										-	-			_		
->ulawiiiyr iie>														_		
25										28 —				30—		
														_		
										-				_		
										29 —				29—		
										-				-		
										_	1			_		
	TE S					3/10/19					Pro -Drill	COMMENTS:				
LC	GGE	DB۱	/ :		RI	3/10/19 LR		EQUIPI DRILL I	METH	HOD:	SLG-02 OB/SPT/1	Hole terminated at target depth.				
	IEAR					EO613		DRILL DIAME	TER/	NCLIN/		-/ 90°				
	R EXF		ATIO	N OF	SYN	/BOLS A	ND ABB	REVIATIO	NS SI	EE KEY S	SHEET	358				

Trig Road

BOX: 2

調Beca

DEPTH: 4.95 to 7.95m

BH102/19

Machine Borehole Photos

Trig Road

BOX: 3

DEPTH: 7.95 to 10.50m

BOX: 4

調Beca

DEPTH: 10.5 to 13.95m

BH102/19

Machine Borehole Photos

BOX: 6

調Beca

DEPTH: 16.25 to 20.00

BH102/19

Machine Borehole Photos

Trig Road

BOX: 7

DEPTH: 20.0 to 22.375m

BH102/19

Machine Borehole Photos

Northwest HIF - Trig Road Geotechnical Factual Report

Appendix 3. Hand Auger Logs and Photographs

HAND AUGER NO: HA 101/19

HAND AUGER LOG

SHEET 1 of 1

CIRCL	JIT: DINA	TES: N	ZTM AUGER LOCATION: 40 Trig Rd - RP00/0.500 5,924,720.77 m RL: 55.5 m COOR	DINA	TE C	DRIGIN	I: AKL	. Cour	ıcil G
		E	1,744,643.39 m DATUM: MSL ACCUI	RACY	: ±{	5m			-
DEPTH (m)	SAMPLES	GRAPHICLOG	SOIL / ROCK DESCRIPTION	GEOLOGICAL UNIT	Scala (Blows/100mm)	sv	て (kPa)	WATER LEVEL	
			Stiff fine sandy SILT, some organics; dark brown; dry, low plasticity. Organics: rootlets [Topsoil]	Topsoil	4 4				
		XXX	Very stiff fine sandy SILT, trace organics; orange-brown; moist, low plasticity. Organics: rootlets	Ĕ	4				
-0.5		××××××××××××××××××××××××××××××××××××××	Very stiff clayey SILT; orange; moist, high plasticity.		3 2 3 2 2 2	112/42	154/59		55
- 1.0		$\begin{array}{c} & \times \\ \times$				90/36	124/51		54
- 1.5			Very stiff clayey SILT; light brown streaked white and pink; moist, high plasticity; pumiceous texture.	Puketoka Formation		104/54	143/75		54
2.0		× × × × × × × × × × × × × × × × ×	Very stiff clayey SILT; light orange-brown speckled white; moist, high plasticity; pumiceous texture.	Puketoka		98/50	135/70		53
2.5						80/40	110/56		53
3.0		× × × × × × × × × × × × × × × × × × ×				90/52	124/73		52
3.5		$\overline{X} X X$			3	84/46	116/64		52
-4.0			END OF LOG @ 3.5 m		5 6 7 8 8 6				51
-4.5					8 7				51
DATE A	D BY:	G	3/12/19 DIAMETER: 50 mm COMMENTS: H METHOD: HA No groundwater encountered EO1509						

SGA Trig Rd Geotechnical Investigation. HA101/19

BOX: 1

Depth: 0.00 m to 3.50 m

HA101/19

Northwest HIF - Trig Road Geotechnical Factual Report

Appendix 4. Test Pit Logs and Photographs

TEST PIT LOG

TEST PIT NO: TP 101/19

		CC	TEST PIT LOG	SHEET	[.] 1	of 1			
PROJ	ECT:	٦	rig Road Investigations, Kumeu JOB NUMBER	: 3810	934	4			
SITEL	LOCA	TION:	rig Road CLIENT: Su	pportir	ng (Grow	th Alli	ance	•
CIRCL		TES: N		RDINAT URACY:			I: AKL	. Cour	ncil C
DEPTH (m)	SAMPLES	GRAPHIC LOG	SOIL / ROCK DESCRIPTION	GEOLOGICAL UNIT	Scala (Blows/100mm)	SV	ິ∼ (kPa)	WATER LEVEL	
			Stiff silty fine SAND, trace clay; dark brown; moist, low plasticity.	Topsoil	1 2 3 4	50/24	70/35		64.
- 0.5		\times	Stiff clayey SILT; minor fine sand; light grey; moist, high plasticity; disturbed structure [Colluvium?]		4 3 5 4	67/36	92/51		
· 1.0		$\times \times $	Stiff clayey SILT, light grey; wet, high plasticity; non-disturbed structure [Colluvium?]		- 6 1	49/20	68/29	∑ ∑	64.
					1 1 1 2			13/12/2019	63.
· 1.5		× × × × × × × × × × × × × × × × × × ×	Firm clayey SILT; light grey speckled light yellow; wet, high plasticity; disturbed structure [Colluvium?]	lation	2 2 3 5	32/15	46/22		63
2.0		× × × × × × × × × × × × × × × ×		Puketoka Formation	0	30/15	43/22		62
2.5			Firm clayey SILT, minor fine sand, trace organics; dark brown; wet, high plasticity. Organics - semi-decomposed wood, disturbed blocky structure [Colluvium?]			35/12	49/19		62
3.0		× × × × × × × × × × × × × × × × × × ×				26/10	37/16		61
3.5		× × × × × × × ×	END OF LOG @ 3.5 m			15/8	22/13		61
4.0									61
4.5									60
-									60
OGGE	EXCAV ED BY: R VANE	C	3/12/19 CONTRACTOR: Abernathy COMMENTS: SH EQUIPMENT: 14T Excavator Shear vanes undertaken within bulk sa SEO1509 METHOD: E	mples fro	m the	e pits be	 elow 1.4	m depti	h
OR EX	PLANAT	TION OF SY	MBOLS AND ABBREVIATIONS SEE KEY SHEET 367						

SGA Trig Rd Geotechnical Investigation TP101/19

Depth: 0.00 m to 3.5 m

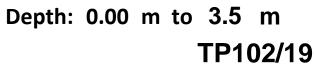
Depth: 0.00 m to 3.5 m TP101/19

TEST PIT LOG

TEST PIT NO: TP 102/19

			TEST PIT LOG		SHEET 1	of 1			
PROJE	ECT:	٦	rig Road Investigations, Kumeu	JOB NUM	BER: 381093	34			
SITE L	OCA1	ION:	-		Supporting	Grow	th Alli	ance	
	JIT: DINA ⁻	TES: N	TM TEST PIT LOCATION: 9 Trig Rd - RF 5,924,679.89 m R L: 47.2 m 1,744,741.58 m DATUM: MSL	C	COORDINATE		I: AKL	. Coun	cil G
DEPTH (m)	SAMPLES	GRAPHIC LOG	SOIL / ROCK DESCRIPTION		GEOLOGICAL UNIT		т (kPa)	WATER LEVEL	(m) 0
			Stiff fine SAND; trace clay, trace organics; dark brown; dry, low plasticity. Organics: rootlets	ts [Topsoil]	2 3 4 4 2		132/49		47.(
-0.5		× × × × × × × × × × × × × × × × × × ×	Stiff clayey SILT; light grey; moist, high plasticity. Fines content increasing with depth		1 2 3 2	60/18	83/27		46.5
- 1.0		× × × × × × × × × × × × × × × × × × ×	1.2m - Very stiff		3 4 6 4		128/56		46.0
· 1.5			Very stiff silty CLAY; light grey; moist, high plasticity.		4 6 7 7	88/38	121/54		45.
2.0					2 Puketoka Formation		118/36		45.
2.5			2.5m- Streaked yellow			140+	191+		44
3.0						105/45	144/63		44
3.5		×	END OF LOG @ 3.5 m			94/46	129/64		43.
4.0									43
4.5									42.
OGGE	XCAVA D BY: VANE	C	V12/19 CONTRACTOR: Abernathy COMMENTS: H EQUIPMENT: 14T Excavator No groundwater encoustion EO1509 METHOD: E	ountered ken within bu	lk samples from t	he pits be	elow 1.4	n depth	
OR EXP		ION OF SY	IBOLS AND ABBREVIATIONS SEE KEY SHEET 369						

SGA Trig Rd Geotechnical Investigation TP102/19



BOX: 1

Depth: 0.00 m to 3.5 m

BOX: 2

TEST PIT LOG

TEST PIT NO: TP 103/19

					TES	ST PIT LOO	6		S	HEET	1	of 1			
PROJE	ECT:		-	d Investigations	, Kumeu			JOB NUN							
	OCA ⁻		Trig Road	d				CLIENT:		oortii	ng (Grow	h Alli	ance	•
CIRCL	JIT: DINA	TES: N	IZTM 5,924,899 1,744,588	9.03 m 3.22 m	TEST PIT	LOCATION: R L: DATUM	52.25 m		50 COORI ACCUF				I: AKL	Cour	ncil C
DEPTH (m)	SAMPLES	GRAPHIC LOG			SOIL / ROCK D	ESCRIPTION				GEOLOGICAL UNIT	Scala (Blows/100mm)	sv	ぞ (kPa)	WATER LEVEL	
			Stiff silty fi	ine SAND, minor clay, r	ninor organics; dark bro	own; dry, low pla	sticity. Organics	: rootlets [To	psoil]	opsoil	1 2	52/30	73/43		
0.5		× × × × × × × × × × × × × × × × × × ×			lay, minor fine gravel; n nics; light greyish yellow					-F	2 2 2 3 2	112/45	154/63		52.
- 1.0										Puketoka Formation	3 3 2 2 3	140+	191+		51.
- 1.5										Puket	6 4 5 3 8	140+	191+		50.
-2.0			END OF L	_OG @ 2.3 m								132/50	181/70		50
2.5				C											49
-3.0															10
3.5															49
-4.0															48.
4.5															48
															47.
OGGE	EXCAV/ ED BY: VANE	(13/12/19 GH GEO1509	Contractor: Equipment: Method:	Abernathy 14T Excavator E	Nog	/MENTS: groundwater end ar vanes undert	countered aken within k	oulk samp	bles fro	m the	e pits be	low 1.4	m depth	h

SGA Trig Rd Geotechnical Investigation TP103/19

BOX: 1

Depth: 0.00 m to 2.3 m

BOX: 2

Depth: 0.00 m to 2.3 m TP103/19

Northwest HIF - Trig Road Geotechnical Factual Report

Appendix 5. Laboratory Testing

	Sensitivity: General
)	

Ph.	P 0	
dand 1 300-9	Pitt Stre Box 63	
141 380	reet 345	

Sheet 1 of 9

SUMMARY		о П —	- М С М	RESULTS	Report: 2057L:01	ort: 1:01										
Job Name: Supporting Group Alliance	Suppo	orting Q	Group /	Alliance Job No: 3810934/1000												
Client: Auckland Transport	land T	[ransp	ort	Date: 13 December 2019												
Bore hole Sample No. No.		Depth (m)	Sample Type	Sample Description	Nat	Natural	Atterberg Limits		Grading	Pa Vm ³	Ctay Index	Consol	CBR	Compaction	Perm k m/s	Triaxial CUPP
					WC%	Bulk Density t/m ³	SPL [<u>۲</u>								
BH101/19 S836		1.5	SD	Fine to medium sandy sitty CLAY, trace organics; yellowish brown, speckled dark greyish brown; moist, highly plastic.	43.4		×	×	×							74
BH102/19 S837		3.0	SD	Clayey SILT, some fine sand; orange brown, mottled light blueish grey; moist, highly plastic.	47.5		×	×	×							2
BH101/19 S846		3.8	PT	Clayey SILT, minor sand; bluish grey mottled orange brown; moist, highly plastic.	43.8							×				
BH101/19 S835		4.5	SD	Clayey SILT, minor sand; orange brown, mottled blueish grey; moist, highly plastic.	56.5											
BH101/19 S847		6.0	PT	Clayey SILT, minor sand, trace fine gravel; reddish brown mottled yellowish grey; moist, highly plastic.	81.5							×				
BH102/19 S838		6.0	SD	Clayey SILT, minor sand; orange brown, mottled blueish grey; moist, highly plastic.	43.1											
BH102/19 S839		7.5- 7.95	SD	Fine to medium sandy SILT, some clay; greyish brown, speckled orange brown; moist, highly plastic.	40.7		×	×	×							
		INVIROLAI REPORTEC CCREDIT, OTE: IAN	B GEOTES D HEREIN I A TION. TH Z ENDORS	ENVIROLAB GEOTEST IS ACCREDITED BY INTERNATIONAL ACCREDITATION NEW ZEALAND. ALL TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH THE LABORATORY'S SCOPE OF ACCREDITATION. THIS REPORT MAY NOT BE REPRODUCED EXCEPT IN FULL NOTE: IANZ ENDORSEMENT DOES NOT COVER SOIL DESCRIPTIONS.				·	TEST NZS 44	STAN 02: 1986;	TEST STANDARDS NZS 4402: 1986; Test 2.1,2.2	TEST STANDARDS: NZS 4402: 1986; Test 2.1,2.2,2.3,2.4,2.8.4, 7.1	,,2.8.4, 7	\mathcal{V}		Sheet 1 of 9
	хл	(= DATA A	ELATE S O .TTACHED	REPORT RELATES ONLY TO SAMPLES TESTED, SAMPLING WAS UNDERTAKEN BY OTHERS. X = DATA ATTACHED, UT = UNDISTURBED TUBE SAMPLES, SD = SMALL DISTURBED SAMPLES					AUTHO	RISED S	AUTHORISED SIGNATORY	h				

21 Pitt Street PO Box 6345 Auckland 1141 Ph: (09) 300-9380

Sheet 2 of 9

ATTERBERG LIMITS

Job Name: Supporting Group Alliance

Job No: 3810934/1000

Client: Auckland Transport

Sample Type: Small Disturbed

Test Standard: NZS 4402: 1986, Test 2.1,2.2,2.3,2.4

History: As Received

Date: 13 December 2019

Report No: 2057L:01

Tested By: S.Shah/B.Alves

Checked By: C.Oey

Test Performed On: Sub 425µm

Bore No.	Sample No.	Depth (m)	Sample Description	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index
BH101/19	S836	1.5	Fine to medium sandy silty CLAY, trace organics; yellowish brown, speckled dark greyish brown; moist, highly plastic.	43.4	67	30.	37
BH102/19	S837	3.0	Clayey SILT, some fine sand; orange brown, mottled light blueish grey; moist, highly plastic.	47.5	79	37	42
BH102/19	S839	7.5- 7.95	Fine to medium sandy SILT, some clay; greyish brown, speckled orange brown; moist, highly plastic.	40.7	71	25	46

Comments:

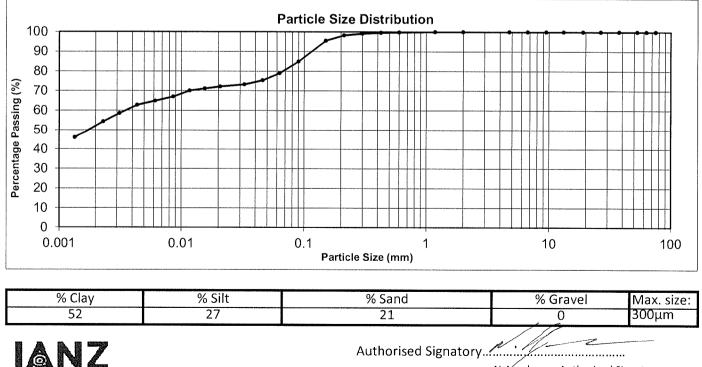
GS-362R-404-F02 Rev. No. 05

Authorised Signatory:

N. Agarkova - Authorised Signatory

NZ\381\3810934\2 - Job Planning and Management\Reporting\NZ1-16568215-4.doc

21 Pitt St PO Box 6345 Auckland 1141 Ph: (09) 300-9380


PARTICLE SIZE DISTRIBUTION - WET SIEVE/HYDROMETER METHOD

Job Name: Supporting Group Alliance	Client: Auckland Transport	Date: 13 December 2019
Job No. : 3810934/1000	Tested By: S.Shah	Checked By: C.Oey
Bore No.: BH101/19	Sample No.: S836	Depth (m): 1.5
Sample Type: Small Disturbed	History: As Received	Report No.: 2057L:01

Sample Description: Fine to medium sandy silty CLAY, trace organics; yellowish brown, speckled dark greyish brown; moist, highly plastic.

Test Standard: NZS4402: 1986, Test 2.8.4 Dispersion: Sodium hexametaphosphate, pH = 9.0

Fraction De	termined by	Sieving		Fraction De	etermined by	/ Hydromete	r
Sieve Size		Sieve Size		Part. Size		Part. Size	
mm	% Passing	mm	% Passing	mm	% Passing	mm	% Passing
75	100	2.0	100	0.046	75	0.001	46
63	100	1.18	100	0.033	73		
53	100	0.600	100	0.021	72		
37.5	100	0.425	100	0.015	71		
26.5	100	0.300	99	0.012	70		
19	100	0.212	98	0.009	67		
13.2	100	0.150	96	0.006	65		
9.5	100	0.090	85	0.004	63		
6.7	100	0.063	79	0.003	59		
4.75	100			0.002	54		

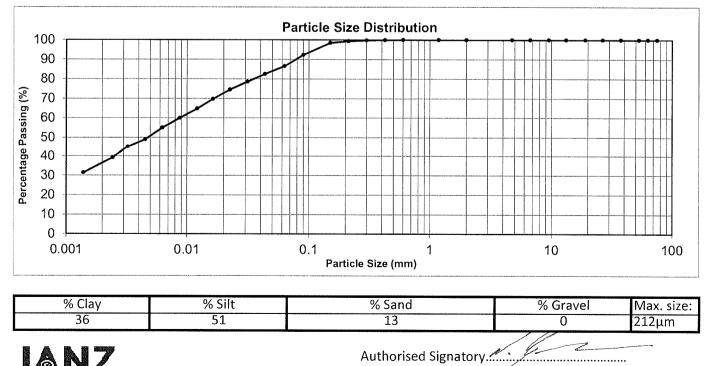
N, Agarkova - Authorised Signatory

GS-362R-306-F01

Rev. No. 02 Meridio\Hubs\New Zealand\Clients\Projects\NZ\381\3810934\2 - Job Planning and Management\Reg_tile(2) 16566773-S836.xls

Ph: (09) 300-9380

Sheet 4 of 9


PARTICLE SIZE DISTRIBUTION - WET SIEVE/HYDROMETER METHOD

Job Name: Supporting Group Alliance	Client: Auckland Transport	Date: 13 December 2019
Job No.: 3810934/1000	Tested By: S.Shah	Checked By: C.Oey
Bore No.: BH102/19	Sample No.: S837	Depth (m): 3.0
Sample Type: Small Disturbed	History: As Received	Report No.: 2057L:01

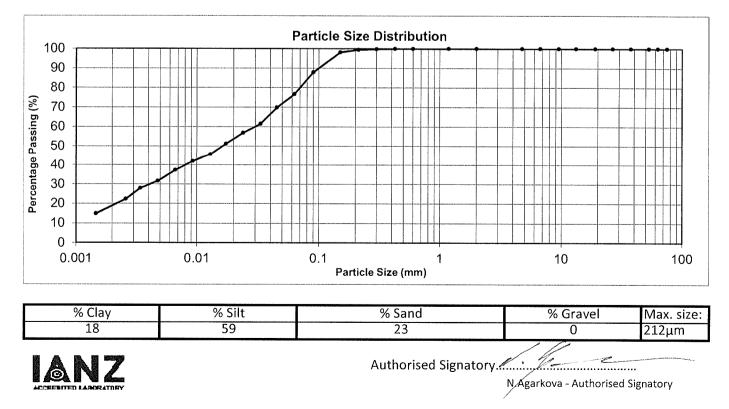
Sample Description: Clayey SILT, some fine sand; orange brown, mottled light blueish grey; moist, highly plastic.

Test Standard: NZS4402: 1986, Test 2.8.4 Dispersion: Sodium hexametaphosphate, pH = 9.0

Fraction De	termined by	Sieving		Fraction De	etermined by	Hydromete	٢
Sieve Size		Sieve Size		Part. Size		Part. Size	[
mm	% Passing	mm	% Passing	mm	% Passing	mm	% Passing
75	100	2.0	100	0.043	82	0.001	31
63	100	1.18	100	0.031	79		
53	100	0.600	100	0.022	75		
37.5	100	0.425	100	0.016	70		
26.5	100	0.300	100	0.012	65		
19	100	0.212	99	0.009	60		
13.2	100	0.150	98	0.006	55		
9.5	100	0.090	92	0.005	49		
6.7	100	0.063	87	0.003	45		
4.75	100			0.002	39		

N.Agarkova - Authorised Signatory

21 Pitt St PO Box 6345 Auckland 1141 Ph: (09) 300-9380


PARTICLE SIZE DISTRIBUTION - WET SIEVE/HYDROMETER METHOD

Job Name: Supporting Group Alliance	Client: Auckland Transport	Date: 13 December 2019
Job No.: 3810934/1000	Tested By: S.Shah	Checked By: C.Oey
Bore No.: BH102/19	Sample No.: S839	Depth (m): 7.5-7.95
Sample Type: Small Disturbed	History: As Received	Report No.: 2057L:01

Sample Description: Fine to medium sandy SILT, some clay; greyish brown, speckled orange brown; moist, highly plastic.

Test Standard: NZS4402: 1986, Test 2.8.4 Dispersion: Sodium hexametaphosphate, pH = 9.0

	raction Determined by Sieving				Fraction Determined by Hydrometer				
Sieve Size		Sieve Size		Part. Size Part. Size					
mm	% Passing	mm	% Passing	mm	% Passing	mm	% Passing		
75	100	2.0	100	0.045	70	0.001	15		
63	100	1.18	100	0.033	61				
53	100	0.600	100	0.024	57				
37.5	100	0.425	100	0.017	51				
26.5	100	0.300	100	0.013	46				
19	100	0.212	99	0.009	42				
13.2	100	0.150	98	0.007	37				
9.5	100	0.090	88	0.005	32				
6.7	100	0.063	77	0.003	28				
4.75	100			0.003	22				

調Geotest

Sheet 6 of 9

ONE DIMENSIONAL CONSOLIDATION (OEDOMETER) TEST

Project: Supporting Group Alliance	Client:Auckland Transport	Date: 13 December 2019
Job No: 3810934/1000	Location: -	Depth (m): 3.8
Bore/Test Pit No.: BH101/19	Sample No.: S846	Report No: 2048L:01
Sample Type: Undisturbed Tube	History: Natural	

Sample Description: Clayey SILT, minor sand; bluish grey mottled orange brown; moist, highly plastic.

Test Standard: NZS 4402:1986, Test 7.1 Tested By: N.Agarkova Checked By: S.Shah

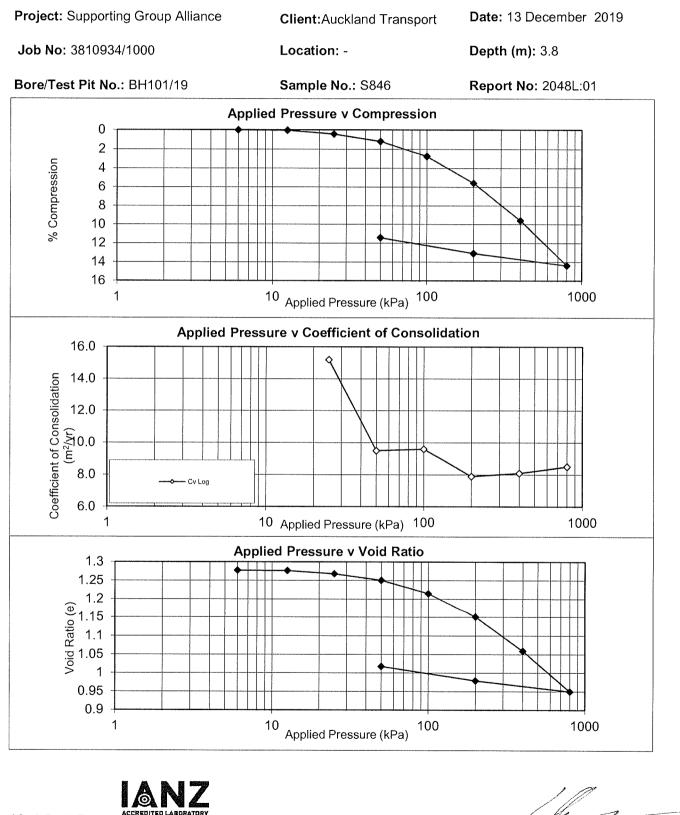
Test Condition: Inundated at 1 minute interval on initial load sequence

Initial Water Content	(%)	43.8	Solid Density (assumed)	(t/m ³)	2.77
Initial Bulk Density	(t/m ³)	1.75	Saturation Ratio (Initial)		0.95
Initial Dry Density	(t/m ³)	1.22	Saturation Ratio (Final)		1.0
Cycle Time (Ave)	(Hrs)	4	Temperature Range	(⁰ C)	19.5-23
Area of Ring	(mm²)	1960	Initial Void Ratio	(e)	1.28
Height of Ring	(mm)	14.9	Date Tested	21 - 25 November	2019

Applied Pressure	(kPa)	6	12.5	25	50	100	200	400	800	200	50
Compression	(%)	0.0	0.0	0.4	1.2	2.7	5.6	9.6	14.4	13.1	11.4
Void Ratio	(e)	1.28	1.28	1.27	1.25	1.22	1.15	1.06	0.95	0.98	1.02
Coefficient of consolidation		-	5.1	15	9.5	9.6	7.9	8.1	8.5	-	-
Cv Log	(m²/yr)										
Coefficient of volume compressibil	ity	-	0.05	0.31	0.31	0.31	0.29	0.21	0.13	-	-
Mv	(m²/MN)										

*Comment:

GS-362R-462-F01 Rev. No. 10


Authorised Signatory

調Geotest

21 Pitt Street PO Box 6345 Auckland 1141 Ph:(09) 300 9380 Fax:(09) 300 9292

Sheet 7 of 9

ONE DIMENSIONAL CONSOLIDATION (OEDOMETER) TEST

GS-362R-462-F01 Rev. No. 10

Authorised Signatory

\Meridio\Hubs\New Zealand\Clients\Projects\NZ\325\3254747\2 - Job Planning and Management\Reporting\NZ1-16587464-S846 consolidation.xls

調 Geotest

Sheet 8 of 9

ONE DIMENSIONAL CONSOLIDATION (OEDOMETER) TEST

Project: Supporting Group Alliance	Client:Auckland Transport	Date: 13 December 2019
Job No: 3810934/1000	Location: -	Depth (m): 6.0
Bore/Test Pit No.: BH101/19	Sample No.: S847	Report No: 2048L:01
Sample Type: Undisturbed Tube	History: Natural	

Sample Description: Clayey SILT, minor sand, trace fine gravel; reddish brown mottled yellowish grey;
moist, highly plastic.Test Standard: NZS 4402:1986,Test 7.1Tested By: N.AgarkovaChecked By: S.Shah

Test Condition: Inundated at 1 minute interval on initial load sequence

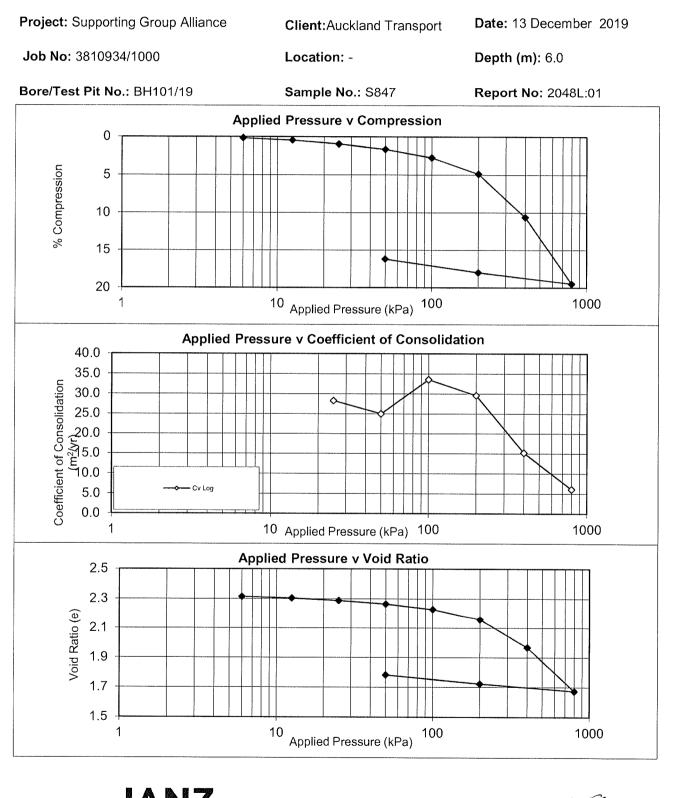
Initial Water Content	(%)	81.5	Solid Density (assumed)	(t/m ³)	2.77
Initial Bulk Density	(t/m ³)	1.51	Saturation Ratio (Initial)		0.97
Initial Dry Density	(t/m ³)	0.83	Saturation Ratio (Final)		1.0
Cycle Time (Ave)	(Hrs)	4	Temperature Range	(⁰ C)	19.5-23
Area of Ring	(mm²)	1960	Initial Void Ratio	(e)	2.32
Height of Ring	(mm)	15	Date Tested	21 - 25 November	2019

Applied Pressure	(kPa)	6	12.5	25	50	100	200	400	800	200	50
Compression	(%)	0.2	0.5	1.0	1.6	2.7	4.9	10.6	19.5	18.0	16.2
Void Ratio	(e)	2.31	2.30	2.29	2.27	2.23	2.16	1.97	1.67	1.72	1.78
Coefficient of consolidation			-	28	25	34	30	15	6.1	-	-
Cv Log	(m²/yr)										
Coefficient of volume compressibilit	:y	-	0.45	0.41	0.28	0.22	0.22	0.30	0.25	-	-
Mv	(m²/MN)										

*Comment:

GS-362R-462-F01 Rev. No. 10

. L Authorised Signatory


N. Agarkova - Authorised Signatory \Meridio\Hubs\New Zealand\Clients\Projects\NZ\325\3254747\2 - Job Planning and Management\Reporting\Nz1-16587615-S847 consolidation.xls

III Geotest

Fax:(09) 300 9292

Sheet 9 of 9

ONE DIMENSIONAL CONSOLIDATION (OEDOMETER) TEST

462-F01

Authorised Signatory

GS-362R-462-F01 Rev. No. 10

> N. Agarkova - Authorised Signatory Meridio\Hubs\New Zealand\Clients\Projects\NZ\325\3254747\2 - Job Planning and Management\Reporting\NZ1-16587615-S847 consolidation.xls

ATTACHMENT 23

NORTH-WEST HIF TRIG ROAD GEOTECHNICAL INTERPRETIVE REPORT

Interpretive Report

Date Prepared: 31 January 2020

Prepared by: Ashe Cooper

Northwest HIF – Trig Road Geotechnical Interpretive Report

Purpose

This geotechnical interpretive report has been prepared to present the geotechnical interpretation of the geotechnical factual information retrieved during the ground investigation at Trig Road, Whenuapai. This report also provides recommendations for the proposed development.

Document Status

Responsibility	Name	Signature
Author	Ashe Cooper	A
Reviewer	James Burr	ma
Approver	Rob Mason	the second secon

Revision Status

Version	Date	Reason for Issue
0.1	31/01/2020	For Client Comment
0.2	14/02/2020	For issue to Client

Disclaimer

This is a draft document for review by specified persons at Auckland Transport and the New Zealand Transport Agency. This draft will subsequently be updated following consideration of the comments from the persons at Auckland Transport and the New Zealand Transport Agency. This document is therefore still in a draft form and is subject to change. The document should not be disclosed in response to requests under the Official Information Act 1982 or Local Government Official Information and Meetings Act 1987 without seeking legal advice.

Table of Contents

1.	Intro	duction3						
2.	Prop	osed Development3						
3.	Site I	Site Description4						
4.	Geot	echnical Information5						
	4.1.	Geology5						
	4.2.	Ground Investigation Scope5						
	4.3.	Ground Profile						
	4.4.	Groundwater Conditions						
	4.5.	Laboratory Testing7						
5.	Geot	echnical Design Parameters8						
6.	Desi	gn Standards and Criteria9						
	6.1.	Design Codes and Guidelines9						
	6.2.	Seismic Design9						
	6.3.	Liquefaction Susceptibility9						
7.	Desi	gn Recommendations10						
	7.1.	Earthworks10						
	7.2.	Slope Stability						
	7.3.	Retaining Walls11						
	7.4.	Pavements12						
	7.5.	Services						
	7.6.	Sustainability12						
8.	Conc	lusions and Recommendation12						
9.	Appli	icability13						
10.	Refe	rences13						

Tables

Table 1 - Typical Ground Profile	6
Table 2 - Geotechnical Design Parameters	8
Table 3 - Input for the Seismic Peak Ground Acceleration Calculation	9

Figures

Figure 1 - Trig Road Proposed Concept Design	.4
Figure 2 - Trig Road Geology (QMaps, 2019)	.5

Appendices

- Appendix 1. Site Plans
- Appendix 2. Geological Cross-sections
- Appendix 3. Peak Ground Acceleration Calculation
- Appendix 4. Slope Stability Analysis

1. Introduction

The Supporting Growth project aims to identify the transport networks required to connect Auckland's future growth areas over the next 30 years. A coordinated approach with land use development running in parallel with infrastructure planning is required.

An early indication of the viability of preferred networks is required to identify geotechnical opportunities and constraints to developing land.

The 'preferred networks' require the following criteria to be met:

- Include improved accessibility and transport options,
- Strong focus on public transport, including walking and cycling facilities,
- Connections to the wider strategic transport network, and
- Maximum benefit and value in management of existing network infrastructure

As part of the Supporting Growth Alliance (SGA), Beca Limited (Beca) are undertaking the geotechnical investigation and interpretation to inform the preliminary design of the roading upgrades along Trig Road. This report provides high level geotechnical interpretation of the factual ground investigation data and recommendations of design elements which may be considered for the project. Additional investigation and analyses will be required for later stages of the design.

2. Proposed Development

The proposed development along Trig Road is a road widening to accommodate future transportation requirements for the Auckland region. Trig Road is a Level 1, Arterial route road. The Trig Road upgrade would see:

- Two lane road with a flush or scour median
- Berm and footpath on either side of the road
- A cycleway along one side of the road

For the proposed road widening to take place, a combination of cut and fill earthworks along with retaining structures would be required in order to achieve the targeted road width (refer Figure 1).

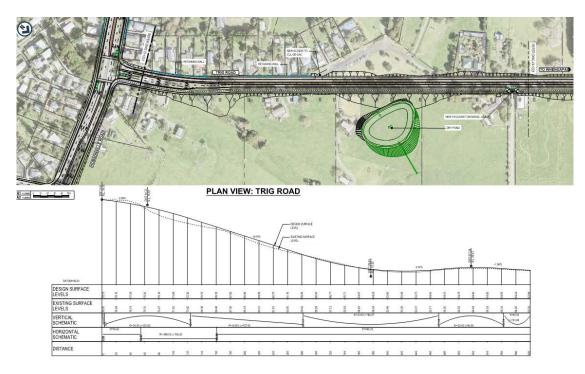


Figure 1 - Trig Road Proposed Concept Design

3. Site Description

The site is located along Trig Road, which trends in a north-west south-east direction from Hobsonville Road in the south to Brigham Creek Road in the north. An overall Site Plan is also shown in Appendix 1.

Trig Road runs along a minor north to south trending ridge with slopes within the area considered flat to gently sloping, at less than 5°. Slopes up to 20° occur in localised areas immediately adjacent to the road alignment. Three streams are present within the site and exist on the eastern and western sides of Trig Road and are named Totara Stream, Trig Stream, and Rawiri Stream with various ephemeral water courses feeding into them.

4. Geotechnical Information

4.1. Geology

The published 1:250,000 geological map (QMAP) of the Auckland area (Edbrooke, 2001) indicates that the area comprises two main geological units as shown in Figure 2. From the ground investigation, it was found that the site is underlain by Puketoka Formation of the Tauranga Group overlying Waitemata Group material.

Figure 2 - Trig Road Geology (QMaps, 2019)

4.2. Ground Investigation Scope

Ground investigations were undertaken by Beca in November – December 2019. The information from the investigation is presented in the report titled *Northwest HIF* – *Trig Road Geotechnical Factual Report*

The scope of the investigations carried out is summarised below:

- 2 x Machine Boreholes with Standard Penetration Tests (SPT's) undertaken typically at 1.5m centres, to depths ranging between 13 and 22m
- 3 x Test Pits (TP's) to a maximum of 3.5m depth
- 1 x Hand Auger (HA) to 3.5m depth.

The upper 1.5m of both machine boreholes was vacuum excavated due to services being present in the investigation area.

4.3. Ground Profile

We provide a summary of the soil and rock profile derived from the ground investigation in Table 1 below. Two geological cross sections at the site are presented in Appendix B.

Table 1 – General Ground Profile¹

Layer	Geological Unit	Soil Description	Thickness (m)	Undrained Shear Strength Range (kPa)	Typical SPT "N" Value Range (Blows/100mm)
1a	Puketoka Formation	Stiff/ Very Stiff Clayey SILT	5 – 10	43 – 191	3 – 5
1b	Puketoka Formation (recent alluvium)	Firm Clayey SILT	3.0+ ?	37 – 43	4 – 13
2a	Weathered Waitemata Group	Interbedded Hard Clayey SILT/Medium dense fine silty SAND	4 - 9	UTP	18 – 47
2b	Waitemata Group	Extremely Weak SANDSTONE/ SILTSTONE	-	-	50+

Unit 1b (recent colluvium) was only encountered in TP101/19 but may be found in other low-lying areas along the alignment.

4.4. Groundwater Conditions

Both boreholes were dipped following completion of drilling. At the time of the measurements the boreholes were fully open. Only borehole BH101/19 was able to be left to allow for dissipation o drilling muds or other fluids. Borehole BH102/19 was dipped following completion of drilling. The water level is indicative only and does not allow for the interpretation of water levels or vertical gradients between individual units.

Test pit 101/19 encountered groundwater at approximately 800mm depth. This test pit is located adjacent to an ephemeral watercourse and groundwater will likely be elevated at this location. Groundwater was measured at 3.0m below ground level in borehole BH101/19, and 2.5m below ground level in borehole BH102/19.

¹ Findings presented above are based on the ground investigation at chainages 140m and 420m. Variation in the ground profile along the length of the road is expected

4.5. Laboratory Testing

The laboratory testing was carried out on collected field samples and was undertaken by Geotest Ltd, an IANZ accredited laboratory. Full results are in the report titled *Northwest HIF – Trig Road Geotechnical Factual Report.*

Laboratory testing results are shown in the tables below.

Table 2 - Natural Moisture Content and Atterberg limits Test Results

Unit	Borehole ID	Sample Depth (m)	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index
1a	BH101/19	1.5	43.4	67	30	37
1a	BH102/19	3.0	47.5	79	37	42
1b	BH102/19	7.5 – 7.95	40.7	71	25	46

The soils plot as highly plastic clay/silt.

Table 3 - Particle Size Distribution - Wet Sieve/Hydrometer Method Test Results

Unit	Borehole ID	Sample Depth (m)	% Clay	% Silt	% Sand	% Gravel
1a	BH101/19	1.5	52	27	21	0
1a	BH102/19	3.0	36	51	13	0
1b	BH102/19	7.5 – 7.95	18	59	23	0

Table 4 - One Dimensional Consolidation Test Results

Unit	Borehole ID	Sample Depth (m)	Initial Bulk Density (t/m³)	Initial Void Ratio	Applied Pressure Range (kPa)	Coefficient of Consolidation Range (C _v Log) (m²/year)	Coefficient of Volume Compressibility Range (M _v) (m ² /MN)
1a	BH101/19	3.8	1.75	1.28	12.5 – 800	5.1 – 8.5	0.05 – 0.13
1b	BH101/19	6.0	1.51	2.32	12.5 – 800	28 – 6.1	0.45 – 0.25

5. Geotechnical Design Parameters

Preliminary material parameters have been assessed from the geotechnical investigations, laboratory testing, and moderated by our experience of similar soils in the Auckland area. These are provided in the Table 5 below.

Table 5 - Geotechnical Design Parameters

Layer	Soil Description	Density (kN/m³)	Cohesion (kPa)	Friction Angle (degrees) Φ'	Undrained Shear Strength (Su) (kPa)
1a	Stiff Clayey SILT	17	3	28	55
1b	Soft/Firm Clayey SILT	16	1	26	40
2a	Interbedded Hard Clayey SILT/Medium dense silty fine SAND	18	3	30	125
2b	Waitemata Group Rock	18	10	36	500
3	Engineered Fill	18	5	30	100

6. Design Standards and Criteria

6.1. Design Codes and Guidelines

The relevant design codes and standards for the Trig Road upgrade are summarised below:

- AS/NZS 1170 Structural Design Actions
- NZS 1170.5:2004 Structural Design Actions Part 5: Earthquake Actions New Zealand, incorporating Amendment 1, September 2016
- Bridge Manual, Manual Number SP/M/22, 3rd Edition, Amendment 3 (BM) (NZTA, 2018)
- MBIE New Zealand Building Code B1 Structure/ Verification Method 4 Foundations (B1/VM4), incorporating Amendment 15, January 2017
- Auckland Unitary Plan E25. Noise and Vibration, Auckland Council
- MBIE/NZGS Modules for Earthquake Geotechnical Engineering Practice

6.2. Seismic Design

6.2.1. Site Subsoil Class

The site subsoil class has been determined from the geotechnical site investigations in accordance with New Zealand Standard for Structural Design Actions NZS1170.5:2004.

The site subsoil class is classified as Class C – shallow soil sites.

6.2.2. PGA Design Values

The Peak Ground Acceleration (PGA) values for the earth slopes obtained from NZTA Bridge Manual Version 3.3, are presented in Table 6 below.

A 100-year design life has been assumed for the embankments and they are assumed to be no greater than 6m high.

Importance Level	Design Life (years)	Design Case	Annual Probability of Exceedance	Return Period Factor (Ru)	PGA Design Value (g)
3	100	ULS	1/500	1.0	0.19
3	100	MCE	1/1400	1.0	0.29

 Table 6 - Input for the Seismic Peak Ground Acceleration Calculation

The calculation of the Peak Ground Acceleration is attached in Appendix D.

6.3. Liquefaction Susceptibility

Liquefaction is a phenomenon where saturated granular soil temporarily lose strength due to high pore water pressure development during and after significant earthquake shaking. Liquefaction predominantly occurs in loose non-plastic silts, sands and well-graded gravels below the water table.

Liquefaction susceptibility at the site is low due to the cohesive nature of the soils. This is confirmed by the laboratory testing.

7. Design Recommendations

Key geotechnical issues and risks for the Trig Road upgrade are:

- Property boundary constraints
- Geotechnical ground conditions
- Cut fill material balance
- Existing services

The following design recommendations are applicable across the Trig Road upgrade.

7.1. Earthworks

7.1.1. General

Topsoil needs to be stripped from the site before earthworks are undertaken. Tree stumps, old foundations, and any other obstructions or organic materials need to be removed and remediated. The existing road embankment fill may also need to be excavated and replaced, subject to further testing. These locations need to be excavated and backfilled with suitable compacted material to engineering standards. All unsuitable material should be excavated and removed from site and replaced with approved engineered fill (either compacted cohesive or granular hardfill).

Site won soils maybe used as engineered fill. The Unit 1 soils are likely to require drying back before they can be placed and compacted. The Unit 2 soils/rock may be usable without conditioning, but they are encountered at significant depth and so are unlikely to be available based on the earthworks current design.

Lime or cement stabilisation may be used to improve soil strength upon reworking and compacting. Prior to construction, laboratory testing would be required to confirm the suitability of lime and/or cement to provide drying and/or strength improvement. Alternatively, imported cohesive or granular hardfill or cohesive fill could be used for backfilling.

Unsuitable materials may be able to be used as landscape fill or temporary stormwater controls.

7.1.2. Cuts

Small cut slopes are required to widen to the west of Trig Road. These will encroach on existing footpaths, stormwater controls, and property boundaries. Unsupported cut slopes should be cut no steeper than 3H:1V.

It is recommended that cut slopes be dressed in vegetation to avoid frittering and scour from the wetter months. A geosynthetic product would be appropriate to encourage vegetation growth and provide a means for this.

7.1.3. Fills

Once any unsuitable material and existing topsoil has been stripped from the site, embankment construction could commence. Engineered fill embankments should be constructed using good, clean, engineered fill. Imported granular hardfill would also be appropriate for embankment construction. Fill should be compacted in a maximum 200mm lifts and benched into the existing slopes. For preliminary design purposes, embankments compacted using cohesive engineered fill should be no steeper than 3H:1V. and embankments constructed using granular hardfill could be constructed no steeper than 2H:1V.

Consolidation settlements will occur within the soils beneath the proposed concept embankments. Minor settlement of the fill embankment itself may occur if cohesive engineered fill is used. Settlements are expected to be in the order of 25 – 100mm. Further investigation and analysis should be undertaken during detailed design.

Settlement monitoring of fills should be undertaken during construction and for 6 months postconstruction to confirm design assumptions. Monitoring beyond this point should be continued should settlements be trending toward greater than expected.

Engineered fill embankment slopes should be adequately dressed in vegetation to avoid local scour or failure of the topsoil layer. A geosynthetic product would be appropriate to encourage vegetation growth and provide a means for this.

7.1.4. Effects on Natural Groundwater Levels

The proposed concept earthworks design has cut slopes no greater than two metres in height and fills no greater than six metres in depth. From the ground investigation information, the observed groundwater levels are lower than the proposed cuts. Embankments will be constructed on top of the existing ground level.

The concept design for the Trig Road works are anticipated to have negligible effects on the natural groundwater level.

This conclusion should be reviewed as the design progresses to confirm that any changes do not result in significant effects to the current groundwater regime.

7.2. Slope Stability

Slope stability analyses have been assessed using GeoSlope Slope/W 2019 to assess, at a conceptual level, the stability of the proposed embankment. Stability cases assessed are:

- Static
- Elevated groundwater level
- Seismic, applying a peak ground acceleration to the stability model

Target factors of safety for each of the design cases are as below:

- Static FoS > 1.5
- Elevated groundwater level FoS > 1.3
- Seismic FoS > 1.0 (or if <1.0, acceptable displacements as per Bridge Manual)

Stability analyses are presented in Appendix 4 and show that, for the conceptual embankment model constructed with engineered fill, target factors of safety are achieved.

7.3. Retaining Walls

Retaining walls may be required for local stability of cuts and fills on both sides of the road widening. Other small retaining structures might be desirable for landscaping and maintaining driveway access to existing properties. Timber pole walls may be an appropriate option to be explored for these applications, should a 50-year design life be acceptable.

Retaining walls may also be considered to support larger areas of the proposed road widening instead of large engineered fill embankments as they will allow a smaller footprint. The walls required

for this height of retaining (in the order of 3 - 6m) would likely be MSE walls constructed using hardfill. MSE walls would also need to consider global stability and so may require undercut of the weaker Unit 1b soils.

Wall options could be considered in later stages as part of a costing and environmental impact analysis.

Drainage must be included behind all retaining walls to encourage any water to drain from behind the structure.

7.4. Pavements

For pavement design on in-situ soils, a California Bearing Ratio (CBR) of 3% is recommended. For the engineered fill a CBR of 5% is recommended. Testing of the subgrade is required during construction and minimum Scala Penetrometer results of 3 blows per 150mm and 5 blows per 150mm are required for design subgrades of 3% and 5% respectively.

The subgrade CBR is for insitu soils and will vary, meaning that undercutting of weaker soils and replacement with compacted granular hardfill may be required to achieve this CBR. Alternatively, weaker areas could be potentially be improved with lime and/or cement stabilisation if required, however laboratory testing is required to confirm the reactivity and improvement likely to be achieved.

7.5. Services

At present, services run down both sides of Trig Road. Services should be located and protected prior to beginning construction onsite.

Services should be located in berms and beneath footpaths to reduce traffic disruption during scheduled and unscheduled maintenance.

7.6. Sustainability

Reusing site won material, where suitable would reduce the carbon footprint of this project. Should materials need to be imported for construction, a study into locally available material should be carried out to reduce emissions from vehicles transporting material to the site. Existing chip seal could be recycled and utilised for the new pavement of the road. Alternatively, recycled aggregate products are also readily available for pavement construction.

The long-term maintenance of new assets should also be considered before proceeding into detailed design of any infrastructure.

8. Conclusions and Recommendation

Geotechnical site investigations were undertaken for the to inform the preliminary design of the proposed Trig Road upgrade. Based on the investigation, we provide the following high-level conclusions and recommendations:

- Trig Road is a Level 1 Arterial route road located in Whenuapai, Auckland road. The road runs along a minor north to south ridge. The site is predominately sloping from west to east.
- The 1:250,000 'Geology of the Auckland Area' map indicates the site is underlain by Puketoka Formation (Tauranga Group) soils overlying Waitemata Group soils and rock.

- Geological units across the site comprise firm to very stiff clayey silt from the Puketoka Formation overlying a weathered profile of the Waitemata Group.
- Groundwater has been measured across the site at 1 2.5mbgl.
- A seismic site subsoil of class C has been determined for Trig Road.
- The in-situ Unit 1 soils may require conditioning for reuse as engineered fill.
- All soft and/or unsuitable soils (organics, tree roots, and existing fill) should be removed from the site before the placing any fill material or construction of structures.
- Site susceptibility to liquefaction is considered to be low.
- The concept design for the Trig Road works are anticipated to have negligible effects on the natural groundwater level.
- The soils beneath the proposed concept embankments may settle under the embankment load. Settlements are expected to be between 25 100mm.
- Specific design such as retaining walls should be undertaken for any cuts >0.5m with adequate drainage provided.
- A design subgrade of CBR 3% for in-situ soils and 5% for engineered fill is recommended. This can vary across the site and some undercut may be required to achieve it.
- Further ground investigations and analyses will be required at detailed design stage.

9. Applicability

This report has been prepared by Beca on the specific instructions of our Client. It is solely for our Client's use for the purpose for which it is intended in accordance with the agreed scope of work. Any use or reliance by any person contrary to the above, to which Beca has not given its prior written consent, is at that person's own risk.

Should you be in any doubt as to the applicability of this report and/or its recommendations for the proposed development as described herein, and/or encounter materials on site that differ from those described herein, it is essential that you discuss these issues with the authors before proceeding with any work based on this document.

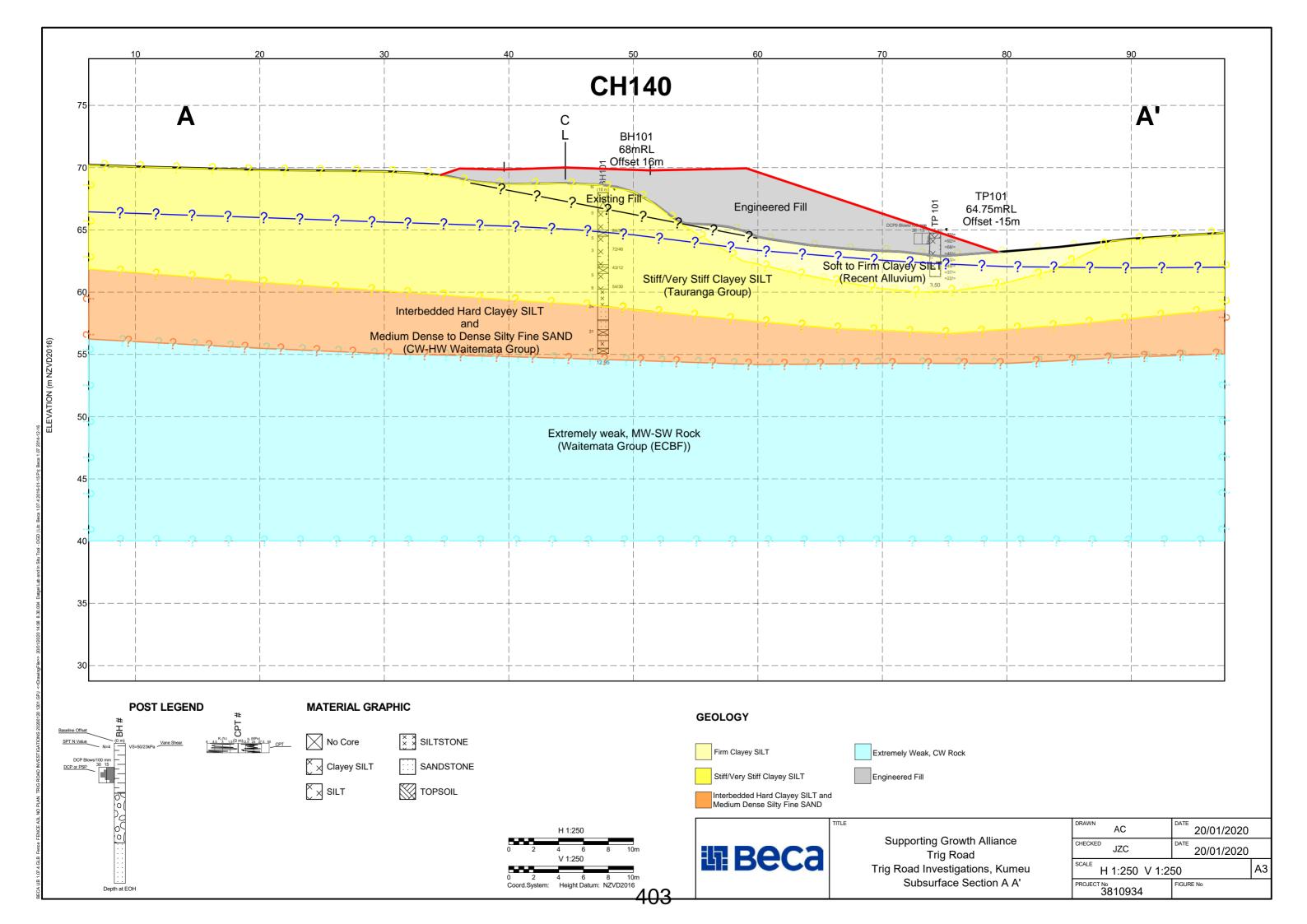
10. References

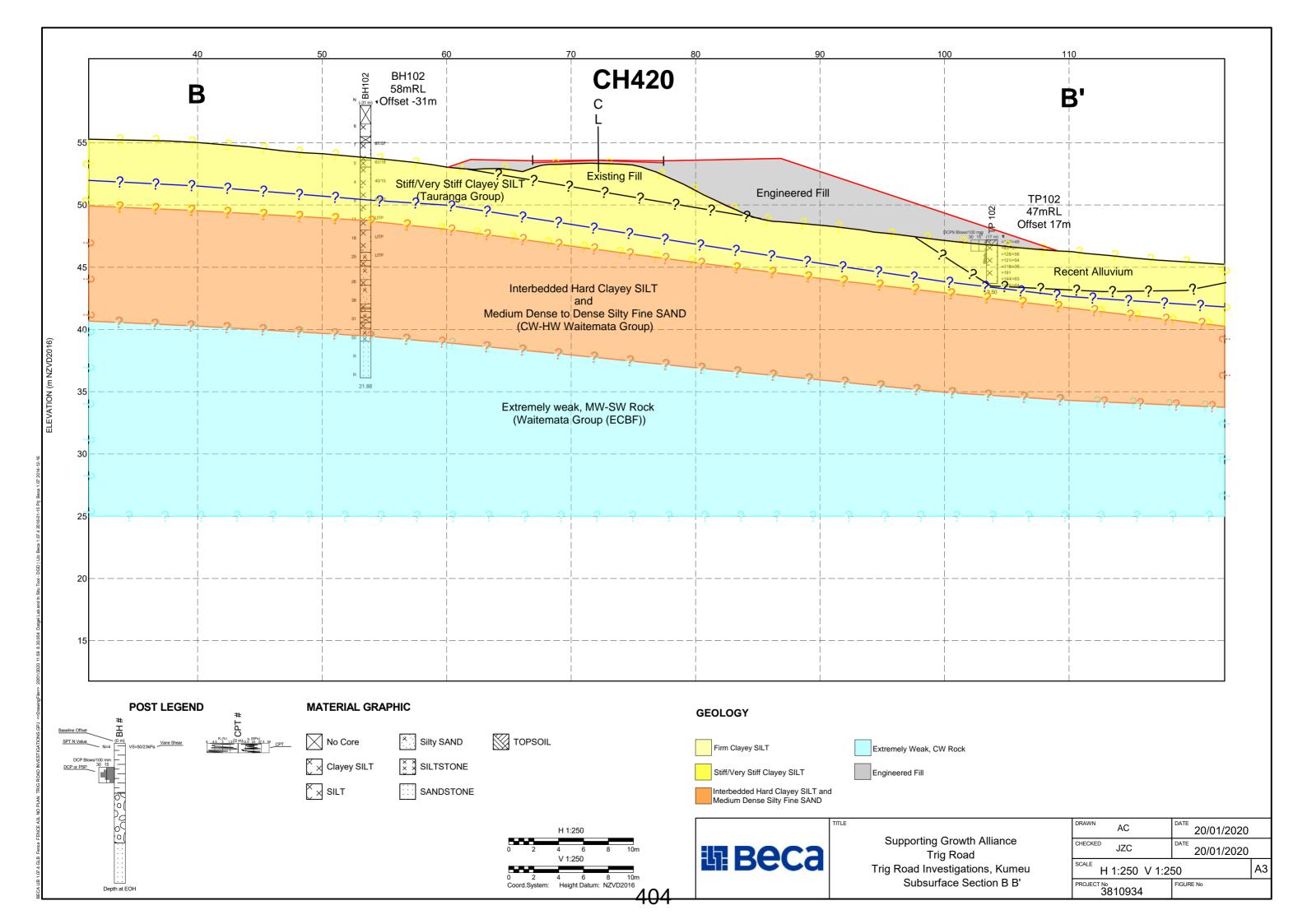
Beca Ltd, January 2020 'Northwest HIF - Trig Road Geotechnical Factual Report.

Edbrook, 2001 'Geology of the Auckland Area'

Standards New Zealand, 2004 NZS 1170.5: 2004 Structural Design Actions - Earthquake Actions

NZTA (2018), Bridge Manual 3, Third edition, Amendment 3


Appendix 1. Site Plans



Appendix 2. Geological Cross-sections

Appendix 3. Peak Ground Acceleration Calculation

job name	Supporting Growth Alliance		
job no	3810934	by	AC
date	31/01/2020	page	1 of 2

Determination of Peak Ground Accelerations (Major/MCE/CALS, Design/ULS/DCLS, Minor and SLS) with Bridge Manual (BM) SP/M/022 Third addition Amendment 3, Section 6.2.2

6.2 Design Loadings and Analysis $PGA = C_{0,1000} \frac{R_u}{1.3} fg$	PGA = Peak ground acceleration in com magnitude $C_{0,1000}$ = 1000 year return period PGA co R_u = return period factor determined from f = site subsoil class	pefficient		
cl. 3.1.3 site subsoil class				
choose a suitable site subsoil class		\rightarrow	Class C - Shallow soil sites	
Site subsoil class factor f		\rightarrow	1.33	
Town/ City Table 6A.1				
choose an area closest to the site in ques	stion	\rightarrow	Auckland	
1000 year return period PGA coefficient,		\rightarrow	0.15	
	-0,10007			
cl. 3.1.5 return period factor, R 1170.0 table 3.2 importance levels for I	ouilding types - nz structures			
refer to 1170.0 table 3.2 for importance le	evel	\rightarrow	3	
1170.0 table 3.3 annual probability of e 1170.5 table 3.5 return period factor, R anticipated design working life of structure		\rightarrow	100 years or more	
Annual probability of exceedance for Des 2.3	ign/ULS/DCLS refer BM Table 2.1 to	\rightarrow	1/500	
Return period factor based on Design/UL	.S , R _u =	\rightarrow	1	
Annual probability of exceedance for SLS retaining or slopes; refer BM Section 6.1. requirements	2b for Road operational continuity	\rightarrow	1/50	
Return period factor based on SLS2 , $R_s =$		\rightarrow	0.35	
Annual probability of exceedance for mine Return period factor based on Minor Eve		\rightarrow \rightarrow	1/25 0.25	
Approximate annual probability of exceed BM Table 5.1	ance for Major/MCE/CALS event see	\rightarrow	1/1400	
Return period factor based on Major/MCI	E/CALS Event, R _{MCE/CALS} =	\rightarrow	1.5	

job name job no date

Supporting Growth Alliance		
3810934	by	AC
31/01/2020	page	2 of 2

Determination of Peak Ground Accelerations (Major/MCE/CALS, Design/ULS/DCLS, Minor and SLS) with Bridge Manual (BM) SP/M/022 Third addition Amendment 3, Section 6.2.2

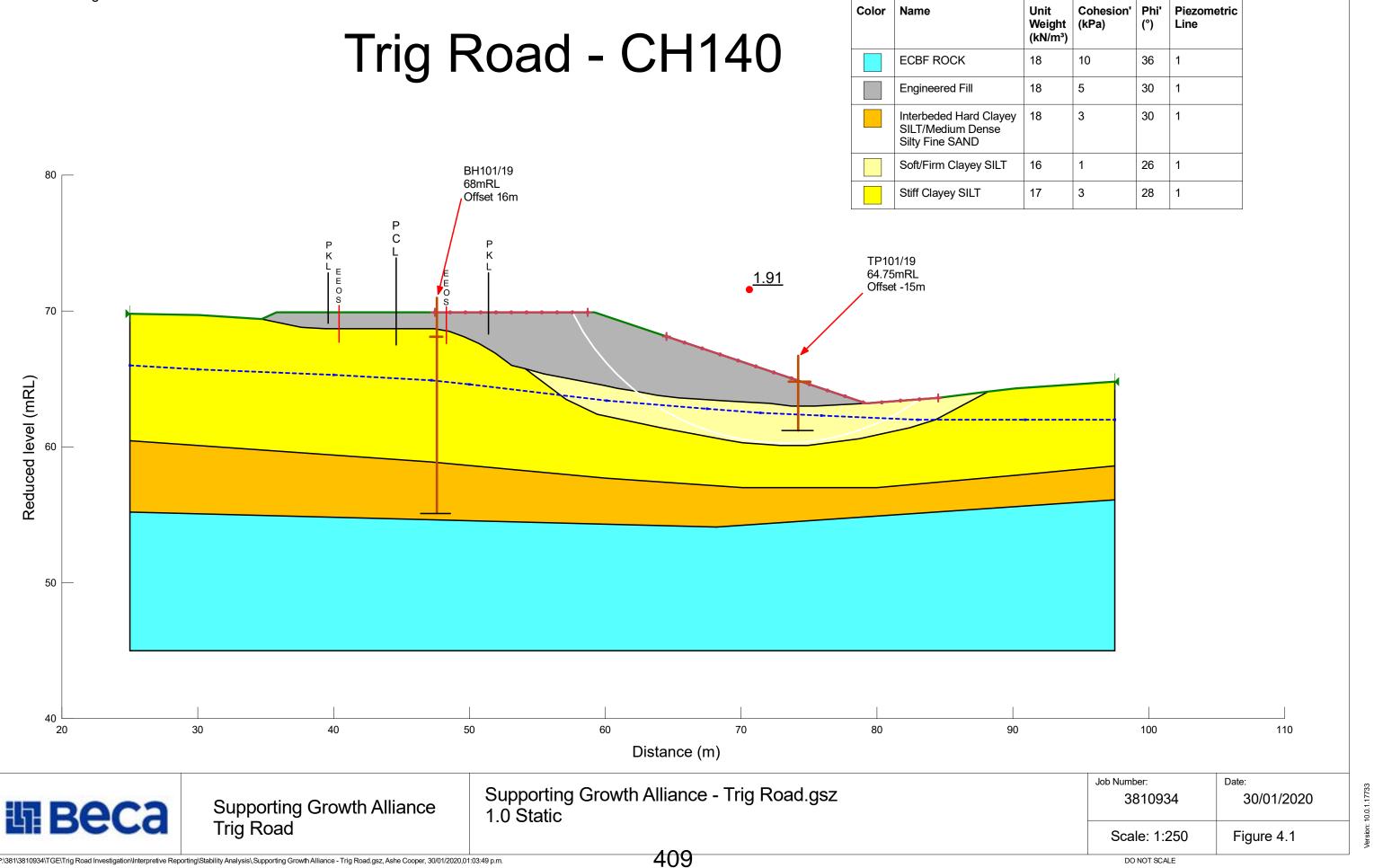
Summary

A Class C - Shallow soil sites is selected to evaluate the PGA for this Auckland project.

An importance level of 3 has been allocated to the structure.

Design working life of structure is 100 years or more.

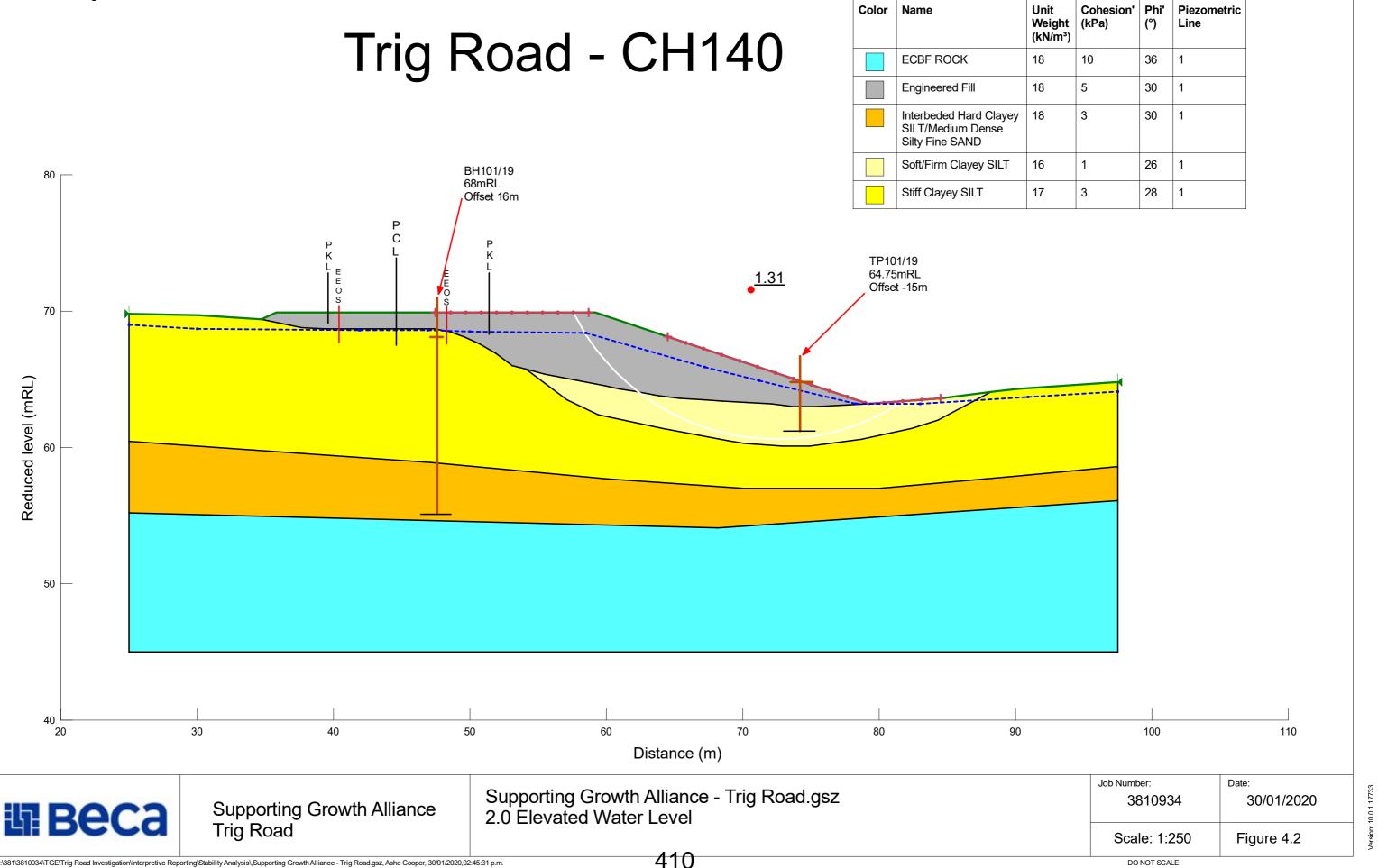
As such, the PGA has been evaluated based on MCE/CALS, ULS/DCLS and SLS1.


Limit State	Annual Propability of Exceedance	Earthquake Magnitude, M _w	Return Period Factor	Unweighted PGAs C(0) = PGHA
Major/MCE/CALS	1/1400	6.50	1.5	0.285g
Design/ULS/DCLS	1/500	6.50	1	0.19g
Minor/SLS1	1/25	5.90	0.75	0.115g
SLS2	1/50	5.90	0.35	0.054g

Appendix 4. Slope Stability Analysis

Horz Seismic Coef.: Staged Pseudo Static Analysis Option: (none)

Method: Morgenstern-Price

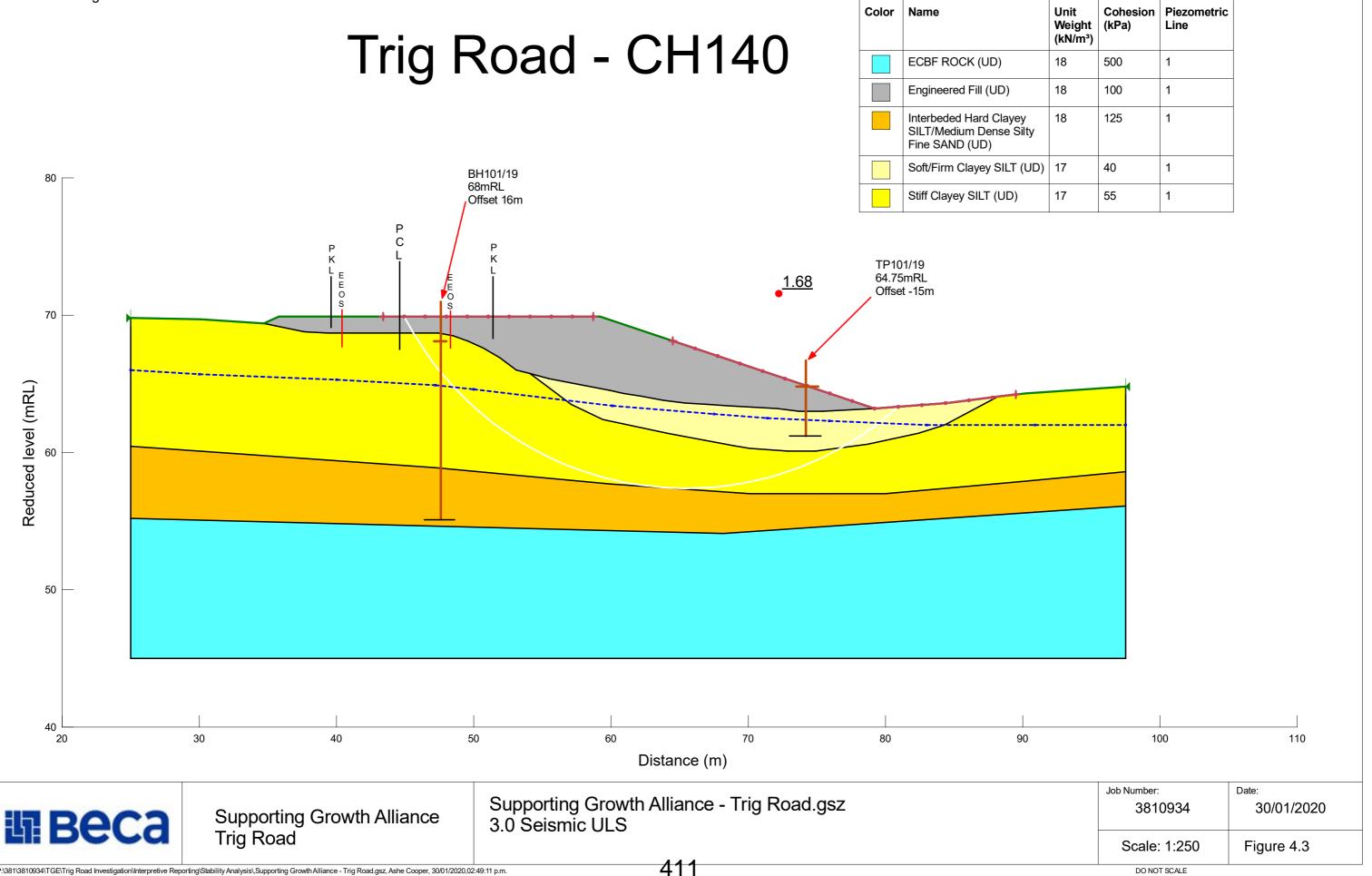

P:\381\3810934\TGE\Trig Road Investigation\Interpretive Reporting\Stability Analysis\, Supporting Growth Alliance - Trig Road.gsz, Ashe Cooper, 30/01/2020,01:03:49 p.m.

nit /eight ‹N/m³)	Cohesion' (kPa)	Phi' (°)	Piezometric Line
8	10	36	1
8	5	30	1
8	3	30	1
6	1	26	1
7	3	28	1

DO NOT SCALE

Horz Seismic Coef.: Staged Pseudo Static Analysis Option: (none)

Method: Morgenstern-Price


P:\381\3810934\TGE\Trig Road Investigation\Interpretive Reporting\Stability Analysis\,Supporting Growth Alliance - Trig Road.gsz, Ashe Cooper, 30/01/2020,02:45:31 p.m.

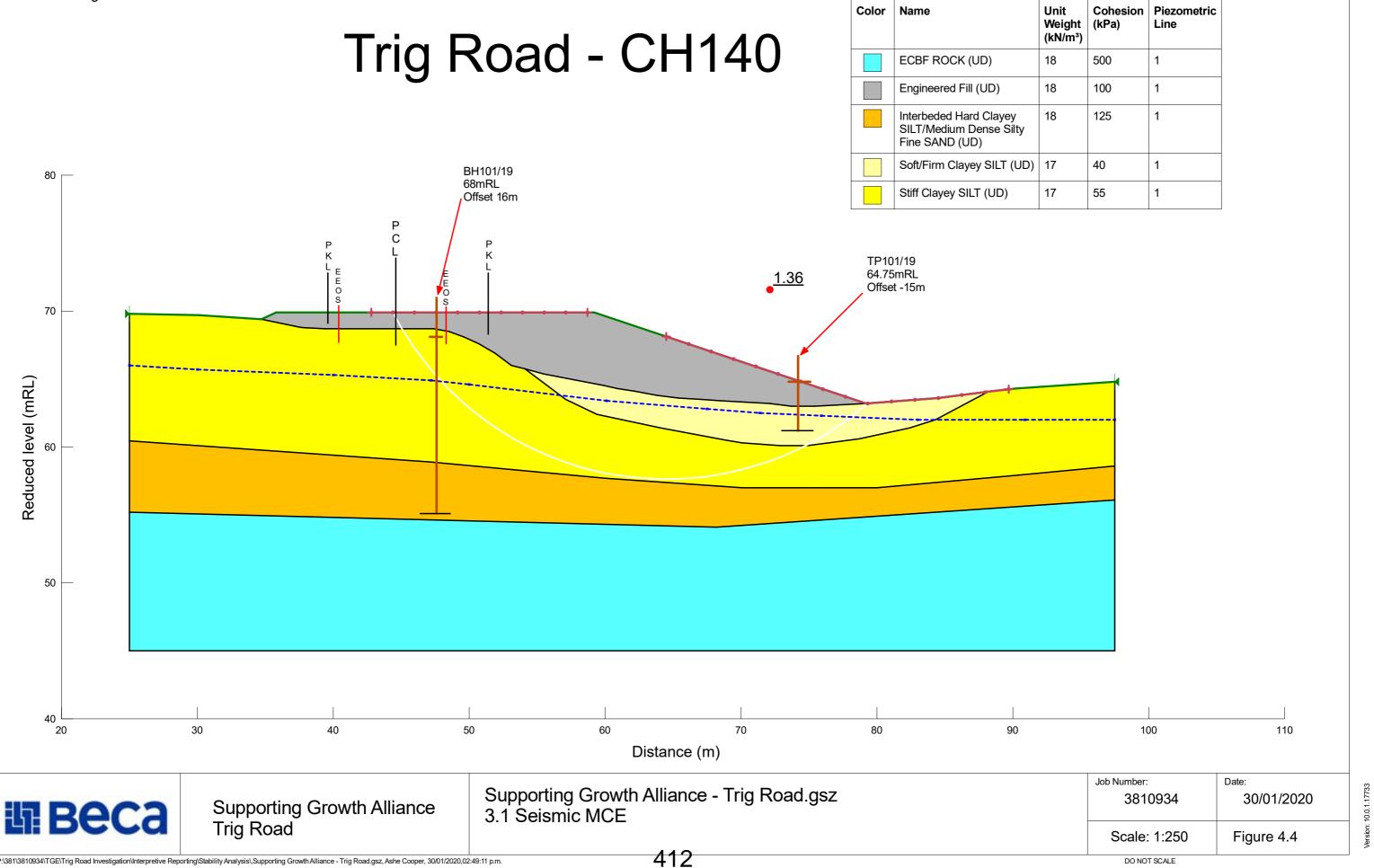
nit /eight (N/m³)	Cohesion' (kPa)	Phi' (°)	Piezometric Line
8	10	36	1
8	5	30	1
8	3	30	1
6	1	26	1
7	3	28	1

DO NOT SCALE

Horz Seismic Coef.: 0.19 Staged Pseudo Static Analysis Option: (none)

Method: Morgenstern-Price

P:\381\3810934\TGE\Trig Road Investigation\Interpretive Reporting\Stability Analysis\,Supporting GrowthAlliance - Trig Road.gsz, Ashe Cooper, 30/01/2020,02:49:11 p.m.


Unit Weight (kN/m³)	Cohesion (kPa)	Piezometric Line
18	500	1
18	100	1
18	125	1
17	40	1
17	55	1

DO NOT SCALE

Version: 10.0.1.17733

Horz Seismic Coef.: 0.29 Staged Pseudo Static Analysis Option: (none)

Method: Morgenstern-Price

P:\381\3810934\TGE\Trig Road Investigation\Interpretive Reporting\Stability Analysis\,Supporting GrowthAlliance - Trig Road.gsz, Ashe Cooper, 30/01/2020,02:49:11 p.m.

Unit Weight (kN/m³)	Cohesion (kPa)	Piezometric Line
18	500	1
18	100	1
18	125	1
17	40	1
17	55	1

ATTACHMENT 24

RECORD OF TITLE

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD Search Copy

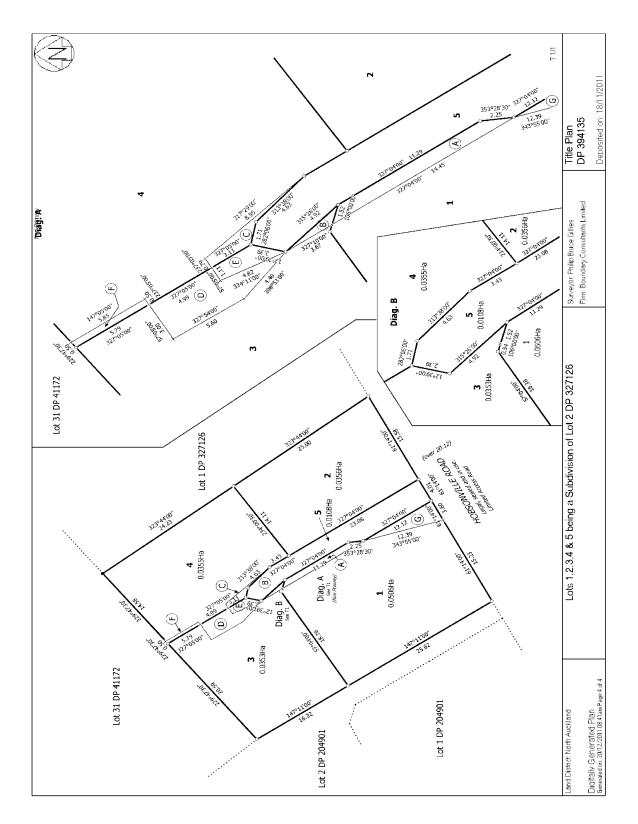
Identifier	376597
Land Registration District	North Auckland
Date Issued	18 November 2011

Prior References 110147	
Estate	Fee Simple
Area	356 square metres more or less
Legal Description	Lot 2 Deposited Plan 394135
Registered Owner Zhongdong Yang	5
Estate	Fee Simple - 1/4 share
Area	108 square metres more or less
Legal Description	Lot 5 Deposited Plan 394135
Registered Owner	8

Zhongdong Yang

Interests

C428346.1 Certificate pursuant to Section 94C Transit New Zealand Act 1989 declaring that part of State Highway 18 known as Hobsonville Road, commencing at its junction with State Highway 16 and proceeding in an eastern direction to Upper Harbour Drive to be a limited access road - 5.11.1992 at 2.01 pm


Appurtenant hereto is a stormwater drainage right created by Easement Instrument 5845394.3 - 18.12.2003 at 9:34 am

The easements created by Easement Instrument 5845394.3 are subject to Section 243 (a) Resource Management Act 1991

8887148.1 Consent Notice pursuant to Section 221 Resource Management Act 1991 - 18.11.2011 at 4:46 pm (affects Lot 2 DP 394135)

Subject to Section 241(2) Resource Management Act 1991 (affects DP 394135)

10966609.4 Mortgage to Industrial and Commercial Bank of China (New Zealand) Limited - 30.11.2017 at 4:51 pm

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD Search Copy

Identifier	376598
Land Registration District	North Auckland
Date Issued	18 November 2011

Prior References 110147	
Estate	Fee Simple
Area	353 square metres more or less
Legal Description	Lot 3 Deposited Plan 394135
Registered Owner Jieun An	s
Estate	Fee Simple - 1/4 share
Area	108 square metres more or less
Legal Description	Lot 5 Deposited Plan 394135
Registered Owner Jieun An	s

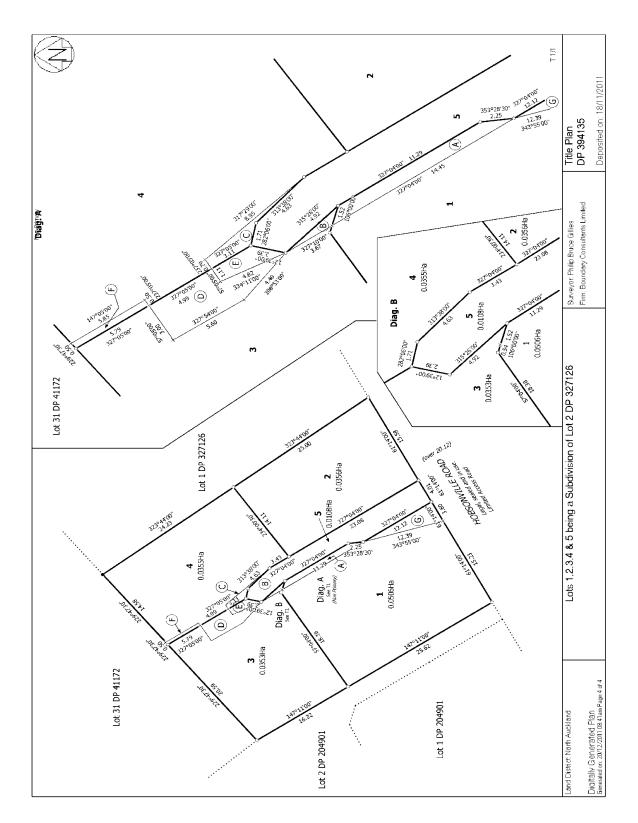
Interests

C428346.1 Certificate pursuant to Section 94C Transit New Zealand Act 1989 declaring that part of State Highway 18 known as Hobsonville Road, commencing at its junction with State Highway 16 and proceeding in an eastern direction to Upper Harbour Drive to be a limited access road - 5.11.1992 at 2.01 pm

Appurtenant hereto is a stormwater drainage right created by Easement Instrument 5845394.3 - 18.12.2003 at 9:34 am

The easements created by Easement Instrument 5845394.3 are subject to Section 243 (a) Resource Management Act 1991

8887148.1 Consent Notice pursuant to Section 221 Resource Management Act 1991 - 18.11.2011 at 4:46 pm (affects Lot 3 DP 394135)


Subject to Section 241(2) Resource Management Act 1991 (affects DP 394135)

Subject to a right to convey electricity, gas, telecommunications, water and computer media over part Lot 3 DP 394135 marked B on DP 394135, stormwater drainage easement over part Lot 3 DP 394135 marked D on DP 394135 and right of way and stormwater drainage easement over part Lot 3 DP 394135 marked E on DP 394135 created by Easement Instrument 8887148.5 - 18.11.2011 at 4:46 pm

Appurtenant hereto is a right to convey electricity, gas, telecommunications, water and computer media and stormwater drainage easement and appurtenant to Lot 3 DP 394135 herein is a right of way created by Easement Instrument 8887148.5 - 18.11.2011 at 4:46 pm

Some of the easements created by Easement Instrument 8887148.5 are subject to Section 243 (a) Resource Management Act 1991 (see DP 394135)

11616310.3 Mortgage to ANZ Bank New Zealand Limited - 29.11.2019 at 4:16 pm

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD Search Copy

Identifier	376599
Land Registration District	North Auckland
Date Issued	18 November 2011

Prior References 110147		
Estate	Fee Simple	
Area	355 square metres more or less	
Legal Description	Lot 4 Deposited Plan 394135	
Registered Owners Yinan Pan and Jiayi Chen		

Estate	Fee Simple - 1/4 share
Area	108 square metres more or less
Legal Description	Lot 5 Deposited Plan 394135

Registered Owners

Yinan Pan and Jiayi Chen

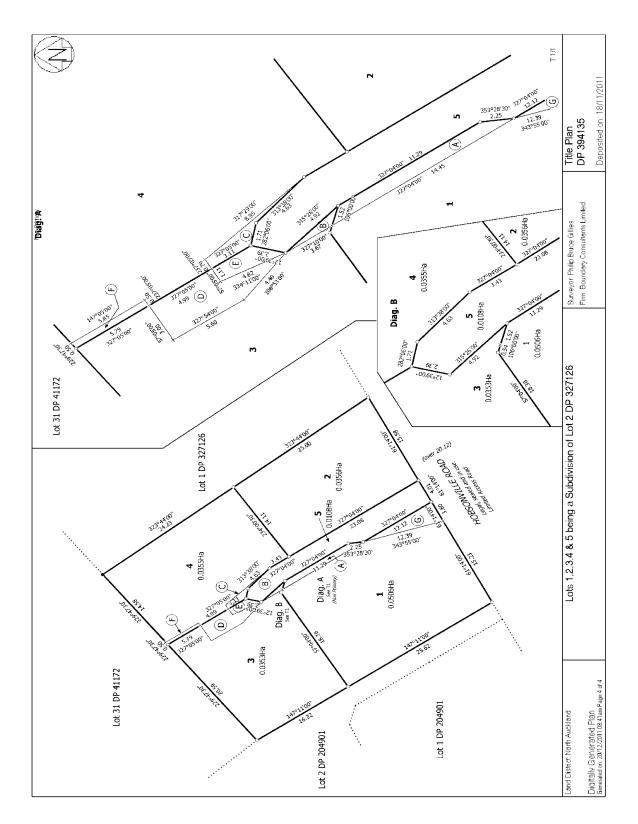
Interests

C428346.1 Certificate pursuant to Section 94C Transit New Zealand Act 1989 declaring that part of State Highway 18 known as Hobsonville Road, commencing at its junction with State Highway 16 and proceeding in an eastern direction to Upper Harbour Drive to be a limited access road - 5.11.1992 at 2.01 pm

Appurtenant hereto is a stormwater drainage right created by Easement Instrument 5845394.3 - 18.12.2003 at 9:34 am

The easements created by Easement Instrument 5845394.3 are subject to Section 243 (a) Resource Management Act 1991

8887148.1 Consent Notice pursuant to Section 221 Resource Management Act 1991 - 18.11.2011 at 4:46 pm (affects Lot 4 DP 394135)


Subject to Section 241(2) Resource Management Act 1991 (affects DP 394135)

Subject to a right of way over part Lot 4 DP 394135 marked C on DP 394135 and stormwater drainage easement over part Lot 4 DP 394135 marked F on DP 394135 created by Easement Instrument 8887148.5 - 18.11.2011 at 4:46 pm

Appurtenant hereto is a stormwater drainage easement, right to convey electricity, gas, telecommunications, water and computer media and appurtenant to Lot 4 DP 394135 herein is a right of way created by Easement Instrument 8887148.5 - 18.11.2011 at 4:46 pm

Some of the easements created by Easement Instrument 8887148.5 are subject to Section 243 (a) Resource Management Act 1991 (see DP 394135)

10023146.2 Mortgage to ANZ Bank New Zealand Limited - 14.4.2015 at 6:09 pm

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 GAZETTE NOTICE Search Copy

Identifier	570610
Land Registration District	North Auckland
Date Registered	10 November 2011 07:00 am

Prior References NA26B/617

Туре	Fee Simple	Instrument	GN 8910540.4
Area	4.3746 hectares more or less		
Legal Description	Section 7 Survey Office Plan 445955		
Purpose	Severance		
Registered Owners Her Majesty the Queen			

Interests

570610

Extract from New Zealand Gazette, 3/11/2011, No. 168, p. 4704

Severance Taken-State Highway 16, Hobsonville, Auckland

Pursuant to section 119(1) of the Public Works Act 1981, and to a delegation from the Minister for Land Information, Ronald Alistair Jolly, Land Information New Zealand, declares the land described in the Schedule to this notice to be taken as severance and shall remain vested in the Crown on the date of publication hereof in the New Zealand Gazette. North Auckland Land District-Auckland

Schedule

Severance

Area ha

- Description 4.3746
- Part Lot 1 DP 67207 (part Computer Freehold Register NA26B/617); shown as Section 7 on SO 445955. Dated at Wellington this 27th day of October 2011.

R. A. JOLLY, for the Minister for Land Information. (LINZ CPC/2011/16290) 107673

NOTICE NO: 7673

. _____

Title Diagram GN 8910549.4 - 801.21/11/11.14:37

Cpy - 01/01.Pgs

Transaction Id Client Reference 403-3873

_

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 GAZETTE NOTICE Search Copy

Identifier	579742
Land Registration District	North Auckland
Date Registered	28 March 2012 07:00 am

Prior References 6039970.1 NA41D/693	D622123.1 NA41D/696	NA21C/1292	
Туре	Fee Simple	Instrument	GN 9023653.1
Area	266 square metres more or le	ess	
Legal Description	Section 35, 41-42, 45-46, 49 Office Plan 447691	9, 51-54 Survey	
Purpose	for the Functioning Indirectly (Segregation Strip)	y of a Road	
Registered Owners Her Majesty The Queen			

Interests

Ť.

Extract from New Zealand Gazette, 22/3/2012, No. 35, p. 1070

Land Declared Road and Segregation Strip-State Highway 18, Hobsonville, Auckland

Pursuant to the Public Works Act 1981, and to a delegation from the Minister for Land Information, Kerry McPhail, Land Information New Zealand:

(a) Pursuant to section 114, declares the land described in the First Schedule to this notice to be read which, pursuant to section 5 of the Land Transport Management Act 2003, forms part of State Highway 18 and remains vested in the Crown and which has the effect of adding the land in the Second Schedule to State Highway 18, pursuant to section 5 of the Land Transport Management Act 2003, and vests in the Crown;

(b) Declares the land described in the Third Schedule to this notice to be set apari, pursuant to section 52(1), for the functioning indirectly of a road (segregation strip) and shall remain vested in the Crown;

(c) Pursuant to section 116, declares the road described in the Fourth Schedule to this notice to be stopped and, pursuant to section 52(1), is set apart for the functioning indirectly of a road (segregation strip) and shall remain vested in the Crown

on the date of publication hereof in the New Zealand Gazette. North Auckland Land District-Auckland

First Schedule

Area

Land Declared as Road

Description

- ha Description 1.4493 Part Section 1 SO 70438 (part Gazette Nutice D622123.1): shown as Section 1 on SO 447691.
- 1.6878 Part Lot 7 DP 62344 (part Computer Freehold Register NA41D/696); shown as Section 4 on SO 447691.
- 1.0303 Part Lot 4 DP 62344 (part Computer Freehold Register NA41D/693); shown as Section 5 on SO 447691.
- 2.6396 Part Section 1 SO 332263 (part Gazette Notice 6039970.1); shown as Section 11 on SO 447691.
- 2.9965 Part Lot 2 DP 66045 (part Computer Freehold Register NA21C/1292); shown as Section 12 on SO 447691.

Second Schedule

Area

Legal Road to be Added to State Highway

- Description
- 9838 Part Legal Road (Trig Road); shown as Section 13 on SO 447691.
- 2908 Part Legal Road (Trig Road); shown as Section 23 on SO 447691.
 - 5 Part Legal Road (Trig Road); shown as Section 43 on SO 447691.
 - 7 Part Legal Road (Trig Road); shown as Section 44 on SO 447691.
 - 57 Part Legal Road (Trig Road); shown as Section 59 on SO 447691.

Third Schedule

Land Set Apart for the Functioning Indirectly of a Road (Segregation Strip)

Area m²

- 2
 Description

 36
 Part Lot 7 DP 62344 (part Computer Freehold
 - Register NA41D/696); shown as Section 35 on

SO 447691.

- 10 Part Section 1 SO 332263 (part Gazette Notice 6039970.1); shown as Section 41 on SO 447691.
- 11 Part Section 1 SO 332263 (part Gazette Notice 6039970.1); shown as Section 42 on SO 447691.
- Part Section 1 SO 332263 (part Gazette Notice 6039970.1); shown as Section 45 on SO 447691.
- 87 Part Lot 2 DP 66045 (part Computer Freehold Register NA21C/1292); shown as Section 46 on SO 447691.
- 1 Part Lot 4 DP 62344 (part Computer Freehold Register NA41D/693); shown as Section 49 on SO 447691.
- 40 Part Lot 4 DP 62344 (part Computer Freehold Register NA41D/693); shown as Section 51 on SO 447691.
- 8 Part Lot 7 DP 62344 (part Computer Freehold Register NA41D/696); shown as Section 52 on SO 447691.
- 24 Part Lot 7 D 62344 (part Computer Freehold Register NA41D/696); shown as Section 53 on SO 447691.
- 48 Part Section 1 SO 70438 (balance Gazette Notice D622123.1); shown as Section 54 on SO 447691.

Fourth Schedule

Area.

m²

Road Stopped and Set Apart for the Functioning Indirectly of a Road (Segregation Strip)

Description

- 5 Part State Highway; shown as Section 43 on SO 447691.
- 7 Part State Highway; shown as Section 44 on SO 447691.
- 57 Part State Highway; shown as Section 59 on SO 447691.

Dated at Wellington this 15th day of March 2012. K. MCPHAIL, for the Minister for Land Information. (LINZ CPC/2011/16289) 10133

NOTICE NO: 1753

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 GAZETTE NOTICE Search Copy

Identifier	579743
Land Registration District	North Auckland
Date Registered	28 March 2012 07:00 am

9023653.1	
/02/00/01	

9023653.1			
Туре	Fee Simple	Instrument	GN 9023653.1
Area	69 square metres more or less		
Legal Description	Section 43-44, 59 Survey Office Plan 447691		
Purpose	for the Functioning Indirectly of a Road (Segregation Strip)		
Registered Owner Her Majesty the Qu			

Interests

ŕ

Extract from New Zealand Gazette, 22/3/2012, No. 35, p. 1070

Land Declared Road and Segregation Strip-State Highway 18, Hobsonville, Auckland

Pursuant to the Public Works Act 1981, and to a delegation from the Minister for Land Information, Kerry McPhail, Land Information New Zealand:

(a) Pursuant to section 114, declares the land described in the First Schedule to this notice to be road which, In the First Schedule to this notice to be road which, pursuant to section 5 of the Land Transport Management Act 2003, forms part of State Highway 18 and remains vested in the Crown and which has the effect of adding the land in the Second Schedule to State Highway 18, pursuant to section 5 of the Land Transport Management Act 2003, and vests in the Crown;

(b) Declares the land described in the Third Schedule to this notice to be set apart, pursuant to section 52(1), for the functioning indirectly of a road (segregation strip) and shall remain vested in the Crown;

(c) Pursuant to section 116, declares the road described in the Fourth Schedule to this notice to be stopped and, pursuant to section 52(1), is set apart for the functioning indirectly of a road (segregation strip) and shall remain vested in the Crown

on the date of publication hereof in the New Zealand Gazette. North Auckland Land District—Auckland

First Schedule

Агеа

Land Declared as Road

Description

- ha Part Section 1 SO 70438 (part Gazette Notice D622123.1); shown as Section 1 on SO 447691. 1.4493
- Part Lot 7 DP 62344 (part Computer Freehold 1.6878 Register NA41D/696); shown as Section 4 on SO 447691.
- Part Lot 4 DP 62344 (part Computer Freehold Register NA41D/693); shown as Section 5 on 1.0303 SO 447691.
- Part Section 1 SO 332263 (part Gazette Notice 2.6396 6039970.1); shown as Section 11 on SO 447691.
- Pari Lot 2 DP 66045 (part Computer Freehold 2.9965 Register NA21C/1292); shown as Section 12 on SO 447691.

Second Schedule

Legal Road to be Added to State Highway

- Description
- Area m² 9838 Part Legal Road (Trig Road); shown as Section 13 on SO 447691
- Part Legal Road (Trig Road); shown as Section 23 on SO 447691. 2908
 - Part Legal Road (Trig Road); shown as Section 5 43 on SÕ 447691.
 - Part Legal Road (Trig Road); shown as Section 7 44 on SO 447691.
 - Part Legal Road (Trig Road); shown as Section 59 on SO 447691. 57

Third Schedule

m

Land Set Apart for the Functioning Indirectly of a Road (Segregation Strip)

Area

Part Lot 7 DP 62344 (part Computer Freehold Register NA41D/696); shown as Section 35 on 36

Description

SO 447691.

- Part Section 1 SO 332263 (part Gazette Notice 6039970.1); shown as Section 41 on SO 447691. 10
- Part Section | SO 332263 (part Gazette Notice 11 6039970.1); shown as Section 42 on SO 447691.
- Part Section 1 SO 332263 (part Gazette Notice 6039970.1); shown as Section 45 on SO 447691.
- Part Lot 2 DP 66045 (part Computer Freehold Register NA21C/1292); shown as Section 46 on SO 447691.
- Part Lot 4 DP 62344 (part Computer Freehold Register NA41D/693); shown as Section 49 on I SO 447691.
- Part Lot 4 DP 62344 (part Computer Freehold Register NA41D/693); shown as Section 51 on 40 SO 447691.
- Part Lot 7 DP 62344 (part Computer Freehold Register NA41D/696); shown as Section 52 on SO 447691. 8
- Part Lot 7 D 62344 (part Computer Freehold 24 Register NA41D/696); shown as Section 53 on SO 447691.
- Part Section 1 SO 70438 (balance Gazette Notice 48 D622123.1); shown as Section 54 on SO 447691. Fourth Schedule

Road Stopped and Set Apart for the Functioning Indirectly of a Road (Segregation Strip) Area m²

Description

- 5 Part State Highway; shown as Section 43 on SO 447691.
- 7 Part State Highway; shown as Section 44 on SO 447691
- Part State Highway; shown as Section 59 on 57 SO 447691.

Dated at Wellington this 15th day of March 2012. K. MCPHAIL, for the Minister for Land Information. (LINZ CPC/2011/16289) In| 753

NOTICE NO: 1753

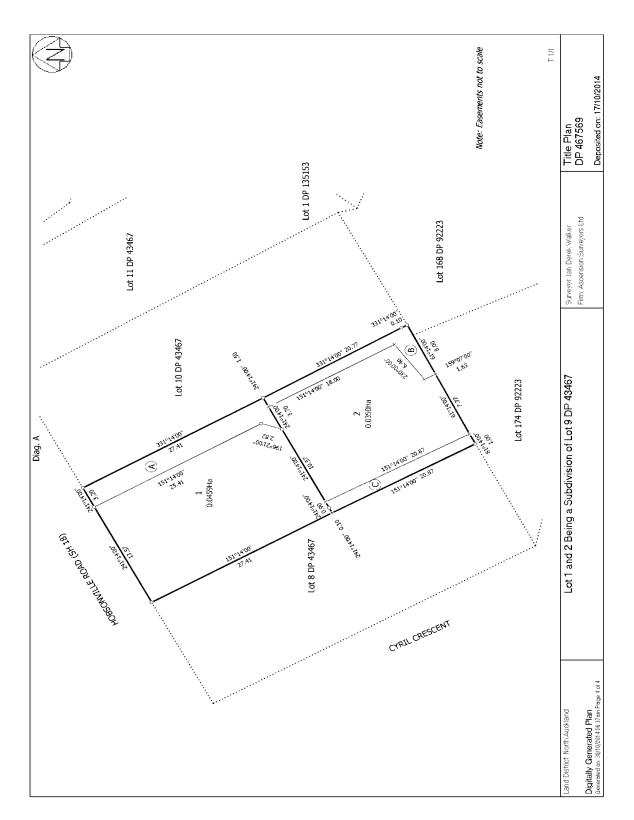
RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD Search Copy

Identifier	649590
Land Registration District	North Auckland
Date Issued	17 October 2014

Prior References NA1921/84		
Estate	Fee Simple	
Area	459 square metres more or less	
Legal Description	Lot 1 Deposited Plan 467569	
Registered Owners		
Samuel Joseph Peterson as to a 1/2 share		
Janessa Rachelle Bartsch as to a 1/2 share		

Interests

9858227.5 Consent Notice pursuant to Section 221 Resource Management Act 1991 - 17.10.2014 at 5:09 pm


Subject to a right to convey telecommunications and computer media in gross over part marked A on DP 467569 in favour of Chorus New Zealand Limited created by Easement Instrument 9858227.6 - 17.10.2014 at 5:09 pm

Subject to a right of way and a right to convey water, electricity, telecommunications and computer media over part marked A on DP 467569 created by Easement Instrument 9858227.8 - 17.10.2014 at 5:09 pm

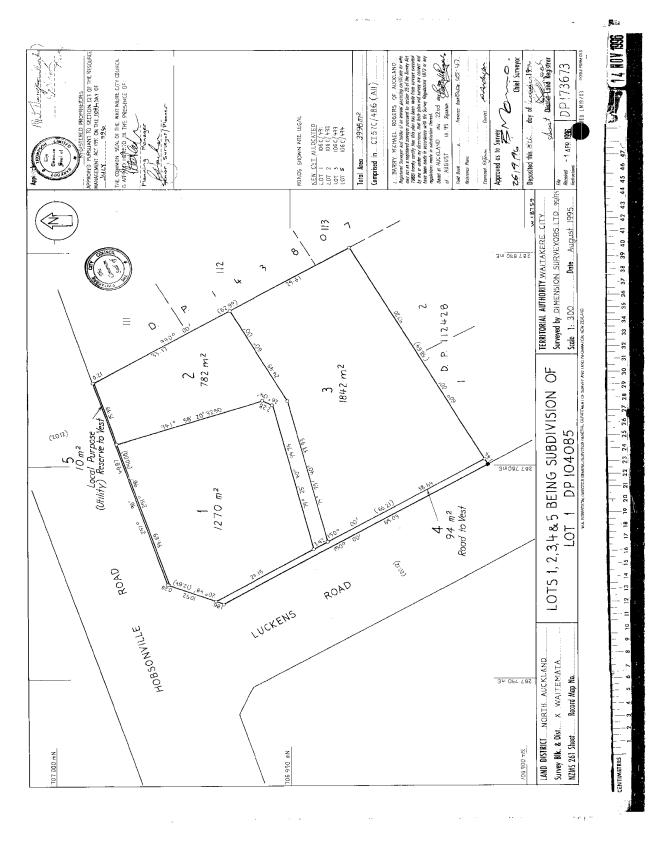
Appurtenant hereto is a right to convey wastewater created by Easement Instrument 9858227.8 - 17.10.2014 at 5:09 pm

The easements created by Easement Instrument 9858227.8 are subject to Section 243 (a) Resource Management Act 1991

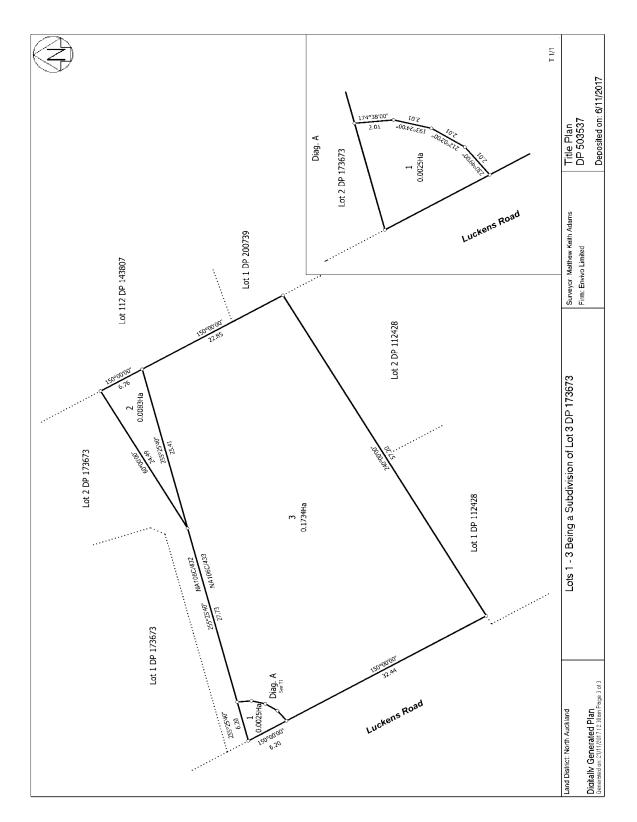
10042305.3 Mortgage to Westpac New Zealand Limited - 30.4.2015 at 4:41 pm

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD Search Copy

Identifier	756484
Land Registration District	North Auckland
Date Issued	06 November 2017


Prior References NA106C/432	NA106C/433
Estate	Fee Simple
Area	890 square metres more or less
Legal Description	Lot 1-2 Deposited Plan 503537 and Lot 2 Deposited Plan 173673
Registered Owner	s

Christopher Lewis Keall, Heather Janet Keall and Rowan Stanley Kingstone


Interests

Subject to Section 241(2) Resource Management Act 1991 (see DP 503537) Land Covenant in Covenant Instrument 12315797.1 - 1.2.2022 at 9:53 am

756484

756484

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD Search Copy

Identifier1000393Land Registration DistrictNorth AucklandDate Issued19 May 2022

Prior References NA11A/79		
Estate	Fee Simple	
Area	136 square metres more or less	
Legal Description	Lot 1, 6 Deposited Plan 563162	
Registered Owners Mark Darron Waller, Ruth Vivienne Waller and DHT (2020) 4 Limited		
Estate	Fee Simple - 1/4 share	
Area	181 square metres more or less	
Legal Description	Lot 5 Deposited Plan 563162	

Registered Owners

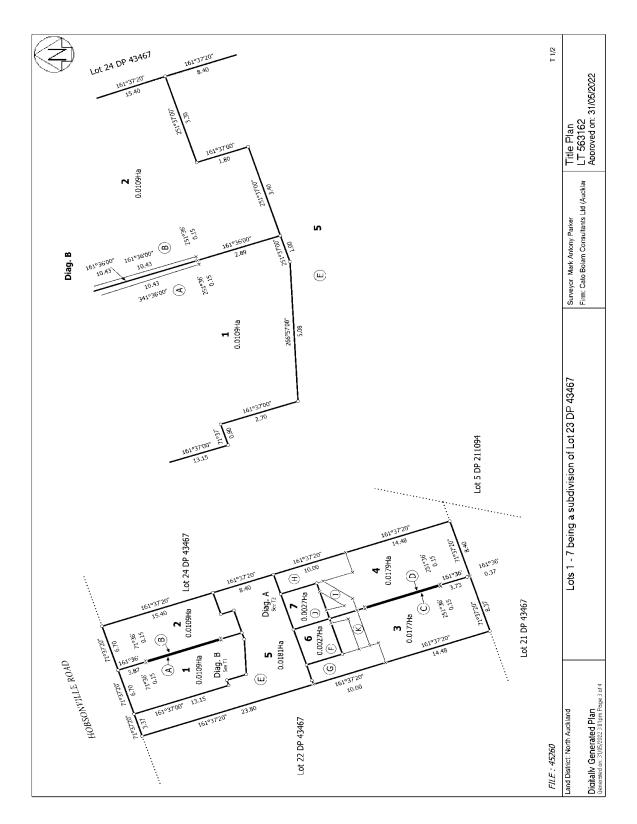
Mark Darron Waller, Ruth Vivienne Waller and DHT (2020) 4 Limited

Interests

Subject to Section 241(2) Resource Management Act 1991 (affects DP 563162)

12252703.2 Consent Notice pursuant to Section 221 Resource Management Act 1991 - 19.5.2022 at 11:09 am (affects Lot 1 DP 563162)

Subject to a right (in gross) to convey telecommunications over part Lot 5 DP 563162 marked E on DP 563162 in favour of Chorus New Zealand Limited created by Easement Instrument 12252703.3 - 19.5.2022 at 11:09 am


Subject to a right to convey water, electricity and telecommunications and right to drain water over part Lot 5 DP 563162 marked E, right to a party wall over part Lot 1 DP 563162 marked A, right to drain water and convey electricity over part Lot 6 DP 563162 marked F all on DP 563162 created by Easement Instrument 12252703.4 - 19.5.2022 at 11:09 am

Appurtenant hereto is a right to drain water, to Lot 1 DP 563162 is a right to a party wall and to Lot 1 and 6 DP 563162 is a right to convey water, electricity and telecommunications and created by Easement Instrument 12252703.4 - 19.5.2022 at 11:09 am

The easements created by Easement Instrument 12252703.4 are subject to Section 243 (a) Resource Management Act 1991

Land Covenant in Covenant Instrument 12252703.5 - 19.5.2022 at 11:09 am (affects Lot 1 and 6 DP 563162)

Identifier

Identifier1000394Land Registration DistrictNorth AucklandDate Issued19 May 2022

Prior References NA11A/79	
Estate	Fee Simple
Area	136 square metres more or less
Legal Description	Lot 2, 7 Deposited Plan 563162
Registered Owner Mark Darron Walle	s r, Ruth Vivienne Waller and DHT (2020) 4 Limited
Estate	Fee Simple - 1/4 share
Area	181 square metres more or less
Legal Description	Lot 5 Deposited Plan 563162

Registered Owners

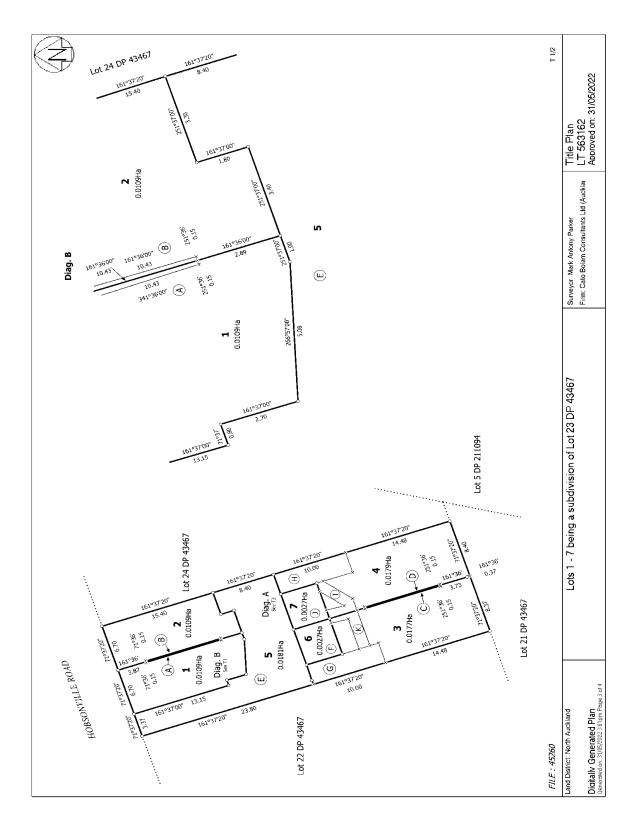
Mark Darron Waller, Ruth Vivienne Waller and DHT (2020) 4 Limited

Interests

Subject to Section 241(2) Resource Management Act 1991 (affects DP 563162)

12252703.2 Consent Notice pursuant to Section 221 Resource Management Act 1991 - 19.5.2022 at 11:09 am (affects Lot 2 DP 563162)

Subject to a right (in gross) to convey telecommunications over part Lot 5 DP 563162 marked E on DP 563162 in favour of Chorus New Zealand Limited created by Easement Instrument 12252703.3 - 19.5.2022 at 11:09 am


Subject to a right to convey water, electricity and telecommunications and right to drain water over part Lot 5 DP 563162 marked E, right to a party wall over part Lot 2 DP 563162 marked B, right to drain water and convey water, electricity and telecommunications over part Lot 7 DP 563162 marked J all on DP 563162 created by Easement Instrument 12252703.4 - 19.5.2022 at 11:09 am

Appurtenant hereto is a right to drain water, to Lot 2 DP 563162 is a right to a party wall and to Lot 2 and 7 DP 563162 is a right to convey water, electricity and telecommunications and created by Easement Instrument 12252703.4 - 19.5.2022 at 11:09 am

The easements created by Easement Instrument 12252703.4 are subject to Section 243 (a) Resource Management Act 1991

Land Covenant in Covenant Instrument 12252703.5 - 19.5.2022 at 11:09 am (affects Lot 2 and 7 DP 563162)

Identifier

Identifier	1000395	
Land Registration District	North Auckland	
Date Issued	19 May 2022	

Prior References NA11A/79	
Estate	Fee Simple
Area	177 square metres more or less
Legal Description	Lot 3 Deposited Plan 563162
Registered Owner Mark Darron Wall	rs er, Ruth Vivienne Waller and DHT (2020) 4 Limited
Estate	Fee Simple - 1/4 share
Aroo	181 square metres more or less

Area181 square metres more or lessLegal DescriptionLot 5 Deposited Plan 563162

Registered Owners

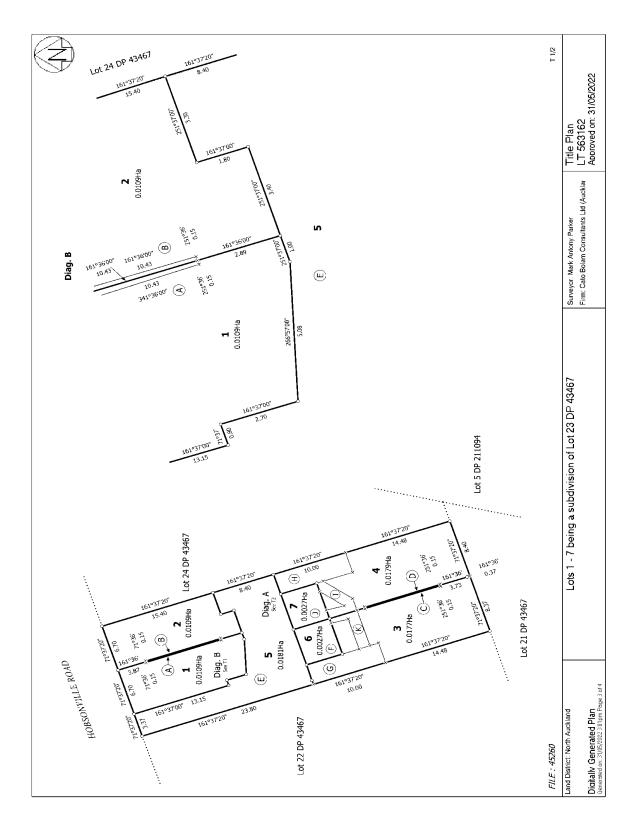
Mark Darron Waller, Ruth Vivienne Waller and DHT (2020) 4 Limited

Interests

Subject to Section 241(2) Resource Management Act 1991 (affects DP 563162)

12252703.2 Consent Notice pursuant to Section 221 Resource Management Act 1991 - 19.5.2022 at 11:09 am (affects Lot 3 DP 563162)

Subject to a right (in gross) to convey telecommunications over part Lot 5 DP 563162 marked E on DP 563162 in favour of Chorus New Zealand Limited created by Easement Instrument 12252703.3 - 19.5.2022 at 11:09 am


Subject to a right to convey water, electricity and telecommunications and right to drain water over part Lot 5 DP 563162 marked E, right to a party wall over part Lot 3 DP 563162 marked C and right to drain water over part Lot 3 DP 563162 marked G and K all on DP 563162 created by Easement Instrument 12252703.4 - 19.5.2022 at 11:09 am

Appurtenant hereto is a right to drain water, to Lot 3 DP 563162 is a right to a party wall and to Lot 3 DP 563162 is a right to convey water, electricity and telecommunications and created by Easement Instrument 12252703.4 - 19.5.2022 at 11:09 am

The easements created by Easement Instrument 12252703.4 are subject to Section 243 (a) Resource Management Act 1991

Land Covenant in Covenant Instrument 12252703.5 - 19.5.2022 at 11:09 am (affects Lot 3 DP 563162)

Identifier

Identifier	1000396	
Land Registration District Date Issued	North Auckland 19 May 2022	

Prior References NA11A/79	
Estate	Fee Simple
Area	179 square metres more or less
Legal Description	Lot 4 Deposited Plan 563162
Registered Owner Mark Darron Wall	rs er, Ruth Vivienne Waller and DHT (2020) 4 Limited
Estate	Fee Simple - 1/4 share
Aroo	181 square metres more or less

Area181 square metres more or lessLegal DescriptionLot 5 Deposited Plan 563162

Registered Owners

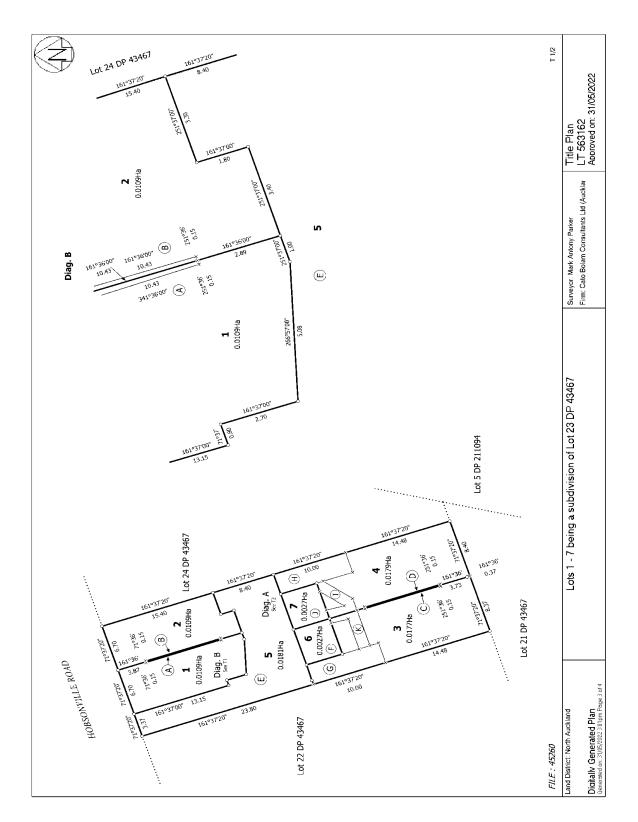
Mark Darron Waller, Ruth Vivienne Waller and DHT (2020) 4 Limited

Interests

Subject to Section 241(2) Resource Management Act 1991 (affects DP 563162)

12252703.2 Consent Notice pursuant to Section 221 Resource Management Act 1991 - 19.5.2022 at 11:09 am (affects Lot 4 DP 563162)

Subject to a right (in gross) to convey telecommunications over part Lot 5 DP 563162 marked E on DP 563162 in favour of Chorus New Zealand Limited created by Easement Instrument 12252703.3 - 19.5.2022 at 11:09 am

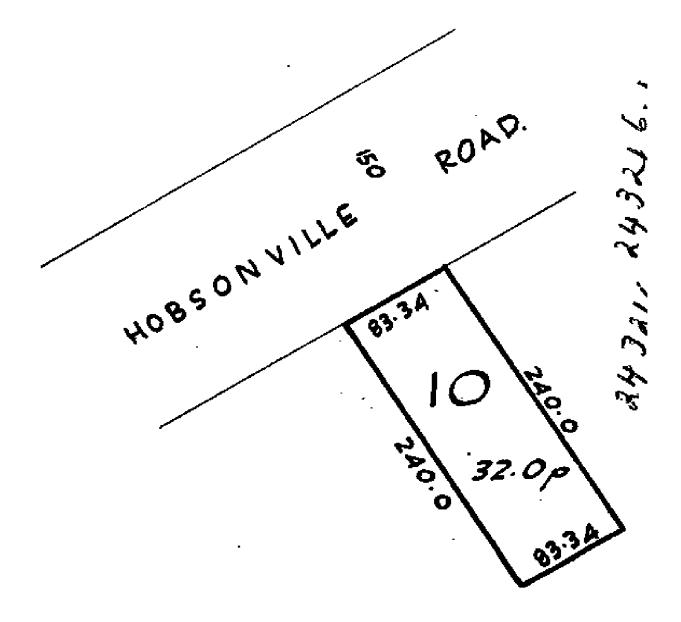

Subject to a right to convey water, electricity and telecommunications and right to drain water over part Lot 5 DP 563162 marked E, right to a party wall over part Lot 4 DP 563162 marked D and right to drain water over part Lot 4 DP 563162 marked H and I all on DP 563162 created by Easement Instrument 12252703.4 - 19.5.2022 at 11:09 am

Appurtenant hereto is a right to drain water, to Lot 4 DP 563162 is a right to a party wall and to Lot 4 DP 563162 is a right to convey water, electricity and telecommunications and created by Easement Instrument 12252703.4 - 19.5.2022 at 11:09 am

The easements created by Easement Instrument 12252703.4 are subject to Section 243 (a) Resource Management Act 1991

Land Covenant in Covenant Instrument 12252703.5 - 19.5.2022 at 11:09 am (affects Lot 4 DP 563162)

Identifier


Identifier	NA3C/1174
Land Registration District Date Issued	North Auckland 06 May 1964

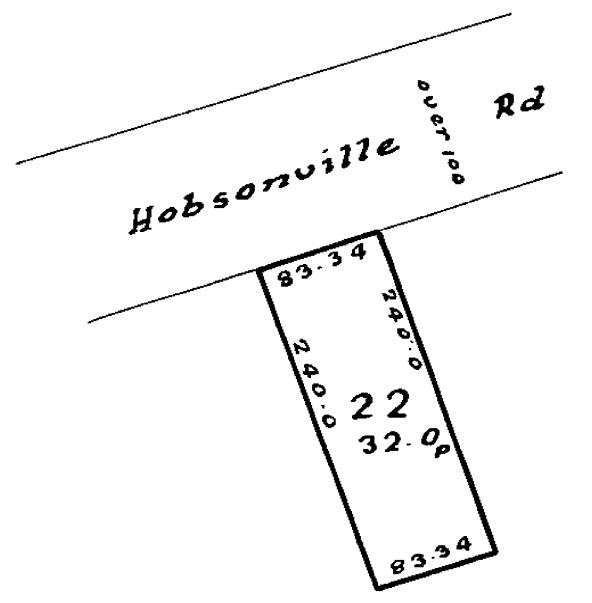
Prior References NA840/245	
Estate	Fee Simple
Area	809 square metres more or less
Legal Description	Lot 10 Deposited Plan 43467
Registered Owners Rohan Keshavan Kuttuva	

Interests

Subject to a drainage right in favour of The Waitemata County Council created by Transfer 572524 Fencing Agreement in Transfer A5942 - 6.5.1964

11036099.3 Mortgage to ANZ Bank New Zealand Limited - 6.3.2018 at 2:49 pm

Identifier Land Registration District Date Issued North Auckland 23 February 1966


NA7D/1392 23 February 1966

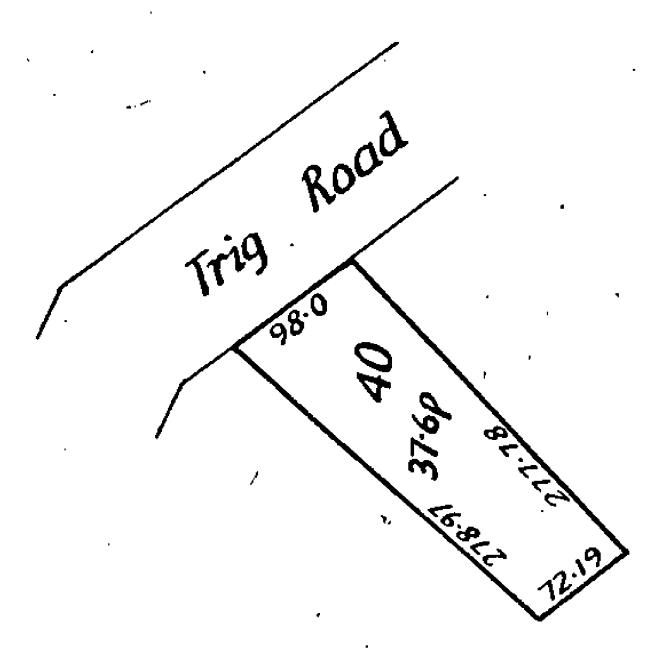
Prior References NA840/245	
Estate	Fee Simple
Area	809 square metres more or less
Legal Description	Lot 22 Deposited Plan 43467
Registered Owners	

Jerry's Home (2013) Limited

Interests

12216548.3 Mortgage to Cressida Capital One Limited - 18.8.2021 at 3:35 pm

Μ

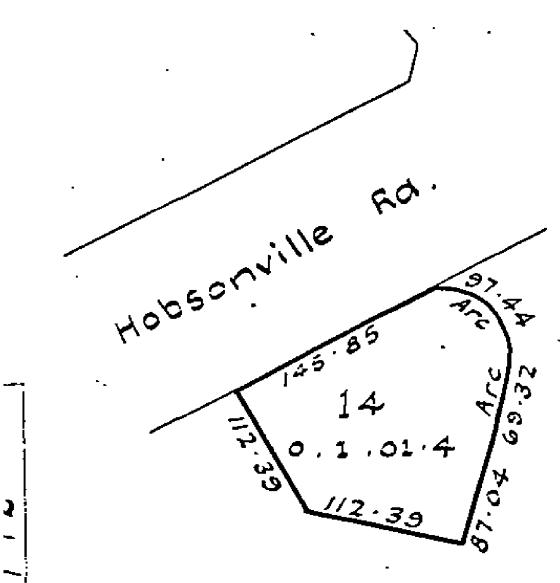

Identifier	NA10D/299	
Land Registration District Date Issued	North Auckland 21 January 1966	

Prior References NA1611/79	
Estate	Fee Simple
Area	951 square metres more or less
Legal Description	Lot 40 Deposited Plan 41172
Registered Owner	'S

Gayo Edward Vodanovich and Yvonne Pauline Vodanovich

Interests

Subject to a drainage right (in gross) over part in favour of The Waitemata County Council created by Transfer 534328

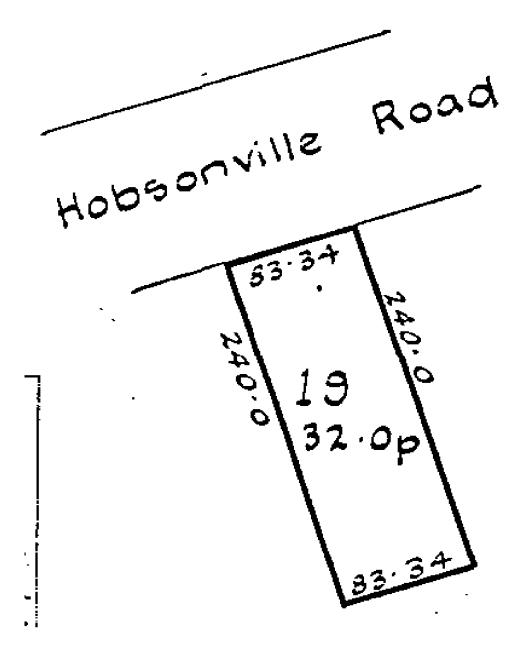


Identifier	NA11A/72
Land Registration District Date Issued	North Auckland 02 May 1967

Prior References NA840/245	
Estate	Fee Simple
Area	1047 square metres more or less
Legal Description	Lot 14 Deposited Plan 43467
Registered Owners Kevin John Hooper and Geertruida Maria Hooper	

Interests

C379567.3 Mortgage to ASB Bank Limited - 27.5.1992 at 10.51 am

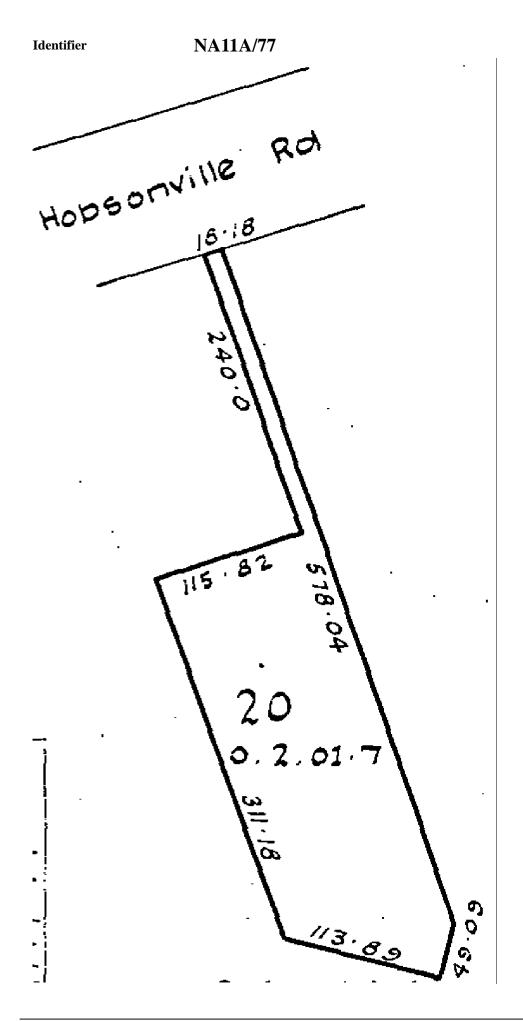


Identifier Land Registration District North Auckland Date Issued 02 May 1967

NA11A/76 02 May 1967

Prior References NA840/245	
Estate	Fee Simple
Area	809 square metres more or less
Legal Description	Lot 19 Deposited Plan 43467
Registered Owners Tawaki Views Limited	

Interests


Identifier Land Registration District North Auckland 02 May 1967

NA11A/77 02 May 1967

Prior References NA840/245	
Estate	Fee Simple
Area	2066 square metres more or less
Legal Description	Lot 20 Deposited Plan 43467
Registered Owner Tawaki Views Limi	

Interests

11576516.1 Mortgage to Kiwibank Limited - 18.10.2019 at 4:56 pm

IdentifierNA21C/1293Land Registration DistrictNorth AucklandDate Issued26 November 1971

Prior References

NA578/66


Estate	Fee Simple
Area	4.0469 hectares more or less
Legal Description	Lot 3 Deposited Plan 66045

Registered Owners

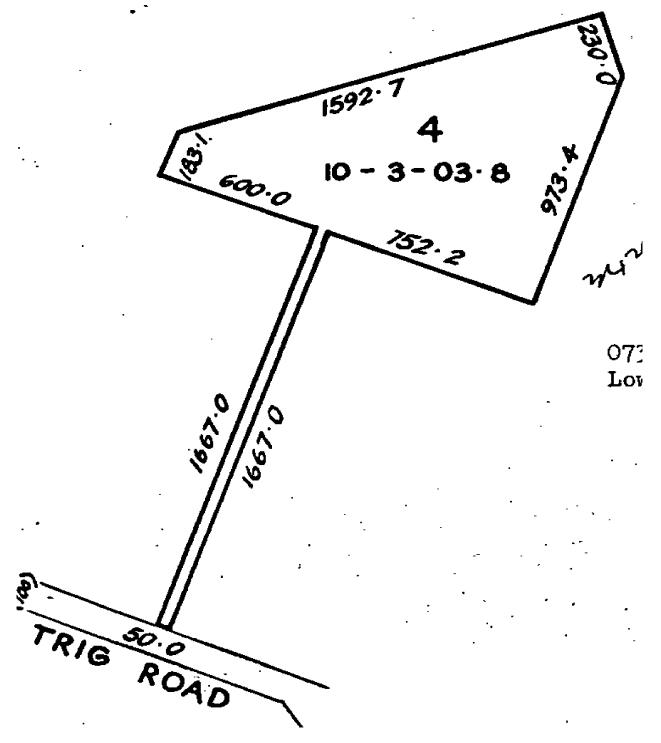
Jui-Yin Huang Hu (also known as Huang Jui-Yin Hu)

Interests

Fencing Covenant in Transfer C877701.4 - 15.8.1995 at 11.51 am Land Covenant in Transfer C877701.4 - 15.8.1995 at 11:51 am

IdentifierNA21C/1294Land Registration DistrictNorth AucklandDate Issued26 November 1971

Prior References

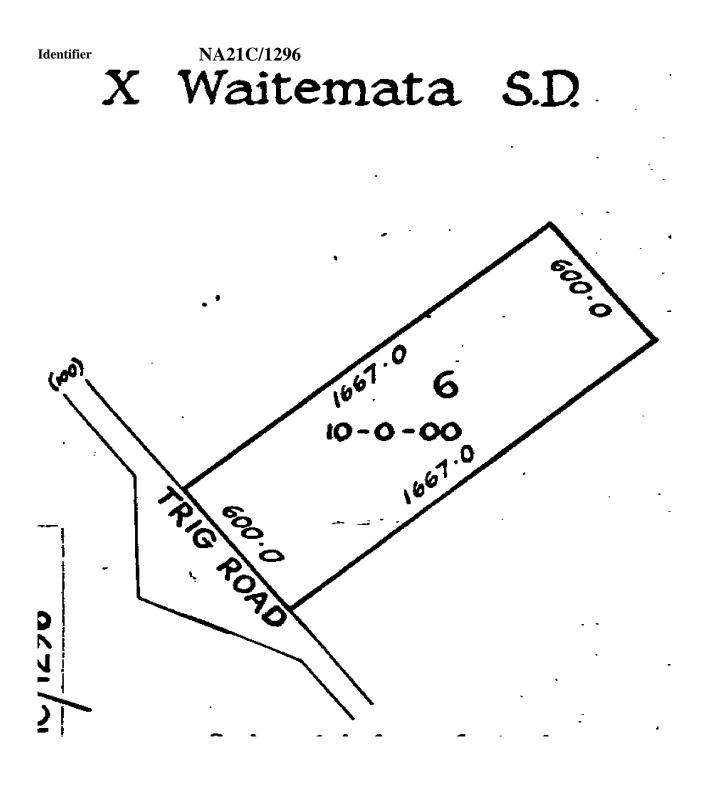

NA578/66

EstateFee SimpleArea4.3600 hectares more or lessLegal DescriptionLot 4 Deposited Plan 66045

Registered Owners Hsiu-Ho Lin

Interests

Fencing Covenant in Transfer C877701.4 - 15.8.1995 at 11.51 am Land Covenant in Transfer C877701.4 - 15.8.1995 at 11:51 am

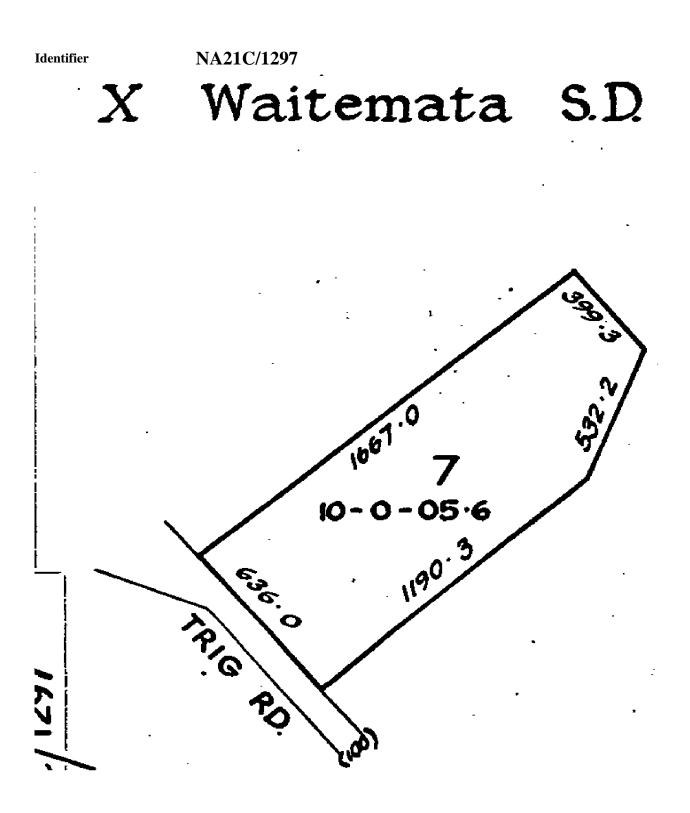

Identifier	NA21C/1296	
Land Registration District Date Issued	North Auckland 26 November 1971	

Prior References NA578/66	
Estate	Fee Simple
Area	4.0469 hectares more or less
Legal Description	Lot 6 Deposited Plan 66045
Registered Owner	

Weimei Wu and Yau Min Chan

Interests

10835066.3 Mortgage to ANZ Bank New Zealand Limited - 3.7.2017 at 11:17 am



Identifier	NA21C/1297	
Land Registration District Date Issued	North Auckland 26 November 1971	

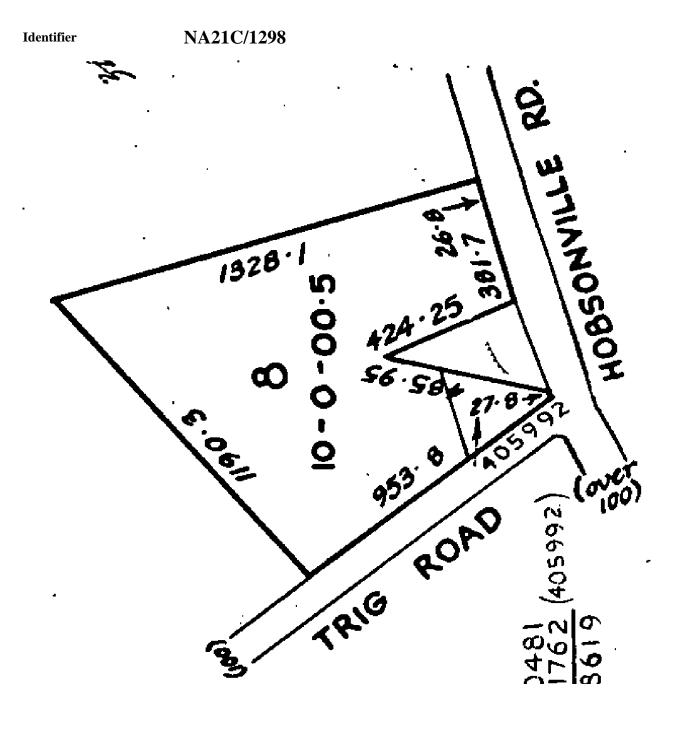
Prior References NA578/66	NA578/67
Estate	Fee Simple
Area	4.0610 hectares more or less
Legal Description	Lot 7 Deposited Plan 66045
Registered Owners Pauline Diane Howlett	

Interests

B053335.1 Settled under the Joint Family Homes Act 1964 - 14.4.1982 at 11.25 am

Identifier Land Registration District North Auckland Date Issued

NA21C/1298 26 November 1971

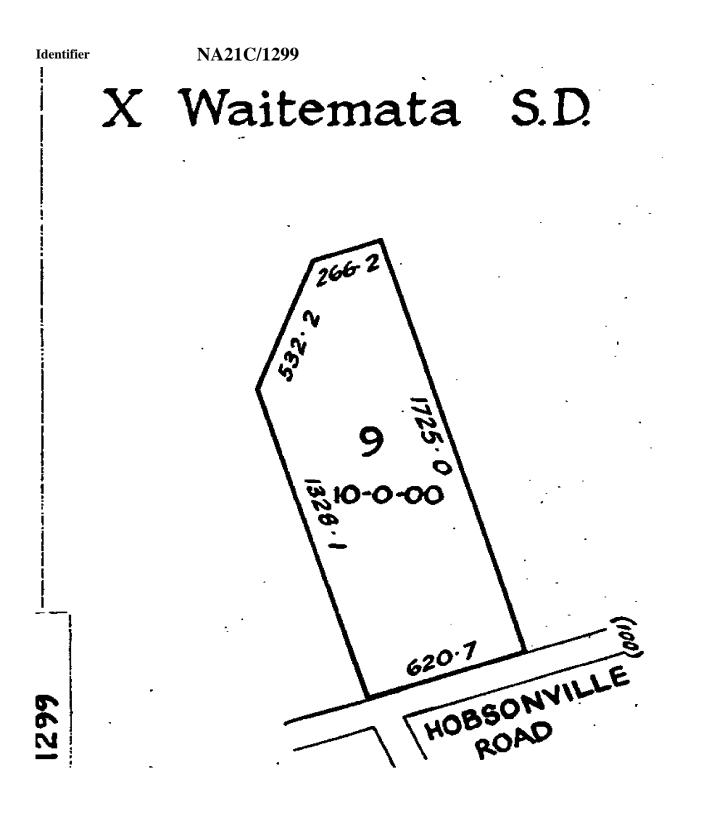

Part-Cancelled

Prior References NA578/66	NA578/67
Estate	Fee Simple
Area	4.0481 hectares more or less
Legal Description Lot 8 Deposited Plan 66045	
Registered Owners Chiang Lin-Hwa Shih as to a 1/4 share Kite Tseng as to a 1/2 share	
Kite Tseng as to a 1/4 share	

Interests

405992.1 Gazette Notice taking part within land ("A on S.O. 48997) 1762m² for electrical works vested in the Waitemata Electric Power Board from and after the 1st day of May 1975 - 19.6.1975 at 9.33 am

C428346.1 Certificate pursuant to Section 94(c) Transit New Zealand Act 1989 declaring that part of State Highway No.18 known as Hobsonville Road, commencing at its junction with State Highway 16 and proceeding in an eastern direction to Upper Harbour Drive to be a limited access road - 5.1.1992 at 2.01 pm

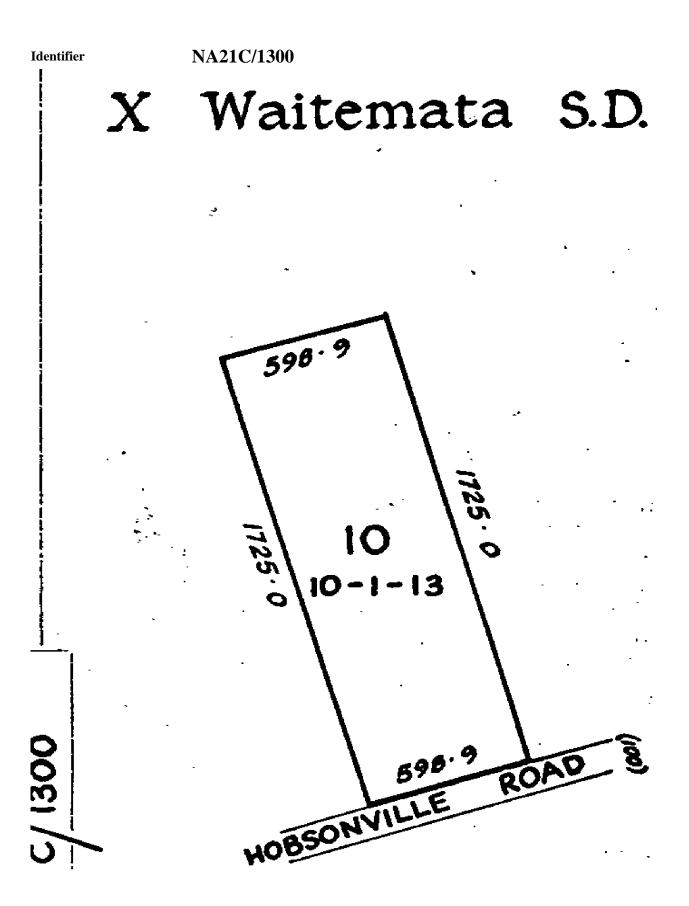

Identifier	NA21C/1299
Land Registration District Date Issued	North Auckland 26 November 1971

Prior References NA578/67	
Estate	Fee Simple
Area	4.0469 hectares more or less
Legal Description	Lot 9 Deposited Plan 66045
Registered Owner	S

78 Hobsonville Limited

Interests

C428346.1 Notice pursuant to Section 94C Transit New Zealand Act 1989 declaring the adjoining State Highway No.18 known as Hobsonville Road, commencing at its junction with State Highway 16 and proceeding in an eastern direction to Upper Harbour Drive to be a limited access road - 5.1.1992 at 2.01 pm


Identifier	NA21C/1300
Land Registration District Date Issued	North Auckland 26 November 1971

Prior References NA578/67	
Estate	Fee Simple
Area	4.1809 hectares more or less
Legal Description	Lot 10 Deposited Plan 66045
Registered Owner Xianlong He	'S

Interests

C428346.1 Notice pursuant to Section 94C Transit New Zealand Act 1989 declaring the adjoining State Highway No.18 known as Hobsonville Road, commencing at its junction with State Highway 16 and proceeding in an eastern direction to Upper Harbour Drive to be a limited access road - 5.1.1992 at 2.01 pm

10361918.4 Mortgage to ANZ Bank New Zealand Limited - 23.3.2016 at 12:50 pm

Identifier	NA22D/1210
Land Registration District Date Issued	North Auckland 02 June 1972

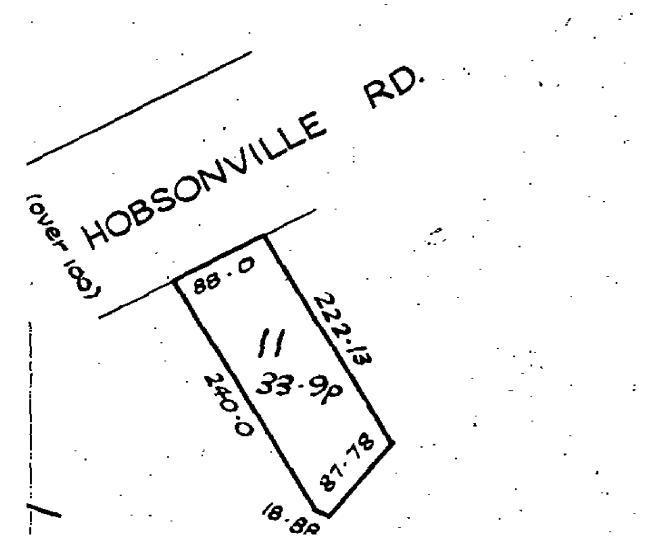
Prior References	
NA20B/136	

Estate	Fee Simple
Area	857 square metres more or less
Legal Description	Lot 11 Deposited Plan 43467

Registered Owners

Bo Yu and Lulu Wang

Interests


Subject to Section 59 Land Act 1948 11778423.3 Mortgage to Westpac New Zealand Limited - 30.6.2020 at 4:20 pm

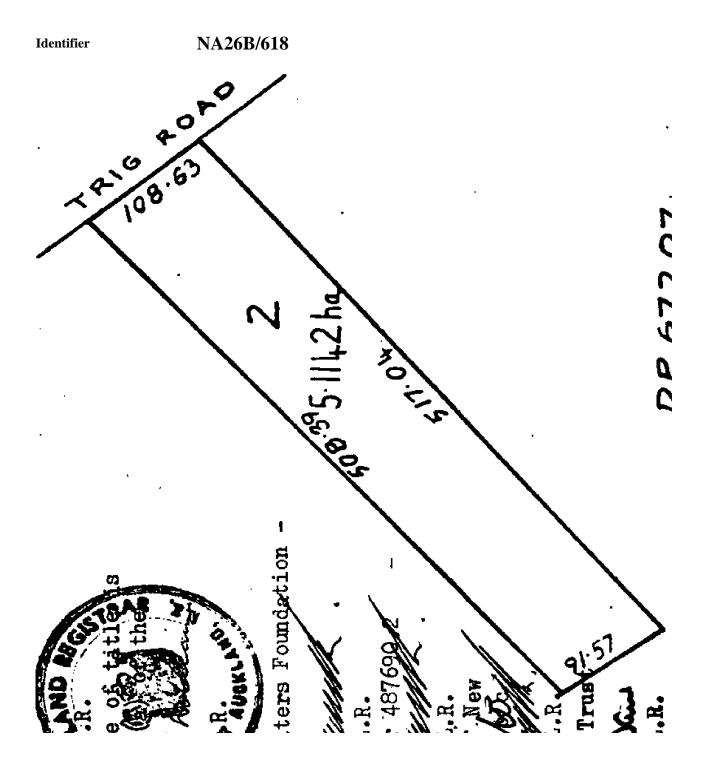
NA22D/1210

XW

Vaitemata S.D.

Identifier Land Registration District North Auckland Date Issued

NA26B/618 26 March 1974

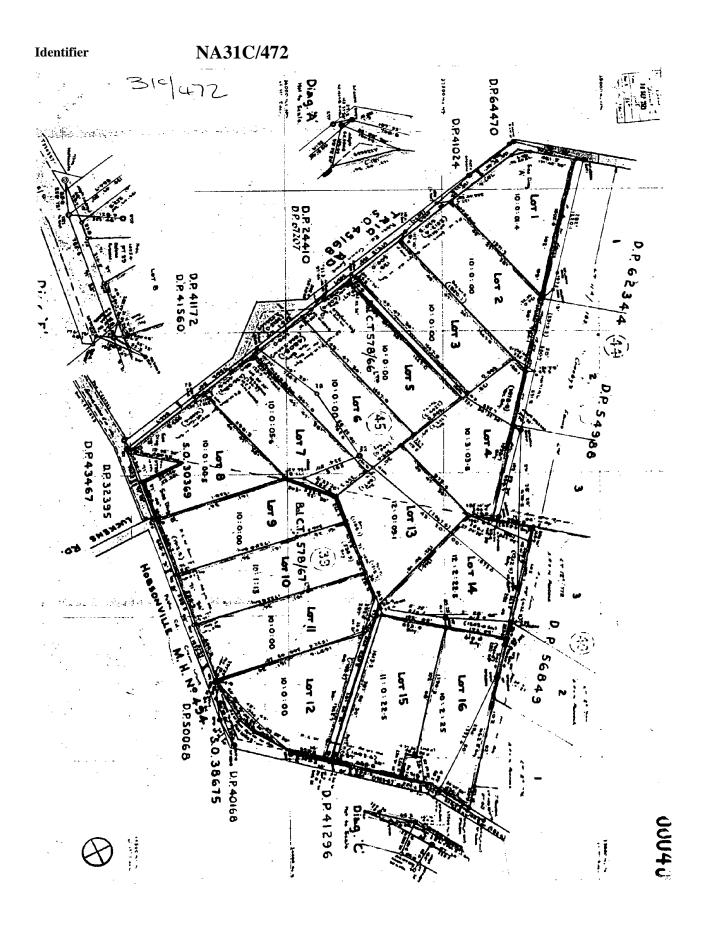

Prior References NA1022/205

Fee Simple Estate Area 5.1142 hectares more or less Legal Description Lot 2 Deposited Plan 67207

Registered Owners

Han-Ting Lin as to a 1/20 share Han-Chun Lin as to a 1/20 share Che Lung Huang and Hung Sai Chao Huang as to a 2/5 share Yung-Hsiang Hsu and Lien-Ying Chen as to a 1/2 share

Interests


Identifier	NA31C/472
Land Registration District Date Issued	North Auckland 07 August 1975

Prior References GN 405992.1	
Estate	Fee Simple
Area	1762 square metres more or less
Legal Description	Part Lot 8 Deposited Plan 66045
Registered Owner	S

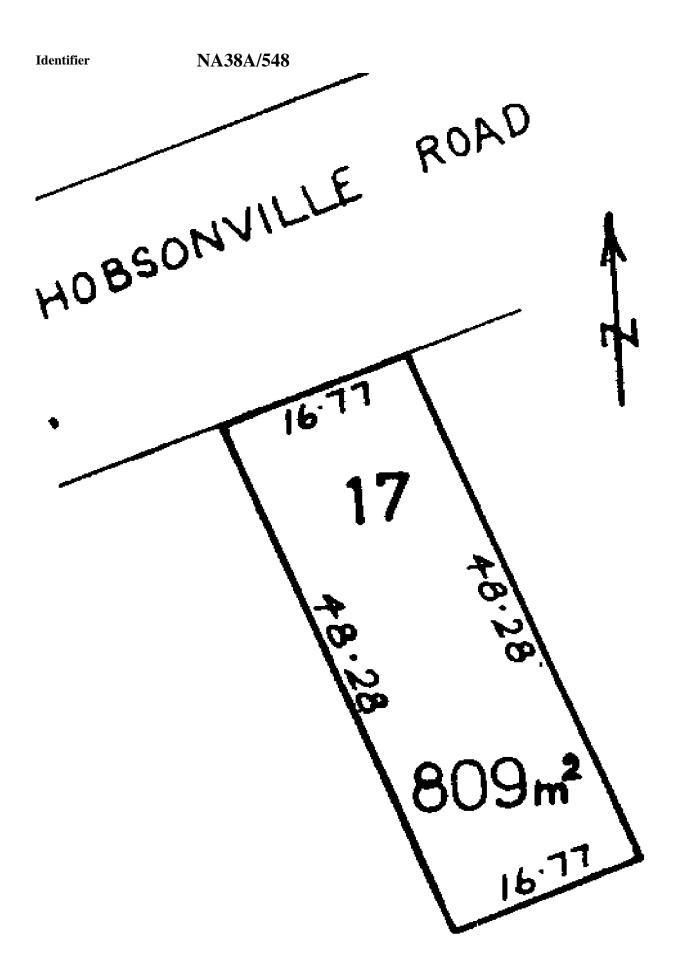
Vector Northern Property Limited

Interests

C428346.1 Certificate pursuant to Section 94C Transit New Zealand Act 1989 declaring that part of State Highway No.18 known as Hobsonville Road, commencing at its junction with State Highway 16 and proceeding in an eastern direction to Upper Harbour Drive to be a limited access road - 5.11.1992 at 2.01 pm

Identifier	NA38A/548
Land Registration District Date Issued	North Auckland 06 May 1977

Prior References NA20B/136


EstateFee SimpleArea809 square metres more or lessLegal DescriptionLot 17 Deposited Plan 43467

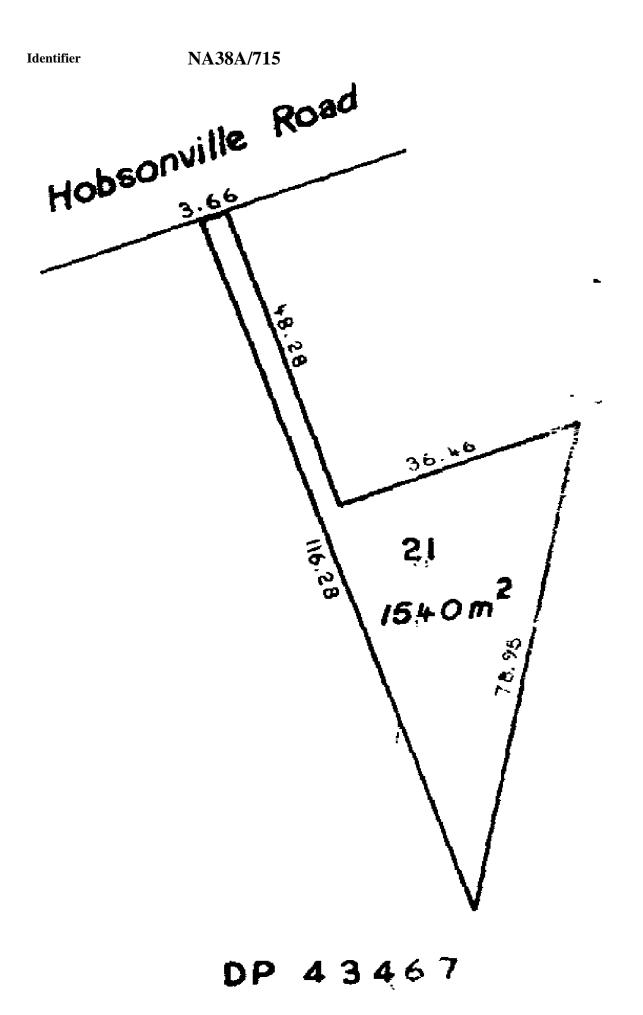
Registered Owners

Eric Ngan and Peixia Feng

Interests

Subject to Section 59 Land Act 1948 10855324.2 Mortgage to ANZ Bank New Zealand Limited - 18.8.2017 at 2:09 pm

IdentifierNA38A/715Land Registration DistrictNorth AucklandDate Issued28 June 1977

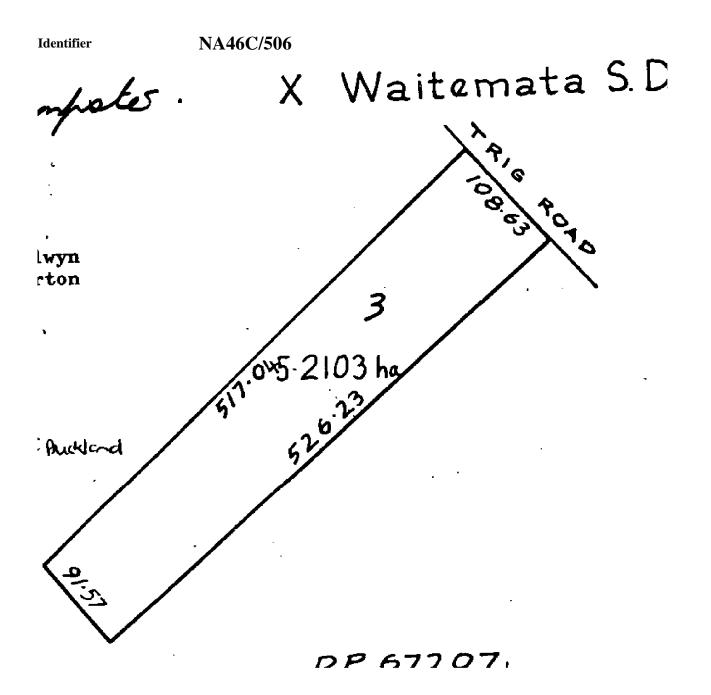

Prior References NA20B/136

EstateFee SimpleArea1540 square metres more or lessLegal DescriptionLot 21 Deposited Plan 43467

Registered Owners Jerry's Home (2013) Limited

Interests

Subject to Section 59 Land Act 1948 12216009.3 Mortgage to Cressida Capital One Limited - 18.8.2021 at 3:34 pm


Identifier Land Registration District Date Issued North Auckland 25 October 1979

NA46C/506 25 October 1979

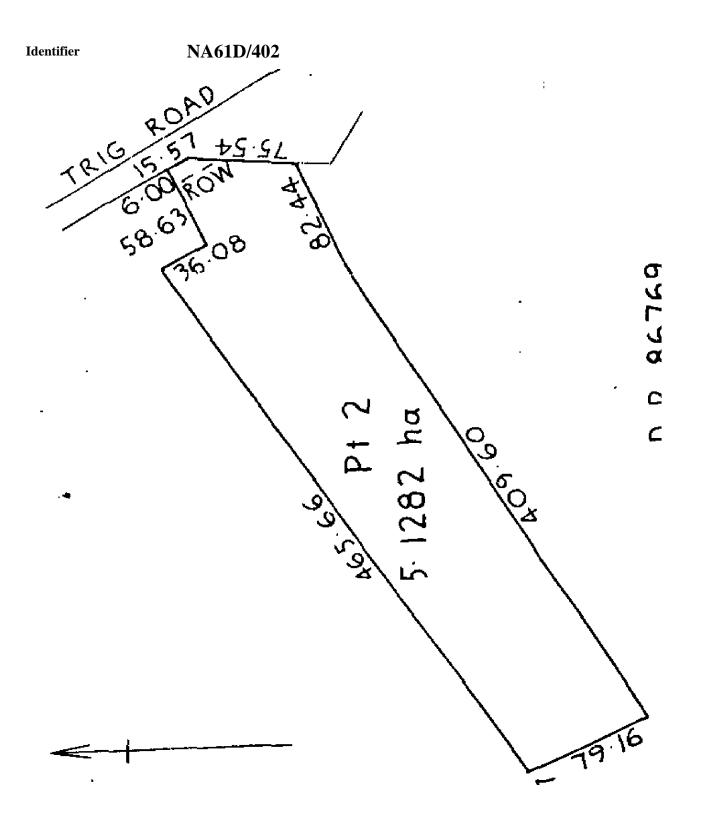
Prior References NA26B/619	
Estate	Fee Simple
Area	5.2103 hectares more or less
Legal Description	Lot 3 Deposited Plan 67207
Registered Owners	δ
David Lin as to a 1/2	5 share
Chien-Yeh Sun as to	a 1/5 share
Wendy Jao and Prin	ce & Partners Trustee Company Limited as to a 2/5 share
Hsu-Huang Cheng,	Chung-Ling Chang and Benjamin Ban Chong Bong as to a 1/10 share

Huei Fu Jack Lin, Hsin Yi Chu and Yen-Hung Henry Lin as to a 1/10 share

Interests

NA61D/402
North Auckland 13 May 1986

Prior References NA44B/813


EstateFee SimpleArea5.1282 hectares more or lessLegal DescriptionPart Lot 2 Deposited Plan 86769

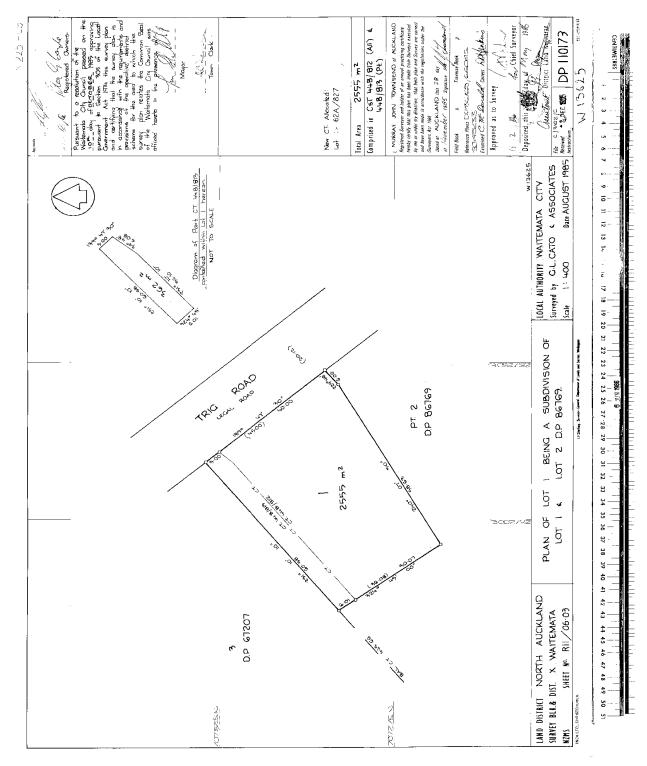
Registered Owners

Li-O Lee as to a 2/5 share Su-Chin Lin as to a 7/20 share Shu-Cheng Chen as to a 1/4 share

Interests

Subject to a right of way over part marked A on DP 86769 specified in Easement Certificate 398232.4 7179382.4 Mortgage to Westpac New Zealand Limited - 3.1.2007 at 9:00 am

Identifier	NA62A/827
Land Registration District Date Issued	North Auckland 13 May 1986


Prior References NA44B/812	NA44B/813
Estate	Fee Simple
Area	2555 square metres more or less
Legal Description	Lot 1 Deposited Plan 110173
Registered Owner Auckland Council	s

Interests

Appurtenant hereto is a right of way specified in Easement Certificate 398232.4 (Affects part)

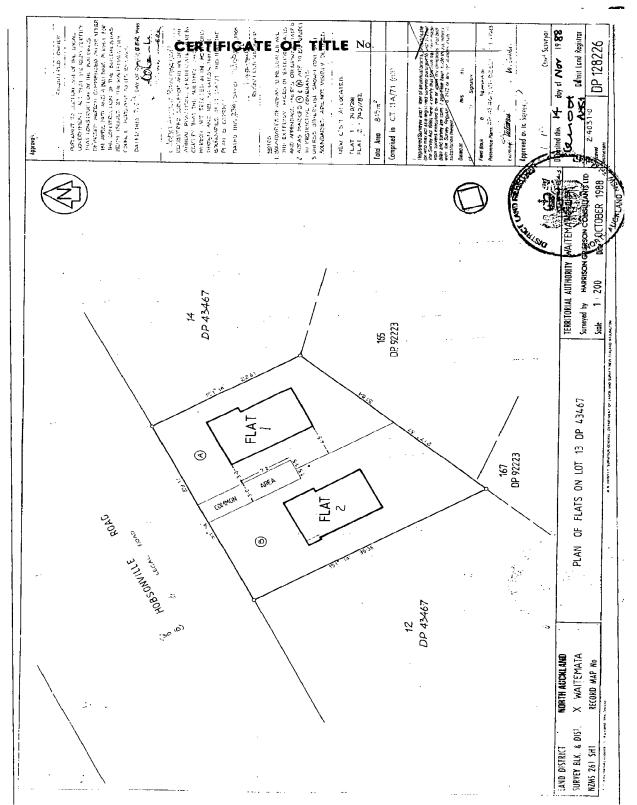
NA62A/827

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 CROSS LEASE Search Copy

2 share res more or less		
res more or less		
ed Plan 43467		
	Instrument	L B927007.3
	Term	999 years commencing on the 14.11.1988
d Plan 128226		
		Instrument Term

B927007.3 Lease of Flat 1 DP 128226 Term 999 years commencing on the 14.11.1988 Composite CT NA74D/281 issued - 12.12.1988 at 11.52 am (Affects Fee Simple)

Land Covenant in Lease B927007.3 - 12.12.1988 at 11.52 am (Affects Fee Simple)


NA74D/281

B927007.4 Lease of Flat 2 Composite 74D/282 issued - 12.12.1988 at 11.52 am (Affects Fee Simple)

Land Covenant in Lease B927007.4 - 12.12.1988 at 11.52 am (Affects Fee Simple)

D324123.2 Mortgage to Mortgage Holding Trust Company Limited - 27.10.1998 at 3.20 pm

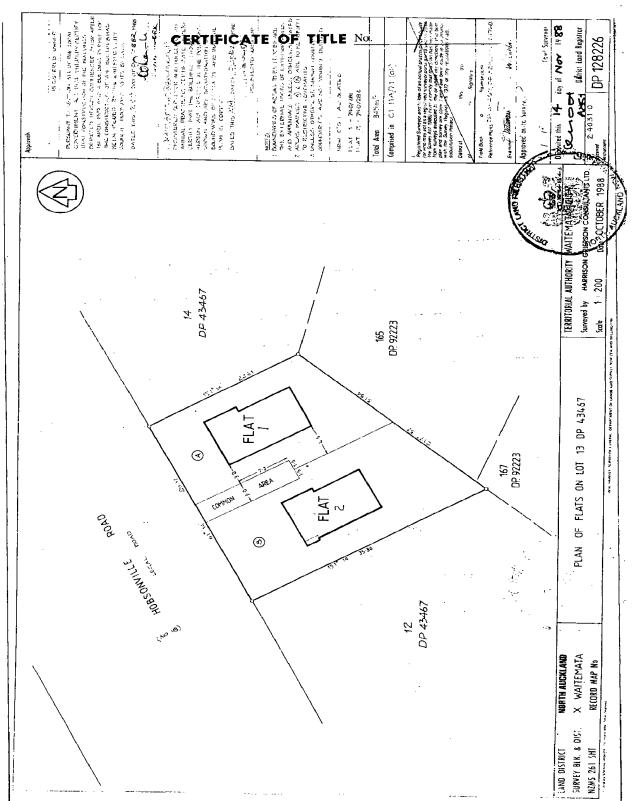
NA74D/281

IdentifierNA74D/282Land Registration DistrictNorth AucklandDate Issued12 December 1988

Estate	Fee Simple - 1/2 share		
Area	845 square metres more or less		
Legal Description	Lot 13 Deposited Plan 43467		
Registered Owner			
Michael Bruce Cou	tts and Jane Louise Coutts Leasehold	Instrument	L B927007.4
0	tts and Jane Louise Coutts	Instrument Term	L B927007.4 999 years commencing on the 14.11.1988
Michael Bruce Cou Estate	tts and Jane Louise Coutts		
Michael Bruce Cou Estate	tts and Jane Louise Coutts Leasehold Flat 2 Deposited Plan 128226		

Interests

B927007.3 Lease of Flat 1 Composite CT NA74D/281 issued - 12.12.1988 at 11.52 am (Affects Fee Simple)


Land Covenant in Lease B927007.3 - 12.12.1988 at 11.52 am (Affects Fee Simple)

Land Covenant in Lease B927007.4 - 12.12.1988 at 11.52 am (Affects Fee Simple)

B927007.4 Lease of Flat 2 DP 128226 Term 999 years commencing on the 14.11.1988 Composite CT NA74D/282 issued - 12.12.1988 at 11.52 am (Affects Fee Simple)

11354503.3 Mortgage to ANZ Bank New Zealand Limited - 28.2.2019 at 4:25 pm

NA74D/282

Identifier	NA76B/800
Land Registration District Date Issued	North Auckland 19 April 1989

Prior References NA11A/75			
Estate	Fee Simple - 1/2 share		
Area	809 square metres more or less		
Legal Description	Lot 18 Deposited Plan 43467		
*	ae and Alex Robin Nieuwenhuis	Instrument	L B981247.5
8		Instrument Term	L B981247.5 999 years as from and including 14.3.1989

Stephanie Louise Rae and Alex Robin Nieuwenhuis

Interests

B981247.5 Lease of Flat 1 and Carport 1 DP 130372 for the space of 999 years as from and including 14.3.1989 Composite CT NA76B/800 issued - 19.4.1989 at 1.37 pm (Affects Fee Simple)

Land Covenant in Lease B981247.5 - 19.4.1989 at 1.37 pm (Affects Fee Simple)

B981247.6 Lease of Flat 2 and Carport 2 Composite CT NA76B/801 issued - 19.4.1989 at 1.37 pm (Affects Fee Simple)

Land Covenant in Lease B981247.6 - 19.4.1989 at 1.37 pm (Affects Fee Simple)

12266273.3 Mortgage to Westpac New Zealand Limited - 15.10.2021 at 11:29 am

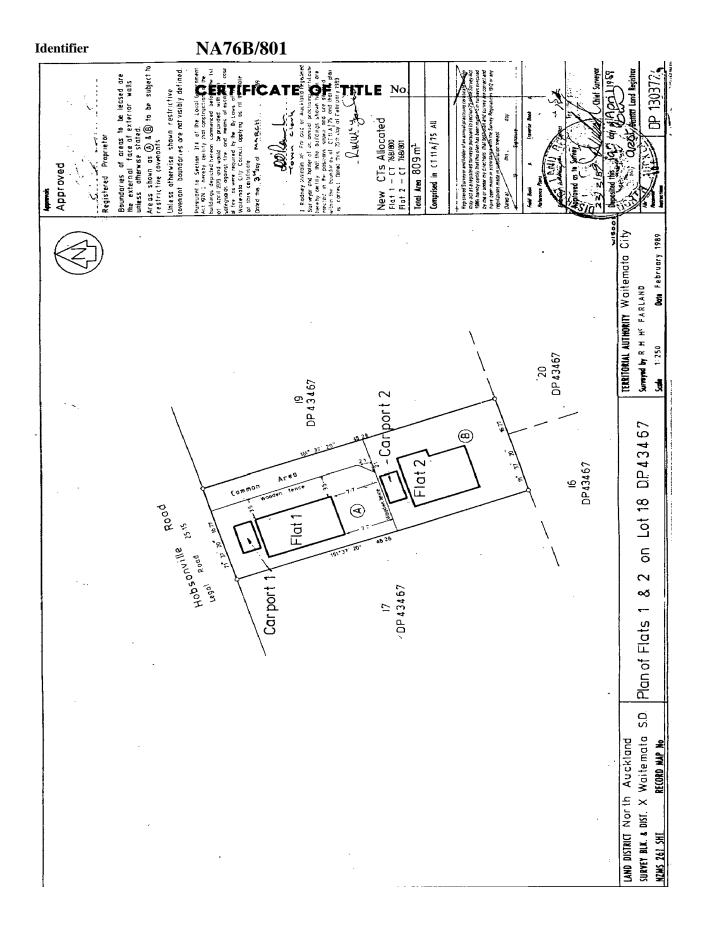
Identifier		NA76B/800						
Approved		Persuant is Section 114 of the Local Government Act 372 hereby compared with the section of April 1979 and world a section of the set of April 1979 and world and with the set setspote works if the and marks if the set in an vert reduced by the by Loca of Warman Div Control applying os at 10-1016 of this setuinticate Date the 2-164 of MARK	I Rednoy Murchin W Far are al Austral Regulated Surveyer and Nador at an annual previous contractive Thready under you have a montain previous contractive interest in the positions shown for an an within the boolstow, at CTIA,175 and the Part is correct. Date this Estimaty of February 1989	New CTs Allocated A1 Het 1 - CT 86880 Het 2 - CT 86880 Het 2 - CT 86880 Not the 800 m ²	Comprised in CT11A/75 All	RegulterelSoneper and there of a minual sector of the sector who have a set required martin the sector of the sector of the DBB method of the sector sub-sector sector sector sector DBB method with an electron sector sector sector sector DBB method a sector sector sub-sector sector sector sector but have been and a sector sector sector sector sector developes made a sector sector sector sector developes made a sector sector sector developed to the sector sector sector sector developed to the sector sector sector sector developed to the sector sector sector sector sector developed to the sector sector sector sector sector sector developed to the sector sector sector sector sector sector sector sector developed to the sector sector sector sector sector sector sector sector developed to the sector s	And Factor Rest Rest Rest Rest Rest Rest Rest Rest	Description of the product of the production of
	Road Road	Common Ares	19 19 19 19 19 19 19 19	DP 43467			DP43467	LAND DISTRICT Nor the Auckland TERRITORIAL AUTHORITY Waitemata City SURVEY BIX. & DIST. X Waitemata S.D. Plan of Flats 1 & 2 on Lot 18 D.P.4.3.4.6.7 Surveyed by R M MC FARLAND MUN 261 SHI RECORD MAP No. Der February 1989

Identifier	NA76B/801
Land Registration District Date Issued	North Auckland 19 April 1989

Prior References NA11A/75			
Estate	Fee Simple - 1/2 share		
Area	809 square metres more or less		
Legal Description	Lot 18 Deposited Plan 43467		
Registered Owner Dylan Depak Patel a	s and Nitisha Limbachia		
Estate	Leasehold	Instrument	L B981247.6
		Term	999 years as from and including 14.3.1989
Legal Description	Flat 2 Deposited Plan 130372 and Carport 2 Deposited Plan 130372		
Registered Owner Dylan Depak Patel a	s and Nitisha Limbachia		

Interests

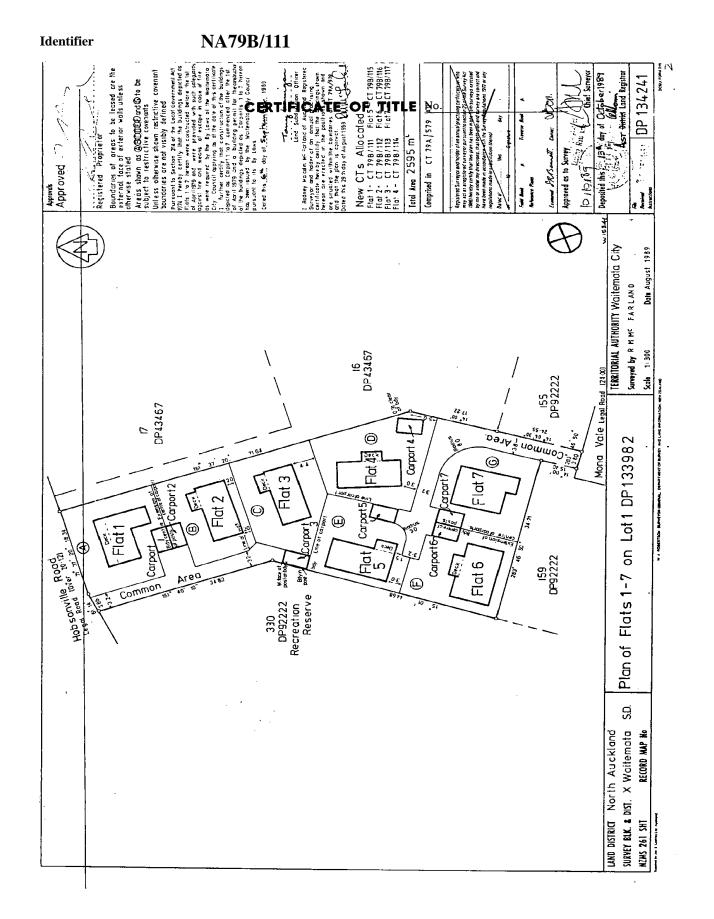
B981247.5 Lease of Flat 1 and Carport 1 Composite CT NA76B/800 issued - 19.4.1989 at 1.37 pm (Affects Fee Simple)


Land Covenant in Lease B981247.5 - 19.4.1989 at 1.37 pm (Affects Fee Simple)

Land Covenant in Lease B981247.6 - 19.4.1989 at 1.37 pm (Affects Fee Simple)

B981247.6 Lease of Flat 2 and Carport 2 DP 130372 for the space of 999 years as from and including 14.3.1989

Composite CT NA76B/801 issued - 19.4.1989 at 1.37 pm (Affects Fee Simple)


12268636.2 Mortgage to Westpac New Zealand Limited - 22.10.2021 at 3:18 pm

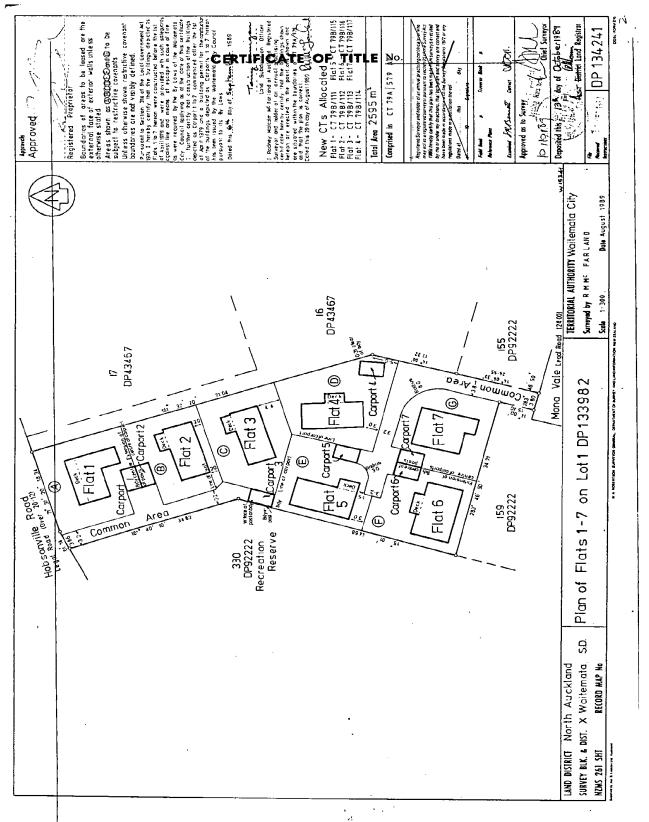
Identifier Land Registration Date Issued	District	NA79B/111 North Auckland 13 October 1989		
Prior References NA79A/579				
Estate	Fee Sim	ple - 1/7 share		
Area	2595 squ	uare metres more or less		
Legal Description	Lot 1 De	eposited Plan 133982		
Registered Owners Carl Patrick Smith	5			
Estate	Leaseho	ld	Instrument	L C054438.4
			Term	999 years as from and including 22 September 1989
Legal Description		eposited Plan 134241 and Carport ited Plan 134241		
Registered Owners Carl Patrick Smith	8			
Interests				
Fencing Agreement	in Transf	er A132916 (Affects Fee Simple)		
		d Carport 1 Deposited Plan 13424 te CT NA79B/111 issued - 13.10.1	1	
Land Covenant in L	ease C05	4438.4 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	e)
C054438.5 Lease of	Flat 2 Co	omposite CT NA79B/112 issued -	13.10.1989 at 1.3	32 pm (Affects Fee Simple)
Land Covenant in L	ease C05	4438.5 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	e)
C054438.6 Lease of Flat 3 Composite CT NA79B/113 issued - 13.10.1989 at 1.32 pm (Affects Fee Simple)				
Land Covenant in Lease C054438.6 - 13.10.1989 at 1.32 pm (Affects Fee Simple)				
C054438.7 Lease of Flat 4 Composite CT NA79B/114 issued - 13.10.1989 at 1.32 pm (Affects Fee Simple)				
Land Covenant in Lease C054438.7 - 13.10.1989 at 1.32 pm (Affects Fee Simple)				
C054438.8 Lease of	Flat 5 Co	omposite CT NA79B115 issued - 1	3.10.1989 at 1.3	32 pm (Affects Fee Simple)
Land Covenant in L	ease C05	4438.8 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	e)
C054438.9 Lease of	Flat 6 Co	omposite CT NA79B/116 issued -	13.10.1989 at 1.3	32 pm (Affects Fee Simple)
Land Covenant in L	ease C05	4438.9 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	e)
C054438.10 Lease of	of Flat 7 C	Composite CT NA79B/117 issued -	13.10.1989 at 1	.32 pm (Affects Fee Simple)
Land Covenant in L	ease C05	4438.10 - 13.10.1989 at 1.32 pm (4	Affects Fee Simp	ple)
10803753.2 Mortga	ge to Ban	k of New Zealand - 29.5.2017 at 4	:21 pm	

Identifier	NA79B/112
Land Registration District	North Auckland
Date Issued	13 October 1989

Prior Referen NA79A/579	ices				
Estate	Fee Simple - 1/7 share	Fee Simple - 1/7 share			
Area	2595 square metres more or less				
Legal Descrip	tion Lot 1 Deposited Plan 133982				
Registered Ov	wners				
Erica Laurie C	rump as to a 1/2 share				
Shane Eric Cru	Imp as to a $1/2$ share				
Estate	Leasehold	Instrument	L C054438.5		
		Term	999 years as from and including 22 September 1989		

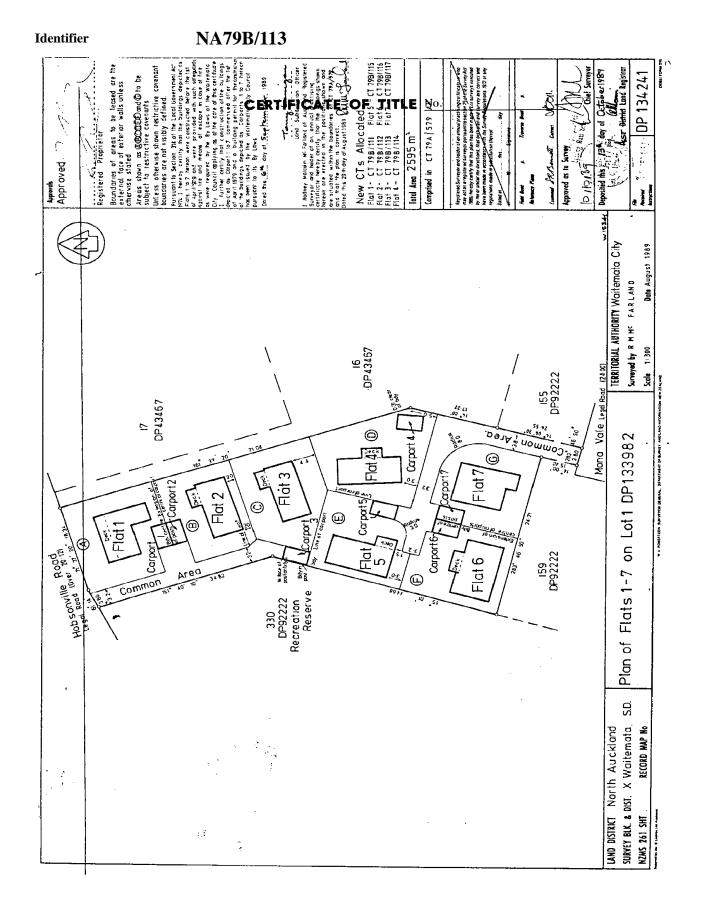
Legal DescriptionFlat 2 Deposited Plan 134241 and Carport
2 Deposited Plan 134241

Registered Owners


Erica Laurie Crump as to a 1/2 share Shane Eric Crump as to a 1/2 share

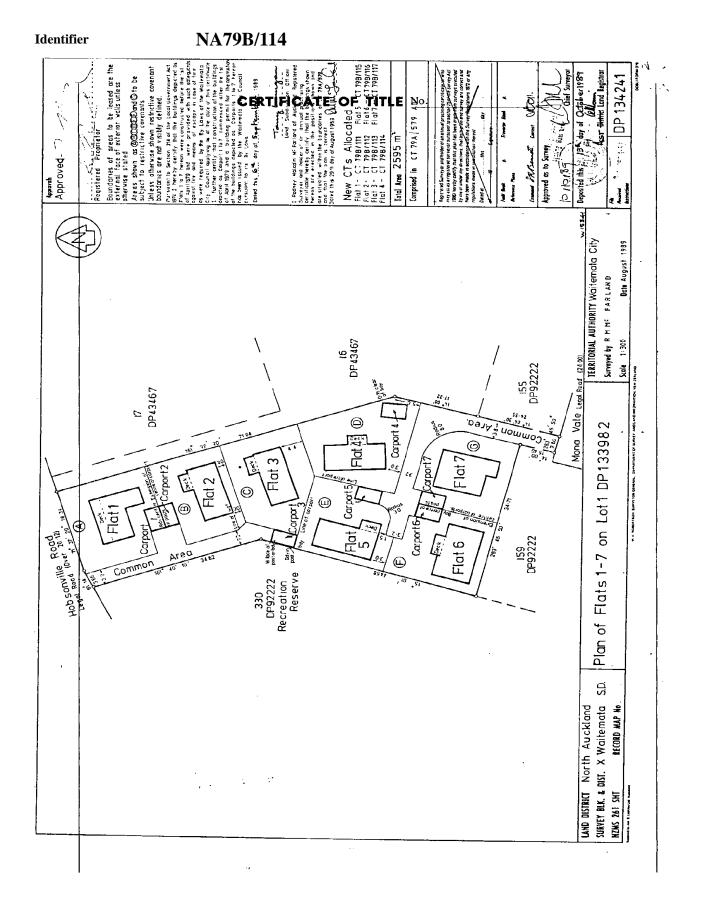
Interests

Fencing Agreement in Transfer A132196 (Affects Fee Simple) C054438.4 Lease of Flat 1 Composite CT NA79B/111 issued - 13.10.1989 at 1.32 pm (Affects Fee Simple) Land Covenant in Lease C054438.4 - 13.10.1989 at 1.32 pm (Affects Fee Simple) Land Covenant in Lease C054438.5 - 13.10.1989 at 1.32 pm (Affects Fee Simple) C054438.5 Lease of Flat 2 and Carport 2 DP 134241 for the space of 999 years as from and including 22 September 1989 Composite NA79B/112 issued - 13.10.1989 at 1.32 pm (Affects Fee Simple) C054438.6 Lease of Flat 3 Composite CT NA79B/113 issued - 13.10.1989 at 1.32 pm (Affects Fee Simple) Land Covenant in Lease C054438.6 - 13.10.1989 at 1.32 pm (Affects Fee Simple) C054438.7 Lease of Flat 4 Composite CT NA79B/114 issued - 13.10.1989 at 1.32 pm (Affects Fee Simple) Land Covenant in Lease C054438.7 - 13.10.1989 at 1.32 pm (Affects Fee Simple) C054438.8 Lease of Flat 5 Composite CT NA79B/115 issued - 13.10.1989 at 1.32 pm (Affects Fee Simple) Land Covenant in Lease C054438.8 - 13.10.1989 at 1.32 pm (Affects Fee Simple) C054438.9 Lease of Flat 6 Composite CT NA79B/116 issued - 13.10.1989 at 1.32 pm (Affects Fee Simple) Land Covenant in Lease C054438.9 - 13.10.1989 at 1.32 pm (Affects Fee Simple) C054438.10 Lease of Flat 7 Composite CT NA79B/117 issued - 13.10.1989 at 1.32 pm (Affects Fee Simple) Land Covenant in Lease C054438.10 - 13.10.1989 at 1.32 pm (Affects Fee Simple) 8689970.3 Mortgage to Bank of New Zealand - 11.2.2011 at 12:02 pm

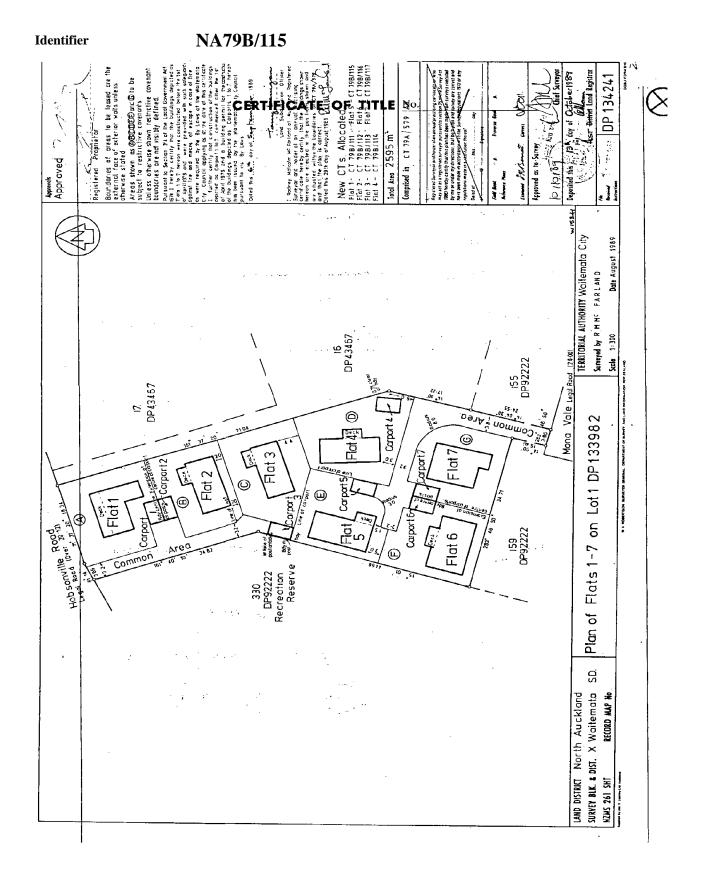


RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 CROSS LEASE Search Copy

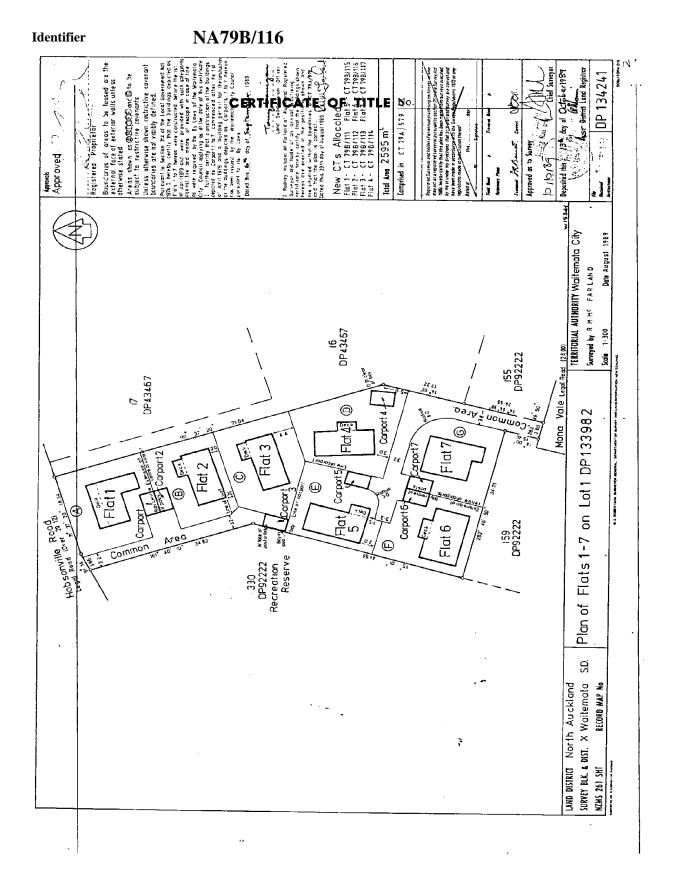
Land Registration Date Issued	District	North Auckland 13 October 1989		
Prior References NA79A/579				
Estate	Fee Sim	ple - 1/7 share		
Area	2595 sq	are metres more or less		
Legal Description	Lot 1 De	eposited Plan 133982		
Registered Owner				
Marvin Rey Garcia		d Hannah Roselle Baltazar Chan		
Estate	Leaseho	ld	Instrument	L C054438.6
			Term	999 years as from and including 22 September 1989
Legal Description		eposited Plan 134241 and Carport ited Plan 134241		
Registered Owner Marvin Rey Garcia		id Hannah Roselle Baltazar Chan		
Interests				
Fencing Agreement	in Transf	er A132196 (Affects Fee Simple)		
		omposite CT NA79B/111 issued -	13.10.1989 at 1.	32 pm (Affects Fee Simple)
		4438.4 - 13.10.1989 at 1.32 pm (A		• •
		omposite CT NA79B/112 issued -	-	
		4438.5 - 13.10.1989 at 1.32 pm (A		• •
		4438.6 - 13.10.1989 at 1.32 pm (A	-	
C054438.6 Lease of	f Flat 3 ar	· ·	ce of 999 years	as from and including 22 September
-		omposite CT NA79B/114 issued -		· ·
		4438.7 - 13.10.1989 at 1.32 pm (A		• •
		omposite CT NA79B/115 issued -	-	
		4438.8 - 13.10.1989 at 1.32 pm (A		• •
		omposite CT NA79B/116 issued -		
		4438.9 - 13.10.1989 at 1.32 pm (A		
		Composite CT NA79B/117 issued -	-	
		4438.10 - 13.10.1989 at 1.32 pm (A		
		stpac New Zealand Limited - 17.12		
12297035.2 Monga	ge to we	sipae new Zealand Linnieu - 17.12	.2021 at 3.17 pl	111



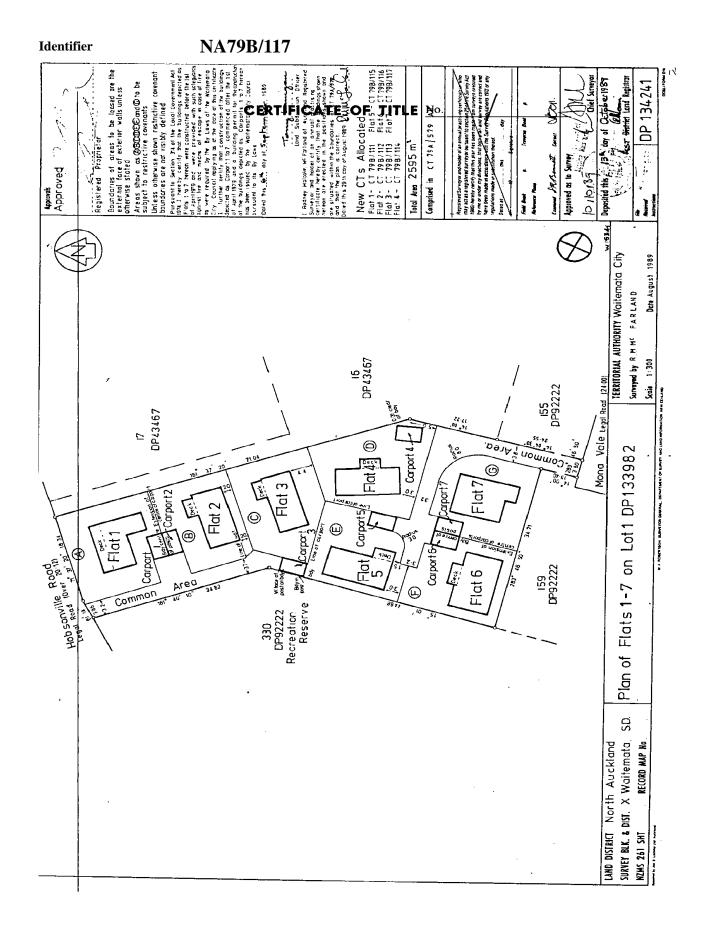
RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 CROSS LEASE Search Copy


Land Registration Date Issued	District North Auckland 13 October 1989		
Prior References NA79A/579			
Estate	Fee Simple - 1/7 share		
Area	2595 square metres more or less		
Legal Description	Lot 1 Deposited Plan 133982		
Registered Owner Jodi Anna Nehring	S		
Estate	Leasehold	Instrument	L C054438.7
		Term	999 years as from and including 22nd September 1989
Legal Description	Flat 4 Deposited Plan 134241 and Carport 4 Deposited Plan 134241		
Registered Owner Jodi Anna Nehring	S		
Interests			
Fencing Agreement	in Transfer A132916 (Affects Fee Simple)		
0 0	Flat 1 Composite CT NA79B/111 issued -	13.10.1989 at 1.	32 pm (Affects Fee Simple)
	ease C054438.4 - 13.10.1989 at 1.32 pm (A		
	Flat 2 Composite CT NA79B/112 issued -	-	
	ease C054438.5 - 13.10.1989 at 1.32 pm (A		1 (1)
	Flat 3 Composite CT NA79B/113 issued -	-	
	ease C054438.6 - 13.10.1989 at 1.32 pm (A		
	ease C054438.7 - 13.10.1989 at 1.32 pm (A	-	
C054438.7 Lease of	Flat 4 and Carport 4 DP 134241 for the spa mposite CT NA79B/114 issued - 13.10.198	ice of 999 years	as from and including 22nd
C054438.8 Leaseof	Flat 5 Composite CT NA79B/115 issued - 1	3.10.1989 at 1.3	32 pm (Affects Fee Simple)
Land Covenant in L	ease C054438.8 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	le)
C054438.9 Lease of	Flat 6 Composite CT NA79B/116 issued-1	3.10.1989 at 1.3	32 pm (Affects Fee Simple)
C054438.10 Lease of	of Flat 7 Composite CT NA79B/117 issued	- 13.10.1989 at 1	1.32 pm (Affects Fee Simple)
Land Covenant in L	ease C054438.10 - 13.10.1989 at 1.32 pm (.	Affects Fee Sim	ple)
8076528.2 Mortgag	e to ASB Bank Limited - 23.2.2009 at 11:42	2 am	

Identifier Land Registration Date Issued	District	NA79B/115 North Auckland 13 October 1989		
Prior References NA79A/579				
Estate	Fee Sim	ple - 1/7 share		
Area	2595 squ	uare metres more or less		
Legal Description	Lot 1 De	eposited Plan 133982		
Registered Owner Arleen McCracken	S			
Estate	Leaseho	ld	Instrument	L C054438.8
			Term	999 years as from and including 22nd September 1989
Legal Description		eposited Plan 134241 and Carport ited Plan 134241		
Registered Owner Arleen McCracken	S			
Interests				
Fencing Agreement	in Transf	Fer A132916 (Affects Fee Simple)		
C054438.4 Lease of	Flat 1 Co	omposite CT NA79B/111 issued -	13.10.1989 at 1.	.32 pm (Affects Fee Simple)
Land Covenant in L	ease C05	4438.4 - 13.10.1989 at 1.32 pm (A	ffects Fee Simp	le)
C054438.5 Lease of	Flat 2 Co	omposite CT NA79B/112 issued -	13.10.1989 at 1.	.32 pm (Affects Fee Simple)
Land Covenant in L	ease C05	4438.5 - 13.10.1989 at 1.32 pm (A	ffects Fee Simp	le)
C054438.6 Lease of	Flat 3 Co	omposite CT NA79B/113 issued -	13.10.1989 at 1.	.32 pm (Affects Fee Simple)
Land Covenant in L	ease C05	4438.6 - 13.10.1989 at 1.32 pm (A	ffects Fee Simp	le)
C054438.7 Lease of	Flat 4 Co	omposite CT NA79B/114 issued- 1	3.10.1989 at 1.1	32 pm (Affects Fee Simple)
Land Covenant in L	ease C05	4438.7 - 13.10.1989 at 1.32 pm (A	ffects Fee Simp	le)
Land Covenant in L	ease C05	4438.8 - 13.10.1989 at 1.32 pm (A	ffects Fee Simp	le)
		d Carport 5 DP 134241 for the spa CT NA79B/115 issued - 13.10.1989		
C054438.9 Lease of	Flat 6 Co	omposite CT NA79B/116 issued -	13.10.1989 at 1.	.32 pm (Affects Fee Simple)
Land Covenant in L	ease C05	4438.9 - 13.10.1989 at 1.32 pm (A	ffects Fee Simp	le)
C054438.10 Lease of	of Flat 7 C	Composite CT NA79B/117 issued -	13.10.1989 at	1.32 pm (Affects Fee Simple)
Land Covenant in L	ease C05	4438.10 - 13.10.1989 at 1.32 pm (A	Affects Fee Sim	ple)



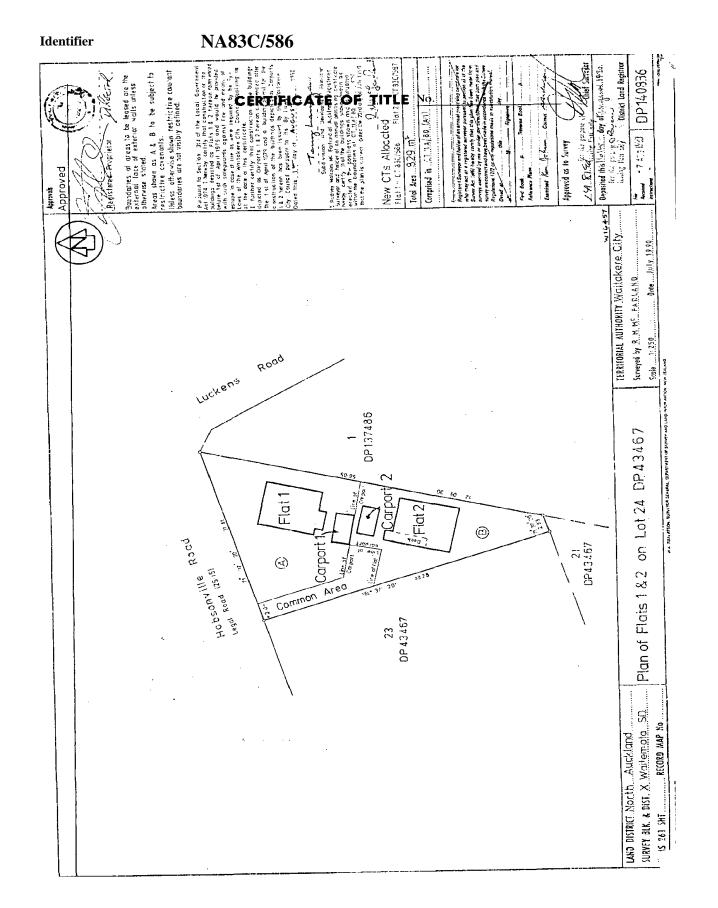
Identifier Land Registration Date Issued	District	NA79B/116 North Auckland 13 October 1989		
Prior References NA79A/579				
Estate	Fee Sim	ple - 1/7 share		
Area		are metres more or less		
Legal Description	Lot 1 De	eposited Plan 133982		
Registered Owners Chendong Wu and W		Dai		
Estate	Leaseho	ld	Instrument	L C054438.9
			Term	999 years as from and including 22nd September 1989
Legal Description		eposited Plan 134241 and Carport ited Plan 134241		
Registered Owners Chendong Wu and W		Dai		
Interests				
Fencing Agreement	in Transf	er A132916 (Affects Fee Simple)		
		omposite CT NA79B/111 issued - 1	13 10 1989 at 1	32 pm (Affects Fee Simple)
		4438.4 - 13.10.1989 at 1.32 pm (At		
		omposite CT NA79B/112 issued -	-	
		4438.5 - 13.10.1989 at 1.32 pm (A		
		omposite CT NA79B/113 issued -	-	
		4438.6 - 13.10.1989 at 1.32 pm (At		
		omposite CT NA79B/114 issued -	-	
Land Covenant in L	ease C054	4438.7 - 13.10.1989 at 1.32 pm (At	ffects Fee Simpl	le)
C054438.8 Lease of	Flat 5 Co	omposite CT NA79B/115 issued -		32 pm (Affects Fee Simple)
Land Covenant in L	ease C054	4438.8 - 13.10.1989 at 1.32 pm (At	ffects Fee Simpl	le)
Land Covenant in L	ease C054	4438.9 - 13.10.1989 at 1.32 pm (At	ffects Fee Simpl	le)
		d Carport 6 DP 134241 for the spa CT NA79B/116 issued - 13.10.1989	•	6
-	-	Composite CT NA79B/117 issued -	- ·	•
		4438.10 - 13.10.1989 at 1.32 pm (A		•
11868137.2 Mortga	ge to ASI	Bank Limited - 30.9.2020 at 12:2	1 pm	



RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 CROSS LEASE Search Copy

Land Registration Date Issued	District	North Auckland 13 October 1989		
Prior References NA79A/579				
Estate	Fee Sim	ple - 1/7 share		
Area	-	are metres more or less		
Legal Description	Lot 1 De	eposited Plan 133982		
Registered Owners		Anita Joan Gamble		
Estate	Leaseho	ld	Instrument	L C054438.10
			Term	999 years as from and including 22nd September 1989
Legal Description		eposited Plan 134241 and Carport ited Plan 134241		
Registered Owners Stuart Gregory Gam		Anita Joan Gamble		
nterests				
Fencing Agreement	in Transf	er A132916 (Affects Fee Simple)		
C054438.4 Lease of	Flat 1 Co	omposite CT NA79B/111 issued -	13.10.1989 at 1.	32 pm (Affects Fee Simple)
and Covenant in L	ease C05	4438.4 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	le)
C054438.5 Lease of	Flat 2 Co	omposite CT NA79B/112 issued -	13.10.1989 at 1.	32 pm (Affects Fee Simple)
and Covenant in L	ease C05	4438.5 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	le)
C054438.6 Lease of	Flat 3 Co	omposite CT NA79B/113 issued -	13.10.1989 at 1.	32 pm (Affects Fee Simple)
and Covenant in L	ease C05	4438.6 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	le)
C054438.7 Lease of	Flat 4 Co	omposite CT NA79B/114 issued -	13.10.1989 at 1.	32 pm (Affects Fee Simple)
and Covenant in L	ease C05	4438.7 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	le)
C054438.8 Lease of	Flat 5 Co	omposite CT NA79B/115 issued -	13.10.1989 at 1.	32 pm (Affects Fee Simple)
and Covenant in L	ease C05	4438.8 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	le)
C054438.9 Lease of	Flat 6 Co	omposite CT NA79B/116 issued -	13.10.1989 at 1.	32 pm (Affects Fee Simple)
and Covenant in L	ease C054	4438.9 - 13.10.1989 at 1.32 pm (A	ffects Fee Simpl	le)
and Covenant in L	ease C05	4438.10 - 13.10.1989 at 1.32 pm (A	Affects Fee Sim	ple)
		nd Carport 7 DP 134241 for the sp CT NA79B/117 issued - 13.10.1989		
003603.2 Mortgag	e to ASB	Bank Limited - 26.11.2008 at 1:41	l pm	
2222734.1 Variatio	on of Mor	tgage 8003603.2 - 19.8.2021 at 10):15 am	

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 CROSS LEASE Search Copy



Land Registration Date Issued	District North Auckland 21 September 1990		
Prior References NA11A/80			
Estate	Fee Simple - 1/2 share		
Area	829 square metres more or less		
Legal Description	Lot 24 Deposited Plan 43467		
Registered Owner Mark Darron Walle	rs er, Ruth Vivienne Waller and DHT (2020) 4	Limited	
Estate	Leasehold	Instrument	L C191809.2
		Term	999 years commencing on the 24th August 1990
Legal Description	Flat 1 Deposited Plan 140836 and Carport 1 Deposited Plan 140836		
Registered Owner Mark Darron Walle	rs er, Ruth Vivienne Waller and DHT (2020) 4	Limited	
Interests			
	f Flat 1 and Carport 1 DP 140836 Term 999 83C/586 issued - 21.9.1990 (Affects Fee Sim	•	ing on the 24th August 1990
Land Covenant in I	Lease C191809.2 - 21.9.1990 (Affects Fee Si	mple)	
C191809.3 Lease o	f Flat 2 Composite CT NA83C/587 issued -	21.9.1990 (Affe	cts Fee Simple)

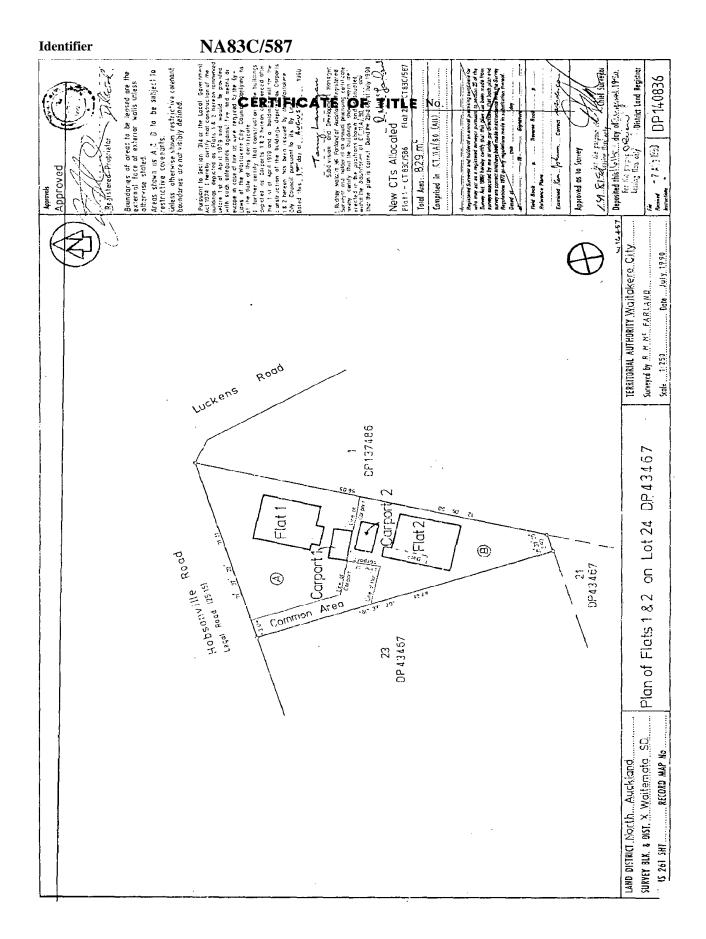
Land Covenant in Lease C191809.3 - 21.9.1990 (Affects Fee Simple)

NA83C/586

11822727.5 Mortgage to ASB Bank Limited - 5.11.2021 at 5:19 pm

Identifier

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 CROSS LEASE Search Copy



Prior References			
NA11A/80			
Estate	Fee Simple - 1/2 share		
Area	829 square metres more or less		
Legal Description	Lot 24 Deposited Plan 43467		
Registered Owner	'S		
Mark Darron Walle	er, Ruth Vivienne Waller and DHT (2020) 4	Limited	
Estate	Leasehold	Instrument	L C191809.3
		Term	999 years commencing on the 24th Augus 1990
Legal Description	Flat 2 Deposited Plan 140836 and Carport 2 Deposited Plan 140836		
	2 Deposited Plan 140836		
Registered Owner	2 Deposited Plan 140836		
Registered Owner Mark Darron Walle	2 Deposited Plan 140836 s		
Registered Owner Mark Darron Walle	2 Deposited Plan 140836 s	Limited	5 am (Affects Fee Simple)
Registered Owner Mark Darron Walle Interests C191809.2 Lease o	2 Deposited Plan 140836 s er, Ruth Vivienne Waller and DHT (2020) 4	Limited 21.9.1990 at 9.1	

C191809.3 Lease of Flat 2 and Carport 2 DP 140836 Term 999 years commencing on the 24th August 1990 Composite CT NA83C/587 issued - 21.9.1990 at 9.15 am (Affects Fee Simple)

NA83C/587

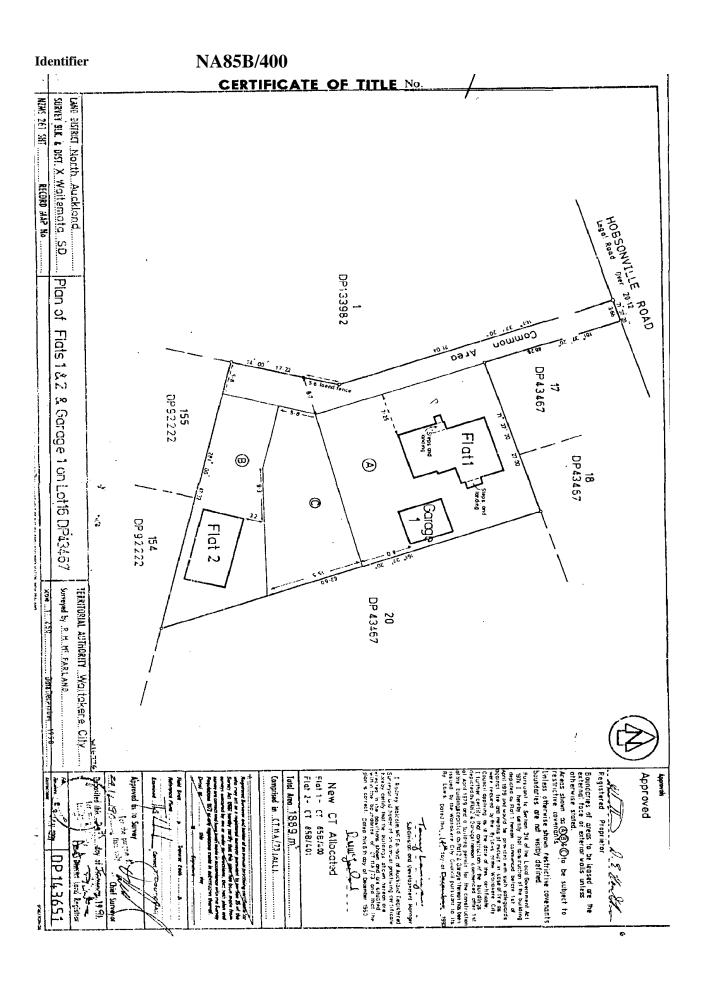
11822727.6 Mortgage to ASB Bank Limited - 5.11.2021 at 5:19 pm

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 CROSS LEASE Search Copy

Identifier	NA85B/400
Land Registration District	North Auckland
Date Issued	25 February 1991

Estate	Fee Simple - 1/3 share		
Area	1889 square metres more or less		
Legal Description	Lot 16 Deposited Plan 43467		
Registered Owner Douglas Robert Ma	s cKay and John Donald MacKay		
Estate	Leasehold	Instrument	L C240972.1
		Term	999 years commencing on the 8th Februar 1991
Legal Description	Flat 1 Deposited Plan 143651 and Garage 1 Deposited Plan 143651		
Registered Owner Douglas Robert Ma	s cKay and John Donald MacKay		

Composite CT NA85B/400 issued - 25.2.1991 (Affects Fee Simple)


Land Covenant in Lease C240972.1 - 25.2.1991 (Affects Fee Simple)

C240972.2 Lease of Flat 2 Composite CT NA85B/401 issued - 25.2.1991 (Affects Fee Simple)

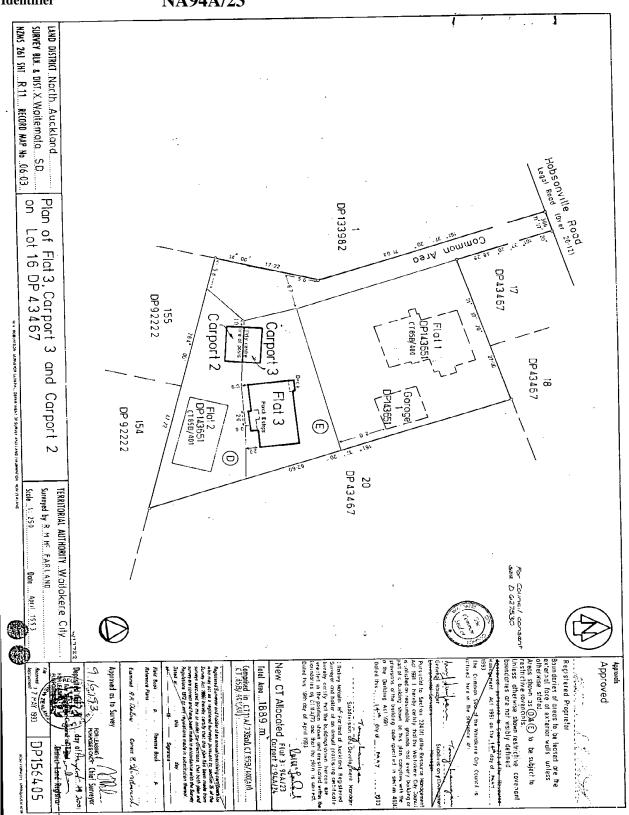
Land Covenant in Lease C240972.2 - 25.2.1991 (Affects Fee Simple)

D622583.3 Lease of Carport 2 DP 156405 Term 989 years 3 months commencing on 8 November 2000 Composite CT NA94A/24 issued - produced 17.7.2001 at 11.46 am and entered 2.8.2001 at 11.27 am

D622583.4 Lease of Flat 3 and Carport 3 DP 156405 Term 989 years 3 months commencing on 8 November 2000 Composite CT NA94A/23 issued - produced 17.7.2001 at 11.46 am and entered 2.8.2001 at 11.27 am

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 CROSS LEASE Search Copy

Identifier	NA94A/23
Land Registration District Date Issued	
Date Issued	02 August 2001


85B/400-401	NA11A/73		
Estate F			
Estate	Fee Simple - 1/3 share		
Area 1	889 square metres more or less		
Legal Description L	Lot 16 Deposited Plan 43467		
Registered Owners Brapol Limited			
Estate L	Leasehold	Instrument	L D622583.4
		Term	989 years 3 months commencing on 8 November 2000
.	Flat 3 Deposited Plan 156405 and Carport 8 Deposited Plan 156405		
Registered Owners Brapol Limited			
Interests			

C240972.2 Lease of Flat 2 DP 143651 CT NA94A/24 issued (Affects Fee Simple)

D622583.3 Lease of Carport 2 DP 156405 CT NA94A/24 issued - 2.8.2001 (Affects Fee Simple)

D622583.4 Lease of Flat 3 and Carport 3 DP 156405 Term 989 years 3 months commencing on 8 November 2000 Composite CT NA94A/23 issued - 2.8.2001 (Affects Fee Simple)

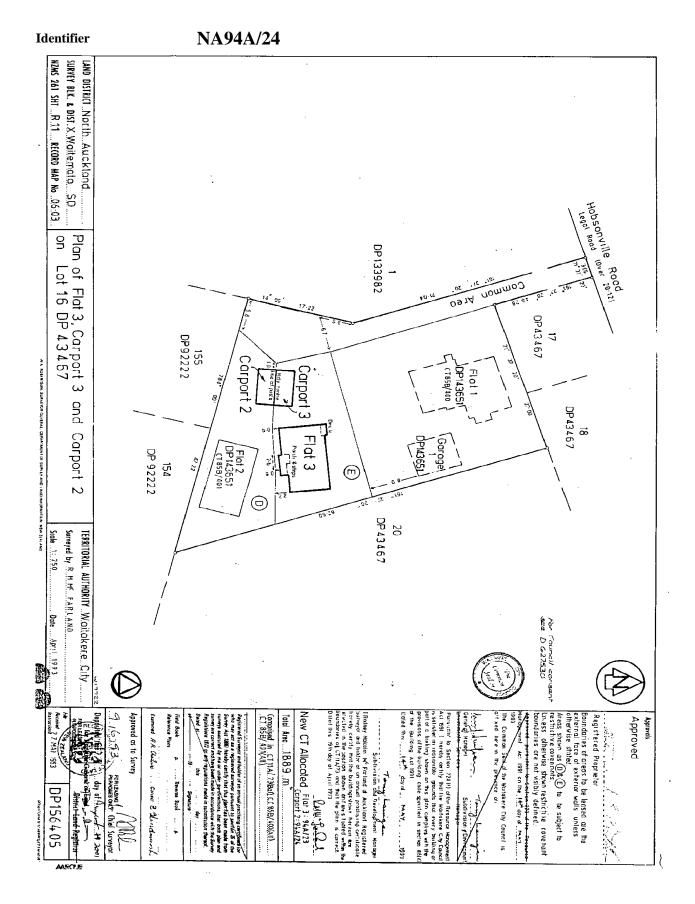
8694148.3 Mortgage to ANZ National Bank Limited - 15.2.2011 at 3:16 pm

NA94A/23

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 CROSS LEASE Search Copy

Identifier Land Registration Date Issued	District	NA94A/24 North Auckland 02 August 2001		
Prior References 85B/400-401	NA	.11A/73		
Estate Area Legal Description	1889 squ	ple - 1/3 share uare metres more or less Deposited Plan 43467		
Registered Owner Ameer Rajwani and		ajwani		
Estate	Leaseho		Instrument Term	L C240972.2 999 years commencing on 8 February 1991
Legal Description Registered Owner Ameer Rajwani and	S	eposited Plan 143651 ajwani		
Estate	Leaseho	ld	Instrument Term	L D622583.3 989 years 3 months commencing on 8 November 2000
Legal Description Registered Owner Ameer Rajwani and	s	2 Deposited Plan 156405 ajwani		

Interests


C240972.1 Lease of Flat 1 & Garage 1 DP 143651 CT NA85B/400 issued (Affects Fee Simple)

C240972.2 Lease of Flat 2 DP 143651 Term 999 years commencing on 8 February 1991 Composite CT NA94A/24 issued (Affects Fee Simple)

D622583.3 Lease of Carport 2 DP 156405 Term 989 years 3 months commencing on 8 November 2000 Composite CT NA94A/24 issued - 2.8.2001 (Affects Fee Simple)

D622583.4 Lease of Flat 3 & Carport 3 DP 156405 CT NA94A/23 issued - 2.8.2001 (Affects Fee Simple)

11489111.3 Mortgage to Bank of New Zealand - 11.7.2019 at 2:48 pm

IdentifierNA106C/431Land Registration DistrictNorth AucklandDate Issued08 November 1996

Prior References NA57C/486

EstateFee SimpleArea1270 square metres more or lessLegal DescriptionLot 1 Deposited Plan 173673

Registered Owners

Barfoot & Thompson Property Limited

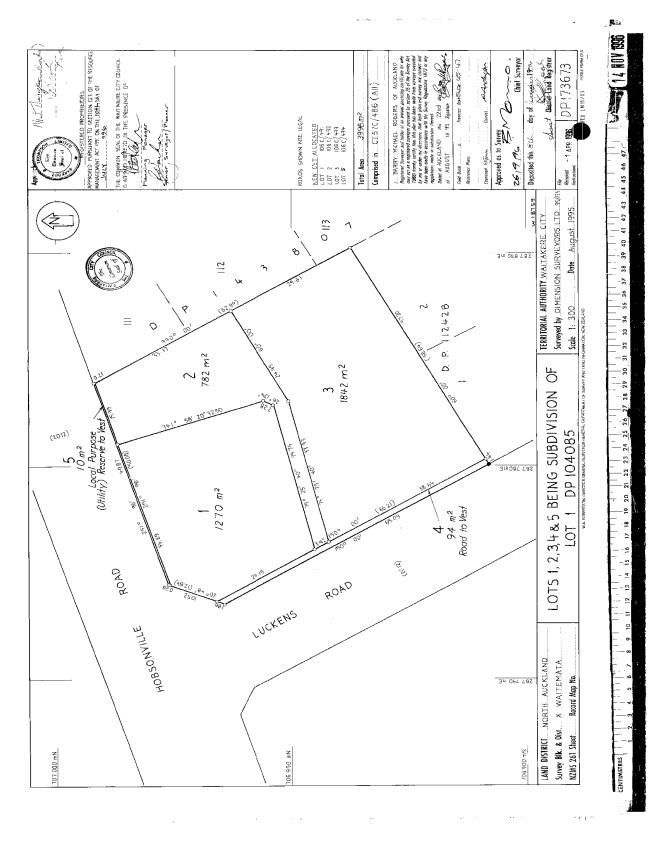
Interests

C861583.2 Encumbrance to Caltex Oil (N.Z.) Limited - 5.7.1995 at 11.06 am

NA106C/431

Identifier Land Registration District North Auckland Date Issued

NA106C/434 08 November 1996


Prior References 570/100

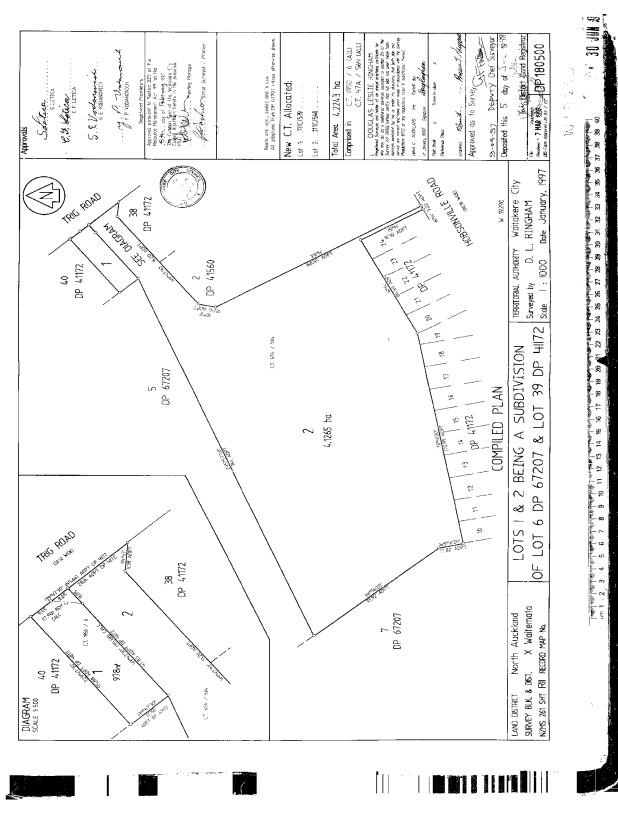
NA57C/486	
Estate	Fee Simple
Area	10 square metres more or less
Legal Description	Lot 5 Deposited Plan 173673
Purpose	local purpose (utility) reserve
Registered Owner Auckland Council	s

Interests

SUBJECT TO THE RESERVES ACT 1977

NA106C/434

Identifier	NA111C/539
Land Registration District Date Issued	North Auckland 05 June 1998

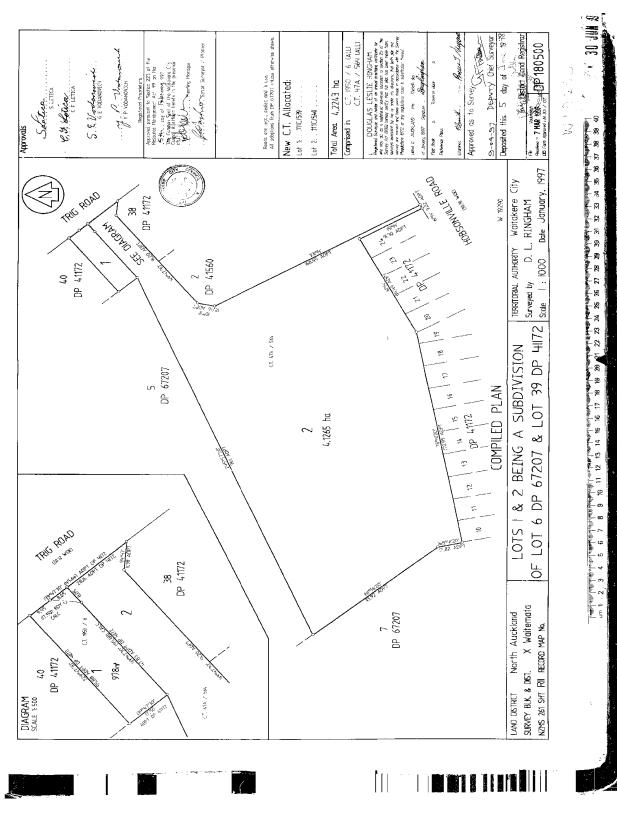

Prior References NA1950/6	NA47A/564
Estate	Fee Simple
Area	978 square metres more or less
Legal Description	Lot 1 Deposited Plan 180500
Registered Owner Gayo Edward Voda	s movich and Yvonne Pauline Vodanovich

Interests

D404001.4 Mortgage to The National Bank of New Zealand Limited - 29.6.1999 at 9.00 am

NA111C/539

Identifier	NA111C/540
Land Registration District Date Issued	North Auckland 05 June 1998


Prior References NA47A/564	
Estate	Fee Simple
Area	4.1265 hectares more or less
Legal Description	Lot 2 Deposited Plan 180500
Registered Owne	rs
CDL Land New Zealand Limited	

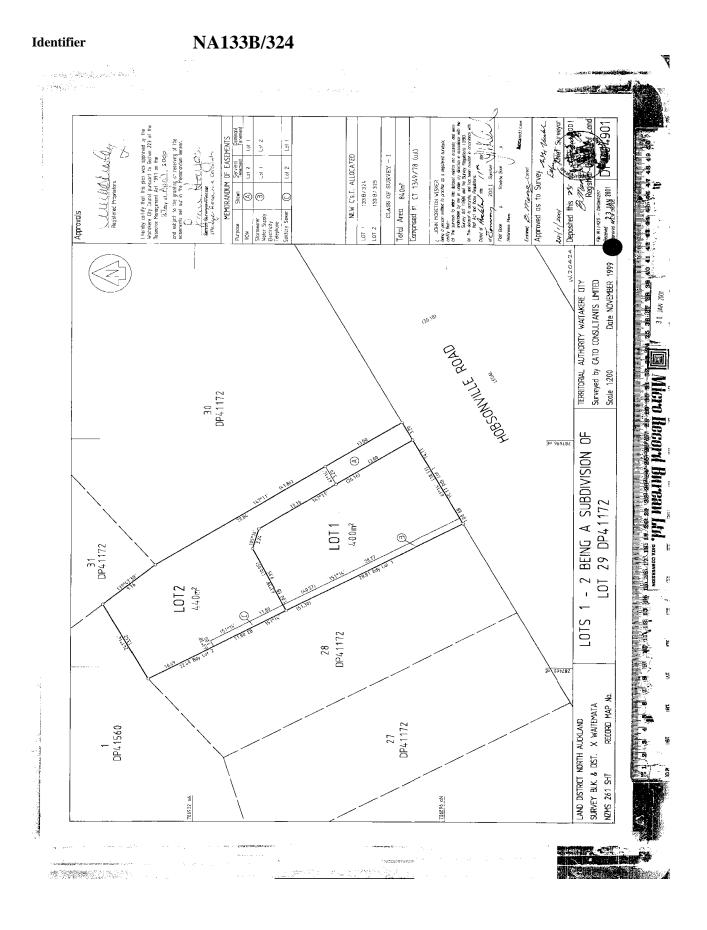
Interests

C428346.1 Certificate pursuant to Section 94C Transit New Zealand Act 1989 declaring the adjoining State Highway No. 18 known as Hobsonville Road to be a limited access road - 5.11.1992 at 2.10 pm

NA111C/540

Identifier	NA133B/324
Land Registration District Date Issued	North Auckland 25 January 2001

Prior References NA1349/78	
Estate	Fee Simple
Area	400 square metres more or less
Legal Description	Lot 1 Deposited Plan 204901
Registered Owner Jiayun Wang	rs


Interests

Appurtenant hereto is a right of way and a sewerage right specified in Easement Certificate D573807.3 - produced 23.1.2001 at 2.12 pm and entered 25.1.2001 at 9.00 am

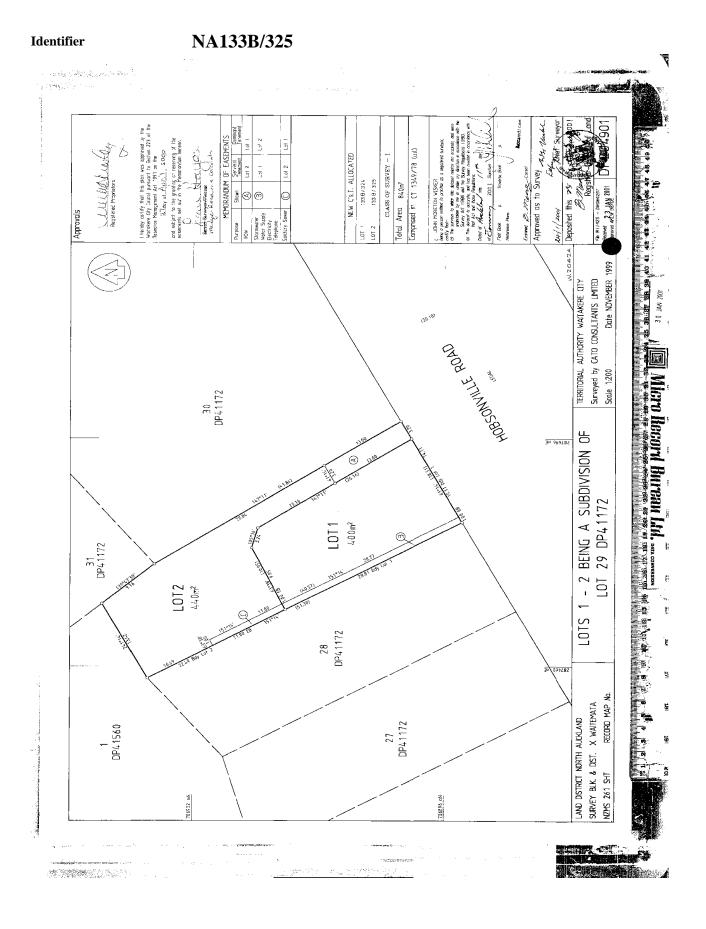
Subject to stormwater, water supply, electricity and telephone rights over part marked B on DP 204901 specified in Easement Certificate D573807.3 - produced 23.1.2001 at 2.12 pm and entered 25.1.2001 at 9.00 am

The easements specified in Easement Certificate D573807.3 are subject to Section 243 (a) Resource Management Act 1991

11525999.2 Mortgage to ANZ Bank New Zealand Limited - 2.9.2019 at 1:28 pm

Identifier	NA133B/325
Land Registration District Date Issued	North Auckland 25 January 2001

Prior References NA1349/78	
Estate	Fee Simple
Area	440 square metres more or less
Legal Description	Lot 2 Deposited Plan 204901
Registered Owners	
Manubhai Rambhai Patel and Jyotsnaben Manubhai Patel	


Interests

Appurtenant hereto are stormwater, water supply, electricity & telephone rights specified in Easement Certificate D573807.3 - produced 23.1.2001 at 2.12 pm and entered 25.1.2001 at 9.00 am

Subject to a right of way over part marked A and a sewerage right over part marked C on DP 204901specified in Easement Certificate D573807.3 - produced 23.1.2001 at 2.12 pm and entered 25.1.2001 at 9.00 am

The easements specified in Easement Certificate D573807.3 are subject to Section 243 (a) Resource Management Act 1991

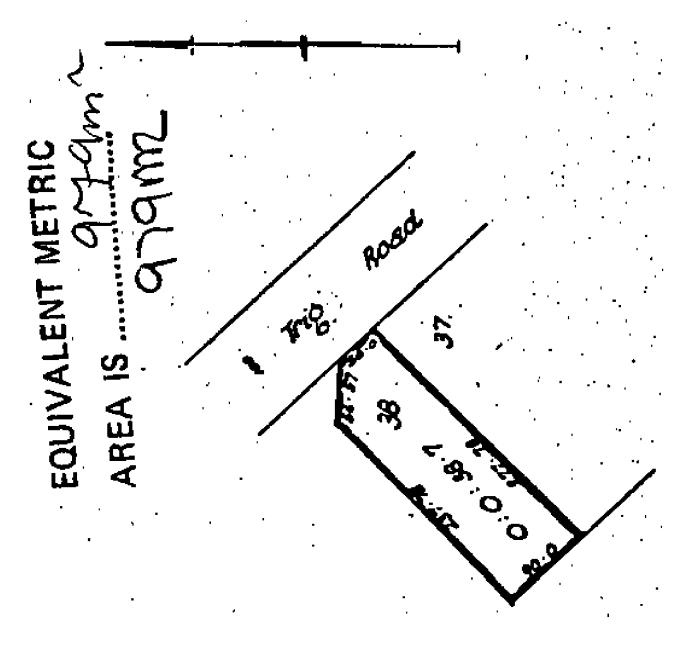
12445770.3 Mortgage to ASB Bank Limited - 20.5.2022 at 1:04 pm

IdentifierNA1136/106Land Registration DistrictNorth AucklandDate Issued30 March 1955

Prior References NA1025/254

Estate	Fee Simple
Area	979 square metres more or less
Legal Description	Lot 38 Deposited Plan 41172

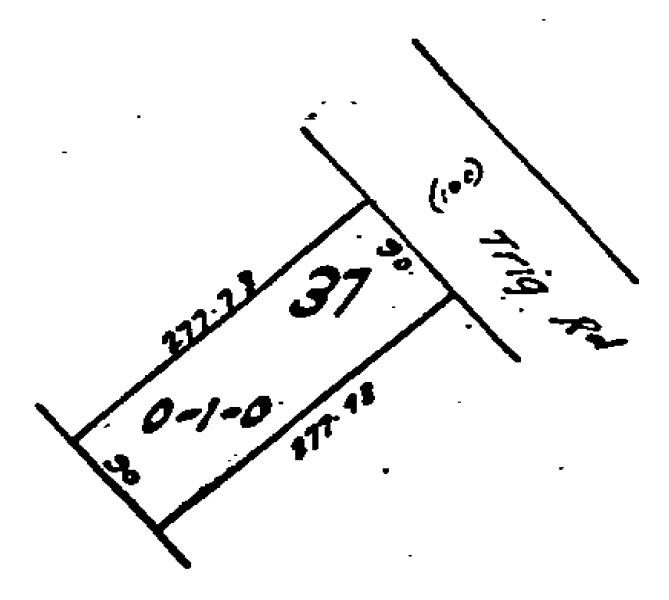
Registered Owners


Jia Ma and Leslie Hills Trustees Limited

Interests

12059430.3 Mortgage to CFML Lending Limited - 31.3.2021 at 4:06 pm

Identifier

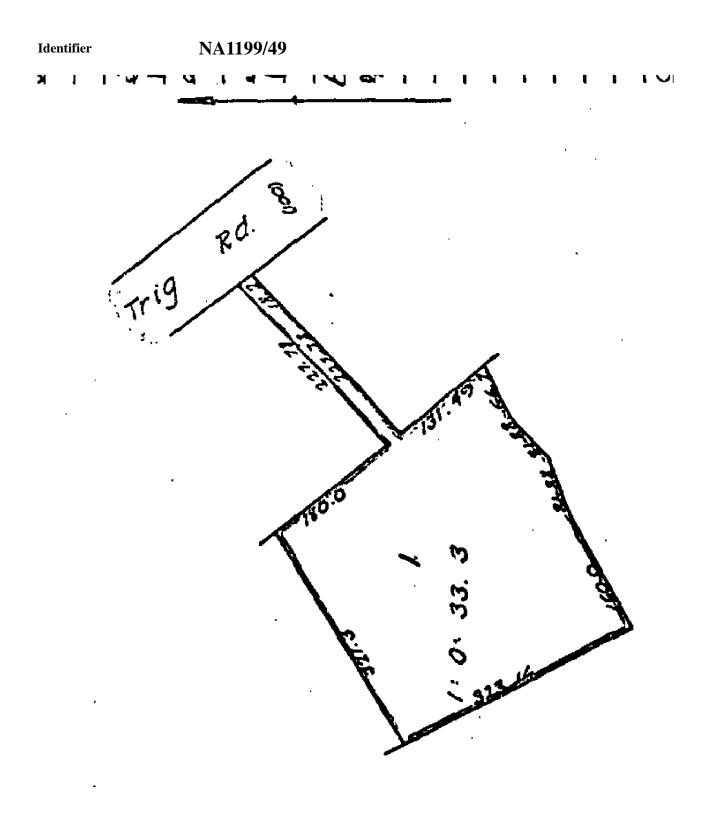


Identifier	NA1155/1
Land Registration District	North Auckland
Date Issued	23 August 1955

Prior References NA1025/254	
Estate	Fee Simple
Area	1012 square metres more or less
Legal Description	Lot 37 Deposited Plan 41172
Registered Owners Hak Hung Wong, Kexin Ma and Brav Trustees No 2 Limited	

Interests

12067205.2 Mortgage to ASB Bank Limited - 1.4.2021 at 4:00 pm

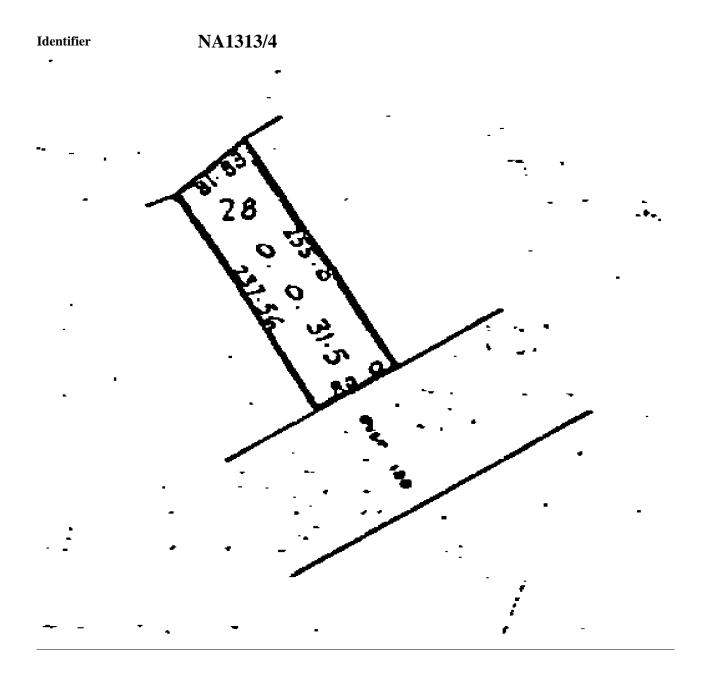


Identifier	NA1199/49
Land Registration District	North Auckland
Date Issued	23 April 1956

Prior References NA1107/266		
Estate	Fee Simple	
Area	4889 square metres more or less	
Legal Description Lot 1 Deposited Plan 41560		
Registered Owners Amy Melinda Anderson, Stephen Mark Anderson and Smith & Partners Trustee Co. Limited		

Interests

11665906.9 Mortgage to Westpac New Zealand Limited - 3.4.2020 at 3:31 pm



Identifier	NA1313/4
Land Registration District Date Issued	North Auckland 15 June 1956

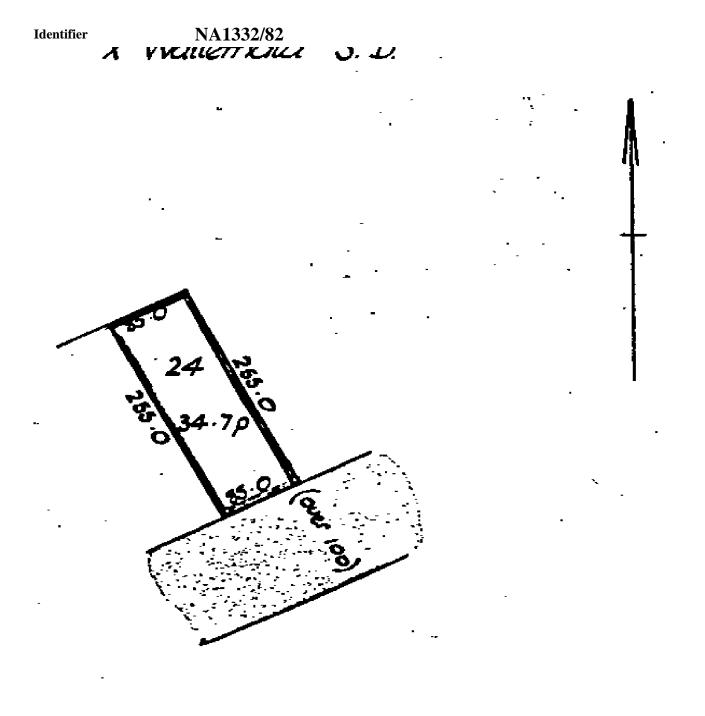
Prior References NA1166/6	
Estate	Fee Simple
Area	797 square metres more or less
Legal Description	Lot 28 Deposited Plan 41172
Registered Owner Evan Paul Moon	'S

Interests

7374544.2 Mortgage to ASB Bank Limited - 17.5.2007 at 9:00 am

Identifier	NA1332/82
Land Registration District Date Issued	North Auckland 25 September 1956

Prior References NA1150/10

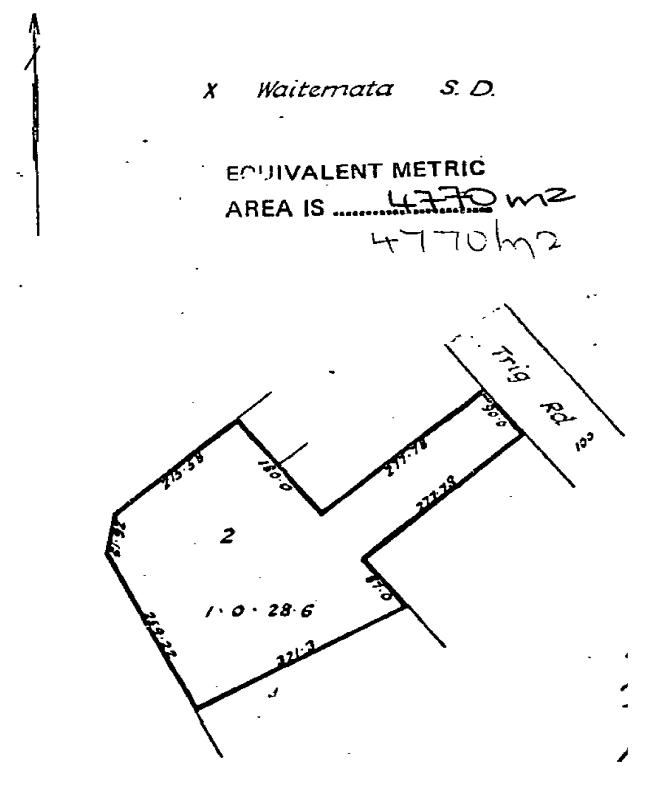

EstateFee SimpleArea878 square metres more or lessLegal DescriptionLot 24 Deposited Plan 41172

Registered Owners

Fantastic Trustee Limited

Interests

K47130 Building Line Restriction 7549566.2 Mortgage to ANZ National Bank Limited - 1.10.2007 at 1:19 pm



Identifier	NA1353/93
Land Registration District	North Auckland
Date Issued	17 December 1956

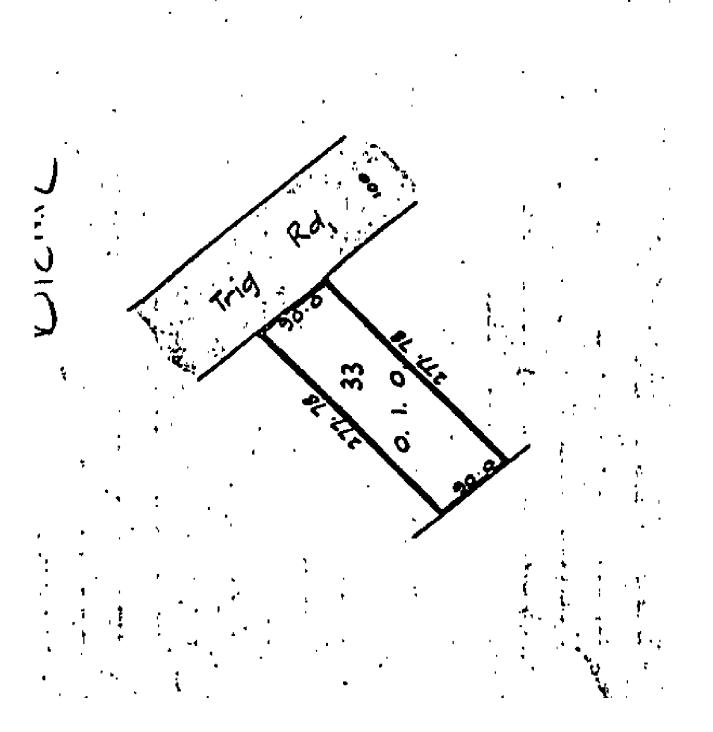
Prior References NA1150/9	
Estate	Fee Simple
Area	4770 square metres more or less
Legal Description	Lot 2 Deposited Plan 41560
Registered Owner Do-Hyun Kim and J	

Interests

9983624.2 Mortgage to ANZ Bank New Zealand Limited - 27.2.2015 at 12:36 pm

Identifier	NA1387/91
Land Registration District Date Issued	North Auckland 27 June 1957

Prior References NA1150/9

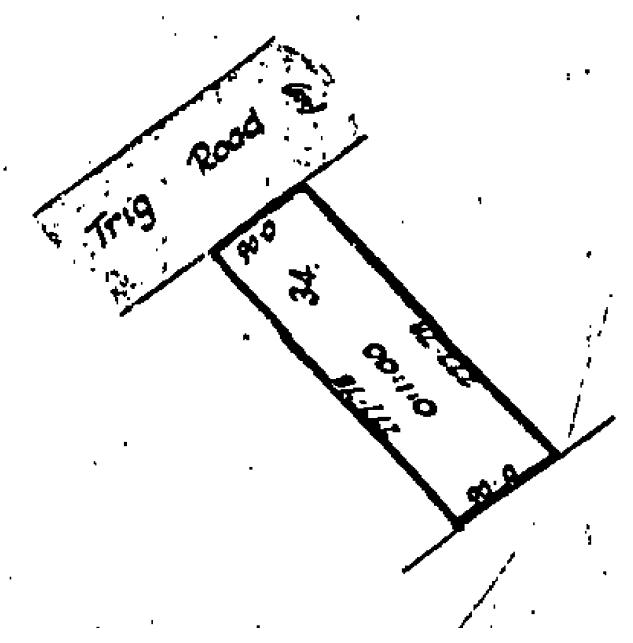

EstateFee SimpleArea1012 square metres more or lessLegal DescriptionLot 33 Deposited Plan 41172

Registered Owners

Martha Patricia Hartwell

Interests

Fencing Agreement in Transfer 589952 - 27.6.1957

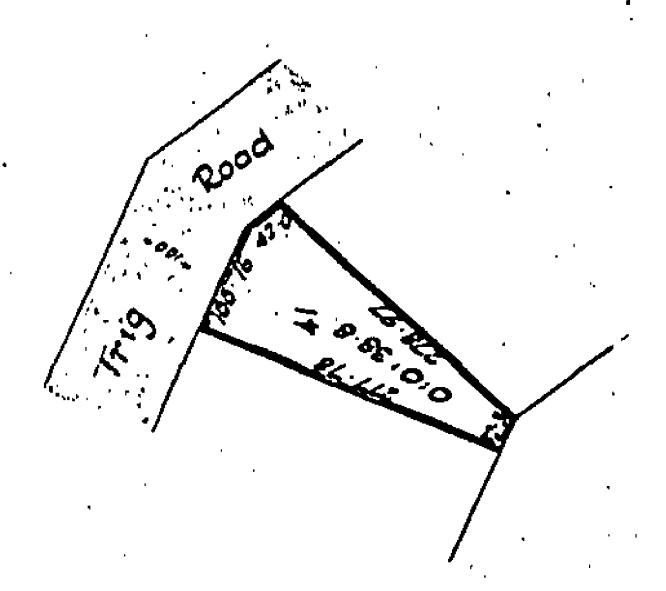

Identifier	NA1529/13
Land Registration District	North Auckland
Date Issued	23 December 1957

Prior References NA1166/6		
Estate	Fee Simple	
Area	1012 square metres more or less	
Legal Description	Lot 34 Deposited Plan 41172	

Registered Owners Bharat Unka and Kalavati Unka

Interests

C043966.3 Mortgage to ASB Bank Limited - 21.9.1989 at 11.08 am 8885086.1 Variation of Mortgage C043966.3 - 21.10.2011 at 10:13 am 11404617.1 Variation of Mortgage C043966.3 - 5.4.2019 at 10:14 am Identifier



Identifier	NA1539/84
Land Registration District Date Issued	North Auckland 12 March 1958

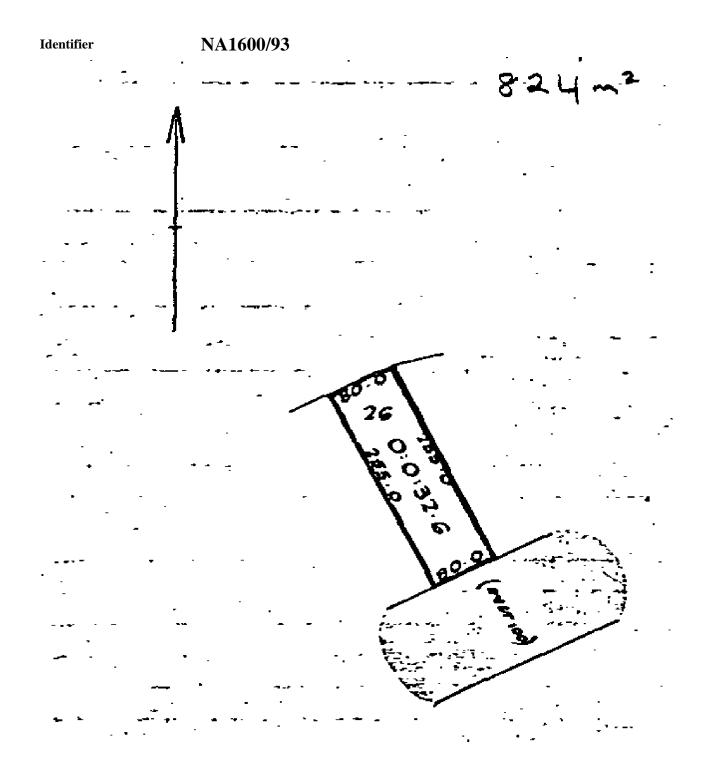
Prior References NA1150/9	
Estate	Fee Simple
Area	981 square metres more or less
Legal Description	Lot 41 Deposited Plan 41172
Registered Owners Blair Leighton Christiansen and Tracey Louise Christiansen	

Interests

Subject to a drainage right (in gross) in favour of The Waitemata County Council created by Transfer 534328 8258349.4 Mortgage to ANZ National Bank Limited - 4.9.2009 at 3:47 pm

NA1600/93 Identifier Land Registration District North Auckland Date Issued 05 November 1958

Prior References NA1150/10


Estate	Fee Simple
Area	825 square metres more or less
Legal Description	Lot 26 Deposited Plan 41172

Registered Owners

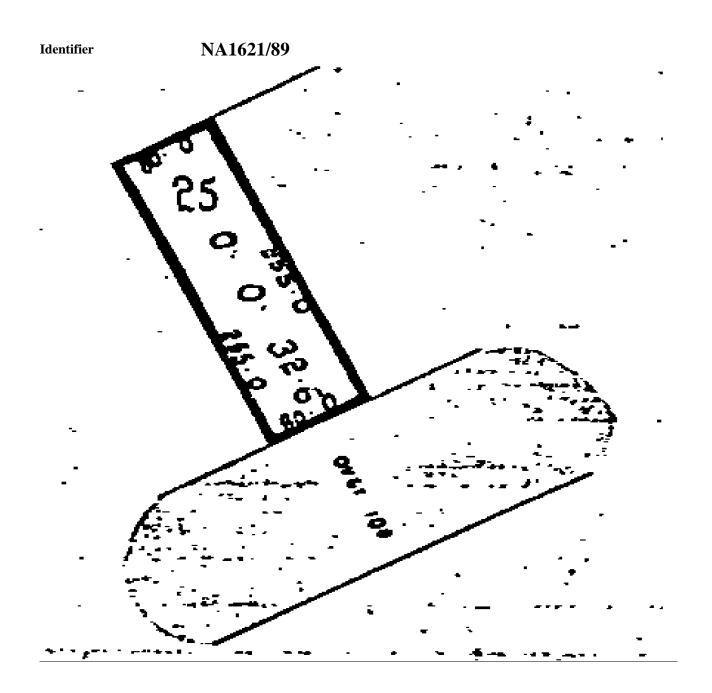
Owen Henry Freeman as to a 1/2 share Joan Miriam Freeman as to a 1/2 share

Interests

Identifier	NA1621/89
Land Registration District	North Auckland
Date Issued	17 February 1959

Prior References

NA1150/9

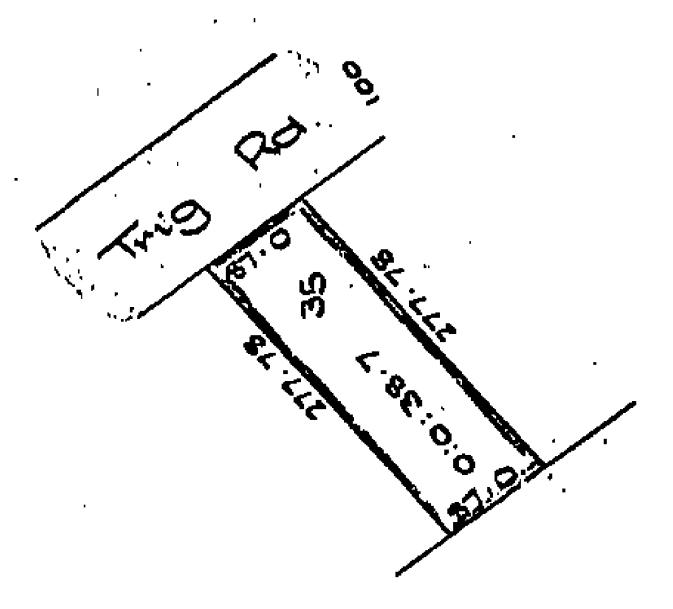

Estate	Fee Simple
Area	825 square metres more or less
Legal Description	Lot 25 Deposited Plan 41172

Registered Owners

Fu Yun Lau, Siu Fong Sheran Lau and Kenneth Ah Kan Koo

Interests

K47130 Building Line Restriction 11799770.2 Mortgage to ANZ Bank New Zealand Limited - 24.7.2020 at 2:18 pm



Identifier	NA1894/66
Land Registration District	North Auckland
Date Issued	15 December 1960

Prior References NA1150/10	
Estate	Fee Simple
Area	979 square metres more or less
Legal Description	Lot 35 Deposited Plan 41172
Registered Owner Grant Ronald Fould	

Interests

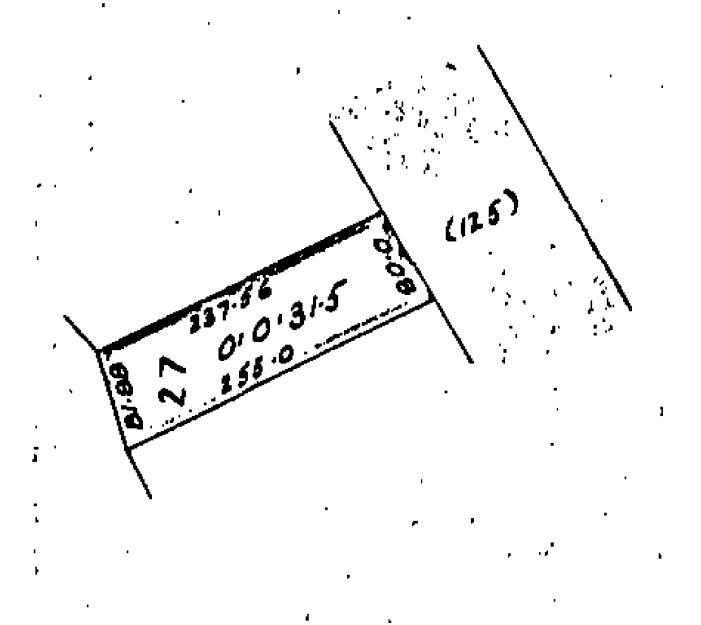
B950894.4 Mortgage to (now) Westpac New Zealand Limited - 10.2.1989 at 9.02 am D470255.1 Variation of Mortgage B950894.4 - 18.1.2000 at 2.16 pm

h

Identifier	NA1950/7
Land Registration District Date Issued	North Auckland 11 July 1961

Prior References NA1611/79

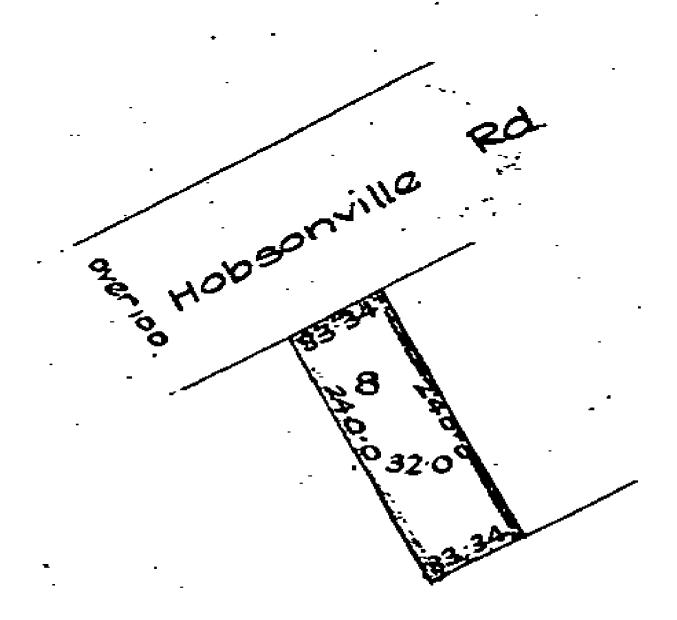
Estate	Fee Simple
Area	797 square metres more or less
Legal Description	Lot 27 Deposited Plan 41172


Registered Owners

Evan Paul Moon and Milica Zjajic-Moon

Interests

5803205.3 Mortgage to ASB Bank Limited - 18.11.2003 at 9:00 am



Identifier	NA1968/84
Land Registration District Date Issued	North Auckland 06 September 1961

Prior References NA840/245	
Estate	Fee Simple
Area	809 square metres more or less
Legal Description	Lot 8 Deposited Plan 43467
Registered Owners Asiri Holdings Limited	

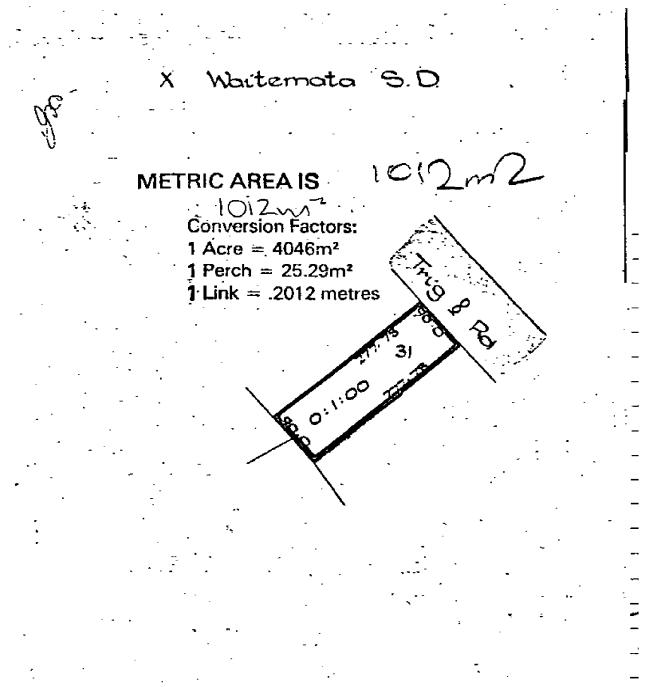
Interests

10567548.3 Mortgage to ANZ Bank New Zealand Limited - 22.9.2016 at 4:53 pm

Identifier	NA1999/58
Land Registration District	North Auckland
Date Issued	24 January 1962

Prior References NA1554/76

Estate	Fee Simple
Area	1012 square metres more or less
Legal Description	Lot 31 Deposited Plan 41172


Registered Owners

Vijaya Bhaskar Kosna and Sunitha Kosna

Interests

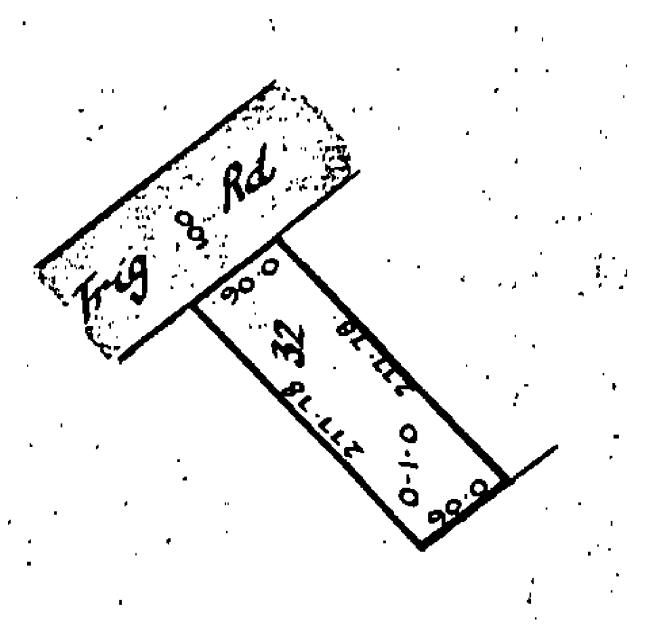
10333536.3 Mortgage to ANZ Bank New Zealand Limited - 19.2.2016 at 4:36 pm

Identifier

Identifier	NA2053/54
Land Registration District Date Issued	North Auckland 24 May 1962

Prior References NA1554/76

EstateFee SimpleArea1012 square metres more or lessLegal DescriptionLot 32 Deposited Plan 41172


Registered Owners Francis John Mullan

Interests

Fencing Agreement in Transfer 680190 - 24.5.1962 9967574.3 Mortgage to ASB Bank Limited - 12.2.2015 at 5:10 pm

Identifier

Identifier	110146
Land Registration District	North Auckland
Date Issued	18 December 2003

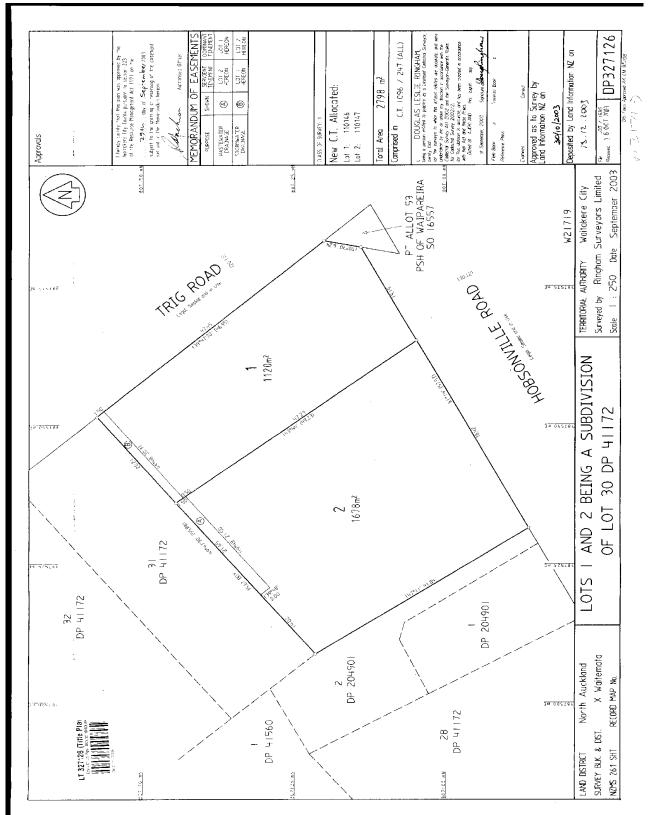
Prior References

NA1096/247

NA1090/247	
Estate	Fee Simple
Area	1120 square metres more or less
Legal Description	Lot 1 Deposited Plan 327126

Registered Owners

Bruce Stanley Coutts, Andrea Joy Covich Coutts and Bernard George Allen as to a 1/2 share
Bruce Stanley Coutts, Andrea Joy Covich Coutts and Bernard George Allen as to a 1/2 share


Interests

C428346.1 Certificate pursuant to Section 94C Transit New Zealand Act 1989 declaring that part of State Highway 18 known as Hobsonville Road, commencing at its junction with State Highway 16 and proceeding in an eastern direction to Upper Harbour Drive to be a limited access road - 5.11.1992 at 2.01 pm

Subject to a stormwater drainage right over part marked B on DP 327126 created by Easement Instrument 5845394.3 - 18.12.2003 at 9:34 am

The easements created by Easement Instrument 5845394.3 are subject to Section 243 (a) Resource Management Act 1991

9293393.2 Mortgage to Westpac New Zealand Limited - 31.1.2013 at 2:09 pm

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 GAZETTE NOTICE Search Copy

Identifier	192542
Land Registration District	North Auckland
Date Registered	09 March 2005 09:00 am

Prior References NA21C/1295			
Туре	Fee Simple	Instrument	GN 6339011.4
Area	4.0469 hectares more or less		
Legal Description	Lot 5 Deposited Plan 66045		
Purpose	State School		
Registered Owner Her Majesty the Qu			

Interests

Extract from New Zealand Gazette, 24/2/2005, No. 41, p. 1064

Land Acquired for State School-Trig Road, Hobsonville

Pursuant to section 20 of the Public Works Act 1981, and to a delegation from the Minister for Land Information, Stephen Robert Gilbert, Land Information New Zealand, declares that, agreements to that effect having been entered into, the land described in the Schedule to this notice is hereby acquired for a state school and vests in the Crown on the date of publication of this notice in the New Zealand Gazette.

North Auckland Land Registry—Waitakere City Schedule

Area ha

Description

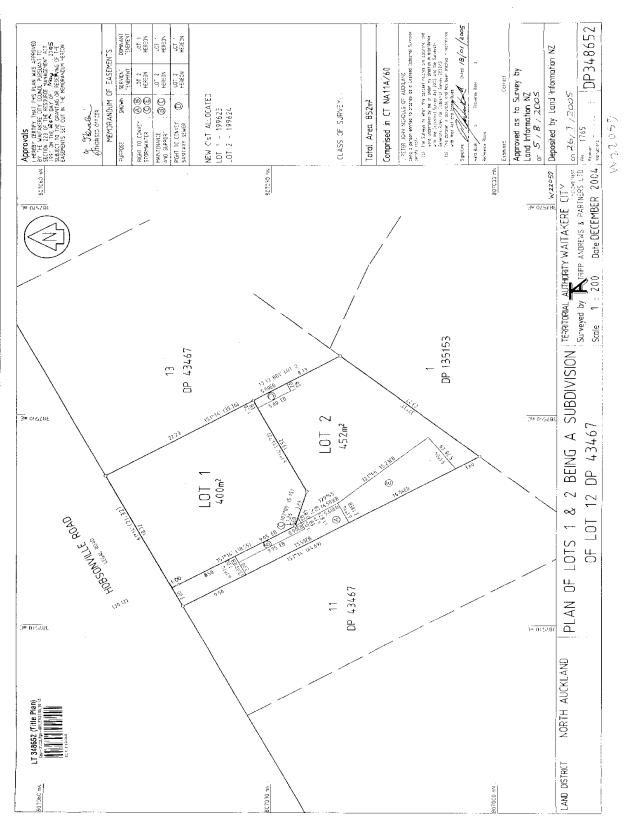
4.0469 Lot 5, DP 66045, all Computer Freehold Register NA21C/1295.

Dated at Christchurch this 22nd day of November 2004. S. R. GILBERT, for the Minister for Land Information. (LINZ CPC/1999/3753)

- -

NOTICE NO: 1034

Identifier	199623
Land Registration District Date Issued	North Auckland 26 July 2005


Prior References NA11A/60	
Estate	Fee Simple
Area	400 square metres more or less
Legal Description	Lot 1 Deposited Plan 348652
Registered Owner Xixiu Ma	'S

Interests

Appurtenant hereto is a right to convey stormwater & sanitary sewer and a maintenance and support easement created by Easement Instrument 6509588.4 - 26.7.2005 at 9:00 am

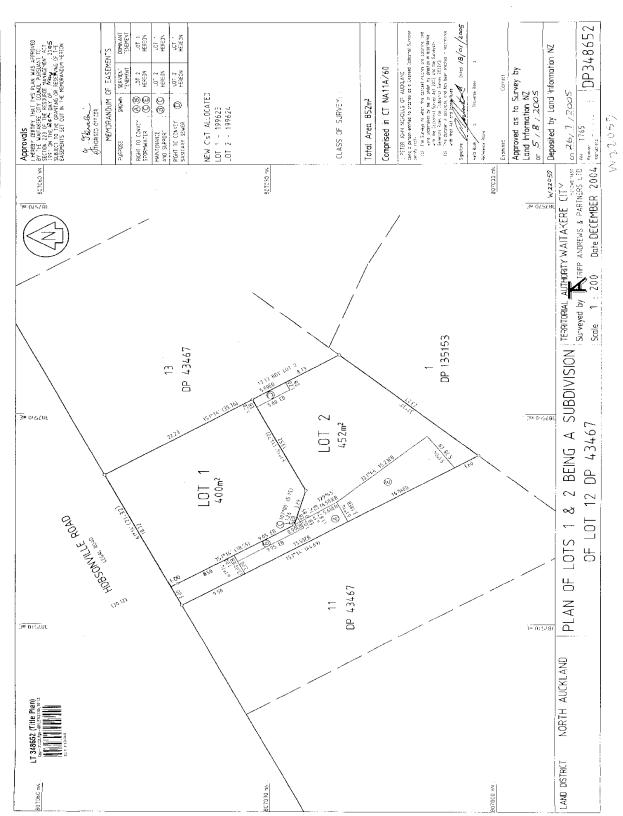
The easements created by Easement Instrument 6509588.4 are subject to Section 243 (a) Resource Management Act 1991

12029053.3 Mortgage to Bank of China (New Zealand) Limited - 26.2.2021 at 3:11 pm

Search Copy Dated 14/12/22 2:42 pm, Page 2 of 2 Register Only

Identifier	199624
Land Registration District Date Issued	North Auckland 26 July 2005

Prior References NA11A/60	
Estate	Fee Simple
Area	452 square metres more or less
Legal Description	Lot 2 Deposited Plan 348652
Registered Owner	


Rav Singh Property Limited

Interests

Subject to a right to convey stormwater over part marked A, B, C and E, maintenance and support easement over part marked B & C and a right to convey sanitary sewer over part marked D on DP 348652 created by Easement Instrument 6509588.4 - 26.7.2005 at 9:00 am

The easements created by Easement Instrument 6509588.4 are subject to Section 243 (a) Resource Management Act 1991

12491933.3 Mortgage to Bank of New Zealand - 1.7.2022 at 3:45 pm

Identifier

Identifier	287255
Land Registration District Date Issued	North Auckland 01 May 2006

Prior References GN 6844619.1	
Estate	Fee Simple
Area	2358 square metres more or less
Legal Description	Section 1 Survey Office Plan 364200
Registered Owner	S

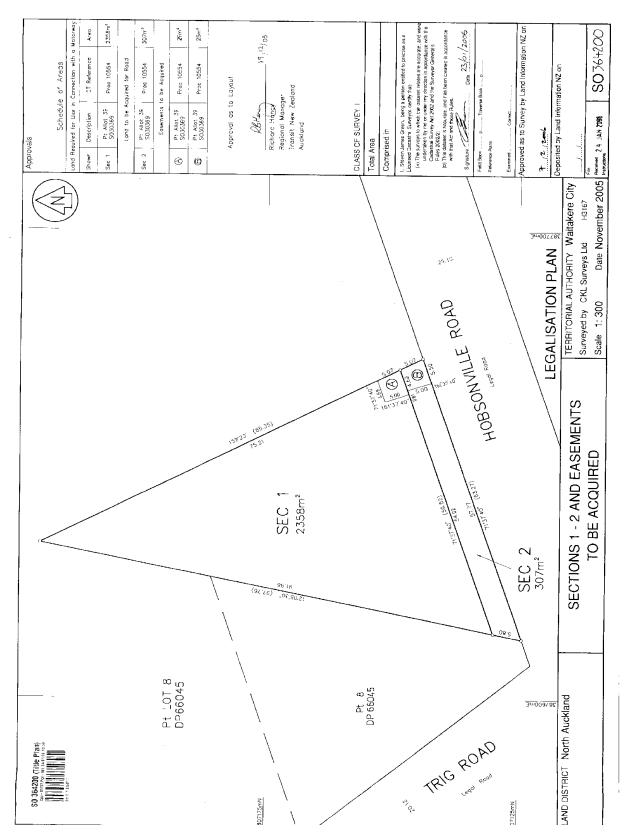
Watercare Services Limited

Interests

Subject to Part IVA Conservation Act 1987

Subject to Section 11 Crown Minerals Act 1991

8447500.1 Compensation Certificate pursuant to Section 19 Public Works Act 1981 - 22.3.2010 at 12:08 pm


8934563.1 Notice pursuant to Section 91 Government Roading Powers Act 1989 - 6.12.2011 at 7:00 am

Subject to a right (in gross) to convey electricity over part marked A on DP 432994 in favour of Vector Limited created by Easement Instrument 9345003.1 - 30.4.2013 at 7:57 am

Subject to a right (in gross) to convey telecommunications and computer media over part marked A on SO 364200 and part marked A on DP 438695 in favour of Her Majesty the Queen created by Easement Instrument 10504407.2 - 19.7.2016 at 7:00 am

10504407.3 Partial discharge of Compensation Certificate 8447500.1 - 19.7.2016 at 7:00 am

Identifier	376596	
Land Registration District	North Auckland	
Date Issued	18 November 2011	

Prior References 110147	
Estate	Fee Simple
Area	506 square metres more or less
Legal Description	Lot 1 Deposited Plan 394135
Registered Owner Xingyu Pan and Xi	
Fstate	Fee Simple - 1/4 share

Estate	Fee Simple - 1/4 share
Area	108 square metres more or less
Legal Description	Lot 5 Deposited Plan 394135

Registered Owners

Xingyu Pan and Xiao Yan

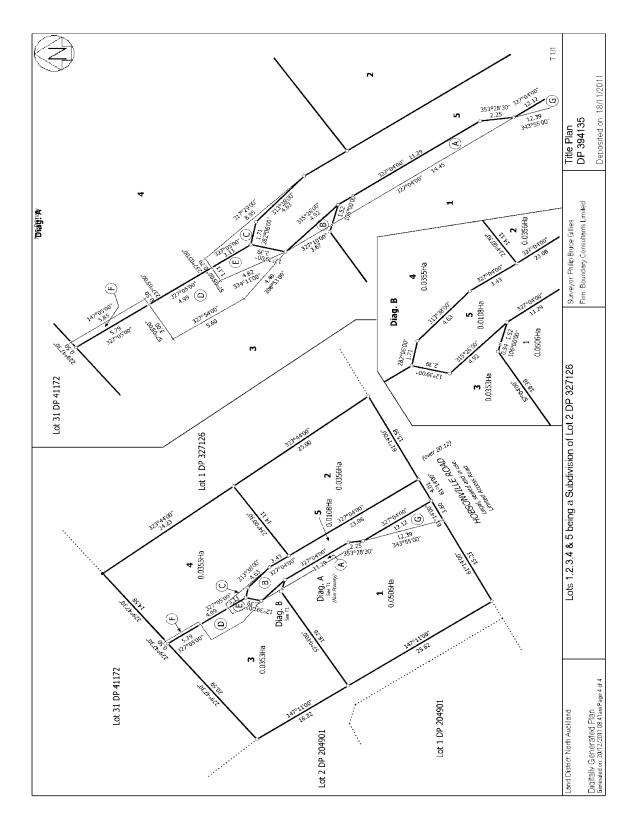
Interests

C428346.1 Certificate pursuant to Section 94C Transit New Zealand Act 1989 declaring that part of State Highway 18 known as Hobsonville Road, commencing at its junction with State Highway 16 and proceeding in an eastern direction to Upper Harbour Drive to be a limited access road - 5.11.1992 at 2.01 pm

Appurtenant hereto is a stormwater drainage right created by Easement Instrument 5845394.3 - 18.12.2003 at 9:34 am

The easements created by Easement Instrument 5845394.3 are subject to Section 243 (a) Resource Management Act 1991

8887148.1 Consent Notice pursuant to Section 221 Resource Management Act 1991 - 18.11.2011 at 4:46 pm (affects Lot 1 DP 394135)


Subject to Section 241(2) Resource Management Act 1991 (affects DP 394135)

Subject to a right to convey electricity, gas, telecommunications, water and computer media over part Lot 1 DP 394135 marked A and G on DP 394135 created by Easement Instrument 8887148.5 - 18.11.2011 at 4:46 pm

Some of the easements created by Easement Instrument 8887148.5 are subject to Section 243 (a) Resource Management Act 1991 (see DP 394135)

9615010.3 Mortgage to Bank of New Zealand - 18.2.2014 at 10:45 am

Identifier

ATTACHMENT 25

CULTURAL IMPACT ASSESSMENT

CULTURAL IMPACT ASSESSMENT

FOR

TE TUPU NGĀTAHI NORTH WEST PROJECT (LOCAL AND STRATEGIC TRANSPORT NETWORK)

PREPARED FOR

TE TUPU NGĀTAHI

DECEMBER 2022

This report takes into account the particular instructions and requirements of our client. it is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party. The cultural information in this report is the intellectual property of Te Kawerau ā Maki. Express permission is required to use or distribute its content for any other purpose.

Ref. TKITT000054

Te Kawerau Iwi Tiaki Trust PO Box 59-243 Mangere Bridge Auckland www.tekawerau.iwi.nz

"Kawerau Iwi, Kawerau Mana, Kawerau Tangata"

Report No.	TKITT000054		
Prepared by:	Edward Ashby	Mana Taiao Manager	
Date of issue:	07 December 2022		
Revision:	Version 2		

Ref. TKITT000054

December 2022

The North West Project proposes to upgrade and develop new sections of the local and strategic transport network extending from Whenuapai through Westgate and Brigham Creek to Waimauku. A significant element of the project is the Alternative State Highway (ASH) from Brigham Creek to western Huapai. The project sits within and across an important cultural landscape at the crossroads between the Hikurangi, Waitematā, and Kaipara Valley takiwa. It is the northern part of Te Kawerau ā Maki's heartland and contains a number of significant cultural sites and resources from our most ancient traditions through to our major Treaty settlement redress. A total of 51 cultural sites and resources were identified across the wider project area. The project was assessed against these sites and resources resulting in the documenting of eight significant adverse effects, 15 minor adverse effects, three negligible adverse effects, one potential significant beneficial effect*, one minor beneficial effect*, and 25 neutral effects. Where adverse effects were identified offsets (or further mitigation) were suggested. The significant adverse effects relate to the removal of productive topsoil, impacts to fresh water (including the taniwha), impacts to the Kumeū River (including the taniwha), impacts to fish species, setting impacts to Nga Rau Pou ā Maki, impacts to Pukewhakataratara, impacts to Wai paki i rape ō Ruarangi, and impacts to the cultural landscape. There is particular concern regarding a strategy of supporting urban growth in a flood prone catchment that holds the most regionally significant topsoil in northern Auckland. Due to these sensitivities the iwi cannot support the ASH component of the project. Advice is provided on suggested limits and offsets, and recommendations are provided for the project overall.

PEPEHA

Ko Hikurangi te maunga Ko ngā Rau Pou ā Maki ngā tohu whakahī Ko te Wao Nui ā Tiriwa te ngahere Ko te Manukanuka ā Hoturoa me te Waitematā ngā moana Ko Waitākere te awa Ko Tainui te waka Ko Tawhiakiterangi te tupuna

Ko Te Kawerau ā Maki te iwi

Hikurangi is the mountain

The many posts of Maki (Waitākere Ranges peaks) are the markers

Te Wao nui ā Tiriwa is the forest

Manukau and Waitematā are the harbours

Waitākere is the river

Tainui is the canoe

Tawhiakiterangi is the person

Te Kawerau ā Maki is the tribe

Ref. TKITT000054

December 2022

CONTENTS

Introd	duction	6
1.0	Project Background	6
2.0	Site Description	7
3.0	Aims and Objectives	13
Metho	odology	14
4.0	Statutory Context	14
5.0	Planning Policy Context	16
6.0	Te Ao Māori	18
7.0	Scoping and Consultation	21
8.0	Assessment Approach	21
9.0	Assumptions and Limitations	23
Envir	ronmental Baseline	25
10.0	Topography and Geology	25
11.0	Natural Resources and Ecology	27
Cultu	iral Baseline	30
12.0	Statement of Association	30
13.0	Māori Archaeology	41
14.0	Cultural Sites and Resources	42
Impac	ct Assessment	48
15.0	Potential Direct Impacts	48
16.0	Potential Indirect Impacts	48
17.0	Potential Cumulative Impacts	48
18.0	Summary of Effects	48
Conc	lusion	64
Reco	mmendations	65
Refer	rences	

INTRODUCTION

1.0 Project Background

Te Kawerau Iwi Tiaki Trust ('the Trust') have been commissioned by Te Tupu Ngātahi (an alliance involving Waka Kotahi, Auckland Transport, BECA, AECOM, Bell Gully and Buddle Finlay) (hereafter the Client) to prepare a Cultural Impact Assessment (CIA) for proposed upgrades and new sections of the local and strategic transport network extending from Hobsonville/Whenuapai through Westgate and Brigham Creek to Kumeū, Taupaki and Waimauku. The proposed transport network project is known as the 'North West Project'.



Figure 1: Plan showing Site regional context

The Client seeks to identify and protect the preferred transport network in Auckland's future growth areas. The wider strategy of Te Tupu Ngātahi is to support growth in housing and employment, to provide people with genuine travel choices, to address climate change by achieving transformative mode shift, and to address transport safety issues. For the North West Project the specific outcomes include an extensive walking and cycling network, 71km of bus lanes plus a rapid transit corridor to Kumeū-Huapai, safety upgrades, and state highway upgrades including an alternative route for State Highway 16. The network works will generally involve transport corridor widening/realignment, new corridors, bulk earthworks, bridge construction/stream crossings, stormwater management (e.g. ponds), vegetation removal/replanting, and installation of related infrastructure.

Specific to the 'strategic network' components of the North West Project are: the Alternative State Highway (ASH) route will include a new four-laned dual carriageway motorway and the upgrade of Brigham Creek Interchange; The SH16 main road (Main Rd) upgrade will include upgrading the existing corridor to a 24m wide urban corridor, including a 600m section of active mode only upgrade and realignment of Station Road to form a new signalised intersection with SH16; The development of a new rapid transit corridor (including the Regional Active Mode Corridor – RTC) and active mode corridor will be in one co-located corridor; The upgrade of Access Road (Access Rd) from a 20m width to a 30m four-lane cross-section with separated cycle lanes and footpaths on both sides of the corridor within the urban section.

This CIA report has been prepared by the Trust as a legal entity of Te Kawerau ā Maki who are a mana whenua iwi of wider Tāmaki Makaurau (Auckland), but with particular lead interests in Hikurangi (West Auckland) and the Upper Waitematā Harbour. The purpose of this CIA report is to provide the Client and relevant statutory agencies with documentation of Te Kawerau ā Maki's cultural values, interests, and associations with the project area and its natural resources, and the potential impacts of the proposed project activities on these. This impact assessment also provides recommendations as to how to avoid, remedy or mitigate any potential cultural effects that arise from the project.

6

Ref. TKITT000054

Te Kawerau ā Maki engagement in statutory processes including provision of technical advice for impact assessments is guided by our tikanga (customs and protocols) and mātauranga (tribal knowledge) and framed by Te Tiriti ō Waitangi, our Te Kawerau ā Maki Claims Settlement Act 2015, our lwi Management Plan (IMP), and our organisational strategic values: Mana Motuhake (independence); Kaitiakitanga (guardianship and sustainable management); Whānaungatanga (people focused); Auahatanga (innovation); Mātauranga Māori (culture-driven).

2.0 Site Description

The project is situated in northern West Auckland/southwest Kaipara running from Hobsonville to Waimauku. It essentially runs along the low-lying alluvial plains between the Waitākere Ranges to the southwest, the Riverhead hill country to the north, and the Waitematā Harbour to the east. The project is situated primarily within the catchment of the Kumeū River. For the most part the project follows the alignment of SH16 and its various feeder roads, however the proposed Alternative State Highway crosses rural land to the west between the townships of Taupaki and Kumeū/Huapai.

The wider proposed project area (hereafter the Study Area) includes the entire alignment including the local and strategic network and a wider catchment of 4km radius from the project footprint. This wider area is appropriate for placing the project within its proper cultural landscape context and for capturing any potential setting impacts.

Figure 2: Plan showing Site (supplied by Client)

For the purposes of this report, the proposed project site (hereafter the Site) includes the local and strategic network footprint, including both its construction (including temporary compounds) and operational phases. Specifically this includes the Redhills, Riverhead, and Whenuapai 'arterials' as well as the strategic corridors known as ASH, Main Rd, RTC, and Access Rd.

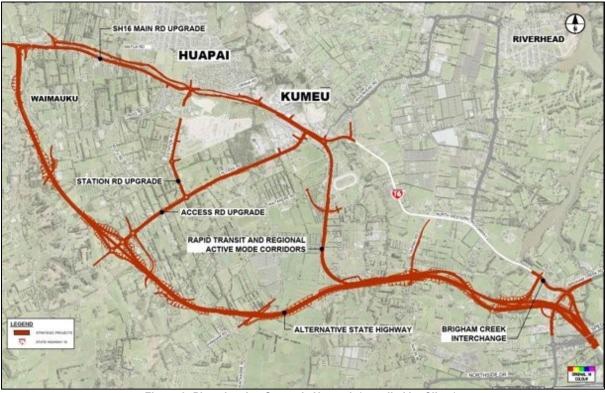


Figure 3: Plan showing Strategic Network (supplied by Client)

Figure 4: Plan of the Rapid Transit Corridor and Regional Active Mode (supplied by Client)

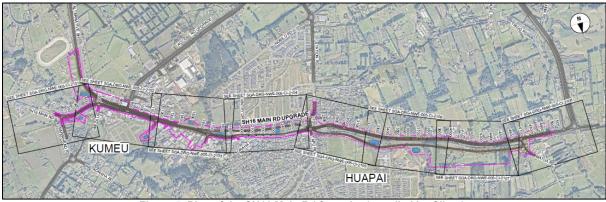


Figure 5: Plan of the SH16 Main Rd footprint (supplied by Client)

Figure 6: Plan of the Access Rd footprint (supplied by Client)

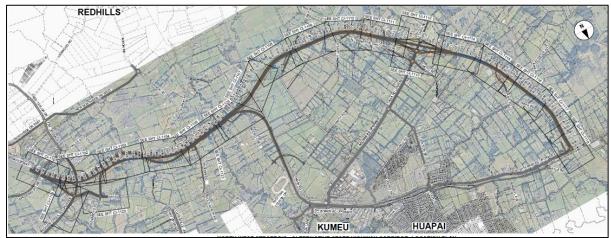


Figure 7: Plan of the Alternative State Highway footprint (supplied by Client)

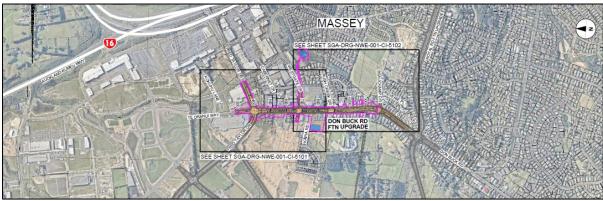


Figure 8: Plan of Don Buck Rd Local Network footprint (Supplied by Client)

REDHILLS
Figure 9: Plan of Fred Taylor Dr Local Network footprint (Supplied by Client)

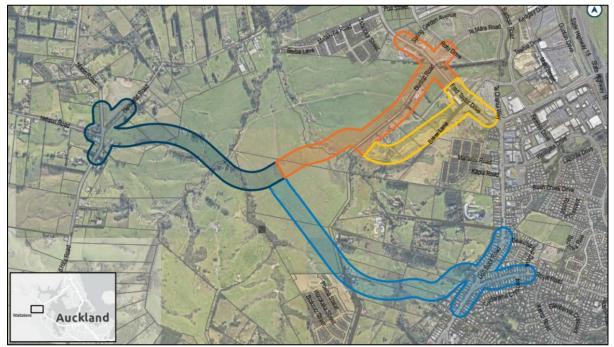


Figure 10: Plan of Red Hills Arterial footprint (Supplied by Client)

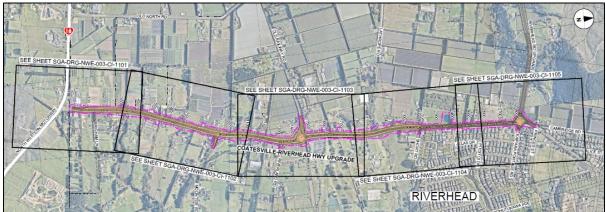


Figure 11: Plan of Coatesville-Riverhead HWY Local Network footprint (Supplied by Client)



Figure 12: Plan of Brigham Creek Rd Local Network footprint (Supplied by Client)

Figure 13: Plan of Hobsonville Rd Local Network footprint (Supplied by Client)

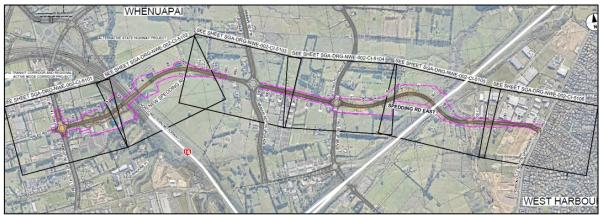


Figure 14: Plan of New Spedding Rd Local Network footprint (Supplied by Client)

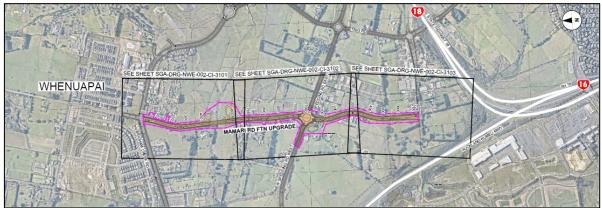


Figure 15: Plan of Mamari Rd Local Network footprint (Supplied by Client)

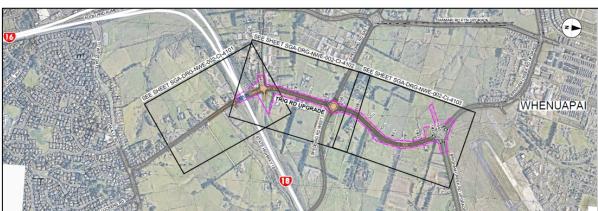


Figure 16: Plan of Trig Rd Local Network footprint (Supplied by Client)

Figure 17: Plan of Trig Rd Corridor footprint (Supplied by Client)

3.0 Aims and Objectives

The aim of this CIA report is to document Te Kawerau ā Maki's cultural values, interests, and associations with the Site; identify specific cultural sites and resources; assess the values of these sites and resources; identify the potential impacts that arise from project activities and assess the significance of effect; and provide recommendations as to how to avoid, remedy or mitigate the potential effects to Te Kawerau ā Maki.

This impact assessment will:

- provide a baseline of known environmental or natural features and resources that may hold cultural values;
- provide a statement of cultural association Te Kawerau ā Maki has with the Site and Study Area;
- identify any known cultural sites and resources within the Site or Study Area;
- describe the value or significance of such sites and resources;
- identify the potential for unrecorded cultural sites (i.e. buried Māori archaeology);
- identify the cultural constraints and risks associated with the Site and the potential significance of effects; and
- provide recommendations for further assessment where necessary and/or measures to avoid, remedy or mitigate adverse effects upon Te Kawerau ā Maki.

METHODOLOGY

4.0 Statutory Context

Te Tiriti o Waitangi

The key guiding document in any consideration of planning or practice that may impact upon the cultural values or wellbeing of Mana Whenua is Te Tiriti o Waitangi. The principles of the Treaty are recognised and provided for in the sustainable management of ancestral lands, water, air, coastal sites, wāhi tapu and other taonga, and natural and physical resources. The Treaty is articulated in law through an evolving set of principles. These include:

- a. reciprocity
- b. rangatiratanga
- c. partnership
- d. shared decision-making
- e. active protection
- f. mutual benefit
- g. right of development
- h. redress.

While Article 1 of the Treaty enables the Crown to govern and make laws, Article 2 guarantees Māori rangatiratanga over their people, lands and taonga (things of value). Māori values, associations and interests with their taonga applies regardless of property titles or other constructs, and the Treaty requires that the Crown actively protect these associations and interests (including through but not limited to statutes). Article 3 provides for equality and equity of citizenship and outcome.

Te Kawerau ā Maki Claims Settlement Act 2015

Te Kawerau ā Maki Claims Settlement Act (TKaMCSA) records the acknowledgements and apology given by the Crown to Te Kawerau ā Maki for historic grievances and breaches of Te Tiriti ō Waitangi and gives effect to provisions of the Deed of Settlement that settles the historical claims of Te Kawerau ā Maki. The Act binds the Crown to Te Kawerau ā Maki to work together in accordance with Te Tiriti. The Settlement as delivered through the Act provided both cultural and commercial redress to Te Kawerau ā Maki. This includes binding protocols between Government Ministries and Te Kawerau ā Maki (Part 2, s21 to s26), a recognised and agreed area of interest (Part 1, s12(2b), Part 1 of attachments to Act), and statutory acknowledgements and deeds of recognition (Part 2, s27 to s40, and Schedule 1).

Statutory acknowledgements require relevant consent authorities, the Environment Court, and Heritage New Zealand Pouhere Taonga to: (a) have regard to the statutory acknowledgement; (b) require relevant consent authorities to record the statutory acknowledgement on statutory plans and to provide summaries of resource consent applications or copies of notices of applications to the trustees; and (c) enable the trustees and any member of Te Kawerau ā Maki to cite the statutory acknowledgement as evidence of the association of Te Kawerau ā Maki with a statutory area. The statutory acknowledgement supports Te Kawerau ā Maki trustees being considered as affected persons in relation to an activity within the area under s95E and s274 of the Resource Management Act (1991), and s59(1) and 64(1) of the Heritage New Zealand Pouhere Taonga Act (2014).

Te Kawerau ā Maki Statutory Acknowledgement Areas are:

- Taumaihi (part of Te Henga Recreation Reserve)
- Motutara Settlement Scenic Reserve and Goldie Bush Scenic Reserve
- Swanson Conservation Area
- Henderson Valley Scenic Reserve

Ref. TKITT000054

14

- Coastal statutory acknowledgement
- Waitākere River and tributaries
- Kumeū River and tributaries
- Rangitōpuni Stream and tributaries
- Te Wai-ō-Pareira / Henderson Creek and tributaries
- Motutara Domain (part of Muriwai Beach Domain Recreation Reserve)
- Whatipū Scientific Reserve

Heritage New Zealand Pouhere Taonga Act 2014

Statutory protection of Māori archaeology and wāhi tapu is provided for under the Heritage New Zealand Pouhere Taonga Act 2014 (HNZPTA), which is administered by Heritage New Zealand Pouhere Taonga (HNZPT), an autonomous Crown Entity. Under the Act all *in situ* materials, sites, and features older than 1900AD are considered archaeological sites whether previously recorded or not and are afforded automatic protection from damage, modification, or destruction without first obtaining an Archaeological Authority from HNZPT. Moveable objects and artefacts that are not *in situ* but that are from an archaeological context, or are of Māori origin, are controlled under the Protected Objects Act (1975). The HNZ Act S45(2)b stipulates that works on sites of interest to Māori can only occur if (a) the practitioners can demonstrate they have the requisite competencies for recognising and respecting Māori values, and (b) the practitioners undertaking the works have access to appropriate cultural support. Under the Act Mana Whenua are enabled to provide advice or assessment regarding the management or decision taking arising from impacts to their cultural sites, provided these meet the Act's criteria. It is noted that Te Kawerau ā Maki never ceded our sovereignty to govern our taonga to HNZPT and view the HNZPTA as overstepping its authority or role as the decision-maker over the taonga of Te Kawerau ā Maki, thus being in direct breach of Article II of Te Tiriti ō Waitangi.

Resource Management Act 1991

The Resource Management Act (RMA) 1991 provides statutory recognition of the Treaty of Waitangi and the principles derived from the Treaty. It introduces the Māori resource management system via the recognition of kaitiakitanga and tino rangatiratanga and accords Territorial Local Authorities with the power to delegate authority to iwi over relevant resource management decisions. The Act contains over 30 sections, which require Councils to consider matters of importance to tangata whenua. Some of the most important of these are:

- Take into account principles of the Treaty of Waitangi and their application to the management of resources (Section 8).
- Recognition and provision for, as a matter of national importance, the relationship of Māori and their culture and traditions with their ancestral lands, water, sites, wāhi tapu and other taonga (Section 6(e)).
- Having particular regard to the exercise of kaitiakitanga or the iwi's exercise of guardianship over resources (Section 7(a)).
- Requiring the Minister for the Environment to consider input from an iwi/hapū authority when preparing a national policy statement (Section 46).
- The ability for local authorities to transfer their functions, powers or duties under the Act to iwi authorities (Section 33).
- Development of joint management agreements between councils and iwi/hapū authorities (Section 36B to 36E).
- Having regard to any relevant planning document recognised by an iwi/hapū authority (sections 35A(b), 61.2A(a), 66.2A(a), 74.2A).
- The obligation to consult with iwi/hapū over consents, policies and plans. (Combination of all the sections above and Clause 3(1)(d) of Part 1 of the first schedule of the Resource Management Act).

An assessment of impacts on cultural values and interests (CIA) can assist both applicants and the council in meeting statutory obligations in a number of ways, including:

- preparation of an Assessment of Environmental Effects (AEE) in accordance with s88(2)(b) and Schedule 4 of the Resource Management Act 1991 (RMA)
- requests for further information under s92 of the RMA in order to assess the application
- providing information to assist the council in determining notification status under ss95 to 95F of the RMA
- providing information to enable appropriate consideration of the relevant Part II matters when making a decision on an application for resource consent under s104 of the RMA, or when undertaking a plan change
- consideration of appropriate conditions of resource consent under s108 of the RMA.

It is noted that Te Kawerau ā Maki never ceded our sovereignty to govern our taonga to local authorities and view the RMA as enabling councils to overstep their authority or role as the decision-maker over the taonga of Te Kawerau ā Maki, thus being in direct breach of Article II of Te Tiriti ō Waitangi.

Reserves Act 1977 and Conservation Act 1987

Section 4 of the Conservation Act, which is invoked by the Reserves Act, states that the Act must be interpreted and administered as to give effect to the principles of the Treaty of Waitangi.

Public Works Act 1981

The PWA and its predecessor legislation have had a considerable negative impact upon Māori amounting to a breach of Te Tiriti Article II and international conventions. Te Kawerau ā Maki's last kāinga at Kōpironui was stolen by the Crown under the PWA in the 1950s leaving our people landless. While tacit protections for Māori land have been inserted into the PWA it remains a deeply problematic piece of legislation, both in terms of acquisition of land but also disposal of 'formerly' Māori land, that is not compliant with Te Tiriti o Waitangi or tikanga Māori.

5.0 Planning Policy Context

UN Declaration on the Rights of Indigenous Peoples

New Zealand supported the UN Declaration on the Rights of Indigenous Peoples (2007) in 2010. This support was an affirmation of fundamental rights and the aspirations of the Declaration. Article 11 states that indigenous peoples have the right to practise and revitalise their cultural traditions and customs, including the right to maintain, protect and develop the past, present and future manifestations of their cultures, such as archaeological and historical sites, artefacts, designs, ceremonies, technologies and visual and performing arts and literature (clause 1). States shall provide redress through effective instruments, which may include restitution, developed in conjunction with indigenous peoples, with respect to their cultural, intellectual, religious and spiritual property taken without their free, prior and informed consent or in violation of their laws, traditions and customs. (clause 2). Article 18 and 31 note that indigenous peoples have the right to participate in decision-making in matters which would affect their rights, through representatives chosen by themselves in accordance with their own procedures, as well as to maintain and develop their own indigenous decision-making institutions. Further that Indigenous peoples have the right to maintain, control, protect and develop their cultural heritage, traditional knowledge and traditional cultural expressions, as well as the manifestations of their sciences, technologies and cultures, including human and genetic resources, seeds, medicines, knowledge of the properties of fauna and flora, oral traditions, literatures, designs, sports and traditional games and visual and performing arts. They also have the right to maintain, control, protect and develop their intellectual property over such cultural heritage, traditional knowledge, and traditional cultural expressions.

ICOMOS New Zealand Charter 2010 Ref. TKITT000054

The International Council on Monuments and Sites (ICOMOS) is UNESCOs principal advisor in matters concerning the conservation and protection of historic monuments and sites and advises the World Heritage Committee on the administration of the World Heritage Convention (which includes provision of nationally significant heritage). The New Zealand National Committee (ICOMOS NZ) produced a New Zealand Charter in 2010 which has been adopted as a standard reference document by councils. The Charter sets out conservation purposes, principles, processes and practice. The scope covers tangible and intangible heritage, the settings of heritage, and cultural landscapes. Of particular relevance the Charter states that tangata whenua kaitiakitanga over their taonga extends beyond current legal ownership wherever such cultural heritage exists. The Charter also states that the conservation of Māori heritage requires incorporation of mātauranga and therefore is conditional on decisions made in association with tangata whenua and should procced only in this context.

National Policy Statement for Freshwater Management 2020

The NPS for freshwater management provides national policy settings that relevant statutory agencies including local authorities must comply with. Central to the NPS is the concept of Te Mana ō Te Wai set out in s1.3. This is an aspirational concept that means that the integrity (physical and spiritual) of all water is upheld to its highest possible quality or state. The Crown's interpretation of the concept is that the fundamental importance of water is recognised and that by protecting the health of freshwater we protect the health and well-being of the wider environment, including by protecting wai mauri, and the restoration of the balance between water, the environment, and communities. It provides six principles for the management of water (s1.3(4)). Relevant to tangata whenua are: (a) Mana whakahaere: the power, authority, and obligations of tangata whenua to make decisions that maintain, protect, and sustain the health and well-being of, and their relationship with, freshwater; (b) Kaitiakitanga: the obligation of tangata whenua to preserve, restore, enhance, and sustainably use freshwater for the benefit of present and future generations; (c) Manākitanga: the process by which tangata whenua show respect, generosity, and care for freshwater and for others. Policy 2.2(2) states that tangata whenua are actively involved in freshwater management (including decision-making processes), and Māori freshwater values are identified and provided for. Policy 2.2(3) requires that freshwater is managed in an integrated way that considers the effects of the use and development of land on a whole-ofcatchment basis, including the effects on receiving environments. Section 3.4 sets out how councils must actively involve tangata whenua in the management of fresh water.

Auckland Unitary Plan

At a Local Government level, the Auckland Unitary Plan (AUP) provides for the protection and management of matters of importance to Mana Whenua including the environment and cultural heritage. These matters are set out in the Regional Policy Statement Chapter B6, but are also embedded in the lower-order policies and rules throughout the Plan.

Policy B6.2.2 provides for the recognition of Treaty of Waitangi/Te Tiriti ō Waitangi partnerships and participation. This includes Policy B6.2.2(1) that provides for Mana Whenua to actively participate in the sustainable management of natural and physical resources including ancestral lands, water, sites, wāhi tapu and other taonga.

Policy B6.3.2 deals with recognising Mana Whenua values and includes clause (1) that enables Mana Whenua to identify their values associated with ancestral lands, freshwater, biodiversity, and cultural heritage places and areas, and clause (2) that requires the integration of Mana Whenua values, mātauranga and tikanga in the management of natural and physical resources within the ancestral rohe. Clause (3) ensures that any assessment of environmental effects for an activity that may affect Mana Whenua values includes an appropriate assessment of adverse effects on those values. Clause (6) of the policy requires resource management decisions to have particular regard to potential impacts on: the holistic nature of the Mana Whenua world view; the exercise of kaitiakitanga; mauri; customary activities; sites and areas with significance spiritual or cultural heritage value; and any protected customary right under the Takutai Moana Act (2011).

Ref. TKITT000054

Policy B6.5.2 provides for the active protection of Mana Whenua cultural heritage. Clause (2) sets out a framework for identifying and evaluating Mana Whenua cultural heritage using the assessment factors of: mauri; wāhi tapu; kōrero tūturu; rawa tūturu; hiahiatanga tūturu; and whakaaronui o te wā. Clause (4) requires the protection of places and areas listed in Schedule 12 Sites and Places of Signifiance to Mana Whenua from adverse effects. Clause (7) provides for the inclusion of a Māori cultural assessment in structure planning and plan change processes, and clause (9) encourages appropriate design, materials and techniques for infrastructure in areas of known historic settlement and occupation.

Iwi Management Plan

Te Kawerau ā Maki Resource Management Statement (1995) was lodged with Council explicitly as an iwi authority planning document under sections 66(c) and 74(b) of the RMA 1991 (since repealed). The IMP describes the continuing role of Te Kawerau ā Maki as kaitiaki (guardians) and provides policies to guide statutory authorities and applicants. Policy 2.2(2) promotes the integration of Te Kawerau ā Maki tikanga in resource management, while clause (3) requires engagement by all agencies within the rohe to help give effect to the kaitiaki role of the iwi. Policy 4.1.2(3) requires that cumulative effects upon Te Kawerau ā Maki are fully recognised and provided for. Policy 4.2.2 concerns Te Kawerau ā Maki cultural heritage and requires the protection of all heritage sites including access requirements (s4.2.2(1)); the involvement of Te Kawerau ā Maki in all instances where potential effects may arise (s4.2.2(2)); and the recognition of Te Kawerau ā Maki cultural and spiritual values (s4.2.2(3 and 4)). Policy 4.3.2 concerns the management of koiwi, while s4.4.2 regards the management of water. Activities in the Coastal Marine Area are covered by s4.5.2. Waste management policies are described in s4.6.2 and land and landscape policies are set out in s4.7.2. Indigenous flora and fauna policy settings are described in s.4.8.2 including opposition to all destruction of native flora and fauna without Te Kawerau ā Maki written consent. Policy 4.9.2 concerns Te Kawerau ā Maki participation in design of the built environment and interpretation of heritage. The IMP also details formal support and adoption of the 1993 Matātua Declaration on cultural and intellectual property rights of indigenous peoples.

6.0 Te Ao Māori

Our worldview is the framework by which we understand and navigate our physical and metaphysical environment. A full account of the cosmological underpinnings of Te Ao Māori is not offered here but in brief it recognises both the spiritual and the physical, is guided by different domains governed by atua or distinct spiritual entities, and involves several core concepts including whakapapa, mana, wairua, mauri, tapu, and noa. Te Ao Māori places emphasis on the holistic link between people and the environment. Mātauranga is the knowledge or wisdom about the world developed over generations and passed down from tūpuna, while tikanga is the evolving set of principles and customary practices by which Māori give effect to this knowledge to navigate the world safely.

Papatūānuku

The primordial goddess embodying the whenua or land. She is the earthmother to all living things. This whakapapa is one of the reasons why whenua is the name for placenta as well as land, and why in Te Ao Māori tangata whenua belong to the whenua and not the other way around. Papatūānuku is a source of rejuvenation and life.

Ranginui

The primordial god embodying the sky or heavens. He is the skyfather to all living things. When he was separated from his wife Papatūānuku by their children, his tears became the rain which is considered tapu until it reaches the ground (wai Māori).

Tūmatauenga

The god of war and human activities and a progenitor of humanity.

Ref. TKITT000054

18

Tāwhirimātea

The god of weather including thunder, lightning, wind, clouds and storms. He was opposed to the forced separation of his parents Papatūānuku and Ranginui and therefore he wars with his brothers and their descendants to this day.

Tāne

The god of forests and animals and an originator and protector of humans. Responsible for separating the embrace of his parents and ushering in Te Ao Marama (the age of light).

Tangaroa

The god of the sea, lakes, rivers and animals that live in them. There is a close and sometimes contentious relationship between Tangaroa and Tāne reflected in creatures such as reptiles and whales and in the dynamic between the sea and the coastline.

Rongo

The god of cultivated plants and agriculture also associated with peace.

Haumia-tiketike

The god of uncultivated plants and wild foraging.

Matā-oho

The local god of volcanic activity and earthquakes that formed the Tāmaki volcanic field.

Whakapapa

The sacred genealogy linking all things. Humans whakapapa not only to human tūpuna (ancestors), but also to the whenua, atua and their respective lineages. All indigenous animals and plants have an interconnected whakapapa. Whakapapa is a prerequisite of mana whenua, whānaungatanga, and kaitiakitanga.

Mana

A core metaphysical concept regarding the inherent authority or power of people, places or objects. Mana is derived or delegated from atua and, in the case of humans, is both inherited and earned through actions. Everything including people has an element or degree of mana. A person or tribe's mana can increase or decrease depending on the success, failure or nature of actions (or inactions) and is directly tied to their wellbeing. Undertaking the responsibilities of manakitanga and kaitiakitanga successfully are examples of maintaining or enhancing mana and contribute to cementing mana whenua.

Тари

A core metaphysical concept regarding a state or degree of sacredness, prohibition, being set apart or forbidden. Tapu is a state where a person, place or thing is under the protection of or dedicated to an atua and is thus removed from profane or normal or common things and uses. Tapu is closely linked to mana and governs the behaviour of individuals and the wider society. Everything including people has an element or degree of tapu that must be preserved and respected. It is a priority of rangatira, tohunga and kaitiaki to maintain tapu and to ensure it is not diluted by common things. As with mana, the maintenance of tapu is directly linked to the wellbeing of both individuals and the tribe.

Ref. TKITT000054

Noa

A core metaphysical concept regarding a normal or common (and sometimes profane) state that is in essence the opposite of tapu. Noa actions and things (whakanoa) can dilute tapu.

Wairua

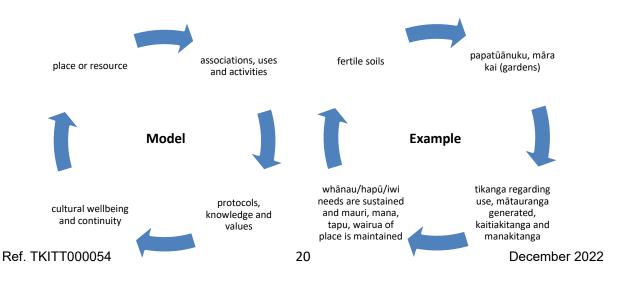
A core metaphysical concept regarding the immortal spiritual or non-physical element of people, places or things.

Mauri

A core metaphysical concept regarding the essence that binds the physical and the spiritual together to enable life to exist and to thrive. Mauri is a sacred element and can be weakened or enhanced. When damaged or diluted the binding between the physical and the spiritual realms is weakened and life begins to falter and fail. It is the sacred obligation of mana whenua, through the act of kaitiakitanga, to maintain the balance of mauri within people, places, objects, ecosystems, and the hapū or iwi.

Mātauranga

The body of knowledge or customary wisdom and skill embedded within the tohunga, whānau, hapū and iwi. Mātauranga is passed down the generations from tūpuna but is also added onto through successive generations of uri, and culturally encodes hundreds of years of observations, measurements, theory, and custom regarding Te Ao Māori and the environment.


Tikanga

The lore, customs, practices, protocols, rules and methods that give effect to the application of mātauranga in navigating the natural and social world. There are different tikanga for different contexts and in different domains.

Cultural Values

Cultural values are the shared norms that govern the continuation of culture and provide the framework for social and individual actions. Key values include: rangatiratanga (chiefly authority or selfgovernorship), whānaungatanga (kinship and reciprocal connection through shared whakapapa), wairuatanga (spirituality), manakitanga (hospitality and showing care), and kaitiakitangata (guardianship or stewardship).

A model of how cultural values function is provided below.

7.0 Scoping and Consultation

The Study Area comprises a 4000m radius from the Site (from any point along its corridor). This radius is considered appropriate given the large scale of the Site and the presence of heritage sites within the catchment that could have setting or indirect impacts. Within this area all appropriate and known cultural sites, areas, landscapes and resources have been identified. Te Kawerau ā Maki however reserve the right to withhold certain information regarding wāhi tapu or sites that are culturally and spiritually sensitive to the iwi.

This report includes all known or appropriate-to-report elements of the natural and cultural environment within the Site and Study Area considered to hold cultural value for Te Kawerau ā Maki. This information forms the baseline of the assessment. This includes native biodiversity and ecology, geological and topographic features, natural resources including water bodies, built heritage such as marae, socio-cultural features such as papakāinga, cultural landscapes, historic or cultural sites, Māori archaeological sites, pou whenua and significant cultural public art.

Mātauranga/cultural knowledge of the Site and Study Area has been obtained, where appropriate, from Te Kawerau ā Maki kaumatua, kuia and other holders of knowledge within the iwi. Readily available published and unpublished written records, illustrations, maps, archaeological and geological records were reviewed during preparation of this cultural assessment. Spatially referenced heritage asset data was reviewed from the Auckland Council Cultural Heritage Inventory (CHI) and the New Zealand Archaeological Association (NZAA) recording scheme database (ArchSite). Other information, reports, and impact assessments available for the Site that have been provided by the Client have been reviewed including: engineering and design drawings of the route and a summary analysis of impacts identified from other disciplines. The opinions contained within this document may change and/or develop as new information is released.

This Cultural Impact Assessment involved a desktop study based on review of technical information, cultural knowledge of the area, and research, as well as site visits along the corridor to assess and confirm site conditions.

8.0 Assessment Approach

Following standard Environmental Impact Assessment (EIA) methodologies and planning terminology, but adapted for CIA purposes, this report will:

- a. **Identify** the cultural sites, areas and resources (defined as both tangible and intangible cultural heritage, natural resources of cultural interest, and socio-cultural features) within a Study Area encompassing the proposed Site and a wider area that may be directly or indirectly impacted. The Study Area is defined as approximately 4000m radius of the Site to correspond with a likely area of setting impacts (e.g. noise, visual), indirect impacts, and a logical catchment of the cultural landscape.
- b. Provide comment on the cultural value of the identified cultural sites, areas and resources. Māori cultural value is not derived from national or local policy but is defined and determined by tangata whenua and their particular world view and culture. Māori values are distinct from historic, archaeological or other value-systems, and are recognised by the courts and statute as their own legitimate knowledge-system with tangata whenua being the experts. Māori values are informed by whakapapa and guided by tikanga and kawa, with emphasis placed on the associative and living connection to places and resources which sustain cultural knowledge (mātauranga), practices, and spiritual and physical wellbeing. All cultural sites, areas and resources are of value to Te Kawerau ā Maki, who hold a holistic view of the environment and the unique relationship of the iwi to the whenua. It is difficult to apply a Western paradigm of value hierarchy or significance ranking (i.e. 'low, medium, high') when using a Te Ao Māori lens. Nevertheless, the methodology here attempts to distinguish the relative importance of matters as determined by a number of criteria, including the degree of mana, tapu or mauri, the degree to which a resource

Ref. TKITT000054

has specific korero or matauranga, its sensitivity to changes (ability to absorb impacts), and its relative scarcity. This approach recognises that a matters' value is intrinsic but relative to context. This approach is supported by RMA Part II matters noting the relationship of tangata whenua with their lands, waters, and taonga as nationally significant. The approach is set out below:

- high: cultural sites/areas/resources that retain their integrity overall, are either rare or are common but hold specific customary uses or mātauranga, are considered a wāhi tohu or landscape indicator, or have a high sensitivity to change.
- medium: cultural sites/areas/resources that retain the key elements of their integrity, are either uncommon or are common but hold specific customary uses or mātauranga, or have a moderate sensitivity to change.
- low: cultural sites/areas/resources that have been significantly degraded or damaged, are common and do not hold specific current customary uses or mātauranga, or have a low sensitivity to change.

Value is also assigned against the cultural values identified in the AUP Policy B6.5.2(2):

- i. Mauri: the mauri (life force and life-supporting capacity) and mana (integrity) of the place or resource holds special significance to Mana Whenua;
- ii. Wāhi Tapu: the place or resource is a wāhi tapu of special, cultural, historic, metaphysical and or spiritual importance to Mana Whenua;
- iii. Kōrero Tūturu: The place has special historical and cultural significance to Mana Whenua;
- iv. Rawa Tūturu: the place provides important customary resources for Mana Whenua
- v. Hiahiatanga Tūturu: the place or resource is a repository for Mana Whenua cultural and spiritual values; and
- vi. Whakaaronui o te Wa: the place has special amenity, architectural or educational significance to Mana Whenua.
- c. Identify the potential **impacts** to cultural resources and elements. Only Mana Whenua can define the impact to their cultural values, but guidance is noted below. Cultural impacts can be:
 - no change
 - negligible: changes result in small impacts on integrity of the site/area/resource such that their function is reduced but not notably diminished, ability to understand/appreciate/use/access is impacted to a inconsequential degree, the ability to interpret the cultural landscape or setting is impacted but the change can easily be absorbed.
 - minor: changes result in small impacts on integrity of the site/area/resource such that their function is reduced but not significantly diminished, ability to understand/appreciate/use/access is impacted to a small degree, the ability to interpret the cultural landscape or setting is impacted to a small degree or change can otherwise be largely absorbed.
 - moderate: changes result in appreciable/significant impacts on the integrity of the site/area/resource such that their function is impeded, ability to understand/appreciate/use/access is impacted to a notable degree, the ability to interpret the cultural landscape or setting is impacted to a notable degree or change can otherwise not be absorbed.
 - major: changes result in large scale/total impacts on the integrity of the site/area/resource such that their function is effectively destroyed, ability to understand/appreciate/use/access is impacted to a significant degree/is no longer possible, the ability to interpret the cultural landscape or setting is impacted to a significant degree or change can otherwise not be absorbed and the landscape or setting is no longer recognisable/able to function.

Impacts can be either adverse or beneficial. Impacts can also be temporary or permanent. They can occur during the construction or the operational phase of a development. Impacts can be:

- i. direct (i.e. physical impacts resulting from a development, impacts to the settings of cultural sites or the character of cultural landscapes, visual, noise, odour, or culturally inappropriate land use activities).
- ii. indirect (i.e. traffic congestion, erosion due to vegetation loss, or other secondary impacts that occur over time or in a secondary location to the original activity).
- iii. cumulative (i.e. impacts which are caused by the combined result of past, current and future activities, or in-combination impacts).
- d. Define the **significance of effect** resulting from combining the value of a cultural site, area or resource and the level of potential impact to that site, area or resource. Significance of effect is assessed pre-mitigation but can also be assessed again post-mitigation to ascertain the *residual effect* and effectiveness of any proposed mitigation. Significant effects (within a planning framework) are those with moderate or large effects (either adverse or beneficial). This method is outlined below in Table 1. Note that positive effects will be coloured green.

			L	LEVEL OF IMPACT								
		No Change	Negligible	Minor	Moderate	Major						
CULTURAL VALUE	High	Neutral	Minor	Moderate	Large	Large						
	Medium	Neutral	Negligible	Minor	Moderate	Large						
CUL	Low	Neutral	Negligible	Negligible	Minor	Moderate						

Table 1: Significance of effect

9.0 Assumptions and Limitations

Te Kawerau ā Maki are the experts of our own culture and tikanga. This expertise and the equal weighting of mātauranga Māori evidence is accepted in the courts and by statute. Through a necessity to work within a Western planning framework we utilise planning language where possible to aid in mutual understanding, however there is difficulty in the translation and application of some core cultural concepts to such a framework. This is particularly an issue when segmenting or demarcating value spatially, when ascribing a type of significance hierarchy, and when limiting value to tangible elements, whereas Māori hold a holistic perspective that operates differently to typical Western paradigms. This means that where there is doubt or confusion over a term or point of discussion, readers should contact Te Kawerau ā Maki directly for clarification.

Due to the sensitive nature of certain cultural knowledge, areas and sites (e.g. burial grounds), Te Kawerau ā Maki reserves the right not to identify the exact spatial extents or provide full information of such areas to retain and protect this knowledge within the iwi. In other situations, while a general area may be known to be of cultural significance the exact spatial extent or location of the site may have been lost over successive generations. Where possible and appropriate, sites are described and defined to enable discussion of the impacts while acknowledging these limitations.

The environmental and archaeological data relied upon for elements of this report are derived from secondary sources and it is assumed the data and opinions within these and other secondary sources is reasonably accurate.

The CHI and ArchSite databases are a record of known archaeological and historic sites. They are not an exhaustive record of all surviving historic or cultural sites and resources and do not preclude the existence of further sites which are unknown at present. The databases also utilise a site location point co-ordinate system rather than detailing site extents or cultural landscapes.

Ref. TKITT000054

ENVIRONMENTAL BASELINE

10.0 Topography and Geology

The Site is situated across the alluvial plains of the Kumeū River and Upper Waitematā Harbour, which crosses a number of underlying geological substrata. Near the mid-point of the network near Westgate this includes Waitematā Group East Coast Bays Formation being of "Alternating sandstone and mudstone with variable volcanic content and interbedded volcaniclastic grits." Near Whenuapai and Riverhead the underlying geology is of Late Pliocene to Middle Pleistocene pumiceous river deposits being of "Pumiceous mud, sand and gravel with muddy peat and lignite: rhyolite pumice, including non-welded ignimbrite, tephra and alluvia." Within the Kumeū basin the underlying geology is Holocene river deposits consisting of "Sand, silt mud and clay with local gravel and peat beds." Near Waimauku and Huapai the underlying geology is Tauranga Group Middle Pleistocene - Late Pleistocene river and hill slope deposits being "Predominantly pumiceous sand, silt, mud and clay, with interbedded gravel and peat."

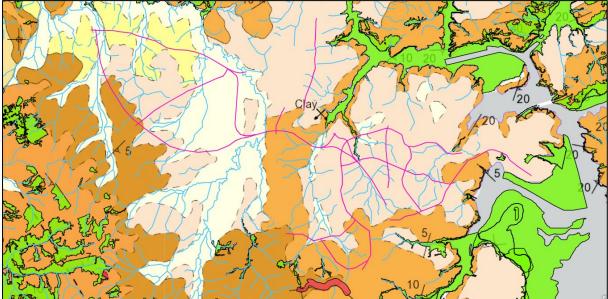


Figure 18: Map showing the underlying geology of the Study Area (adapted from GNS Science)

While all whenua is associated with Papatūānuku, alluvial soils are particularly valued due to their unique composition and higher organic content making them highly productive for horticulture, and thus containing a strong sense of mauri. The Land-Use Capability of these alluvial soils ranges from 1 (negligible limitations to horticulture) to 3 (moderate limitations to horticulture) meaning they are of very high productive quality, and in fact the largest area of high quality horticultural soils in northern Auckland.

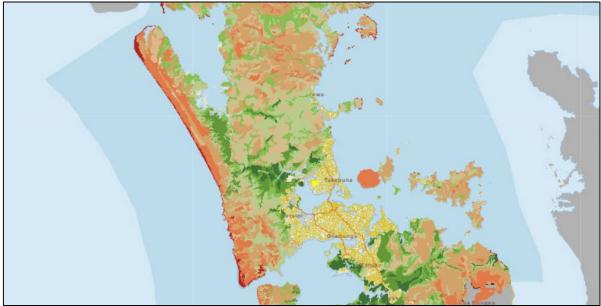


Figure 19: Land-use capability map showing high productivity within the Study Area (from Auckland Council)

The topography of the Site is low-lying alluvial plains for the most part, with steeper terrain to the south along the Waitakēre Ranges and to the north along the Riverhead hillcountry. The major drainage catchment is the Kumeū River but the Site also drains to Te Wai Roa ō Kahu (Upper Waitematā Harbour) and to Te Wai ō Pareira (Henderson Creek) via Manutewhau awa. The landscape is predominantly of an open rural (pasture) character but with areas of urban character at Whenuapai, Westgate, Kumeū and Huapai. There are no Outstanding Natural Features (ONFs) or Outstanding Natural Landscapes (ONLs) within or immediately adjoining the Site footprint, although ONLs are within the western part of the Study Area.

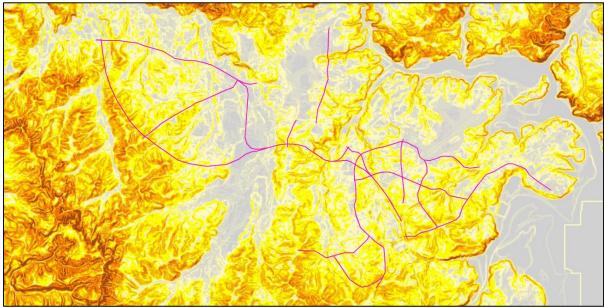


Figure 20: Map showing slope within the Study Area

11.0 Natural Resources and Ecology

Freshwater

The natural resources and ecology of the wider Study Area include significant freshwater ecosystems and habitat. This includes Te Waitematā, Te Wai ō Pareira (Henderson Creek), Wai Whauwhaupaku (Swanson Stream), Manutewhau awa (Massey-West Harbour), Wai huruhuru manawa (Massey), Wai Totora (Westgate), Wai Whakataratara (Westgate), Ngongetepara awa (Westgate-Whenuapai), Waiteputa (Westgate-Massey West), Taketakemanu awa (Westgate-Taupaki), Rawawaru (Whenuapai), Te Waiarohia ō Ngariki (Whenuapai), Pītoitoi awa (Brigham Creek), Te Wai Roa ō Kahu (Upper Waitematā Harbour), Rangitōpuni awa (Riverhead), Pakinui awa (Taupaki), Te Awa Kumeū, Ahukāramuramu awa (Waimauku), Waikoukou Awa (Waimauku), and the Te Awa Kaipara. In addition there are likely to be numerous wetland areas across the Study Area and Site. Freshwater and marine SEAs in the Study Area include SEA-M2-57b, SEA-M2-55a, and SEA-M2-56a.

The Site directly crosses a large number of (around 26 notable) rivers, streams or major tributaries most notably Te Waiarohia ō Ngariki, Wai Totora, Ngongetepara awa, Kumuū awa, and Ahukāramuramu awa.

The freshwater ecosystems within these waterways and waterbodies is not yet assessed (at the time of writing an ecological assessment was not available) but it is possible to include:

- indigenous fishes including tuna (eel), toitoi (bully), Īnanga, and kokopu
- indigenous freshwater invertebrates including mayflies, mud snails, dragonflies, freshwater mussels (kākahi), kōura (freshwater crayfish), and many others

Terrestrial

The natural resources and ecology of the wider Study Area include significant terrestrial ecosystems and habitat. This includes the Waitākere Ranges indigenous forest (Te Wao Nui ā Tiriwa) to the south and smaller pockets of vegetation Significant Ecological Area to the west and northwest. The Waitākere SEAs include old growth broadleaf and conifer forest of high biodiversity and habitat value across many endemic plant, fungi, invertebrate and vertebrate species. SEAs include: SEA_T_7036, SEA_T_2650, SEA_T_6381, SEA_T_6674, SEA_T_6743, SEA_T_2648, SEA_T_4866, and SEA_T_6540. There are also a number of scheduled trees within the Study Area and along the Site corridors including pohutakawa, kauri, rimu, tōtora, and karaka.

Generally, however the area is typified by exotic vegetation including large areas of ryegrass, kikuyu grass, and other pasture grasslands, as well as exotic trees including poplars, willow and other species but particularly pine at Riverhead.

The terrestrial ecosystems across the area are not yet assessed (at the time of writing an ecological assessment was not available) but it is possible to include:

- indigenous plants including tī kouka, harakeke (flax), kauri, mānuka, kānuka, kahikatea, rārahu (braken fern), ponga, totora, rimu, pohutakawa, karaka, miro, tawa, mosses, liverworts and hornworts
- indigenous fungi including wood ear, sooty black mould, blue mushroom, and puffball
- indigenous herpetofauna including green gecko, forest gecko, copper skink, ornate skink, and although unlikely the Hochstetter's frog is found in the adjacent Waitākere Ranges

 indigenous invertebrates including earthworms (including giant North Auckland variety), wētā, grasshopper and many others

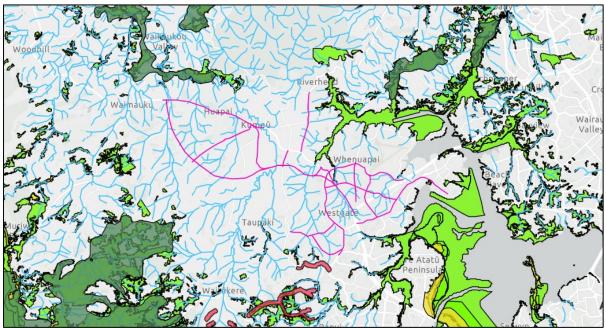


Figure 21: Map showing streams, significant ecological areas, and other natural features

Avifauna

As the Study Area covers marine, freshwater, forest, low-land plains, and hillcountry there are a wide variety of bird species as well as the native long-tailed bat (pekapeka) that interact with the area. The forested slopes of the Waitākere Ranges and Riverhead provide important roosting opportunity for bats as noted in the preliminary bat assessment carried out by the Client within a 10km radius of the Site. There are even several recordings of bats within the area we know as Ahipekapeka (west of Brigham Creek). The indigenous forest and SEAs to the south and west provide habitat for native birds such as tui, pīwakawaka, kereu, and ruru. The hillcountry and open plains provide habitat for kahu. The streams and coastal areas provide habitat for species such as tarāpuka (gull), takapu (gannet), kōtare (kingfisher), tōrea-pango (oystercatcher), poaka (stilts), pūtangitangi (paradise duck) and pūkeko. Importantly, several kawau (black shag or cormorant) have been spotted around Waimauku, Westgate, and the Upper Waitematā Harbour. The kawau is considered the kaitiaki of Te Kawerau's rohe.

Ref. TKITT000054

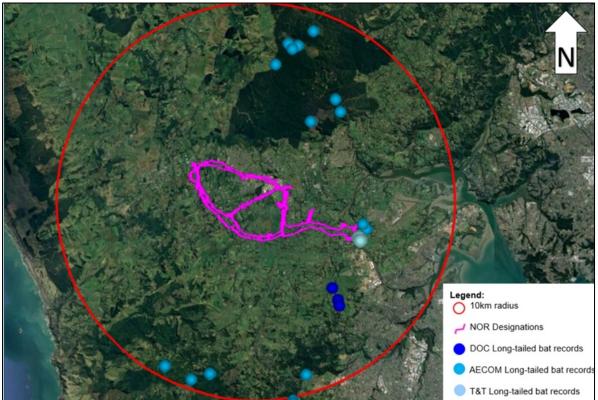


Figure 22: Map showing bat sightings within 10km of the Site (supplied by Client)

Figure 23: Image of a kawau (from NZ Birds Online)

IMPACT ASSESSMENT

15.0 Potential Direct Impacts

Direct impacts are likely to occur from bulk earthworks (permanent adverse), stream realignment (permanent adverse), works within a waterway (temporary and permanent adverse), construction and operational discharges to waterways (temporary and permanent adverse and beneficial), vegetation clearance (temporary and permanent adverse), noise pollution during construction of the Site network and operation of the ASH (temporary and permanent adverse), light pollution (permanent adverse), and changes to the setting of cultural sites (permanent adverse and beneficial),

16.0 Potential Indirect Impacts

Indirect impacts are likely to occur from vegetation clearance causing erosion (temporary adverse), severing habitat for terrestrial species during operation of ASH (permanent adverse), and subsequent large-scale urban intensification of the catchment enabled by the ASH (permanent adverse).

17.0 Potential Cumulative Impacts

Cumulative impacts are likely to occur from hydrological changes to the catchment (permanent adverse), net changes in stormwater contaminant discharges or quality (permanent adverse and beneficial), changes to the setting of and between wāhi tohu (permanent adverse), subsequent large-scale urban intensification of the catchment enabled by the ASH (permanent adverse), light pollution (permanent adverse), changes to the cultural landscape (permanent adverse and beneficial), and increased walking and cycling opportunities linked to human access and health and emissions (permanent beneficial).

18.0 Summary of Effects

Specific potential impacts identified as relating to the proposed project are included in Table 3 below:

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
Waimauku- Whenuapai Cultural Landscape	Direct, indirect and cumulative permanent adverse construction and operation impacts arising from ASH including: Built form of ASH within rural setting Changes to the setting of and between wāhi tohu (visual, artificial lighting at night, audial, aural, spiritual)	Major Adverse	Large Adverse	Urban and Landscape Design Management Plan Cut and fill batters shaped to a natural profile. Boundary fences and planting to be reinstated for partially affected properties. A planting plan, including limiting removal of noteworthy trees	Moderate Adverse direct effects but Large Adverse indirect and cumulative effects	Cultural Design Plan including funding for implementa tion. Scheduling (schedule 12 AUP) all identified Māori Sites of Significanc e within Study Area through a Private

Table 3: Summary of potential cultural impacts

Ref. TKITT000054

48

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
Name	impactChanges to the rural character necessitated through subsequent large- scale urban intensification of the catchment enabled by the ASHPotential direct permanent beneficial operation impacts arising 	Level of Impact	Significance of effect	mitigationand vegetationwherepracticable.Wherepracticableretainingstockpiles andreusing soil onsite.ConstructionNoise andVibrationManagementPlan.Site SpecificConstructionManagementSite SpecificConstructionManagementSchedulePre and PostBuildingCondition		Offsetting Plan Plan Change. Establishm ent of a Cultural Heritage and Offset fund and trust be established for the benefit of TKāM and NWōK with regard to the conservatio n, interpretatio n, and education regarding taonga within the
	0			Condition Survey where vibration may exceed certain criteria. Road surface material, option that reduces noise at the source Best practise rail		U U
				design and installation Installation of noise barriers Building modification mitigation should above mitigation not achieve desired outcome		Zone) RFR in favour of TKaM placed on any land within the Designation that may eventually be
				Ecological and landscape planting will help integrate the corridors with rural areas. Alongside the limited access points, the ecological and landscaping will		disposed of by NZTA

49

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
				create a green buffer which will reinforce rural areas and will help avoid future development in rural areas.		
Whenua (productive soils)	Direct, indirect and cumulative permanent adverse construction impacts arising from: Bulk earthworks primarily from ASH but also from the wider Strategic and Local Network Removal of regionally significant high productivity soils (mauri) necessitated through subsequent large- scale urban intensification of the catchment enabled by the ASH	Major Adverse	Large Adverse	Where practicable retaining stockpiles and reusing soil on site. Cut and fill batters shaped to a natural profile.	Large Adverse	Topsoil Conservati on Plan Permanent exclusion of urban intensificati on (Rural Zone) west of ASH and low density east of ASH (CSL Zone)
Wai Māori (fresh water)	Direct, indirect and cumulative temporary and permanent adverse construction and operation impacts arising from: Earthworks within proximity to watercourses (particularly ASH) Vegetation clearance along watercourse embankments Significantly increased impervious area within sensitive receiving water	Moderate Adverse	Large Adverse	Construction Environmental Management Plans. Operational impacts worked through and resolved during detailed design by optimising the design of culverts and bridges and new channels to minimise flood effects upstream and downstream of crossings. Vegetated swales Stormwater wetlands	Moderate Adverse	Permanent exclusion of urban intensificati on (Rural Zone) west of ASH and low density east of ASH (CSL Zone)

50

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
	environment	P		Stormwater		
	(primarily ASH)			ponds		
	Changes to			Tree pits/rain		
	hydrology of the			gardens on		
	catchment resulting			routes with		
	from new roads			walking/cycling		
	and culverts					
	(primarily ASH)			Use of bridges		
				where possible (instead of		
	Increased risk of			culvert-		
	operational			reclamation		
	discharges of			systems)		
	heavy metals and					
	other contaminants					
	from traffic enabled					
	by the ASH					
	Changes to the					
	landuse and					
	discharge type					
	necessitated					
	through					
	subsequent large- scale urban					
	intensification (and					
	net impervious					
	area) of the					
	catchment enabled					
	by the ASH					
		Minor				
	Potential direct and	Beneficial	Moderate			
	cumulative	(Non-	Beneficial			
	permanent	ASH)	(Non-ASH)			
	beneficial impacts					
	relating to the Local					
	Network (Don Buck					
	Rd, Fred Taylor Dr,					
	Coatesville-					
	Riverhead HWY, Brigham Creek Rd,					
	Hobsonville Rd,					
	New Spedding Rd,					
	Mamari Rd, Trig					
	Rd) and existing					
	corridor Strategic					
	Network (Main Rd,					
	RTC, Access Rd)					
	upgrades arising					
	from:					
	Improved					
	stormwater					
	management					
	upgrades including					
	swales, wetlands,					1

Name	Summary of	Level of	Significance	Proposed	Residual	Offsetting
	impact	Impact	of effect	mitigation	effect	Onsetting
	ponds, and tree pits/rain gardens					
Waitematā ō Kahumatamomoe	No change to low potential negligible net or cumulative adverse impact resulting from works within catchment. On balance likely neutral once up- stream mitigations in place.	Neutral	Neutral	Nil	Neutral	Nil
Te Wai Roa ō Kahu	No change to low potential negligible net or cumulative adverse impact resulting from works within catchment. On balance likely neutral once up- stream mitigations in place.	Neutral	Neutral	Nil	Neutral	Nil
Wai ō Pareira	No change to low potential negligible net or cumulative adverse impact resulting from works within catchment. On balance likely neutral once up- stream mitigations in place.	Neutral	Neutral	Nil	Neutral	Nil
Te Awa Mānutewhau	Direct temporary and permanent construction and operation adverse impact from: Upgrades to Don Buck Rd Wetland 2 occurring directly within awa Slight increase in net impervious surface	Minor Adverse	Moderate Adverse	Refer to 'Wai Māori' mitigations above	Minor Adverse	Riparian planting for 200m in both directions from impact Mauri health monitoring for 5 years
Te Waiarohia ō Ngariki	Direct and cumulative permanent construction and	Minor Adverse	Moderate Adverse	Refer to 'Wai Māori' mitigations above	Minor Adverse	Riparian planting for 200m in both

52

Name	Summary of	Level of	Significance	Proposed	Residual	Offsetting
	impact	Impact	of effect	mitigation	effect	J
	operation adverse impacts resulting from upgrades to southeast end of Brigham Creek Road and Trig Road upgrades from:					directions from impact Mauri health monitoring for 5 years
	Construction earthworks in proximity to the awa					
	Works within the awa to install new culverts					
	Permanent fill batter slopes adjacent to the awa					
	Increase in impervious surface					
	Construction of Hobsonville Rd Wetland 4					
Wai Rawawaru	No change	Neutral	Neutral	Nil	Neutral	Nil
	Direct and cumulative permanent construction and operation adverse impacts resulting from upgrades to southeast end of Brigham Creek Road and RTC/RAMC from:	Minor Adverse	Moderate Adverse	Refer to 'Wai Māori' mitigations above New bridges over the span of the awa thus avoiding direct works in stream bed/banks	Minor Adverse	Cultural Design Riparian planting for 200m in both directions from impact Mauri health
Wai Totara	Construction earthworks in proximity to the awa					health monitoring for 5 years
	Permanent fill batter slopes adjacent to the awa					
	New section of road (New Spedding Rd and RTC) and net					

53

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
	increase in impervious surface					
Te Awa Ngongetepara	Direct and cumulative temporary and permanent construction and operation adverse impacts resulting from upgrades to northwest end of Brigham Creek Road and from new RTC alignment from:Construction earthworks in proximity to the awaSite compound, 	Minor Adverse	Moderate Adverse	Refer to 'Wai Māori' mitigations above Proposed new RTC overbridge to avoid works within stream	Minor Adverse	Cultural design Riparian planting for 200m in both directions from impact Mauri health monitoring for 5 years
Waiteputa	Direct permanent construction and operation adverse impacts resulting from the new Redhills Arterial from:Construction earthworks in proximity to the awaPermanent fill batter slopes adjacent to the awaNew section of road and net increase in impervious surface	Minor Adverse	Moderate Adverse	Refer to 'Wai Māori' mitigations above Lighting design to reduce light spill, buffer planting,	Minor Adverse	Cultural Design Riparian planting for 200m in both directions from impact Mauri health monitoring for 5 years

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
Te Awa Pītoitoi	Direct and cumulative temporary and permanent construction and operation adverse impacts resulting from upgrades to northwest end of Brigham Creek Road from: Construction earthworks in proximity to the awa Site compound, stockpile, sediment pond, and lay-down area adjacent to awa Increase in impervious surface	Negligible Adverse	Minor Adverse	Refer to 'Wai Māori' mitigations above	Negligible Adverse	Riparian planting for 200m in both directions from impact Mauri health monitoring for 5 years
Te Awa Rangitōpuni	No change	Neutral	Neutral	Nil	Neutral	Nil
Te Awa Pakinui	Direct permanent operation adverse impact to the setting of the awa and its context which will be changed with the introduction of the new RTC and bridge about 250m to the north.	Negligible Adverse	Minor Adverse	Urban and Landscape Design Management Plan	Minor Adverse	Cultural design
Te Awa Kumeū	Direct and cumulative construction and operation adverse impacts from: Works within the awa and its tributaries may impact the taniwha RTC and ASH new alignment significant earthworks in proximity to the	Major Adverse	Large Adverse	Refer to 'Wai Māori' mitigations above Proposed new RTC/ASH overbridge to avoid works within stream	Large Adverse	Avoid realignment of river Minimise earthworks in proximity Constructio n compounds set back 500m from river Cultural design

55

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
	awa, particularly cut on east side RTC and ASH permanent fill batter slopes adjacent to the awa ASH stormwater wetland 4, 5 and 6, and Main Rd/RTC Wetland 2 in close proximity to awa RTC and ASH construction compounds in proximity to the awa Main Rd construction compound near east side of existing SH16 bridge RTC and ASH setting impacts from new bridge structures over the awa Works in awa for SH16 temporary road realignment, deconstruction of existing bridge, and construction of new bridge					Riparian planting for 500m in both directions from impact Mauri health monitoring for 5 years Establishm ent of a Cultural Heritage and Offset fund and trust be established for the benefit of TKāM and NWōK with regard to the conservatio n, interpretation n, and education regarding taonga within the Study Area.
Te Awa Ahukāramuramu	Direct and cumulative permanent construction and operation adverse impacts resulting from upgrades to ASH/RTC/Main Rd from:	Minor Adverse	Moderate Adverse	Refer to 'Wai Māori' mitigations above Proposed new RTC/Main Rd bridge to avoid works within stream	Minor Adverse	Cultural Design Riparian planting for 200m in both directions from impact

56

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
	Construction earthworks in proximity to the awa					Mauri health monitoring for 5 years
	Permanent fill batter slopes adjacent to the awa					
	Increase in impervious surface					
	Construction of RTC/SH Wetland 10 and ASH Wetland 15					
Waikoukou	No change	Neutral	Neutral	Nil	Neutral	Nil
Te Awa Kaipara	Indirect and cumulative permanent adverse impacts from up- stream discharges and unlocking further urban intensification	Minor Adverse	Moderate Adverse	Refer to 'Wai Māori' mitigations above	Minor Adverse	Mauri health monitoring for 5 years
Native Ngahere and Rākau	No change	Neutral	Neutral	Nil	Neutral	Nil
SEA and Rakau within or adjacent to Site Footprint	Direct permanent construction adverse impacts relating to works near Brigham Creek SEA and other native vegetation along stream corridors	Minor Adverse	Minor Adverse	A planting plan, including limiting removal of noteworthy trees and vegetation where practicable.	Neutral	Nil
Native Fungi within or adjacent to Site Footprint	Direct permanent construction adverse impacts relating to earthworks, although scale of impact unknown as no assessments	Negligible Adverse	Negligible Adverse	Nil	Negligible Adverse	Include fungi identificatio n in ecological assessmen ts
Native Fishes within or adjacent	Direct and cumulative temporary and permanent construction and	Moderate Adverse	Moderate Adverse	Nil	Moderate Adverse	Fresh water ecological manageme nt plan
to Site Footprint	operation adverse impacts from:					Use of fish passage design

57

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
	Works within waterways that could cause injury, death or displacement					Mauri health monitoring for 5 years
	Realignment of Kumeū river could cause injury, death or displacement					
	Installation of culverts					
	Sediment and other construction discharges					
	Increase in impervious surface and related discharges					
Native Invertebrates within or adjacent to Site Footprint	Direct permanent construction and operation adverse impacts relating to:	Negligible Adverse	Negligible Adverse	Nil	Negligible Adverse	Include terrestrial invertebrate identificatio n in
	Earthworks					ecological assessmen ts
	Light pollution					
	although scale of impact unknown as no assessments					
Native herpetofauna within or adjacent to Site Footprint	Direct permanent construction and operation adverse impacts relating to:	Moderate Adverse	Minor Adverse	Nil	Minor Adverse	Lizard manageme nt plan
	Earthworks that could cause injury, death or displacement,					
	Removal of vegetation including rank grasses that could cause displacement					
	Segmentation of the landscape/habitats					

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
	by the ASH, although scale of impact unknown as no assessments					
Native Avifauna within or adjacent to Site Footprint	Direct, indirect and cumulative temporary and permanent construction and operation adverse impacts from: Removal of trees and vegetation along Site corridor leading to displacement Bird strike from ASH in proximity to Waitākere Ranges Light pollution from ASH and subsequent urban intensification Loss of open habitat for Kahu (Hawks)	Minor Adverse	Minor Adverse	Impact management for TAR birds incl. North Island fernbird, banded rail and spotless crake to be incorporated into detailed design.	Minor Adverse	Bird Manageme nt Plan Permanent exclusion of urban intensificati on (Rural Zone) west of ASH and low density east of ASH (CSL Zone)
Native Bats	Direct, indirect and cumulative temporary and permanent construction and operation adverse impacts from: Removal of trees and vegetation along Site corridor leading to displacement Light pollution from ASH and subsequent urban intensification	Minor Adverse	Minor Adverse	Bat management plan to be developed and incorporated into detailed design. Significant ecological planting to mitigate impacts on bats has been incorporated into the designation footprint. This will lead to the enhancement of riparian areas and will green much of the corridor.	Minor Adverse	Bat manageme nt plan
Nga Rau Pou ā Maki (northern ridgeline)	Direct and cumulative permanent operation adverse impacts to the setting of the	Moderate Adverse	Large Adverse	Urban and Landscape Design Management Plan	Large Adverse	Establishm ent of a Cultural Heritage fund and trust be

59

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
	northern ranges from ASH and the subsequent urban intensification of the lands below					established for the benefit of TKāM and NWōK with regard to the conservatio n, and education regarding taonga within the Study Area. Permanent exclusion of urban intensificati on (Rural Zone) west of ASH and low density east of ASH (CSL
Te Ara Pukewhakataratar a	Direct and cumulative permanent construction adverse impacts arising from Don Buck Rd further earthworks and modification of Pukewhakataratara Ridgeline	Negligible Adverse	Minor Adverse	Nil	Minor Adverse	Zone) Cultural design plan to recognise the site
Pukewhakataratar a	Direct and cumulative permanent construction adverse impacts arising from Don Buck Rd further earthworks and modification of Pukewhakataratara	Minor Adverse	Moderate Adverse	Nil	Moderate Adverse	Minimise earthworks Cultural design plan to recognise the site Enter the site in Schedule 12 as a Māori Site of Significanc e

60

Name	Summary of impact	Level of Impact	Significance of effect	Proposed mitigation	Residual effect	Offsetting
Wai ō Pareira Kāinga	No change	Neutral	Neutral	Nil	Neutral	Nil
Te Mānutewhau Kāīnga	No change	Neutral	Neutral	Nil	Neutral	Nil
Te Rawawaru Kāīnga	No change	Neutral	Neutral	Nil	Neutral	Nil
Te Ngongetepara Kāīnga	No change to negligible adverse direct and cumulative effects from earthworks and unlocking further urban intensification	Negligible Adverse	Minor Adverse	Nil	Minor Adverse	Cultural design
Te Ahipekapeka	Direct and cumulative permanent construction and operation adverse impacts arising from Coatesville- Riverhead HWY further earthworks and impervious surface	Negligible Adverse	Minor Adverse	Nil	Minor Adverse	Cultural design plan to recognise the site
Turanga ō Kawau	No change	Neutral	Neutral	Nil	Neutral	Nil
Maraeroa	No change	Neutral	Neutral	Nil	Neutral	Nil
Pītoitoi Kāīnga	No change	Neutral	Neutral	Nil	Neutral	Nil
Taurangatira	No change	Neutral	Neutral	Nil	Neutral	Nil
Te Tōangaroa	No change	Neutral	Neutral	Nil	Neutral	Cultural design
Wai paki i rape ō Ruarangi	Direct temporary construction adverse impacts from: Main Rd construction compound near east side of existing SH16 bridge	Major Adverse	Large Adverse	Nil	Large Adverse	Cultural design

61

Name	Summary of	Level of	Significance	Proposed	Residual	Offsetting
	impact	Impact	of effect	mitigation	effect	onsetting
	Main Rd/RTC Wetland 2 in close proximity to awa					
	Works in awa for SH16 temporary road realignment, deconstruction of existing bridge, and construction of new bridge					
Tuuraki awatea	No change to negligible adverse setting and temporary down- stream impacts.	Negligible Adverse	Minor Adverse	Refer to 'Wai Māori' mitigations above	Neutral	Nil
Pukeharakeke	No change	Neutral	Neutral	Nil	Neutral	Nil
Te Ihumatão	No change to negligible adverse cumulative effects from unlocking further urban intensification	Neutral	Neutral	Nil	Neutral	Nil
Te Patumāhoe Kāīnga	No change	Neutral	Neutral	Nil	Neutral	Nil
Kahutōpuni	No change	Neutral	Neutral	Nil	Neutral	Nil
Te Ara Rimu	No change	Neutral	Neutral	Nil	Neutral	Nil
Waimauku	No change to negligible adverse cumulative effects from unlocking further urban intensification within a flood-prone area	Negligible Adverse	Minor Adverse	Nil	Minor Adverse	Permanent exclusion of urban intensificati on (Rural Zone) west of ASH and low density east of ASH (CSL Zone)
Taumata	No change to negligible adverse setting impacts.	Neutral	Neutral	Nil	Neutral	Nil
Kāhukurī	No change	Neutral	Neutral	Nil	Neutral	Nil
Treaty Settlement Land	No change	Neutral	Neutral	Nil	Neutral	Nil

62

Table 4: Summary of Cultural Effects

Measures	Count
Significance of Effect ::	
Neutral	25
Negligible Beneficial	0
Minor Beneficial	1*
Moderate Beneficial	1*
Large Beneficial	0
Negligible Adverse	3
Minor Adverse	15
Moderate Adverse	3
Large Adverse	5

*Beneficial impacts were noted for the non-ASH elements in terms of landscape and water assuming all mitigations and offsets implemented, but overall (with ASH) the impact was adverse.

CONCLUSION

The North West Project proposes to upgrade and develop new sections of the local and strategic transport network extending from Hobsonville/Whenuapai through Westgate and Brigham Creek to Kumeū, Taupaki and Waimauku. A significant element of the project is the Alternative State Highway (ASH) from Brigham Creek to western Huapai. The project aims to support urban growth in the area and to provide people with genuine travel choices, to address climate change by achieving transformative mode shift, and to address transport safety issues. The project sits within and across an important cultural landscape at the crossroads between the Hikurangi, Waitematā, and Kaipara Valley takiwa. It is the northern part of Te Kawerau ā Maki's heartland and contains a number of significant cultural sites and resources from our most ancient traditions through to our major Treaty settlement redress. Sited between Nga Rau Pou ā Maki (the Waitākere Ranges) and Rangitōpuni (Riverhead Forest) on the alluvial plains of the Kumeū and Kaipara valleys, the project covers an area of numerous streams and the most productive soils in the northern half of the Auckland region. The valley is also protected by the taniwha Tangihua.

This CIA identified a total of 51 cultural sites and resources, ranging in relative value from low to predominantly high, and encompassing productive soil, rivers, landmarks, sacred sites, historical sites, traditional walking routes, and flora and fauna. The project was assessed against these sites and resources resulting in the documenting of eight significant adverse effects, 15 minor adverse effects, three negligible adverse effects, one potential significant beneficial effect*, one minor beneficial effect*, and 25 neutral effects. Where adverse effects were identified offsets (or further mitigation) were suggested. The significant adverse effects relate to the removal of productive topsoil, impacts to fresh water (including the taniwha), impacts to the Kumeū River (including the taniwha), impacts to fish species, setting impacts to Nga Rau Pou ā Maki, impacts to Pukewhakataratara, impacts to Wai paki i rape ō Ruarangi, and impacts to the cultural landscape.

While some of the cumulative impacts identified and measured, in particular future urban intensification. cannot be tied singularly to the project, it is reasonable to include them in this CIA given the strategic scope of the project and its aspirations to unlock urban development and support urban growth. Many harms can be mitigated to some degree or offset or compensated. However, at a strategic level, it is reasonable to question the wisdom of supporting urban growth in a flood prone catchment that holds the most regionally significant topsoils in northern Auckland, and that (through the ASH) places high risk of urbanising the fringes of the northern Waitākere Ranges. The destruction of a food bowl for the benefit of more concrete warehouses seems to be the opposite of sustainability or forward planning. The removal of highly organic topsoils at such a scale certainly is at odds with the project aim of addressing climate change. It is the role of iwi to be kaitiaki of the mauri of the resources in their rohe for the inter-generational benefit of all. The sensitivity of the receiving environment here is witnessed by the fact we hold there to be a taniwha protecting it. Te Kawerau ā Maki has maintained for half a decade now that the Crown (in all its varying forms including Council and NZTA) would be better off working with us to plan for growth at Riverhead where the soils are far less productive and flood prone and we have the scale of land to strategically plan for inter-generational wellbeing. It is frustrating to watch more of our taonga risk disappearing due to the acts of the Crown.

Due to the sensitivities of the landscape, we are not supportive of the ASH component of the project. We would prefer that the existing SH16 corridor be widened. This is a choice between existing homes and the environment. We choose to support te taiao. Should it (the ASH) proceed against our opposition and advice we have suggested limits and offsets to what that might look like. Our preference is for the Crown to work with Te Kawerau ā Maki on strategic and inter-generational growth in ways where we both benefit and where the environmental impacts are lower.

Ref. TKITT000054

618

RECOMMENDATIONS

	Table 5	: Recommenda	tions and outco	me alignment		
No.	Recommendation	TKaM Strategic Value alignment	IMP policy alignment	Legislative alignment	AUP policy alignment	Other policy alignment
1	Te Kawerau ā Maki do not oppose the proposal, with the exception of the ASH component which we do oppose (and prefer SH16 be widened instead), otherwise provided that the mitigations and offsets discussed are incorporated – we desire notice of the outcome of the application and the final designation conditions	Mana Motuhake				
2	Undertake further discussions and work to enable TKaM participation in design, construction and operation phases of the project e.g. through project board position and/or MOU and including procurement or training opportunities	Mana Motuhake, Kaitiakitanga , Whanaungat anga, Auaha	2.2 (integration of tikanga)	RMA 6(e), 7(a), 8	B6.2.2(1) (participatio n), B6.3.2(1) (identify values) B6.3.2(2) (integrate tikanga), B6.3.2(3) (AEE to include CIA), B6.3.2(6) (decisions to reflect cultural impacts), B6.5.2(7) (cultural landscapes in structure plans), B6.5.2(9) (cultural design of infrastructur e)	UNDRIP, NPSFW, NZCPS, ICOMOS
3	Avoid realignment of the Kumeū River as a matter of spiritual integrity	Kaitiakitanga	2.2 (integration of tikanga), 4.2.2 (cultural heritage)	RMA 6(e), 7(a)	B6.3.2(2) (integrate tikanga), B6.3.2(6) (decisions to reflect cultural impacts)	UNDRIP, ICOMOS, NPSFW
4	Should the ASH proceed against our advice, permanent exclusion of urban intensification (Rural Zone to remain) west of ASH and low density east of ASH (CSL Zone) should be provided	Kaitiakitanga	2.2 (integration of tikanga), 4.1.2 (cumulative effects),	RMA 6(e), 7(a), 8	B6.3.2(1) (identify values) B6.3.2(2) (integrate tikanga),	UNDRIP

Ref. TKITT000054

No.	Recommendation	TKaM Strategic Value alignment	IMP policy alignment	Legislative alignment	AUP policy alignment	Other policy alignment
			4.2.2 (cultural heritage), 4.7.2 (landscape)		B6.3.2(6) (decisions to reflect cultural impacts), B6.5.2(7) (cultural landscapes in structure plans)	
5	Avoid where possible significant earthworks on the areas of cultural value (sites) identified in this report, and where not possible, work with TKaM on design and construction monitoring that incorporates our tikanga	Kaitiakitanga	2.2 (integration of tikanga), 4.2.2 (cultural heritage), 4.3.2 (koiwi), 4.9.2 (cultural design)	RMA 6(e), 7(a), 8; HNZPTA s45	B6.2.2(1) (participatio n), B6.3.2(2) (integrate tikanga), B6.5.2(9) (cultural design of infrastructur e), E11 and E12 rules (ADP)	UNDRIP, ICOMOS
6	Cultural Heritage and Offset fund and trust be established for the benefit of TKāM and NWōK with regard to the conservation, interpretation, and education regarding taonga within the Study Area. The budget for this fund will need to be negotiated but must be meaningful	Kaitiakitanga	2.2 (integration of tikanga), 4.2.2 (cultural heritage), 4.9.2 (cultural design)	RMA 6(e)	B6.2.2(1) (participatio n), B6.3.2(1) (identify values) B6.3.2(2) (integrate tikanga), B6.5.2(7) (cultural landscapes in structure plans), B6.5.2(9) (cultural design of infrastructur e)	UNDRIP, ICOMOS
7	Work with TKaM on water sensitive design that incorporates our tikanga, noting the importance of not mixing waters and soil and plant filtration, and giving effect to Mana ō te Wai, and including elements such as riparian planning buffers and long-term mauri monitoring	Kaitiakitanga , Mātauranga	2.2 (integration of tikanga), 4.4.2 (managemen t of water), 4.5.2 (coastal)	RMA 6(e), 7(a), 8	B6.2.2(1) (participatio n), B6.3.2(1) (identify values) B6.3.2(2) (integrate tikanga), B6.5.2(9) (cultural design of infrastructur e)	UNDRIP, NPSFW, NZCPS

66

No.	Recommendation	TKaM Strategic Value alignment	IMP policy alignment	Legislative alignment	AUP policy alignment	Other policy alignment
8	Work with TKaM on ecologically sensitive design that incorporates our tikanga, including eco- sourced vegetation, a 100% native plant commitment, habitat enhancement, fish passages, and green corridors, and ensure and ecological offsetting framework is designed in partnership with TKaM	Kaitiakitanga , Mātauranga	2.2 (integration of tikanga), 4.7.2 (landscape), 4.8.2 (flora and fauna), 4.9.2 (cultural design)	RMA 6(e), 7(a), 8	B6.2.2(1) (participatio n), B6.3.2(1) (identify values) B6.3.2(2) (integrate tikanga)	UNDRIP
9	Develop in conjunction with TKaM an ecological restoration and management plan for the wetlands and streams that removes pests, monitors water, biodiversity and mauri quality including with cultural indicators, and includes enhancements such as native riparian planting	Kaitiakitanga	2.2 (integration of tikanga), 4.4.2 (managemen t of water), 4.7.2 (landscape), 4.8.2 (flora and fauna), 4.9.2 (cultural design)	RMA 6(e), 7(a), 8	B6.2.2(1) (participatio n), B6.3.2(1) (identify values) B6.3.2(2) (integrate tikanga)	UNDRIP, NPSFW, NZCPS
10	Work with TKaM on a darkness sensitive design that incorporates our tikanga, and limits the degree of light pollution generated	Kaitiakitanga	2.2 (integration of tikanga), 4.1.2 (cumulative effects), 4.7.2 (landscape)	RMA 6(e), 7(a)	B6.2.2(1) (participatio n), B6.3.2(1) (identify values) B6.3.2(2) (integrate tikanga)	UNDRIP, NZCPS
11	Work with TKaM on cultural design incorporation and interventions, such as ensuring inter- and intra- cultural site visibility and settings is maintained, undertaking place naming and educational and physical (artistic) interpretation of cultural sites and history, and opportunity to input to the built form of elements of the project (e.g. bridges)	Kaitiakitanga , Auaha, Mātauranga	2.2 (integration of tikanga), 4.1.2 (cumulative effects), 4.2.2 (cultural heritage), 4.7.2 (landscape), 4.9.2 (cultural design)	RMA 6(e)	B6.2.2(1) (participatio n), B6.3.2(1) (identify values) B6.3.2(2) (integrate tikanga), B6.5.2(9) (cultural design of infrastructur e)	ICOMOS
12	Actively support aspirations of TKaM to enter cultural sites within the Study Area onto the Auckland Council schedule of Sites of Significance to Mana Whenua, potentially through a private plan change	Kaitiakitanga	4.2.2 (cultural heritage), 4.7.2 (landscape)	RMA 6(e), 7(a), 8	B6.3.2(1) (identify values), B6.5.2(7) (cultural landscapes in structure plans/plan changes)	ICOMOS

67

No.	Recommendation	TKaM Strategic Value alignment	IMP policy alignment	Legislative alignment	AUP policy alignment	Other policy alignment
13	Develop and implement a Topsoil Conservation Plan	Kaitiakitanga	2.2 (integration of tikanga), 4.1.2 (cumulative effects)	RMA 6(e), 7(a), 8	B6.3.2(1) (identify values) B6.3.2(2) (integrate tikanga), B6.3.2(6) (decisions to reflect cultural impacts), B6.5.2(7) (cultural landscapes in structure plans), B6.5.2(9) (cultural design of infrastructur e)	UNDRIP
14	In addition to the ecological management plan and topsoil management plan, TKāM should co-develop an urban/landscape design management plan and heritage management plan	Kaitiakitanga	4.2.2 (cultural heritage), 4.7.2 (landscape)	RMA 6(e), 7(a), 8	B6.2.2(1) (participatio n), B6.3.2(2) (integrate tikanga), B6.3.2(6) (decisions to reflect cultural impacts), B6.5.2(7) (cultural landscapes in structure plans)	UNDRIP, ICOMOS
15	Cultural monitoring, including pre-works cultural inductions, and the monitoring of cultural sites and resources for the construction period of the project, should be resourced at the cost of the Client	Kaitiakitanga , Whanau Mātauranga Māori	2.2 (integration of tikanga)	RMA 6(e), 7(a)	B6.2.2(1) (participatio n), B6.3.2(2) (integrate tikanga)	UNDRIP
16	Any lands within the designation that NZTA may wish to dispose of in the future should first be offered to TKaM to provide opportunity to re-acquire whenua alienated from TKaM	Mana Motuhake				

REFERENCES

Murdoch, G. (2011). *Te Kawerau ā Maki Claim Overview Report*. Unpublished Report. Taua, T.W. (2009). *He kohikohinga korero mo Hikurangi.* In F. Macdonald and R. Kerr (ed). West – The History Of Waitakere. Random House.