

Milldale Primary School NoR -

Second s92 Transport Response

Prepared for:	Ministry of Education
Job Number:	MED-J015
Issue Date:	24 April 2020
Prepared by:	Shane Ingley, Senior Transportation Engineer; Dave Smith, Technical Director
Reviewed by:	Jo Draper, Associate Transportation Planner

1. Background

Auckland Council has issued a second request for further information in the form of a technical note prepared by Martin Peake dated 27 March 2020, in which the initial s92 and responses were independently reviewed. Some additional queries and clarifications were raised in relation to the transport aspects of the proposal to designate a site for educational purposes within the Milldale development precinct. These queries are listed below in italics, along with our response below each query. It is noted that the headings are consistent with those from the first and second RFI requests.

2. S92 queries and response

1) Assessment of operation of the Argent Lane / Road 11 intersection

The second RFI observed that the Sidra intersection modelling in the first RFI response included a high degree of saturation and extensive queue lengths for the full development scenario with modified demands on the Road 11 eastern approach. Upon review it is acknowledged that the modified demands in the Abley RFI response included double counting of demands for westbound Road 11 traffic, thus ignoring potential additional demand for eastbound Road 11 traffic. As such the modelling presented in the RFI response was overly conservative.

The Stantec modelling upon which it was based already included the school traffic generation, however this appears to have been split across four transport model zones as shown in the excerpt below from Figure 2 of the Stantec memo. This is synonymous with the situation whereby there are multiple school accesses or vehicles pick up and/or drop off children at various locations around the perimeter of the school (which would often be the case where pedestrian accesses are provided on adjoining roads). The impact of assuming the Stantec volumes is that the traffic generation would be distributed across the four model zones pictured to the north of road 11 with network effects spread evenly across the local and wider network.

By contrast the assessment of the school access in our ITA section 5 assumed that the full trip generation was channelled through a single vehicle access at a roundabout on road 11 approx 65m east of Argent Lane. This replicates a worst case scenario where all parking and all pick up and drop off (PUDO) activity occurs within the site through a singular access. It was our intention with the modified assessment in the first RFI to replicate this, however we

T +64 9 486 0898 (Akld)

T +64 3 377 4703 (Chch)

E admin@abley.com

Auckland Level 1, 70 Shortland Street PO Box 613 Auckland 1140 New Zealand Christchurch Level 1, 137 Victoria Street PO Box 36446 Christchurch 8146 New Zealand

www.abley.com

⊿labley

inadvertently added the full westbound demand to the Stantec assessment flows which introduced double counting. Whilst the details of the number and location of pedestrian access to the school are yet to be worked through, in reality some of this activity is likely to occur on neighbouring streets in much the same manner as how the traffic is distributed in the Stantec modelling.

To address this double counting we have re-modelled the Argent Lane/Road 11 roundabout flows in Sidra Intersection based on Stantec flows (potentially a best case scenario and included here unchanged in the Appendix as pages 1 and 2) and include an upper bound or worst case scenario based on our ITA section 5 assessment without the doubling up of flows. This provides a genuine worst case to test queuing from the roundabout and can be seen in the Appendix as pages 3 and 4.

The modelling indicates that the roundabout with upper bound flows operates with LoS A overall and all movements and approaches operating at LoS B or better. The degree of saturation is in the 0.74-0.84 range demonstrating spare capacity and 95th percentile back-of-queue lengths are manageable including no blocking back along the Road 11 approaches.

The second RFI also requested that the Argent Lane / Road 11 intersection be modelled as a signalised intersection which is the anticipated intersection form following four laning of Argent Lane at some stage in the future. This is included in the attached revised Sidra analysis. Whilst we are not aware of a specific intersection design, it is assumed that two through lanes will be provided with exclusive right turn lanes and a left slip lane from Argent Lane north into Road 11. Both Road 11 approaches are assumed to have two approach lanes with exclusive right turn lanes. Pedestrian crosswalks are included on all approaches.

The modelling indicates that the signalised intersection form operates with LoS D overall and all movements and approaches operating at LoS D or better. The degree of saturation is in the 0.68-0.69 (for Stantec network assessment flows) and 0.78-0.81 (for upper bound) range demonstrating spare capacity and 95th percentile back-of-queue lengths are manageable. Crosswalks are provided on all approaches.

On this basis it is concluded that the current roundabout operates satisfactorily under worst-case conditions, and at some stage in the future when the signals are installed as part of the Argent Lane four-laning project, it is evident that a signalised intersection form would also operate satisfactorily under worst-case conditions.

2) Assessment of the Argent Lane / Road 11 intersection with initial roll and full school roll as a roundabout

The response to query 1) also addresses this query as it tests the full school roll scenarios. For clarity the roundabout operates satisfactorily and has residual capacity when the full school roll traffic is loaded, both assuming the Stantec network assessment demands and the worst case scenario demands.

3) Provide an assessment of the amount of over-spill parking from the school site and how this would be managed on the local road network

This will be assessed at the OPW stage, however it is intended to provide the required rate of parking spaces and pickup / drop-off provision within the site, so there will be no over-spill parking as such. What cannot be controlled directly is if people make a decision to use on-street parking (where available) instead of the available parking or PUDO spaces on site, and then walk to the school from there. **This will be managed through proactive Travel Planning to minimise any impacts on the network.** Additionally, it may be appropriate to limit parking along the frontage on Road 11 (for example through broken yellow lines) to avoid parking in locations that would be unsafe or impractical. It is noted in any case that the north side of Road 11 does not have parking bays provided. These options will be explored once an access design is confirmed at OPW stage.

4) Provide details of the access to the ECE and parking arrangements

These access and parking arrangements will be designed at the OPW stage. For some schools ECE access may be separate while for other schools it may be more appropriate and efficient to share a primary access, therefore it is preferred to reserve these design decisions for OPW.

5) Request details of who would be responsible for providing measures such as wider (2.6m wide) footpaths and pedestrian crossing facilities.

These have been included in the roading plans for Milldale. 2.6m wide footpaths are proposed around the school perimeter with a small exception on Argent Lane where some additional space is required for bus stops; these plans are currently in the process of consultation between the developer and Auckland Transport. Crossing facilities are proposed on each road around the school perimeter with locations having been selected with likely desire lines for school access in mind. The developer and the Ministry of Education will be responsible for providing these footpaths and crossing facilities.

Therefore, the provision of these facilities is much more advanced than typical for the Designation stage, however these provisions will still be revisited at the OPW stage to ensure they work well for the final school internal design.

6) Provide details of how coaches would enter the site

Issue resolved.

2.1 SIDRA outputs

Road 11 / Argent Lane roundabout – AM Peak (Full buildout using network volumes)

MOVEMENT SUMMARY

Site: 101 [Milldale Road 11 / Argent Lane Rbout AM]

New Site Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov	Turn	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Tum	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Argent	Lane S										
1	L2	12	1.0	0.242	3.3	LOS A	1.7	11.8	0.46	0.44	0.46	38.3
2	T1	232	1.0	0.242	3.0	LOS A	1.7	11.8	0.46	0.44	0.46	38.9
3	R2	23	1.0	0.242	6.7	LOS A	1.7	11.8	0.46	0.44	0.46	39.0
Approa	ach	266	1.0	0.242	3.3	LOS A	1.7	11.8	0.46	0.44	0.46	38.9
East: I	Road 11	E										
4	L2	28	1.0	0.276	7.9	LOS A	1.8	12.9	0.81	0.84	0.81	36.1
5	T1	23	1.0	0.276	7.6	LOS A	1.8	12.9	0.81	0.84	0.81	36.7
6	R2	128	1.0	0.276	11.3	LOS B	1.8	12.9	0.81	0.84	0.81	36.8
Approa	ach	180	1.0	0.276	10.3	LOS B	1.8	12.9	0.81	0.84	0.81	36.7
North:	Argent	Lane N										
7	L2	168	1.0	0.611	2.8	LOS A	6.8	48.1	0.42	0.36	0.42	38.4
8	T1	679	1.0	0.611	2.5	LOS A	6.8	48.1	0.42	0.36	0.42	39.1
9	R2	16	1.0	0.611	6.2	LOS A	6.8	48.1	0.42	0.36	0.42	39.2
Approa	ach	863	1.0	0.611	2.7	LOS A	6.8	48.1	0.42	0.36	0.42	39.0
West:	Road 12	1 W										
10	L2	6	1.0	0.056	4.4	LOS A	0.3	2.2	0.54	0.55	0.54	37.8
11	T1	28	1.0	0.056	4.1	LOS A	0.3	2.2	0.54	0.55	0.54	38.4
12	R2	16	1.0	0.056	7.8	LOS A	0.3	2.2	0.54	0.55	0.54	38.6
Approa	ach	51	1.0	0.056	5.3	LOS A	0.3	2.2	0.54	0.55	0.54	38.4
All Vel	nicles	1360	1.0	0.611	3.9	LOS A	6.8	48.1	0.48	0.44	0.48	38.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Road 11 / Argent Lane roundabout – PM Peak (Full buildout using network volumes)

MOVEMENT SUMMARY

Site: 101 [Milldale Road 11 / Argent Lane Rbout PM]

New Site Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov	Turn	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	Argent	Lane S										
1	L2	32	1.0	0.626	3.8	LOS A	6.5	46.0	0.64	0.51	0.64	37.9
2	T1	674	1.0	0.626	3.5	LOS A	6.5	46.0	0.64	0.51	0.64	38.6
3	R2	49	1.0	0.626	7.2	LOS A	6.5	46.0	0.64	0.51	0.64	38.7
Appro	ach	755	1.0	0.626	3.8	LOS A	6.5	46.0	0.64	0.51	0.64	38.5
East: I	Road 11	E										
4	L2	2	1.0	0.148	4.4	LOS A	0.9	6.1	0.56	0.65	0.56	37.2
5	T1	21	1.0	0.148	4.2	LOS A	0.9	6.1	0.56	0.65	0.56	37.8
6	R2	113	1.0	0.148	7.8	LOS A	0.9	6.1	0.56	0.65	0.56	37.9
Appro	ach	136	1.0	0.148	7.2	LOS A	0.9	6.1	0.56	0.65	0.56	37.9
North:	Argent I	ane N										
7	L2	124	1.0	0.357	2.8	LOS A	2.7	19.1	0.35	0.37	0.35	38.5
8	T1	316	1.0	0.357	2.5	LOS A	2.7	19.1	0.35	0.37	0.35	39.2
9	R2	23	1.0	0.357	6.2	LOS A	2.7	19.1	0.35	0.37	0.35	39.3
Appro	ach	463	1.0	0.357	2.8	LOS A	2.7	19.1	0.35	0.37	0.35	39.0
West:	Road 11	W										
10	L2	8	1.0	0.094	8.7	LOS A	0.6	4.3	0.83	0.77	0.83	36.2
11	T1	23	1.0	0.094	8.4	LOS A	0.6	4.3	0.83	0.77	0.83	36.8
12	R2	19	1.0	0.094	12.1	LOS B	0.6	4.3	0.83	0.77	0.83	36.9
Appro	ach	51	1.0	0.094	9.8	LOS A	0.6	4.3	0.83	0.77	0.83	36.8
All Vel	nicles	1404	1.0	0.626	4.0	LOS A	6.5	46.0	0.55	0.49	0.55	38.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

This document has been produced for the sole use of our client. Any use of this document by a third party is without liability and you should seek independent traffic and transportation advice. © No part of this document may be copied without the written consent of either our client or Abley Ltd. Please refer to http://www.abley.com/output-terms-and-conditions-1-0/ for our output terms and conditions.

Road 11 / Argent Lane roundabout – AM Peak Upper Bound

MOVEMENT SUMMARY

Site: 101 [Milldale Road 11 / Argent Lane Rbout AM UPPER]

New Site Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov	T	Demand F	-lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Argent	Lane S										
1	L2	12	1.0	0.321	4.7	LOS A	2.3	16.4	0.68	0.63	0.68	37.7
2	T1	232	1.0	0.321	4.5	LOS A	2.3	16.4	0.68	0.63	0.68	38.4
3	R2	40	1.0	0.321	8.1	LOS A	2.3	16.4	0.68	0.63	0.68	38.5
Approa	ach	283	1.0	0.321	5.0	LOS A	2.3	16.4	0.68	0.63	0.68	38.4
East: F	Road 11	E										
4	L2	61	1.0	0.639	14.1	LOS B	6.8	48.2	0.98	1.18	1.34	34.0
5	T1	51	1.0	0.639	13.9	LOS B	6.8	48.2	0.98	1.18	1.34	34.5
6	R2	278	1.0	0.639	17.5	LOS B	6.8	48.2	0.98	1.18	1.34	34.7
Approa	ach	389	1.0	0.639	16.5	LOS B	6.8	48.2	0.98	1.18	1.34	34.5
North:	Argent	Lane N										
7	L2	294	1.0	0.744	3.6	LOS A	10.3	72.7	0.67	0.47	0.67	38.0
8	T1	679	1.0	0.744	3.3	LOS A	10.3	72.7	0.67	0.47	0.67	38.6
9	R2	16	1.0	0.744	7.0	LOS A	10.3	72.7	0.67	0.47	0.67	38.7
Approa	ach	988	1.0	0.744	3.5	LOS A	10.3	72.7	0.67	0.47	0.67	38.4
West:	Road 11	I W										
10	L2	6	1.0	0.095	5.7	LOS A	0.6	4.0	0.68	0.64	0.68	37.5
11	T1	49	1.0	0.095	5.5	LOS A	0.6	4.0	0.68	0.64	0.68	38.2
12	R2	16	1.0	0.095	9.1	LOS A	0.6	4.0	0.68	0.64	0.68	38.3
Approa	ach	72	1.0	0.095	6.3	LOS A	0.6	4.0	0.68	0.64	0.68	38.1
All Veh	nicles	1733	1.0	0.744	6.8	LOS A	10.3	72.7	0.74	0.66	0.82	37.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Road 11 / Argent Lane roundabout – PM Peak Upper Bound

MOVEMENT SUMMARY

Site: 101 [Milldale Road 11 / Argent Lane Rbout PM UPPER]

New Site Site Category: (None) Roundabout

Move	ment P	erformanc	e - Ve	hicles								
Mov	T	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Argent	Lane S										
1	L2	32	1.0	0.843	14.0	LOS B	16.2	114.6	1.00	1.18	1.49	34.8
2	T1	674	1.0	0.843	13.8	LOS B	16.2	114.6	1.00	1.18	1.49	35.3
3	R2	79	1.0	0.843	17.4	LOS B	16.2	114.6	1.00	1.18	1.49	35.4
Approa	ach	784	1.0	0.843	14.1	LOS B	16.2	114.6	1.00	1.18	1.49	35.3
East: F	Road 11	E										
4	L2	5	1.0	0.375	5.0	LOS A	2.6	18.5	0.67	0.72	0.67	37.0
5	T1	53	1.0	0.375	4.7	LOS A	2.6	18.5	0.67	0.72	0.67	37.6
6	R2	282	1.0	0.375	8.4	LOS A	2.6	18.5	0.67	0.72	0.67	37.7
Approa	ach	340	1.0	0.375	7.8	LOS A	2.6	18.5	0.67	0.72	0.67	37.7
North:	Argent	Lane N										
7	L2	197	1.0	0.442	3.2	LOS A	3.7	26.4	0.49	0.44	0.49	38.3
8	T1	316	1.0	0.442	3.0	LOS A	3.7	26.4	0.49	0.44	0.49	39.0
9	R2	23	1.0	0.442	6.6	LOS A	3.7	26.4	0.49	0.44	0.49	39.1
Approa	ach	536	1.0	0.442	3.2	LOS A	3.7	26.4	0.49	0.44	0.49	38.7
West:	Road 1'	1 W										
10	L2	8	1.0	0.171	12.3	LOS B	1.2	8.6	0.95	0.90	0.95	35.1
11	T1	37	1.0	0.171	12.1	LOS B	1.2	8.6	0.95	0.90	0.95	35.6
12	R2	19	1.0	0.171	15.7	LOS B	1.2	8.6	0.95	0.90	0.95	35.8
Approa	ach	64	1.0	0.171	13.2	LOS B	1.2	8.6	0.95	0.90	0.95	35.6
All Veł	nicles	1724	1.0	0.843	9.5	LOS A	16.2	114.6	0.77	0.85	1.00	36.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Road 11 / Argent Lane signals – AM Peak (Full buildout using network volumes)

MOVEMENT SUMMARY

Site: 101v [Milldale Road 11 / Argent Lane Sig AM]

New Site

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 70 seconds (Site Practical Cycle Time)

Movement Performance - Vehicles												
Mov	Turn	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Argent	Lane S										
1	L2	12	1.0	0.242	26.0	LOS C	3.3	23.6	0.83	0.67	0.83	32.1
2	T1	232	1.0	0.242	22.6	LOS C	3.4	23.7	0.83	0.67	0.83	32.0
3	R2	23	1.0	0.145	37.4	LOS D	0.8	5.5	0.96	0.70	0.96	28.5
Approa	ach	266	1.0	0.242	24.0	LOS C	3.4	23.7	0.84	0.67	0.84	31.7
East: F	Road 11	E										
4	L2	28	1.0	0.135	28.8	LOS C	1.5	10.5	0.86	0.68	0.86	30.9
5	T1	23	1.0	0.135	25.4	LOS C	1.5	10.5	0.86	0.68	0.86	30.8
6	R2	128	1.0	0.603	37.5	LOS D	4.5	31.8	1.00	0.82	1.06	28.6
Approa	ach	180	1.0	0.603	34.6	LOS C	4.5	31.8	0.96	0.78	1.00	29.2
North:	Argent I	Lane N										
7	L2	168	1.0	0.115	3.8	LOS A	0.6	3.9	0.20	0.49	0.20	38.8
8	T1	679	1.0	0.684	26.5	LOS C	11.1	78.4	0.95	0.84	1.00	31.0
9	R2	16	1.0	0.099	37.1	LOS D	0.5	3.7	0.95	0.68	0.95	28.6
Approa	ach	863	1.0	0.684	22.3	LOS C	11.1	78.4	0.81	0.77	0.84	32.2
West:	Road 11	W										
10	L2	6	1.0	0.090	28.4	LOS C	1.0	7.0	0.85	0.64	0.85	31.4
11	T1	28	1.0	0.090	25.0	LOS C	1.0	7.0	0.85	0.64	0.85	31.3
12	R2	16	1.0	0.074	34.4	LOS C	0.5	3.5	0.92	0.68	0.92	29.2
Approa	ach	51	1.0	0.090	28.4	LOS C	1.0	7.0	0.87	0.65	0.87	30.6
All Veh	nicles	1360	1.0	0.684	24.5	LOS C	11.1	78.4	0.84	0.75	0.86	31.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow	Average Level of Delay Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate						
		ped/h	sec	ped	m								
P1	South Full Crossing	53	29.3 LOS C	0.1	0.1	0.92	0.92						
P2	East Full Crossing	53	29.3 LOS C	0.1	0.1	0.92	0.92						
P3	North Full Crossing	53	29.3 LOS C	0.1	0.1	0.92	0.92						
P4	West Full Crossing	53	29.3 LOS C	0.1	0.1	0.92	0.92						
All Pec	destrians	211	29.3 LOS C			0.92	0.92						

Our Ref: Milldale Primary School NoR Second s92 Response - Transport v2

Road 11 / Argent Lane signals – PM Peak (Full buildout using network volumes)

MOVEMENT SUMMARY

Site: 101v [Milldale Road 11 / Argent Lane Sig PM]

New Site

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 70 seconds (Site Practical Cycle Time)

Move	ment P	erformanc	e - Ve	hicles								
Mov	T	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Argent	Lane S										
1	L2	32	1.0	0.692	29.4	LOS C	11.8	83.1	0.95	0.85	1.00	31.1
2	T1	674	1.0	0.692	25.8	LOS C	11.8	83.1	0.94	0.84	0.99	31.1
3	R2	49	1.0	0.310	38.2	LOS D	1.7	12.1	0.97	0.73	0.97	28.3
Approa	ach	755	1.0	0.692	26.8	LOS C	11.8	83.1	0.95	0.83	0.99	30.9
East: F	Road 11	E										
4	L2	2	1.0	0.059	28.2	LOS C	0.7	4.6	0.84	0.61	0.84	31.5
5	T1	21	1.0	0.059	24.8	LOS C	0.7	4.6	0.84	0.61	0.84	31.4
6	R2	113	1.0	0.605	38.6	LOS D	4.0	28.3	1.00	0.82	1.07	28.4
Approa	ach	136	1.0	0.605	36.3	LOS D	4.0	28.3	0.97	0.78	1.03	28.9
North:	Argent	Lane N										
7	L2	124	1.0	0.086	3.9	LOS A	0.5	3.3	0.21	0.49	0.21	38.8
8	T1	316	1.0	0.297	22.2	LOS C	4.4	30.7	0.83	0.68	0.83	32.2
9	R2	23	1.0	0.145	37.4	LOS D	0.8	5.5	0.96	0.70	0.96	28.5
Approa	ach	463	1.0	0.297	18.0	LOS B	4.4	30.7	0.67	0.63	0.67	33.5
West:	Road 1'	1 W										
10	L2	8	1.0	0.082	28.4	LOS C	0.9	6.3	0.84	0.64	0.84	31.3
11	T1	23	1.0	0.082	25.0	LOS C	0.9	6.3	0.84	0.64	0.84	31.2
12	R2	19	1.0	0.102	35.8	LOS D	0.6	4.4	0.94	0.69	0.94	28.9
Approa	ach	51	1.0	0.102	29.6	LOS C	0.9	6.3	0.88	0.66	0.88	30.3
All Veh	nicles	1404	1.0	0.692	24.9	LOS C	11.8	83.1	0.86	0.76	0.89	31.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Mover	ovement Performance - Pedestrians													
Mov		Demand	Average Level of	Average Back o	of Queue	Prop.	Effective							
ID	Description	Flow	Delay Service	Pedestrian	Distance	Queued	Stop Rate							
		ped/h	sec	ped	m									
P1	South Full Crossing	53	29.3 LOS C	0.1	0.1	0.92	0.92							
P2	East Full Crossing	53	29.3 LOS C	0.1	0.1	0.92	0.92							
P3	North Full Crossing	53	29.3 LOS C	0.1	0.1	0.92	0.92							
P4	West Full Crossing	53	29.3 LOS C	0.1	0.1	0.92	0.92							
All Ped	lestrians	211	29.3 LOS C			0.92	0.92							

Road 11 / Argent Lane Signals – AM Peak Upper Bound

MOVEMENT SUMMARY

Site: 101v [Milldale Road 11 / Argent Lane Sig AM UPPER]

New Site

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 80 seconds (Site Practical Cycle Time)

Movement Performance - Vehicles												
Mov	T	Demand F	-lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	rum	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Argent	Lane S										
1	L2	12	1.0	0.277	31.5	LOS C	4.0	28.2	0.87	0.70	0.87	30.6
2	T1	232	1.0	0.277	28.1	LOS C	4.0	28.3	0.87	0.70	0.87	30.5
3	R2	40	1.0	0.286	43.8	LOS D	1.6	11.2	0.98	0.73	0.98	27.1
Approa	ach	283	1.0	0.286	30.5	LOS C	4.0	28.3	0.88	0.70	0.88	30.0
East: F	Road 11	E										
4	L2	61	1.0	0.312	34.5	LOS C	3.9	27.3	0.91	0.74	0.91	29.5
5	T1	51	1.0	0.312	31.0	LOS C	3.9	27.3	0.91	0.74	0.91	29.4
6	R2	278	1.0	0.780	39.1	LOS D	11.1	78.4	0.98	0.94	1.16	28.3
Approa	ach	389	1.0	0.780	37.3	LOS D	11.1	78.4	0.96	0.88	1.08	28.6
North:	Argent	Lane N										
7	L2	294	1.0	0.201	4.1	LOS A	1.6	11.3	0.24	0.51	0.24	38.8
8	T1	679	1.0	0.781	35.2	LOS D	13.8	97.6	1.00	0.96	1.14	28.9
9	R2	16	1.0	0.113	42.8	LOS D	0.6	4.3	0.96	0.68	0.96	27.3
Approa	ach	988	1.0	0.781	26.1	LOS C	13.8	97.6	0.77	0.82	0.87	31.2
West:	Road 1	1 W										
10	L2	6	1.0	0.153	33.3	LOS C	1.9	13.1	0.87	0.67	0.87	30.2
11	T1	49	1.0	0.153	29.9	LOS C	1.9	13.1	0.87	0.67	0.87	30.1
12	R2	16	1.0	0.040	30.5	LOS C	0.5	3.5	0.82	0.66	0.82	30.2
Approa	ach	72	1.0	0.153	30.3	LOS C	1.9	13.1	0.86	0.67	0.86	30.1
All Veh	nicles	1733	1.0	0.781	29.5	LOS C	13.8	97.6	0.84	0.81	0.92	30.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mover	nent Performance - Pec	lestrians					
Mov		Demand	Average Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec	ped	m		
P1	South Full Crossing	53	34.3 LOS D	0.1	0.1	0.93	0.93
P2	East Full Crossing	53	34.3 LOS D	0.1	0.1	0.93	0.93
P3	North Full Crossing	53	34.3 LOS D	0.1	0.1	0.93	0.93
P4	West Full Crossing	53	34.3 LOS D	0.1	0.1	0.93	0.93
All Ped	lestrians	211	34.3 LOS D			0.93	0.93

Road 11 / Argent Lane Signals – PM Peak Upper Bound

MOVEMENT SUMMARY

Site: 101v [Milldale Road 11 / Argent Lane Sig PM UPPER]

New Site

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 80 seconds (Site Practical Cycle Time)

Movement Performance - Vehicles												
Mov	T	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Argent	Lane S										
1	L2	32	1.0	0.808	39.3	LOS D	15.4	108.4	1.00	0.99	1.17	28.7
2	T1	674	1.0	0.808	35.7	LOS D	15.4	108.4	0.99	0.98	1.17	28.7
3	R2	79	1.0	0.565	45.2	LOS D	3.2	22.9	1.00	0.79	1.05	26.9
Approa	ach	784	1.0	0.808	36.8	LOS D	15.4	108.4	0.99	0.97	1.16	28.5
East: F	Road 11	E										
4	L2	5	1.0	0.158	33.3	LOS C	1.9	13.6	0.87	0.67	0.87	30.2
5	T1	53	1.0	0.158	29.9	LOS C	1.9	13.6	0.87	0.67	0.87	30.1
6	R2	282	1.0	0.801	41.0	LOS D	11.6	82.1	1.00	0.97	1.21	27.9
Approa	ach	340	1.0	0.801	39.1	LOS D	11.6	82.1	0.98	0.92	1.15	28.2
North:	Argent	Lane N										
7	L2	197	1.0	0.137	4.2	LOS A	1.1	7.9	0.24	0.51	0.24	38.7
8	T1	316	1.0	0.340	27.7	LOS C	5.2	36.8	0.87	0.71	0.87	30.7
9	R2	23	1.0	0.166	43.1	LOS D	0.9	6.4	0.97	0.70	0.97	27.3
Approa	ach	536	1.0	0.340	19.8	LOS B	5.2	36.8	0.64	0.63	0.64	33.0
West:	Road 11	I W										
10	L2	8	1.0	0.124	33.1	LOS C	1.5	10.6	0.87	0.66	0.87	30.2
11	T1	37	1.0	0.124	29.7	LOS C	1.5	10.6	0.87	0.66	0.87	30.1
12	R2	19	1.0	0.051	31.5	LOS C	0.6	4.3	0.84	0.67	0.84	29.9
Approa	ach	64	1.0	0.124	30.6	LOS C	1.5	10.6	0.86	0.66	0.86	30.0
All Veł	nicles	1724	1.0	0.808	31.7	LOS C	15.4	108.4	0.87	0.84	0.99	29.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians							
Mov		Demand	Average Level of	Average Back of Queue		Prop.	Effective
ID	Description	Flow	Delay Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec	ped	m		
P1	South Full Crossing	53	34.3 LOS D	0.1	0.1	0.93	0.93
P2	East Full Crossing	53	34.3 LOS D	0.1	0.1	0.93	0.93
P3	North Full Crossing	53	34.3 LOS D	0.1	0.1	0.93	0.93
P4	West Full Crossing	53	34.3 LOS D	0.1	0.1	0.93	0.93
All Pedestrians		211	34.3 LOS D			0.93	0.93

Insightful solutions. Empowering advice.

⊿labley

This document has been produced for the sole use of our client. Any use of this document by a third party is without liability and you should seek independent traffic and transportation advice. © No part of this document may be copied without the written consent of either our client or Abley Ltd. Please refer to http://www.abley.com/output-terms-and-conditions-1-0/ for our output terms and conditions.

Our Ref: Milldale Primary School NoR Second s92 Response - Transport v2