Birch Planning Surveying LAND DEVELOPMENT CONSULTANTS HEC-HMS MODELLING REPORT

To: AUCKLAND COUNCIL

On behalf of: SR AND DS SMITH 70A & 70B Lisle Farm Drive, Pukekohe

> DECEMBER 2024 BSL REF: 4553 REVISION D

REPORT PREPARED BY

SKYWARD HANG CHARTERED PROFESSIONAL CIVIL ENGINEER

REPORT REVIEWED BY

KELLY BOSGRA REGISTERED PROFESSIONAL SURVEYOR

REPORT AUTHORISED BY

SIR WILLIAM BIRCH PROJECT MANAGER

DATE DECEMBER 2024:

BIRCH SURVEYORS LTD

2A Wesley Street, Pukekohe, Auckland PO Box 475, Pukekohe 2340, New Zealand Telephone: 64 9 237 1111 Facsimile: 64 9 238 0033 Website: <u>www.birch.nz</u> Email: <u>applications@birch.nz</u>

© Birch Surveyors Ltd 2024

This document is and shall remain the property of Birch Surveyors Ltd. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

TABLE OF CONTENTS

1	INTR	ODUCTION	4
	1.1 1.2 1.3	Purpose Catchment Stormwater Modelling Methodology	4 4 5
2	STOR	RMWATER MODELLING	6
	2.1	EXISTING SITE (PRE-DEVELOPMENT FOR ENTIRE SITE)	6
	2.2	EXISTING SITE (PRE-DEVELOPMENT FOR EACH SUB-CATCHMENTS)	8
	2.2.1	RUNOFF FACTOR	8
	2.2.2	HEC MODELLING REVIEW (PRE-DEVELOPMENT)	8
	2.3	PROPOSED DEVELOPMENT	11
	2.3.1	Post-development Sub-catchments Plan	.11
	2.3.2	RUNOFF FACTOR AND MODEL SUMMARY	.12
	2.3.3	UNMITIGATED RESULT FOR 3.8 DEGREE CCF (POST-DEVELOPMENT)	.14
	2.3.4	HEC HMS MODELLING REVIEW (POST-DEVELOPMENT)	.15
	2.3.5	HEC HMS MODEL RESULTS	.21
	2.3.6	SENSITIVITY CHECK PRE AND POST PEAK FLOW RESULTS (3.8°C CCF)	.21
3	OVE	RLAND FLOW PATHS	.22
4	CON	CLUSION	.24

APPENDIX A – HEC HMS RESULT APPENDIX B - TP108 CALCULATION SPREADSHEET

1 INTRODUCTION

1.1 **PURPOSE**

The purpose of this report is to model the pre-development and post development stormwater runoff flows in the 10% and 1% Annual Exceedance Probability (AEP) storm events to support the Stormwater Management Report for the proposed Private Plan Change ('PPC') at 70A & B Lisle Farm Drive, Pukekohe and to design stormwater mitigation to ensure the requirements of the Auckland Unitary Plan (AUP) and the Stormwater Network Discharge Consent (NDC) are achieved.

The site is currently located within the Future Urban Zone under the AUP and is <u>not</u> subject to an existing Stormwater Management Plan (SMP). This means a SMP for the proposed development is require to inform how the development will meet the requirements of the Unitary Plan, schedule 2 of the NDC and will outline Best Practicable Option (BPO). This report is the technical document that supports the proposed SMP and confirms the following outcomes:

- Retention of the 5mm Storm Event (SMAF-1 equivalent retention).
- Detention with a drain down period of 24-hours for the difference between the predevelopment and post-development runoff volumes from the 95th percentile, 24-hour rainfall event minus the achieved retention volume.
- Stormwater Treatment (subject to Stormwater Management Report)
- Flow rates from post development 10% AEP storm event with climate factor to not exceed predevelopment 10% AEP storm event flow rate with climate factor.
- Flow rates from post development 1% AEP storm event with climate factor to not exceed predevelopment 1% AEP storm event flow rate with climate factor.

This report confirms how the proposed PPC meets the Network Discharge Consent (NDC) requirements and outlines a site-specific stormwater management plan to ensure ongoing compliance with the proposed PPC. The aforementioned documents outline the stormwater management objectives, policies and mitigation methods of development within the site.

1.2 CATCHMENT

The subject site has complex topographical features, it generally slopes to the north, east, and south, with a broad main dividing ridgeline runs through the site from south-west to east. The detailed

topographical features can be found in the Infrastructure Report and Geotechnical Desktop Assessment.

There is no existing stormwater connection that can be extended to service the entire subject site.

The Ecological Report identifies four areas for protection, comprising 3 wetlands and a permanent stream. These also form the receiving environment where treated stormwater will be discharged, refer to Figure 1.

Figure 1 Aerial Photos (derived from Geomap on September 2023)

1.3 STORMWATER MODELLING METHODOLOGY

Stormwater modelling has been undertaken in HEC-HMS version 4.11 in conjunction and in accordance with Auckland Council TP108 and as per Auckland Council Stormwater Code of Practice (CoP) recommendations.

The required Climate Change Factor for a 2.1°C increase in temperature in line with Auckland Council Stormwater Code of Practice Revision 3.0 and MfE Guidelines has been applied to the post-development rainfall depths. These factors being:

Frequent \rightarrow Duration \downarrow	2 Years	5 Years	10 Years	50 Years	100 Years
24 Hour	+9%	+11.3%	+13.2%	+16.8%	+16.8%

As discussed with Healthy Waters, rainfall for 1% AEP with climate change (3.8°C increase) will be modelled for sensitivity check in line with Auckland Council Stormwater Code of Practice Revision 4.0 given the subject private plan change is for a long-term development.

Frequent \rightarrow Duration \downarrow	2 Years	5 Years	10 Years	50 Years	100 Years
24 Hour	+27.4%	+29.6%	+30.8%	+31.2%	+32.7%

The stormwater modelling has established the anticipated pre-development flows for the 10% AEP and 1% AEP storm events and the expected post-development flows in the 10% and 1% AEP storm events with 3.8°C climate change factor. The latter flows are required to be mitigated to pre-development flowrates to ensure the future post-development runoff rate does not exceed the pre-development flowrate with the same rainfall increase under climate increase.

2 STORMWATER MODELLING

2.1 **EXISTING SITE (PRE-DEVELOPMENT FOR ENTIRE SITE)**

Currently the majority area of the subject site is covered by the grass and there are rural dwellings and the pavement located at the southern portion of the site. Due to the topographical constraints, the subject site is separated by eight sub-catchments, refer to Figure 2, and each sub-catchment area is summarized in the table below:

Table	1 Pre-d	evelopm	ent sub-ca	atchments	area
rubic	i i i c u	cvciopini		accimicato	urcu

	Sub-catchment A	Sub-catchment B	Sub-catchment C	Sub-catchment D
Area (m²)	9,633	36,308	13,190	22,392
	Sub-catchment E	Sub-catchment F	Sub-catchment G	Sub-catchment H
Area (m²)	18,720	9,090	14,058	10,376

Eight sub-catchments are demonstrated to assess the pre-development scenario, which flow to four outlet points. Sub-catchment A flows towards the west, Sub-catchments B, C & D flows toward the north (existing SEA), Sub-catchments E & F flows towards the south east and Sub-catchment G & H flows toward the south west.

Figure 2 Pre-development sub-catchment plan

The non-highlighted area at the north east corner of the subject site is excluded from the stormwater assessment. The Ecological Report (refer to the appendix in the Infrastructure Report or Stormwater Management Report) and the current concept plan seeks to retain this area containing the existing

wetlands and vegetation, proposed plantings, and open space in its undeveloped state, and therefore stormwater devices are not required to be installed.

Using TP108 (Refer to **Appendix A**), the summarised peak flows for the pre-development scenarios with 3.8°C climate change factor for the 50%, 10% and 1% AEP storm events with climate change for eight catchments are shown in the table below. The HEC HMS pre-development peak flows for the four outlet points are also listed for comparison.

Sub-catchment	Outlet Point	50% AEP Peak Flowrate (L/s)	10% AEP Peak Flowrate (L/s)	1% AEP Peak Flowrate (L/s)
A	West	54	137	250
HEC	HMS Modelling Result	51.7	144.7	290.8
В		242	570	1,008
С	North	76	191	347
D		145	350	623
TP108 Total		463	1,111	1,978
HEC HMS Modelling Result		450.9	1,192.8	2,322.6
E	South Fast	132	309	542
F	South Last	57	139	249
TP108 Total		189	448	791
HEC	HMS Modelling Result	185.2	491.6	946.3
G South West		96	228	402
Н	South West	97	212	359
	TP108 Total	193	440	761
HEC	HMS Modelling Result	184.1	465.7	872.8

Table 2 Pre-development peak flows under 3.8°C CCF

We note that the TP108 pre-development peak flows are slightly different than the modelled HEC HMS pre-development peak flows. The HEC HMS modelled results are used as the base flows to calculate the Stormwater Mitigation required.

Auckland Transport (AT) have reiterated that they do not want proprietary devices (detention tanks, pocket raingardens etc) within the road reserve. For this development, the water quality treatments are being provided by the communal proposed stormwater devices as Best Practice Option (BPO), with deep sump cesspits proposed within the Road Reserve, providing a level of pre-treatment.

To mitigate the stormwater runoff from the Road Reserve to pre-development levels, the communal stormwater devices are designed to achieve flow mitigation as well as water quality treatment.

To mitigate the stormwater runoff from each individual lot to pre-development levels, dual purpose stormwater tanks (retention and detention) will be required to achieve quality and quantity treatment. That conforms to the NDC requirements.

The calculations and parameters for the proposed mitigation are further described in Sections 2.2 and 2.3.

2.2 **EXISTING SITE (PRE-DEVELOPMENT FOR EACH SUB-CATCHMENTS)**

2.2.1 RUNOFF FACTOR

The entire site is generally covered by grass with the existing impervious area (dwellings and pavement) contained within Sub-catchment B & H. The area of each sub-catchment is summarized in Table 1.

The stormwater runoff modelling was undertaken in HEC-HMS v4.11 and in accordance with TP108:

Pervious Arcea SCS Hydrological Soil Group: Group B&C (refer to Soil-map Data) see CN below:

Table 3 Pervious Area CN for Grass

PRE	Sub-catchment A	Sub-catchment B	Sub-catchment C	Sub-catchment D
Combined CN	61	63	62	66
	Sub-catchment E	Sub-catchment F	Sub-catchment G	Sub-catchment H
Combined CN	69	66	68	74

Impervious Area Curve Number: 98 (Roof, driveway, or hardstand area)

2.2.2 HEC MODELLING REVIEW (PRE-DEVELOPMENT)

The pervious and impervious components of the sub-catchments were grouped at junctions and joined appropriately to simulate the existing catchment hydrology. The pre-development HEC-HMS hydrologic basin model schematic is given below:

Figure 3 Pre-development HEC HMS hydrological design

50% AEP storm event (24-hour rainfall depth 89mm) peak flow:

Global Summary Results for Run "50% AEP Pre - CCF"						
	Project: Smith SW POND Simulation Run: 50% AEP Pre - CCF					
Start of Run: 14Jun2024, 00:00 Basin Model: Pre-development - CCF End of Run: 14Jun2024, 23:59 Meteorologic Model: 50% AEP Post 3.8 CCF Compute Time: 14Nov2024, 14:14:08 Control Specifications: Post Development SH 3.8						
Show Elements: All E	lements Volum	e Units: 🔵 MM 🔘 10	00 M3 Sorting: V	Vatershed Explorer $~~$		
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)		
Pre Pervious SC A	0.0096	0.05166	14 June 2024, 12:13	0.24838		
Pre Imper SC A	0.0000	0.00002	14 June 2024, 12:12	0.00008		
Pre Pervious SC B	0.0333	0.18992	14 June 2024, 12:13	0.90861		
Pre Imper SC B	0.0030	0.04822	14 June 2024, 12:12	0.25162		
Pre Pervious SC C	0.0132	0.07294	14 June 2024, 12:13	0.34983		
Pre Imper SC C	0.0000	0.00002	14 June 2024, 12:12	0.00008		
Pre Pervious SC D	0.0224	0.13991	14 June 2024, 12:13	0.66421		
Pre Imper SC D	0.0000	0.00002	14 June 2024, 12:12	0.00008		
Pre Pervious SC E	0.0187	0.12814	14 June 2024, 12:13	0.60343		
Pre Imper SC E	0.0000	0.00016	14 June 2024, 12:12	0.00079		
Pre Pervious SC F	0.0091	0.05673	14 June 2024, 12:13	0.26934		
Pre Imper SC F	0.0000	0.00016	14 June 2024, 12:12	0.00079		
Pre Pervious SC G	0.0141	0.09335	14 June 2024, 12:13	0.44079		
Pre Imper SC G	0.0000	0.00016	14 June 2024, 12:12	0.00084		
Pre Pervious SC H	0.0094	0.07472	14 June 2024, 12:13	0.34695		
Pre Imper SC H	0.0010	0.01587	14 June 2024, 12:12	0.07899		
To west	0.0096	0.05168	14 June 2024, 12:13	0.24846		
North Wetland	0.0719	0.45087	14 June 2024, 12:13	2.17443		
South West Stream	0.0244	0.18406	14 June 2024, 12:13	0.86756		
South East Stream	0.0278	0.18519	14 June 2024, 12:13	0.87435		

10% AEP storm event (24-hour rainfall depth 157mm) peak flow:

Global Summary Resul	ts for Run "10% AEP Pr	e - CCF"		- 0 🛃		
Project: Smith SW POND Simulation Run: 10% AFP Pre - CCF						
Start of Ru End of Ru Compute	Start of Run: 14Jun2024, 00:00 Basin Model: Pre-development - CCF End of Run: 14Jun2024, 23:59 Meteorologic Model: 10% AEP Post 3.8 CCF Compute Time: 18Nov2024, 16:56:18 Control Specifications:Post Development SH 3.8					
Show Elements: All E	lements \vee Volum	e Units: 🔿 MM 🔘 10	00 M3 Sorting:	Watershed Explorer $\ imes$		
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)		
Pre Pervious SC A	0.0096	0.14467	14 June 2024, 12:13	0.67733		
Pre Imper SC A	0.0000	0.00003	14 June 2024, 12:12	0.00015		
Pre Pervious SC B	0.0333	0.52450	14 June 2024, 12:13	2.44629		
Pre Imper SC B	0.0030	0.08777	14 June 2024, 12:12	0.45794		
Pre Pervious SC C	0.0132	0.20286	14 June 2024, 12:13	0.94797		
Pre Imper SC C	0.0000	0.00003	14 June 2024, 12:12	0.00015		
Pre Pervious SC D	0.0224	0.37787	14 June 2024, 12:13	1.75279		
Pre Imper SC D	0.0000	0.00003	14 June 2024, 12:12	0.00015		
Pre Pervious SC E	0.0187	0.33780	14 June 2024, 12:13	1.55902		
Pre Imper SC E	0.0000	0.00029	14 June 2024, 12:12	0.00148		
Pre Pervious SC F	0.0091	0.15323	14 June 2024, 12:13	0.71076		
Pre Imper SC F	0.0000	0.00029	14 June 2024, 12:12	0.00148		
Pre Pervious SC G	0.0141	0.24813	14 June 2024, 12:13	1.14704		
Pre Imper SC G	0.0000	0.00029	14 June 2024, 12:12	0.00153		
Pre Pervious SC H	0.0094	0.18824	14 June 2024, 12:13	0.86283		
Pre Imper SC H	0.0010	0.02913	14 June 2024, 12:12	0.14763		
To west	0.0096	0.14470	14 June 2024, 12:13	0.67748		
North Wetland	0.0719	1.19278	14 June 2024, 12:13	5.60530		
South West Stream	0.0244	0.46570	14 June 2024, 12:13	2.15904		
South East Stream	0.0278	0.49161	14 June 2024, 12:13	2.27274		

1% AEP storm event (24-hour rainfall depth 239mm) peak flow:

Global Summary Resul	ts for Run "1% AEP Pre	- CCF"			
Project: Smith SW DOND Simulation Pup: 19/ AED Dro. CCE					
	Trojece. Similar Svv i	Simulation Run	ALT TO ALT THE COL		
Start of R	un: 14Jun2024, 00:0	0 Basin Model:	Pre-developme	ent - CCF	
Compute	Time: 14Nov2024, 23:5	4:06 Control Specif	ications:Post Developn	nent SH 3.8	
Show Elements: All E	lements Volum	e Units: () MM () 10	00 M3 Sorting:	Watershed Explorer ~	
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume	
Element	(KM2)	(M3/S)		(1000 M3)	
Pre Pervious SC A	0.0096	0.29078	14 June 2024, 12:13	1.34593	
Pre Imper SC A	0.0000	0.00005	14 June 2024, 12:12	0.00024	
Pre Pervious SC B	0.0333	1.04193	14 June 2024, 12:13	4.81356	
Pre Imper SC B	0.0030	0.13851	14 June 2024, 12:12	0.72271	
Pre Pervious SC C	0.0132	0.40538	14 June 2024, 12:13	1.87452	
Pre Imper SC C	0.0000	0.00005	14 June 2024, 12:12	0.00024	
Pre Pervious SC D	0.0224	0.73709	14 June 2024, 12:13	3.39772	
Pre Imper SC D	0.0000	0.00005	14 June 2024, 12:12	0.00024	
Pre Pervious SC E	0.0187	0.64651	14 June 2024, 12:13	2.97633	
Pre Imper SC E	0.0000	0.00046	14 June 2024, 12:12	0.00236	
Pre Pervious SC F	0.0091	0.29889	14 June 2024, 12:13	1.37778	
Pre Imper SC F	0.0000	0.00046	14 June 2024, 12:12	0.00236	
Pre Pervious SC G	0.0141	0.47796	14 June 2024, 12:13	2.20106	
Pre Imper SC G	0.0000	0.00046	14 June 2024, 12:12	0.00241	
Pre Pervious SC H	0.0094	0.34848	14 June 2024, 12:13	1.60474	
Pre Imper SC H	0.0010	0.04609	14 June 2024, 12:12	0.23583	
To west	0.0096	0.29083	14 June 2024, 12:13	1.34617	
North Wetland	0.0719	2.32256	14 June 2024, 12:13	10.80899	
South West Stream	0.0244	0.87284	14 June 2024, 12:13	4.04404	
South East Stream	0.0278	0.94632	14 June 2024, 12:13	4.35882	

Pre-development Peak Discharge Summary:

Table 4 Pre-development Peak Discharge Summary – HEC HMS under 3.8°C CCF

Outlet	50% AEP Peak Flowrate (L/s)	10% AEP Peak Flowrate (L/s)	1% AEP Peak Flowrate (L/s)
West	51.7	144.7	290.8
North	450.9	1,192.8	2,322.6
South East	185.2	491.6	946.3
South West	184.1	465.7	872.8

Refer to Appendix A for full calculations and outputs

2.3 **PROPOSED DEVELOPMENT**

2.3.1 POST-DEVELOPMENT SUB-CATCHMENTS PLAN

Based on the concept plan and preliminary earthwork recontouring, the post-development (for PPC development area only) Sub-catchments Plan is demonstrated as per Figure 4.

Figure 4 post-development sub-catchment plan

The non-highlighted area at the north east corner and the south edge of the PCA will be retained as wetlands and vegetation area with no development or improvements proposed in this area.

The non-highlighted area with brown outline is the indicative arterial road as advised by Supporting Growth, refer to the **Appendix H** in the Infrastructure Report.

The non-highlighted area at the south west corner of the PCA, being the proposed access point from Lisle Farm Drive, is #70 Lisle Farm Drive (Lot 1 DP 169148) and has a current zoning of Mixed Housing Suburban. Although it forms part of the greater site, this parcel is not subject to the re-zoning as it is already having a residential zone and can be developed following the Small Brownfield Development requirement in accordance with NDC Schedule 4, the existing stormwater pond located at the west of the PCA should include the appropriate mitigation for this area as per AUP Stormwater Guideline.

2.3.2 RUNOFF FACTOR AND MODEL SUMMARY

The proposed individual stormwater mitigation system is designed for each lot to attenuate the postdevelopment impervious area and the proposed communal stormwater mitigation devices are designed for the post-development impervious area for the Road Reserve and portion for the noncontrolled area, such as the impervious area from individual lot.

The proposed Plan Change Area ('PCA') is not located within any existing precinct zone, the proposed stormwater design should be carried out in accordance with NDC and the stormwater guidelines of AUP. The 5mm retention (SMAF-1 equivalent retention) is required but given the constraints of the steep slope and earthworking, soakage is not considered as a practical solution nor BPO and re-use will be required. Each lot will have an individual underground or aboveground dual purpose stormwater tank with appropriately designed orifices to provide flow attenuation for storm events up to and including the 10% AEP Storm Event. Inspection chambers, cesspits, channel grates and overflow pipes will also be required as part of the overall site drainage.

Maximum Portable Development ('MPD') was considered in this post-development assessment for the typical Mixed Housing Urban/Suburban residential lots under AUP, which is a maximum 60% impervious area with a minimum 40% pervious area. But given the lots within different sub-catchments have varies area, from minimum 400m² to 700m², the average lot size is utilised for each sub-catchment to assist the hydrological modelling. Also, the topographical steep site features limit the development possibility, the assumed roof area (connect to the stormwater tank), pervious area and the pavement area are different for each sub-catchment, details are summarised in the table below:

Post Sub-catchment	Total Area (m²)	Reserve Area (m²)	Total Lots Area (m²)	Each Lot Area (m²)
A	6,318	0	6,318	421 (15 Lots)
В	85,196	42,311	42,885	437 (98 Lots)
С	3,595	0	3,595	599 (6 Lots)
D	10,137	4,601	5,536	615 (9 Lots)
E	3,560	0	3,560	593 (6 Lots)
F	9,788	1,213	8,575	536 (16Lots)
G	13,270	1,023	12,247	490 (25 Lots)

Table 5 post-development sub-catchments area and typical lots area

The assumed roof area (combination of practical and MPD consideration), pervious area (grass or landscape) and the hardstand impervious area for each average lot for each sub-catchments are listed in the table below:

Post Development Sub-catchment	Average Lot Area (m²)	Average Roof Area (m²)	Maximum Roof Area (% of Lot)	Average Pervious Area (m²)	Average Hardstand Area (m²)	Impervious Site Coverage (% Of Lot)
A	421	169	40%	168	84	60%
В	437	175	40%	175	87	60%
С	599	240	40%	240	119	60%
D	615	246	40%	246	123	60%
E	593	237	40%	237	119	60%
F	536	215	40%	214	107	60%
G	490	196	40%	196	98	60%
Reserve	70% assumption to impervious area and 30% of pervious area					

 Table 6 post-development typical lots area and details

The Road Reserve impervious area consists of the sealed road formation, footpath and vehicle entranceways, encompassing approximately 70% of the Road Reserve. The remaining 30% is pervious, consisting of grass or street landscape.

The stormwater runoff modelling was undertaken in HEC-HMS v4.11 and in accordance with TP108:

Impervious Area Curve Number: 98 (Roof, driveway and hardstand area)

Pervious Area Curve Number (for sub-catchment A): 61

(No bulk earthwork is proposed in sub-catchment A, CN number remains Class B)

Pervious Area Curve Number (for sub-catchments B to G): 74

Pervious Area Curve Number (for Stormwater Reserve B to G): remains as pre-development

(Grassed and landscape area, classified as Class C Soil Type after the earthwork construction)

Climate change factor has been applied to all post-development rainfall models as per section 1.2

We note that the actual impervious area for each lot will vary, and that the maximum impermeable area for each lot is 60%. We have assumed realistic 'nominal' building sizes and impervious areas that comply with the relevant planning rules. We note that any impervious area greater than 60% will need to be either replaced by porous/permeable paving or other approved methods subject to additional future Resource Consent. We also note that upon future building consent, calculations will be required to ensure the proposed mitigation is appropriate for the proposed site development. A consent notice will be proposed for each lot to ensure the proposed runoff collection devices are designed to capture 10% AEP rainfall event, further details to be confirmed at Resource Consent stage.

2.3.3 UNMITIGATED RESULT FOR 3.8 DEGREE CCF (POST-DEVELOPMENT)

The proposed bulk earthwork activity and recontouring will change the post-development subcatchment area compared to the pre-development sub-catchment area which is summrised in the table below. Both the pre-development peak flow and the post-development unmitigated peak flow are calculated by using the rainfall depth with 3.8-degree climate change factor from each subcatchments to four outlets.

Outlet	Pre-	Area	Post-	Area (m²)	Pre Peak flow (L/s)		Un-mitigated Post Peak Flow (L/s)	
outiet	catchment	(m²)	catchment		10% AEP	1% AEP	10% AEP	1% AEP
To West	A	9,633	А	6,318	144.7	290.8	148.6	250.9
To North	В	36,308	В	85,196				
	С	13,190	С	3,595	1,192.8	2,322.6	2,718.2	4,387.0
	D	22,392	D	10,137				
To	E	18,720	E	3,560	465 7	465.7 872.8	333.4	559 1
East	F	9,090	F	9,788	403.7			ו .עככ
To South West	G	14,058	G	13,270	491.6	946 3	343.5 57	573 2
	Н	10,376				940.3		5/3.2

Table 7 Unmitigated Peak Flow Summary and Catchment Areas

The table above shows that all sub-catchments need to have the proper treatment to achieve the SMAF-1 equivalent retention and detention requirements, for the lots within post-catchment A, B, C and D which discharge towards the west and north also need the proper mitigation applied to attenuate the post-development peak flow to not exceed the pre-development peak flow under 10% AEP and 1% AEP rainfall events with 3.8°C Climate Change. For the lots within post-catchment E, F and G, no mitigation is required but the SMAF-1 equivalent retention and detention requirements need to be achieved.

2.3.4 HEC HMS MODELLING REVIEW (POST-DEVELOPMENT)

The pervious and impervious components, together with the proposed mitigation of the sub catchments are grouped at junctions and joined with reaches to simulate the post development catchment. The post-development HEC-HMS hydrologic basin model schematic is given below:

Figure 5 Post-development HEC HMS hydrological design

Individual Tank Details for Roof –1,000L & 4,000L:

To show efficacy of the proposed SW mitigation, for the post development scenario, to mitigate the runoff from the individual lots, each lot will require dual purpose retention/detention tanks. We have modelled tanks that are 2m tall, typical in dimensions with APD Stormlite Tank, Promax Slimline Tank or Bailey Slimline Tank for roof area. We have identified that sub-catchment A, B, C & D would need a tank size of ≈4,000L for SMAF-1 equivalent retention and detention and mitigation requirements, sub-

🖮 🔄 Paired Data
🚊 🔄 Elevation-Storage Functions
Communal Pond for SC B
Communal Pond for SC D
1000L SMAF Tank for SC E
1000L SMAF Tank for SC F
1000L SMAF Tank for SC G
🗁 🚰 1000L Tank for Driveway SC E
1000L Tank for Driveway SC F
1000L Tank for Driveway SC G
2000L Tank for Driveway SC A
2000L Tank for Driveway SC C
3000L Tank for Driveway SC D
4000L Tank for SC A
4000L Tank for SC B
4000L Tank for SC C
4000L Tank for SC D

Figure 6 Tank function details for different catchments

catchment E, F and G would need a tank size of \approx 1,000L for only SMAF-1 equivalent retention and detention requirements. We note that the actual size will depend on the level of development proposed for each site, and will be confirmed at Building Consent.

Individual Tank Details for Driveway – 1,000L & 3,000L:

To show efficacy of the proposed SW mitigation, for the post development scenario, to mitigate the runoff from the individual lots' pavement or driveway area. We have modelled tanks that are in 1.0m diameter, typical in dimensions with APD Stormlite Tank, Promax or Bailey underground tanks. We have identified that sub-catchment A, C & D would need a tank size of \approx 3,000L for SMAF-1 equivalent detention and mitigation requirements, sub-catchment E, F and G would need a tank size of \approx 1,000L for only SMAF-1 equivalent detention requirements, the sub-catchment B will be treated by the designed communal stormwater pond. We note that the actual size will depend on the level of development proposed for each site, and will be confirmed at Building Consent.

Diversion Details:

The diversion effectively simulates the overflow from the roof gutters under the rainfall events greater than 10% AEP storm, because the gutters and downpipes are designed to capture the 10% AEP storm event as per Building Act E1/VM1, same to the drainage pipe system for the private driveway. The diversion flows are calculated based on the roof areas using Rational Formula with 120mm/hr of peak rainfall intensity, being the 10min 10% AEP runoff intensity with the climate change factor. The diversion flow for each post sub-catchments are shown below:

When the 10% AEP rainfall event mitigation is achieved with the controlled release, any overflow will be directed to the downstream devices via the public stormwater reticulation or overland flow paths.

Civersion Divert Options	Diversion Divert Options
Rasin Name: Post-development	Basin Name: Post-development
Element Name: Diversion-A	Element Name: Diversion-A 2
*Diversion (M3/S) 0.076	*Diversion (M3/S) 0.038
	Pattern Nana
Pattern:None	Pattern:None
Diversion Divert Options	
Basin Name: Post-development	
Element Name: Diversion-B	
*Diversion (M3/S) 0.515	
Pattern:None V	
Several Divert Options	Diversion Divert Options
Basin Name: Post-development	Basin Name: Post-development
Element Name: Diversion-C	Element Name: Diversion-C 2
*Diversion (M3/S) 0.043	*Diversion (M3/S) 0.022
Pattern:None	Pattern:None
At Diversity Direct Outline	* Diversion Divert Ontions
Chiversion Divert Options	
Basin Name: Post-development	Basin Name: Post-development
Element Name: Diversion-D	Element Name: Diversion-D 2
*Diversion (M3/S) 0.067	*Diversion (M3/S) 0.033
Pattern:None V	Pattern:None V
Several Divert Options	Priversion Divert Options
Basin Name: Post-development	Basin Name: Post-development
Element Name: Diversion-E	Element Name: Diversion-E 2
*Diversion (M3/S) 0.044	*Diversion (M3/S) 0.022
Pattern:None	Pattern:None
Coptions Divert Options	Piversion Divert Options
Basin Name: Post-development	Basin Name: Post-development
Element Name: Diversion-F	Element Name: Diversion-F 2
*Diversion (M3/S) 0.103	*Diversion (M3/S) 0.052
Pattern:None	Pattern:None 🧹 🔛
Diversion Divert Options	Set Diversion Divert Options
Basin Name: Post-development	Rasin Name: Post-development
Element Name: Diversion-G	Flement Name: Diversion-6.2
*Diversion (M3/S) 0.147	*Diversion (M3/S) 0.074
Dattern None	
Pattern:None	Pattern:None

Figure 7 Diversion flow for all catchments, roof area and driveway area

Proposed Mitigation Details:

The PPC proposes a SMAF-1 overlay for the site. This requires at least a 5mm retention volume and the detention and release over 24hrs of the 95th percentile rainfall event less any retention provided. Notwithstanding the 24hr release, the minimum orifice size for any detention tank is 10mm. A secondary orifice to mitigate the 10% AEP rainfall runoff to pre-development rates is site specific and to be confirmed at Building Consent. A 150mm overflow pipe is also provided and all three outlets will discharge to the public stormwater network.

Orifice Details:

The table below lists the modelled orifice diameters for the proposed tanks within each subcatchments to comply with the SMAF-1 and 10% AEP hydrology mitigation requirements; (size of tanks and orifice to be confirmed at future Building Consent based on actual site development):

Post Sub-catchment	Tank Size (L)	Primary Orifice Diameter (mm)	Secondary Orifice Diameter (mm)	Overflow (mm)
	4,000	10	45	100
A	3,000 (Driveway)	10	-	100
В	4,000	10	45	100
	4,000	10	45	100
С	3,000 (Driveway)	10	-	100
	4,000	10	45	100
D	3,000 (Driveway)	10	-	100
	1,000	10	-	100
E	1,000 (Driveway)	10	-	100
	1,000	10	-	100
F	1,000 (Driveway)	10	-	100
G	1,000	10	-	100
	1,000 (Driveway)	10	-	100

Table 8 Individual Stormwater Tank details for each post sub-catchment

Communal Stormwater Device Details:

The overflow from all residential lots and the surface water from the road reserve, will be directed to the communal stormwater device for further mitigation before discharging to the receiving environment, ensuring the post-development peak flows are mitigated up to and including the 1% AEP rainfall event. Three communal stormwater devices are designed to discharge to four outlet points from the seven sub-catchments:

• Outlet 1 (To West)

Sub-catchment A contributes to this outlet. No communal stormwater device is required. All mitigation to be provided by on-site stormwater tanks for each lot.

• Outlet 2 (To North)

Post Sub-catchments B, C, and D contribute to this outlet. Each sub-catchment is designed to have a communal stormwater device to attenuate the post-development peak flow with the controlled outlets (orifices or weirs) in addition to the individual stormwater tank for each lot.

Communal Stormwater Device B:

• The size of device: 6,870m³ (typical open-top stormwater pond)

🔀 Paired Data	Table	Graph			
Elevation (M)				Storage (1000 M3)	
			64.90		0.0000
			65.90		0.7500
			66.20		1.2900
			67.00		3.7600
			67.70		6.3300
			67.85		6.9300
			68.00		7.5500
			68.15		7.6000

- Primary Outlet: 15,300mm² orifice centered at RL66.20m (SMAF and stream protection)
- o Secondary Outlet: 180,000mm² orifice centered RL66.70m
- First Weir: (10% AEP rainfall event) 1,000mm wide, at RL67.0m
- o Second Weir: (1% AEP rainfall event) 1,200mm wide, at RL67.45m
- o Overflow: RL67.83m

SR and DS Smith 70A & B Lisle Farm Drive, Pukekohe

Communal Stormwater Device D

• The size of device: 64m³ (for the proposed Road Reserve only)

Zered Data Table Graph			
Elevation (M)		Storage (1000 M3)	
	70.00	0.0	000
	70.25	0.0	125
	70.50	0.0	250
	70.75	0.0	375
	71.28	0.0	640
	72.00	0.0	650

- Primary Outlet: 15,708mm² Orifice, centered 100mm above the base of the device
- First Weir (10% AEP rainfall event): 100mm wide, centered 500mm above the base of the device
- Second Weir (1% AEP rainfall event): 150mm wide, 900mm above the base of the device
- Overflow: 1280mm from the bottom of the device

The type of the device to be detailed designed at Resource Consent stage.

• Outlet 3 (To South East)

Sub-catchments E & F contribute to this outlet. No communal stormwater device is required. All SMAF requirements and mitigation to be provided by on-site stormwater tanks for each lot.

• Outlet 4 (To South West)

Sub-catchment G contributes to this outlet. No communal stormwater device is required. All SMAF requirements and mitigation to be provided by on-site stormwater tanks for each lot.

2.3.5 HEC HMS MODEL RESULTS

The Post Development assessment has been calculated for the 50% AEP, 10% AEP and the 1% AEP rainfall events with the proposed private and communal mitigation as detailed above. The post-development rainfall depths have been adjusted for 3.8°C Climate Change in accordance the upcoming 3.8°C Climate Change for sensitivity assessment in accordance with the future operative Auckland Council Stormwater Code of Practice Revision 4.0. The results for this scenario is summarised in the **Appendix A**.

2.3.6 SENSITIVITY CHECK PRE AND POST PEAK FLOW RESULTS (3.8°C CCF)

The 3.8°C climate change factor is required and listed in the upcoming Auckland Council Stormwater Code of Practice Version 4.0; the sensitivity check is provided in the assessment as requested by Healthy Waters.

Outlet	50% AEP Peak Flowrate (L/s)		10% AEP Peak Flowrate (L/s)		1% AEP Peak Flowrate (L/s)	
	Pre	Post	Pre	Post	Pre	Post
West	51.7	49.7	144.7	141.8	290.8	251.8
North	450.9	443.1	1,192.8	1,190.7	2,322.6	2,307.5
South East	185.2	170.2	491.6	337.2	946.3	570.8
South West	184.1	164.3	465.7	330.9	872.8	556.1

The table above compares the pre-and post- development flows under 3.8°C Climate Change scenario, confirming that the proposed mitigation ensures that the post-development peak flows during the 50% AEP, 10% AEP and the 1% AEP rainfall events do not exceed the pre-development peak flows under the same rainfall event with 3.8°C climate increase.

3 OVERLAND FLOW PATHS

Auckland Council has identified several Overland Flow Paths (OLFP) through and around the site, but none of these OLFPs will affect the proposed development concept in PCA, refer to the Figure 6 below:

Figure 8 Existing Overland Flow Path Plan (derived from Geomap on September 2023)

The post-development overland flows are designed to be conveyed within the road reserve; and Manning's formula has been used to check the conveyance capacity of the road reserve. Post-development catchment B is the largest catchment which conveys flows to the outlet. The HEC HMS model anticipates the maximum inflow (peak flow will be conveyed within the road reserve) under 3.8°C Climate Change scenario is 3,819.1L/s.

<u>@</u>	🐏 Time-Series Results for Reservoir "Post Communal Tank B" 🛛 🖃 💌							
	Project: Smith SW POND Simulation Run: 1% AEP Post 3.8 degree Reservoir: Post Communal Tank B							
St En Co	Start 14Jun2024, 00:00 Basin Model: Post-develop End 14Jun2024, 23:59 Meteorologic Model: 1% AEP Pos ComputeDATA CHANGED, RECOMPUTE Control Specifications:Post Develop							
	Date	Time	Inflow (M3/S)	Storage (1000 M3)	Elevation (M)	Outflow (M3/S)		
	14Jun2024	12:08	3.25993	5.54374	67.49	1.06037		
	14Jun2024	12:09	3.45796	5.67921	67.52	1.14197		
	14Jun2024	12:10	3.63203	5.82072	67.56	1.23090		
	14Jun2024	12:11	3.75889	5.96575	67.60	1.32558		
	14Jun2024	12:12	3.81908	6.11062	67.64	1.42349		
	14Jun2024	12:13	3.80918	6.25112	67.68	1.52145		
	14Jun2024	12:14	3.71207	6.38273	67.71	1.61266		
	14Jun2024	12:15	3.53404	6.50097	67.74	1.69220		
	14Jun2024	12:16	3.30491	6.60252	67.77	1.76178		
	14Jun2024	12:17	3.05438	6.68585	67.79	1.81974	~	

Figure 9 Maximum inflow runoff rate under 3.8-degree climate change factor

The typical road cross section design has a 6.6m formation including kerb and channel. To convey a flow of 3,819.1L/s with a road grade of 4.0% as per roading design, the anticipated flow depth is 220mm in the channel, or 70mm above the top of kerb and above the crown of the road, refer to Figure 10 below. The overland flow width is approximately 11.26m.

Typical Overland Flow (peak flow from Sub-catchment B)

Ignore Channel Flow for calculations as this is generally insignificant

(For Triangular Channel or V Drain set bottom width to 0)

side slope true LHS	1:h	1:	ZL	
side slope true RHS	1:h	1:	Z _R	
bottom width	b		m	
Mannings coefficient	n	0.015	Aspl	halt
Channel Gradient	S	0.04	m/m	
gravity	g	9.81	m/s ²	
Flow Depth	d	0.2	2 m	
Area	Α	1.28	9 m ²	d/2.(b+T)
wetted Perimeter	Р	11.57	2 m ²	$b+d(sqr(1+z_{L}^{2})+sqr(1+z_{R}^{2})$
hydraulic Radius	R	0.1113	9 m ²	A/P
Velocity	V	3.08675	2 m/s	(R ^{2/3} S ^{1/2})/n
flow	Q	3.97882	3 m³/s	VA
Froude number	Fr	2.10221	6 supercritical	V/(gd) ^{1/2}
Floodway Safety		0.67908	5 m²/s	d.V
For channel depth of		0.2	2 m	
Channel Width is	Т	11.2	26 m	

Figure 10 Road flow capacity calculation by using Mannings' Formula

Trapezoidal Channel:

4 **CONCLUSION**

In summary, the proposed stormwater requirements for the development, consists of a dual-purpose retention/detention tank for every lot within post-catchment A, B, C and D to provide SMAF-1 retention and detention as well as attenuation for 10% AEP Storm Event to pre-development flowrates for the roof area, every lot within post-catchment E, F and G to provide SMAF-1 retention and detention only for the roof area. The proposed driveway area within post-catchment A, C and D to provide SMAF-1 extended detention as well as attenuation for 10% AEP storm event to pre-development flowrates, and the proposed driveway area within post-catchment E, F and G to provide SMAF-1 extended detention only, the communal stormwater pond for the post-catchment B to provide SMAF-1 retention and detention treatment for every lot within its catchment.

Sub-catchments A, C, D, E, F & G, the post-development runoff during rainfall events greater than the 10% AEP rainfall event will flow as overland sheet flow to the downstream receiving environment, as the change in catchment area and attenuation provided also ensures the 1% AEP storm events are mitigated to pre-development flowrates.

Post-catchment B, the post-development runoff during rainfall events greater than the 10% AEP rainfall event will flow via overland flow through via road reserve and then to the designed communal stormwater device for attenuation before discharging to the receiving environment. This is to ensure the flooding risks and impact to the downstream properties are not increased due to the development of the PPC.

The required minimum volume of the communal stormwater device for post-catchment B is 6,870m³ and the communal stormwater device for the proposed Road Reserve within post-catchment D is 64m³, including the SMAF 1 requirements plus the mitigation, under 3.8°C Climate Change scenario. The impervious area for the private driveways and public roads is approximately 38,195m³ within the post-catchment B.

Communal Device	SMAF Retention and Detention Volume	Mitigation Volume for up to and including the 1% AEP Storm event	Minimum Requirement	Designed Total
Sub-catchment B	1,240m³	6,870m³	6,867m³	6,870 m³
Sub-catchment D	-	-	61.9m³	64 m³

For the 50% AEP, 10% AEP & 1% AEP rainfall events, the post-development peak flows to all four outlets from the sub-catchments are attenuated to not exceed the pre-development peak flows under both 2.1°C Climate Change scenario and 3.8°C Climate Change scenario:

Catchment		Pre-Development (3.8°C)	Post Development (3.8°C)
Outlet	Thous requercy	Flow (l/s)	Flow (L/s) Mitigated
	50% AEP	51.7	49.7
West	10% AEP	144.7	141.8
	1% AEP	290.8	251.8
	50% AEP	450.9	443.1
North	10% AEP	1,192.8	1,190.7
	1% AEP	2,322.6	2,307.5
	50% AEP	185.2	170.2
South East	10% AEP	491.6	337.2
	1% AEP	946.3	556.1
	50% AEP	184.1	164.3
South West	10% AEP	465.7	330.9
	1% AEP	872.8	556.1

APPENDIX A HEC HMS RESULT

BSL Ref: 4553 HECHMS Rev D

The peak flows under 50% AEP, 10% AEP & 1% AEP rainfall events for post-development with designed attenuation are shown below by using HEC HMS Modelling under 3.8-degree climate change scenario. As well as the water level for each communal devices under 1% AEP rainfall event.

Under 3.8°C Climate Change scenario

Outlet 1 (To West)

• The post-development peak flow under the 50% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "50% AEP P	ost 3.8 degree"			
	Project: Smith SW POI	ND Simulation Run: 5	50% AEP Post 3.8 deg	ree	
Start of Ru End of Ru Compute	un: 14Jun2024, 00:0 n: 14Jun2024, 23:5 Time:28Nov2024, 13:	00 Basin Mode 59 Meteorologi 41:46 Control Spe	l: Post-develop c Model: 50% AEP Po cifications:Post Develop	ment st 3.8 CCF ment SH 3.8	
Show Elements: All E	lements \vee Volun	ne Units: 🔿 MM 🔘 🗄	1000 M3 Sorting:	Watershed Explorer	~
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)	
Post Pvt Pavement G	0.0024	0.03938	14 June 2024, 12:12	0.20549	^
Diversion-G 2	0.0024	0.00000	13 June 2024, 24:00	0.00000	
Tank SC G Driveway	0.0000	0.03990	14 June 2024, 12:13	0.20523	
Post Reserve G	0.0010	0.00679	14 June 2024, 12:13	0.03208	
To West	0.0063	0.04972	14 June 2024, 12:15	0.37911	
North Wetland	0.0985	0.44311	14 June 2024, 12:24	5.87988	
South East Stream	0.0135	0.17018	14 June 2024, 12:13	0.87035	
South West Stream	0.0133	0.16434	14 June 2024, 12:13	0.82839	~

• The post-development peak flow under the 10% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "10% AEP P	ost 3.8 degree"			
	Project: Smith SW PO	ND Simulation Run: 1	10% AEP Post 3.8 deg	ree	
Start of Ru End of Ru Compute	un: 14Jun2024, 00:(n: 14Jun2024, 23:: Time:28Nov2024, 13:	00 Basin Mode 59 Meteorologi 40:52 Control Spe	l: Post-develop c Model: 10% AEP Po cifications:Post Develop	ment st 3.8 CCF oment SH 3.8	
Show Elements: All E	lements \vee Volur	ne Units: 🔿 MM 🏾 🖲	1000 M3 Sorting:	Watershed Explorer	\sim
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)	
Tank SC G	0.0049	0.14361	14 June 2024, 12:12	0.74422	^
Post Lot Pervious G	0.0049	0.09838	14 June 2024, 12:13	0.45092	
Post Pvt Pavement G	0.0024	0.07168	14 June 2024, 12:12	0.37399	
Diversion-G 2	0.0024	0.00000	13 June 2024, 24:00	0.00000	
Tank SC G Driveway	0.0000	0.07180	14 June 2024, 12:13	0.37193	
Post Reserve G	0.0010	0.01806	14 June 2024, 12:13	0.08347	
To West	0.0063	0.14183	14 June 2024, 12:13	0.74051	
North Wetland	0.0985	1.19069	14 June 2024, 12:24	12.34487	
South East Stream	0.0135	0.33724	14 June 2024, 12:13	1.71844	
South West Stream	0.0133	0.33087	14 June 2024, 12:13	1.65055	~

• The post-development peak flow under the 1% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "1% AEP Po	st 3.8 degree"			
	Project: Smith SW PO	ND Simulation Run:	1% AEP Post 3.8 degr	ee	
Start of R End of Ru Compute	un: 14Jun2024, 00:0 n: 14Jun2024, 23:5 Time:28Nov2024, 13:	00 Basin Model 59 Meteorologi 41:19 Control Spe	l: Post-develop c Model: 1% AEP Pos cifications:Post Develop	ment t 3.8 CCF oment SH 3.8	
Show Elements: All E	lements \vee Volun	ne Units: 🔿 MM 🔘 :	1000 M3 Sorting:	Watershed Explorer	\sim
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)	
Diversion-G	0.0000	0.00000	13 June 2024, 24:00	0.00000	
Tank SC G	0.0049	0.22623	14 June 2024, 12:12	1.17100	
Post Lot Pervious G	0.0049	0.18212	14 June 2024, 12:13	0.83866	
Post Pvt Pavement G	0.0024	0.11312	14 June 2024, 12:12	0.59021	
Diversion-G 2	0.0024	0.03912	14 June 2024, 12:12	0.02080	
Tank SC G Driveway	0.0000	0.07436	14 June 2024, 12:06	0.56458	
Post Reserve G	0.0010	0.03478	14 June 2024, 12:13	0.16017	
To West	0.0063	0.25180	14 June 2024, 12:13	1.23224	
North Wetland	0.0985	2.30748	14 June 2024, 12:19	20.76759	
South East Stream	0.0135	0.57077	14 June 2024, 12:12	2.85324	
South West Stream	0.0133	0.55612	14 June 2024, 12:12	2.75521	\mathbf{v}

Outlet 2 (To North)

• The post-development peak flow under the 50% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "50% AEP P	ost 3.8 degree"			
	Project: Smith SW POI	ND Simulation Run: 5	50% AEP Post 3.8 deg	ree	
Start of Ru End of Ru Compute	un: 14Jun2024, 00:(n: 14Jun2024, 23: Time:28Nov2024, 13:	00 Basin Mode 59 Meteorologi 41:46 Control Spe	l: Post-develop c Model: 50% AEP Po cifications:Post Develop	ment st 3.8 CCF oment SH 3.8	
Show Elements: All E	lements 🗸 Volur	ne Units: 🔿 MM 🏾 🗉	1000 M3 Sorting:	Watershed Explorer	\sim
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)	
Tank SC G	0.0049	0.07868	14 June 2024, 12:12	0.40976	1^
Post Lot Pervious G	0.0049	0.03905	14 June 2024, 12:13	0.18132	
Post Pvt Pavement G	0.0024	0.03938	14 June 2024, 12:12	0.20549	
Diversion-G 2	0.0024	0.00000	13 June 2024, 24:00	0.00000	
Tank SC G Driveway	0.0000	0.03990	14 June 2024, 12:13	0.20523	
Post Reserve G	0.0010	0.00679	14 June 2024, 12:13	0.03208	1
To West	0.0063	0.04972	14 June 2024, 12:15	0.37911	1
North Wetland	0.0985	0.44311	14 June 2024, 12:24	5.87988	
South East Stream	0.0135	0.17018	14 June 2024, 12:13	0.87035	
South West Stream	0.0133	0.16434	14 June 2024, 12:13	0.82839	~

• The post-development peak flow under the 10% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "10% AEP P	ost 3.8 degree"		
	Project: Smith SW POI	ND Simulation Run: 1	.0% AEP Post 3.8 deg	ree
Start of Ru End of Ru Compute	un: 14Jun2024, 00:(n: 14Jun2024, 23: Time:28Nov2024, 13:	00 Basin Model 59 Meteorologi 40:52 Control Spe	: Post-develop c Model: 10% AEP Po cifications:Post Develop	ment st 3.8 CCF oment SH 3.8
Show Elements: All E	lements \vee Volur	ne Units: 🔿 MM 🔘 :	LOOO M3 Sorting:	Watershed Explorer $\ \simeq$
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)
Post Roof SC G	0.0049	0.14335	14 June 2024, 12:12	0.74798 ^
Diversion-G	0.0000	0.00000	13 June 2024, 24:00	0.00000
Tank SC G	0.0049	0.14361	14 June 2024, 12:12	0.74422
Post Lot Pervious G	0.0049	0.09838	14 June 2024, 12:13	0.45092
Post Pvt Pavement G	0.0024	0.07168	14 June 2024, 12:12	0.37399
Diversion-G 2	0.0024	0.00000	13 June 2024, 24:00	0.00000
Tank SC G Driveway	0.0000	0.07180	14 June 2024, 12:13	0.37193
Post Reserve G	0.0010	0.01806	14 June 2024, 12:13	0.08347
To West	0.0063	0.14183	14 June 2024, 12:13	0.74051
North Wetland	0.0985	1.19069	14 June 2024, 12:24	12.34487
South East Stream	0.0135	0.33724	14 June 2024, 12:13	1.71844
South West Stream	0.0133	0.33087	14 June 2024, 12:13	1.65055 🗸

• The post-development peak flow under the 1% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "1% AEP Po	st 3.8 degree"			
	Project: Smith SW PO	ND Simulation Run:	1% AEP Post 3.8 degr	ee	
Start of P	- 14]up2024_00.(0 Pacin Mada	le Doct dovelop	mont	
End of Ru	n: 14Jun2024, 00.0	59 Meteorologi	c Model: 1% AEP Pos	t 3.8 CCF	
Compute	Time:28Nov2024, 13:	41:19 Control Spe	cifications:Post Develop	ment SH 3.8	
Show Elements: All E	lements \vee Volur	ne Units: 🔿 MM 🍥	1000 M3 Sorting:	Watershed Explorer	\sim
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume	
Element	(KM2)	(M3/S)		(1000 M3)	
Tank SC G	0.0049	0.22623	14 June 2024, 12:12	1.17100	^
Post Lot Pervious G	0.0049	0.18212	14 June 2024, 12:13	0.83866	
Post Pvt Pavement G	0.0024	0.11312	14 June 2024, 12:12	0.59021	
Diversion-G 2	0.0024	0.03912	14 June 2024, 12:12	0.02080	
Tank SC G Driveway	0.0000	0.07436	14 June 2024, 12:06	0.56458	
Post Reserve G	0.0010	0.03478	14 June 2024, 12:13	0.16017	
To West	0.0063	0.25180	14 June 2024, 12:13	1.23224	
North Wetland	0.0985	2.30748	14 June 2024, 12:19	20.76759	
South East Stream	0.0135	0.57077	14 June 2024, 12:12	2.85324	
South West Stream	0.0133	0.55612	14 June 2024, 12:12	2.75521	\mathbf{v}

• The water level of Communal Device B under the 1% AEP rainfall event (3.8°C CCF)

Project: Smith SW POND Simulation Run: 1% AEP Post 3.8 degree Reservoir: Post Communal Tank B Start of Run: 14Jun2024, 00:00 Basin Model: Post-development End of Run: 14Jun2024, 23:59 Meteorologic Model: 1% AEP Post 3.8 CCF Compute Time: DATA CHANGED, RECOMPUTE Control Specifications:Post Development SH 3. Volume Units: O MM (1000 M3
Start of Run: 14Jun2024, 00:00 Basin Model: Post-development End of Run: 14Jun2024, 23:59 Meteorologic Model: 1% AEP Post 3.8 CCF Compute Time: DATA CHANGED, RECOMPUTE Control Specifications:Post Development SH 3. Volume Units: MM 1000 M3
End of Run: 14Jun2024, 23:59 Meteorologic Model: 1% AEP Post 3.8 CCF Compute Time: DATA CHANGED, RECOMPUTE Control Specifications: Post Development SH 3. Volume Units: MM 1000 M3
Compute Time: DATA CHANGED, RECOMPUTE Control Specifications: Post Development SH 3. Volume Units: O MM 1000 M3 Computed Results
Volume Units: O MM 1000 M3
Peak Inflow: 3.81908 (M3/S) Date/Time of Peak Inflow: 14Jun2024, 12:12
Peak Discharge: 1.94867 (M3/S) Date/Time of Peak Discharge: 14Jun2024, 12:23
Inflow Volume: 19.49485 (1000 M3) Peak Storage: 6.86747 (1000 M3)
Discharge Volume:17.91681 (1000 M3) Peak Elevation: 67.83 (M)

• The water level of Communal Device D under the 1% AEP rainfall event (3.8°C CCF)

Summary Res	sults for Reservoir "Post Co	ommunal Tank SC D"
	Project: Smith SW POND Reservoir:	Simulation Run: 1% AEP Post 3.8 degree Post Communal Tank SC D
Start of Run:	14Jun2024, 00:00	Basin Model: Post-development
End of Run:	14Jun2024, 23:59	Meteorologic Model: 1% AEP Post 3.8 CCF
Compute Time	:DATA CHANGED, RECOM	1PUTE Control Specifications:Post Development SH 3
Computed Re	Volume U esults	nits: O MM 🔘 1000 M3
Computed Re Peak Inflow	Volume U esults :: 0.17973 (M3/S)	nits: OMM 1000 M3 Date/Time of Peak Inflow: 14Jun2024, 12:12
⊂ Computed Re Peak Inflow Peak Discha	Volume U esults r: 0.17973 (M3/S) arge: 0.16974 (M3/S)	nits: MM 1000 M3 Date/Time of Peak Inflow: 14Jun2024, 12:12 Date/Time of Peak Discharge: 14Jun2024, 12:15
Computed Re Peak Inflow Peak Discha Inflow Volu	Volume U esults .: 0.17973 (M3/S) arge: 0.16974 (M3/S) me: 0.91254 (1000 M3)	nits: MM 1000 M3 Date/Time of Peak Inflow: 14Jun2024, 12:12 Date/Time of Peak Discharge: 14Jun2024, 12:15 Peak Storage: 0.06190 (1000 M3)

Outlet 3 (To South East)

• The post-development peak flow under the 50% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "50% AEP P	ost 3.8 degree"			
	Project: Smith SW POI	ND Simulation Run: 5	50% AEP Post 3.8 deg	ree	
Start of Ru End of Ru Compute	un: 14Jun2024, 00:0 n: 14Jun2024, 23:5 Time:28Nov2024, 13:	00 Basin Mode 59 Meteorologi 41:46 Control Spe	l: Post-develop c Model: 50% AEP Po cifications:Post Develop	ment st 3.8 CCF oment SH 3.8	
Show Elements: All E	lements \vee Volun	ne Units: 🔿 MM 🍥 :	1000 M3 Sorting:	Watershed Explorer	\sim
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)	
Tank SC G	0.0049	0.07868	14 June 2024, 12:12	0.40976	1~
Post Lot Pervious G	0.0049	0.03905	14 June 2024, 12:13	0.18132	1
Post Pvt Pavement G	0.0024	0.03938	14 June 2024, 12:12	0.20549	
Diversion-G 2	0.0024	0.00000	13 June 2024, 24:00	0.00000	1
Tank SC G Driveway	0.0000	0.03990	14 June 2024, 12:13	0.20523	1
Post Reserve G	0.0010	0.00679	14 June 2024, 12:13	0.03208	1
To West	0.0063	0.04972	14 June 2024, 12:15	0.37911	1
North Wetland	0.0985	0.44311	14 June 2024, 12:24	5.87988	
South East Stream	0.0135	0.17018	14 June 2024, 12:13	0.87035	
South West Stream	0.0133	0.16434	14 June 2024, 12:13	0.82839	~

• The post-development peak flow under the 10% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "10% AEP P	ost 3.8 degree"			
	Project: Smith SW PO	ND Simulation Run: 1	10% AEP Post 3.8 deg	ree	
Start of Ru End of Ru Compute	un: 14Jun2024, 00:(n: 14Jun2024, 23: Time:28Nov2024, 13:	00 Basin Mode 59 Meteorologi 40:52 Control Spe	l: Post-develop c Model: 10% AEP Po cifications:Post Develop	ment st 3.8 CCF oment SH 3.8	
Show Elements: All E	lements \vee Volur	ne Units: 🔿 MM 🏾 🗉	1000 M3 Sorting:	Watershed Explorer	\sim
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)	
Tank SC G	0.0049	0.14361	14 June 2024, 12:12	0.74422	^
Post Lot Pervious G	0.0049	0.09838	14 June 2024, 12:13	0.45092	
Post Pvt Pavement G	0.0024	0.07168	14 June 2024, 12:12	0.37399	
Diversion-G 2	0.0024	0.00000	13 June 2024, 24:00	0.00000	
Tank SC G Driveway	0.0000	0.07180	14 June 2024, 12:13	0.37193	
Post Reserve G	0.0010	0.01806	14 June 2024, 12:13	0.08347	
To West	0.0063	0.14183	14 June 2024, 12:13	0.74051	
North Wetland	0.0985	1.19069	14 June 2024, 12:24	12.34487	
South East Stream	0.0135	0.33724	14 June 2024, 12:13	1.71844	
South West Stream	0.0133	0.33087	14 June 2024, 12:13	1.65055	~

• The post-development peak flow under the 1% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "1% AEP Po	st 3.8 degree"		
	Project: Smith SW PO	ND Simulation Run:	1% AEP Post 3.8 degr	ee
Start of R End of Ru Compute	un: 14Jun2024, 00:(n: 14Jun2024, 23:: Time:28Nov2024, 13:	00 Basin Mode 59 Meteorologi 41:19 Control Spe	l: Post-develop c Model: 1% AEP Posi cifications:Post Develop	ment t 3.8 CCF oment SH 3.8
Show Elements: All E	ilements 👋 Volur	ne Units: 🔿 MM 🔘 🗉	1000 M3 Sorting:	Watershed Explorer $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)
Tank SC G	0.0049	0.22623	14 June 2024, 12:12	1.17100
Post Lot Pervious G	0.0049	0.18212	14 June 2024, 12:13	0.83866
Post Pvt Pavement G	0.0024	0.11312	14 June 2024, 12:12	0.59021
Diversion-G 2	0.0024	0.03912	14 June 2024, 12:12	0.02080
Tank SC G Driveway	0.0000	0.07436	14 June 2024, 12:06	0.56458
Post Reserve G	0.0010	0.03478	14 June 2024, 12:13	0.16017
To West	0.0063	0.25180	14 June 2024, 12:13	1.23224
North Wetland	0.0985	2.30748	14 June 2024, 12:19	20.76759
South East Stream	0.0135	0.57077	14 June 2024, 12:12	2.85324
South West Stream	0.0133	0.55612	14 June 2024, 12:12	2.75521

Outlet 4 (To South West)

• The post-development peak flow under the 50% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "50% AEP P	ost 3.8 degree"		
	Project: Smith SW POI	ND Simulation Run: !	50% AEP Post 3.8 deg	ree
Start of Ru End of Ru Compute	un: 14Jun2024, 00:(n: 14Jun2024, 23: Time:28Nov2024, 13:	00 Basin Mode 59 Meteorologi 41:46 Control Spe	l: Post-develop c Model: 50% AEP Po cifications:Post Develop	ment st 3.8 CCF oment SH 3.8
Show Elements: All E	lements \vee Volun	ne Units: 🔿 MM 🔘	1000 M3 Sorting:	Watershed Explorer $\ arphi$
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)
Tank SC G	0.0049	0.07868	14 June 2024, 12:12	0.40976
Post Lot Pervious G	0.0049	0.03905	14 June 2024, 12:13	0.18132
Post Pvt Pavement G	0.0024	0.03938	14 June 2024, 12:12	0.20549
Diversion-G 2	0.0024	0.00000	13 June 2024, 24:00	0.00000
Tank SC G Driveway	0.0000	0.03990	14 June 2024, 12:13	0.20523
Post Reserve G	0.0010	0.00679	14 June 2024, 12:13	0.03208
To West	0.0063	0.04972	14 June 2024, 12:15	0.37911
North Wetland	0.0985	0.44311	14 June 2024, 12:24	5.87988
South East Stream	0.0135	0.17018	14 June 2024, 12:13	0.87035
South West Stream	0.0133	0.16434	14 June 2024, 12:13	0.82839

• The post-development peak flow under the 10% AEP rainfall event (3.8°C CCF)

Global Summary Resul	ts for Run "10% AEP P	ost 3.8 degree"			
	Project: Smith SW POI	ND Simulation Run: 1	.0% AEP Post 3.8 deg	ree	
Start of R End of Ru Compute	un: 14Jun2024, 00:(n: 14Jun2024, 23: Time:28Nov2024, 13:	00 Basin Mode 59 Meteorologi 40:52 Control Spe	l: Post-develop c Model: 10% AEP Po cifications:Post Develop	ment st 3.8 CCF oment SH 3.8	
Show Elements: All E	lements – Volun	ne Units: 🔿 MM 🍥 🗄	1000 M3 Sorting:	Watershed Explorer	\sim
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)	
Post Roof SC G	0.0049	0.14335	14 June 2024, 12:12	0.74798	
Diversion-G	0.0000	0.00000	13 June 2024, 24:00	0.00000	
Tank SC G	0.0049	0.14361	14 June 2024, 12:12	0.74422	
Post Lot Pervious G	0.0049	0.09838	14 June 2024, 12:13	0.45092	1
Post Pvt Pavement G	0.0024	0.07168	14 June 2024, 12:12	0.37399	1
Diversion-G 2	0.0024	0.00000	13 June 2024, 24:00	0.00000	1
Tank SC G Driveway	0.0000	0.07180	14 June 2024, 12:13	0.37193	1
Post Reserve G	0.0010	0.01806	14 June 2024, 12:13	0.08347	1
To West	0.0063	0.14183	14 June 2024, 12:13	0.74051	1
North Wetland	0.0985	1.19069	14 June 2024, 12:24	12.34487	
South East Stream	0.0135	0.33724	14 June 2024, 12:13	1.71844	
South West Stream	0.0133	0.33087	14 June 2024, 12:13	1.65055	

• The post-development peak flow under the 1% AEP rainfall event (3.8°C CCF)

	· · ·							
Global Summary Resul	ts for Run "1% AEP Po	st 3.8 degree"						
Project: Smith SW POND Simulation Run: 1% AEP Post 3.8 degree								
Start of Run: 14Jun2024, 00:00 Basin Model: Post-development End of Run: 14Jun2024, 23:59 Meteorologic Model: 1% AEP Post 3.8 CCF Compute Time: 28Nov2024, 13:41:19 Control Specifications:Post Development SH 3.8								
Show Elements: All E	ilements \vee Volur	me Units: 🔿 MM 🔘 🗄	1000 M3 Sorting:	Watershed Explorer	\sim			
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)				
Tank SC G	0.0049	0.22623	14 June 2024, 12:12	1.17100	^			
Post Lot Pervious G	0.0049	0.18212	14 June 2024, 12:13	0.83866				
Post Pvt Pavement G	0.0024	0.11312	14 June 2024, 12:12	0.59021				
Diversion-G 2	0.0024	0.03912	14 June 2024, 12:12	0.02080				
Tank SC G Driveway	0.0000	0.07436	14 June 2024, 12:06	0.56458				
Post Reserve G	0.0010	0.03478	14 June 2024, 12:13	0.16017				
To West	0.0063	0.25180	14 June 2024, 12:13	1.23224				
North Wetland	0.0985	2.30748	14 June 2024, 12:19	20.76759				
South East Stream	0.0135	0.57077	14 June 2024, 12:12	2.85324				
South West Stream	0.0133	0.55612	14 June 2024, 12:12	2.75521	~			

APPENDIX B STORMWATER CALCULATION

TP108 Spreadsheet Calculations SMAF Volume Calculation

BSL Ref: 4553 HECHMS Rev D

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Pervious Area, Stormwater Catchment A

Hydrological Soil Group		Group_B				
Grassed (Cla	iss B)	CN 61	Area 0.9633	Product 58.7613		
		totals	0.9633	58.7613		
% Impervious CN weighted la weighted			0.00% 61.0000 5.0000			
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)	1.0000 0.0670 km 0.0750 m/m				
Runoff Factor Time of Concentration	(t _c)		0.4388 0.0805	hrs		
Use Catchment Area CN	(t _c)	0.1667 min 0.0096 km ²				
Storage	(S)	162.3934 mm				

Table 3.3 - Curve numbers for typical Auckland conditions								
Land use	Group A Soil (volcanic granular loam)	Group B Soil (alluvial)	Group C Soil (mudstone/san dstone)					
Bush, humid-climate, not-grazed	30	55	70					
Pasture, lightly grazed, good grass cover	39	61	74					
Urban lawns	39	61	74					
Crops, straight rows, minimal vegetative cover	72	81	88					
Sealed roads, roofs	98	98	98					

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5	34.50	89	130	157	184	210	239
C*			-0.0156	0.0701	0.1960	0.2691	0.3115	0.3484	0.3810	0.4134
q* from ARC		Approx	0.032	0.032	0.063	0.082	0.091	0.098	0.103	0.109
Peak Flowrate	(q _p)	cumecs	0.0015	0.0105	0.0542	0.1019	0.1369	0.1727	0.2088	0.2498
Peak Flowrate	(q _p)	l/s	2	11	54	102	137	173	209	250
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	4.54	28.75	54.10	73.46	93.61	114.32	138.02
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	44	277	521	708	902	1101	1330

4.8 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Impervious Area, Stormwater Catchment A

Hydrological Soil Group		Group_B				
Building Drive & Paths	Building Drive & Paths		CN Building 98 Drive & Paths 98		Area 0.0000 0.0000	Product
		totals	0.0000	0.0000		
% Impervious CN weighted la weighted	100.00% 0.0000 0.0000					
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)	1.0000 0.0670 km 0.0750 m/m				
Runoff Factor			0.0000			
Time of Concentration	(t _c)		0.0000	hrs		
Use Catchment Area CN	(t _c)		0.1667 0.0000 0.0000	min km²		
Storage	(S)		0.0000	mm		

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
C*			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
q* from ARC		Approx	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169
Peak Flowrate	(q _p)	cumecs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Peak Flowrate	(q _p)	l/s	0	0	0	0	0	0	0	0
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	0	0	0	0	0	0	0

0.0 min 10.0 min

Existing Flows

			WQV ¹ / ₃ 2yr	Ex. Det.	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0015	0.0105	0.0542	0.1019	0.1369	0.1727	0.2088	0.2498
Peak Flowrate	(q _p)	l/s	2	11	54	102	137	173	209	250
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	44	277	521	708	902	1101	1330

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Pervious Area, Stormwater Catchment A

Hydrological Soil Group		Group_B				
Grassed		CN 61	Area 0.2718	Product 16.5798		
		totals	0.2718	16.5798		
% Impervious CN weighted la weighted			0.00% 61.0000 5.0000			
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.0500 0.0900	km m/m		
Runoff Factor Time of Concentration	(t _c)		0.4388 0.0628	hrs		
Use Catchment Area	(t _c)		0.1667 0.0027	min km²		
Storage	(S)		162.3934	mm		

Table 3.3 - Curve numbers for typical Auckland conditions								
Land use	Group A Soil (volcanic granular loam)	Group B Soil (alluvial)	Group C Soil (mudstone/san dstone)					
Bush, humid-climate, not-grazed	30	55	70					
Pasture, lightly grazed, good grass cover	39	61	74					
Urban lawns	39	61	74					
Crops, straight rows, minimal vegetative cover	72	81	88					
Sealed roads, roofs	98	98	98					

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			-0.0156	0.0701	0.1960	0.2691	0.3115	0.3484	0.3810	0.4134
q* from ARC		Approx	0.032	0.032	0.063	0.082	0.091	0.098	0.103	0.109
Peak Flowrate	(q _p)	cumecs	0.0004	0.0030	0.0153	0.0287	0.0386	0.0487	0.0589	0.0705
Peak Flowrate	(q _p)	l/s	0	3	15	29	39	49	59	70
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	4.54	28.75	54.10	73.46	93.61	114.32	138.02
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	12	78	147	200	254	311	375

3.8 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Impervious Area, Stormwater Catchment A

Hydrological Soil Gro	Group_B					
Buildings/Imj Road/Footpa	Buildings/Impervious Road/Footpath		CN Buildings/Impervious 98 Road/Footpath 98			Product 26.4600 10.2900
		totals	0.3750	36.7500		
% Impervious CN weighted la weighted		100.00% 98.0000 0.0000				
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		km m/m			
Runoff Factor Time of Concentration Use Catchment Area CN Storage	n (t _c) (t _c) (S)		0.9608 0.0408 0.1667 0.0038 98.0000 5.1837	hrs min km² mm		

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			0.3254	0.7689	0.8959	0.9259	0.9380	0.9466	0.9529	0.9584
q* from ARC		Approx	0.093	0.150	0.161	0.164	0.164	0.165	0.166	0.166
Peak Flowrate	(q _p)	cumecs	0.0017	0.0195	0.0539	0.0795	0.0968	0.1137	0.1304	0.1487
Peak Flowrate	(q _p)	l/s	2	19	54	79	97	114	130	149
24 hour Runoff Depth	(Q ₂₄)	mm	2.45	29.99	84.30	124.62	151.94	178.64	204.86	233.79
24 hour Runoff Volume	(V ₂₄)	cu mtr	9	112	316	467	570	670	768	877

2.4 min 10.0 min

Calculated Flows

			WQV	Ex. Det.	50% AEP	20% AEP	10% AEP	5% AEP	2% AEP	1% AEP
			¹ / ₃ 2yr		2yr ARI	5yr ARI	10yr ARI	20yr ARI	50yr ARI	100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0022	0.0224	0.0692	0.1082	0.1354	0.1625	0.1893	0.2192
Peak Flowrate	(q _p)	l/s	2	22	69	108	135	162	189	219
24 hour Runoff Volume	(V ₂₄)	cu mtr	9	125	394	614	769	924	1079	1252

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Pervious Area, Stormwater Catchment B

Hydrological Soil Group			Group_C	(B&C)
Grassed		CN 63	Area 3.3308	Product 209.8404
		totals	3.3308	209.8404
% Impervious CN weighted la weighted			0.00% 63.0000 5.0000	
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.1650 0.1500	km m/m
Runoff Factor			0.4599	1
Time of Concentration	(t _c)		0.1155	hrs
Use Catchment Area CN	(t _c)		0.1667 0.0333 63.0000	í min km²
Storage	(S)		149.1746	mm

Table 3.3 - Curve numbers for typical Auckland conditions									
Land use	Group A Soil (volcanic granular loam)	Group B Soil (alluvial)	Group C Soil (mudstone/san dstone)						
Bush, humid-climate, not-grazed	30	55	70						
Pasture, lightly grazed, good grass cover	39	61	74						
Urban lawns	39	61	74						
Crops, straight rows, minimal vegetative cover	72	81	88						
Sealed roads, roofs	98	98	98						

50% AEP 20% AEP 10% AEP SMAF 99%ile 5% AEP 2% AEP 1% AEP 2yr ARI 5yr ARI 10yr ARI 50yr ARI 20yr ARI 100yr ARI 24 hour rainfall depth (P₂₄) mm 5 34.50 89 130 157 184 210 239 c* q* from ARC -0.0170 0.0759 0.2098 0.2862 0.3300 0.3679 0.4012 0.4341 Approx 0.032 0.032 0.067 0.085 0.094 0.101 0.107 0.112 Peak Flowrate (q_p) cumecs 0.0053 0.0364 0.1988 0.3683 0.4922 0.6182 0.7454 0.8890 Peak Flowrate (q_p) l/s 5 36 199 368 492 618 745 889 24 hour Runoff Depth (Q₂₄) 0.00 4.87 30.38 56.71 76.68 97.38 118.59 142.78 mm (V₂₄) 24 hour Runoff Volume cu mtr 0 162 1012 1889 2554 3244 3950 4756

6.9 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Impervious Area, Stormwater Catchment B

Hydrological Soil Group			Group_C	(B&C)			
Building Drive & Paths	Building Drive & Paths		Area 0.1500 0.1500	Product 14.7000 14.7000			
		totals	0.3000	29.4000			
% Impervious CN weighted la weighted			100.00% 98.0000 0.0000				
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.1650 km 0.1500 m/m				
Runoff Factor Time of Concentration Use Catchment Area	(t _c) (t _c)		0.9608 0.0770 0.1667 0.0030	hrs min km²			
CN Storage	(S)		98.0000 5.1837	mm			

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
C*			0.7415	0.7689	0.8959	0.9259	0.9380	0.9466	0.9529	0.9584
q* from ARC		Approx	0.148	0.150	0.161	0.164	0.164	0.165	0.166	0.166
Peak Flowrate	(q _p)	cumecs	0.0132	0.0156	0.0431	0.0636	0.0775	0.0910	0.1043	0.1190
Peak Flowrate	(q _p)	l/s	13	16	43	64	77	91	104	119
24 hour Runoff Depth	(Q ₂₄)	mm	25.32	29.99	84.30	124.62	151.94	178.64	204.86	233.79
24 hour Runoff Volume	(V ₂₄)	cu mtr	76	90	253	374	456	536	615	701

4.6 min 10.0 min

Existing Flows

			WQV ¹ / ₃ 2yr	Ex. Det.	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0185	0.0520	0.2420	0.4319	0.5697	0.7092	0.8497	1.0079
Peak Flowrate	(q _p)	l/s	18	52	242	432	570	709	850	1008
24 hour Runoff Volume	(V ₂₄)	cu mtr	76	252	1265	2263	3010	3779	4565	5457

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Pervious Area, Stormwater Catchment B

Hydrological Soil Group		Group_C					
Grassed	Grassed			Product 179.0800			
		totals	2.4200	179.0800			
% Impervious CN weighted la weighted		0.00% 74.0000 5.0000					
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.4100 0.0550	km m/m			
Runoff Factor	(t.)		0.5873	hre			
Use Catchment Area	(t _c)		0.2486 0.0242 74 0000	min km²			
Storage	(S)		89.2432	mm			

Table 3.3 - Curve numbers for typical Auckland conditions									
Land use	Group A Soil (volcanic granular loam)	Group B Soil (alluvial)	Group C Soil (mudstone/san dstone)						
Bush, humid-climate, not-grazed	30	55	70						
Pasture, lightly grazed, good grass cover	39	61	74						
Urban lawns	39	61	74						
Crops, straight rows, minimal vegetative cover	72	81	88						
Sealed roads, roofs	98	98	98						

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			-0.0288	0.1207	0.3074	0.4012	0.4516	0.4932	0.5283	0.5618
q* from ARC		Approx	0.028	0.034	0.079	0.094	0.101	0.106	0.110	0.114
Peak Flowrate	(q _p)	cumecs	0.0034	0.0284	0.1709	0.2951	0.3832	0.4713	0.5592	0.6575
Peak Flowrate	(q _p)	l/s	3	28	171	295	383	471	559	657
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	7.33	40.88	72.60	95.74	119.16	142.75	169.27
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	177	989	1757	2317	2884	3455	4096

14.9 min 14.9 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Impervious Area, Stormwater Catchment B

Hydrological Soil Gro	oup	Group_C						
Buildings/In Road/Footp	npervious ath	CN 98 98	Area 1.3300 2.7500	Product 130.3400 269.5000				
		totals	4.0800	399.8400				
% Impervious CN weighted la weighted		100.00% 98.0000 0.0000						
Channelisation facto Catchment Length Catchment Slope	r (C) (I) (S _c)		1.0000 0.4100 0.0550	km m/m				
Runoff Factor Time of Concentratio Use Catchment Area CN Storage	on (t _c) (t _c) (S)		0.9608 0.1897 0.1897 0.0408 98.0000 5.1837	hrs min km² mm				

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			0.3254	0.7689	0.8959	0.9259	0.9380	0.9466	0.9529	0.9584
q* from ARC		Approx	0.090	0.145	0.155	0.157	0.158	0.159	0.159	0.160
Peak Flowrate	(q _p)	cumecs	0.0183	0.2038	0.5645	0.8320	1.0134	1.1905	1.3645	1.5565
Peak Flowrate	(q _p)	l/s	18	204	564	832	1013	1191	1365	1556
24 hour Runoff Depth	(Q ₂₄)	mm	2.45	29.99	84.30	124.62	151.94	178.64	204.86	233.79
24 hour Runoff Volume	(V ₂₄)	cu mtr	100	1224	3439	5084	6199	7288	8358	9538

11.4 min 11.4 min

Calculated Flows

			WQV ¹ / ₃ 2yr	Ex. Det.	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0217	0.2321	0.7354	1.1271	1.3966	1.6618	1.9238	2.2140
Peak Flowrate	(q _p)	l/s	22	232	735	1127	1397	1662	1924	2214
24 hour Runoff Volume	(V ₂₄)	cu mtr	100	1401	4429	6841	8516	10172	11813	13635

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Pervious Area, Stormwater Catchment C

Hydrological Soil Group			Group_C	(B&C)
Grassed		CN 62	Product 81.7780	
		totals	1.3190	81.7780
% Impervious CN weighted Ia weighted			0.00% 62.0000 5.0000	
Channelisation factor	(C)		1.0000	
Catchment Length	(I)		0.1350	km
Catchment Slope	(S _c)		0.1630	m/m
Runoff Factor			0.4493	
Time of Concentration	(t _c)		0.0999	hrs
Use	(t _c)		0.1667	min
Catchment Area			0.0132	km²
CN			62.0000	
Storage	(S)		155.6774	mm

Table 3.3 - Curve numbers	Table 3.3 - Curve numbers for typical Auckland conditions										
Land use	Group A Soil (volcanic granular loam)	Group B Soil (alluvial)	Group C Soil (mudstone/san dstone)								
Bush, humid-climate, not-grazed	30	55	70								
Pasture, lightly grazed, good grass cover	39	61	74								
Urban lawns	39	61	74								
Crops, straight rows, minimal vegetative cover	72	81	88								
Sealed roads, roofs	98	98	98								

SMAF 99%ile 50% AEP 20% AEP 10% AEP 5% AEP 2% AEP 1% AEP 2yr ARI 5yr ARI 10yr ARI 20yr ARI 50yr ARI 100yr ARI 24 hour rainfall depth (P₂₄) mm 5 34.50 89 130 157 184 210 239 c* q* from ARC -0.0163 0.0729 0.2028 0.2775 0.3207 0.3581 0.3910 0.4236 Approx 0.032 0.032 0.065 0.083 0.092 0.099 0.105 0.110 Peak Flowrate (q_p) cumecs 0.0021 0.0144 0.0765 0.1426 0.1912 0.2406 0.2906 0.3470 Peak Flowrate (q_p) l/s 2 14 76 143 191 241 291 347 24 hour Runoff Depth (Q₂₄) 0.00 4.70 29.56 55.39 75.06 95.49 140.40 116.45 mm (V₂₄) 24 hour Runoff Volume cu mtr 0 62 390 731 990 1259 1536 1852

6.0 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Impervious Area, Stormwater Catchment C

Hydrological Soil Group			Group_C	(B&C)
Building Drive & Paths	Building Drive & Paths		Area 0.0000 0.0000	Product
		totals	0.0000	0.0000
% Impervious CN weighted la weighted			100.00% 0.0000 0.0000	
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		km m/m	
Runoff Factor Time of Concentration Use Catchment Area CN	(t _c) (t _c)		0.0000 0.0000 0.1667 0.0000 0.0000	hrs min km²
Storage	(S)		0.0000	mm

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
C*			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
q* from ARC		Approx	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169
Peak Flowrate	(q _p)	cumecs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Peak Flowrate	(q _p)	l/s	0	0	0	0	0	0	0	0
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	0	0	0	0	0	0	0

0.0 min 10.0 min

Existing Flows

			WQV	Ex. Det.	50% AEP	20% AEP	10% AEP	5% AEP	2% AEP	1% AEP
			¹ / ₃ 2yr		2yr ARI	5yr ARI	10yr ARI	20yr ARI	50yr ARI	100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0021	0.0144	0.0765	0.1426	0.1912	0.2406	0.2906	0.3470
Peak Flowrate	(q _p)	l/s	2	14	76	143	191	241	291	347
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	62	390	731	990	1259	1536	1852

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Pervious Area, Stormwater Catchment C

Hydrological Soil Group		Group_C						
Grassed		CN 74	Area 0.6800	Product 50.3200				
		totals	0.6800	50.3200				
% Impervious CN weighted la weighted			0.00% 74.0000 5.0000					
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.0920 0.2280	km m/m				
Runoff Factor	(+)		0.5873	h				
Use	(t _c)		0.0605	min				
Catchment Area CN			0.0068 74.0000	km²				
Storage	(S)		89.2432	mm				

Table 3.3 - Curve numbers	Table 3.3 - Curve numbers for typical Auckland conditions										
Land use	Group A Soil (volcanic granular loam)	Group B Soil (alluvial)	Group C Soil (mudstone/san dstone)								
Bush, humid-climate, not-grazed	30	55	70								
Pasture, lightly grazed, good grass cover	39	61	74								
Urban lawns	39	61	74								
Crops, straight rows, minimal vegetative cover	72	81	88								
Sealed roads, roofs	98	98	98								

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			-0.0288	0.1207	0.3074	0.4012	0.4516	0.4932	0.5283	0.5618
q* from ARC		Approx	0.032	0.038	0.090	0.107	0.114	0.120	0.125	0.129
Peak Flowrate	(q _p)	cumecs	0.0011	0.0090	0.0544	0.0940	0.1220	0.1501	0.1781	0.2094
Peak Flowrate	(q _p)	l/s	1	9	54	94	122	150	178	209
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	7.33	40.88	72.60	95.74	119.16	142.75	169.27
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	50	278	494	651	810	971	1151

3.6 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Impervious Area, Stormwater Catchment C

Hydrological Soil Group	C	Group_C					
Buildings/Imp Road/Footpat	Buildings/Impervious Road/Footpath			Product 45.0800 22.5400			
		totals	0.6900	67.6200			
% Impervious CN weighted la weighted	100.00% 98.0000 0.0000						
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.0920 0.2280	km m/m			
Runoff Factor Time of Concentration Use Catchment Area CN Storage		0.9608 0.0462 0.1667 0.0069 98.0000 5.1837	hrs min km²				
eterage	(0)		0.1007				

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
С*			0.3254	0.7689	0.8959	0.9259	0.9380	0.9466	0.9529	0.9584
q* from ARC		Approx	0.093	0.150	0.161	0.164	0.164	0.165	0.166	0.166
Peak Flowrate	(q _p)	cumecs	0.0032	0.0358	0.0992	0.1463	0.1781	0.2093	0.2399	0.2736
Peak Flowrate	(q _p)	l/s	3	36	99	146	178	209	240	274
24 hour Runoff Depth	(Q ₂₄)	mm	2.45	29.99	84.30	124.62	151.94	178.64	204.86	233.79
24 hour Runoff Volume	(V ₂₄)	cu mtr	17	207	582	860	1048	1233	1414	1613

2.8 min 10.0 min

Calculated Flows

			WQV ¹ / ₃ 2yr	Ex. Det.	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0043	0.0448	0.1536	0.2402	0.3002	0.3594	0.4180	0.4830
Peak Flowrate	(q _p)	l/s	4	45	154	240	300	359	418	483
24 hour Runoff Volume	(V ₂₄)	cu mtr	17	257	860	1354	1699	2043	2384	2764

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Pervious Area, Stormwater Catchment D

Hydrological Soil Group			Group_C	(B&C)
Grassed		CN 66	Area 2.2392	Product 147.7872
		totals	2.2392	147.7872
% Impervious CN weighted Ia weighted			0.00% 66.0000 5.0000	
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.1950 0.1490	km m/m
Runoff Factor			0.4925	
Time of Concentration	(t _c)		0.1244	hrs
Use Catchment Area CN	(t _c)		0.1667 0.0224 66.0000	min km²
Storage	(S)		130.8485	mm

Table 3.3 - Curve numbers for typical Auckland conditions									
Land use	Group A Soil (volcanic granular loam)	Group C Soil (mudstone/san dstone)							
Bush, humid-climate, not-grazed	30	55	70						
Pasture, lightly grazed, good grass cover	39	61	74						
Urban lawns	39	61	74						
Crops, straight rows, minimal vegetative cover	72	81	88						
Sealed roads, roofs	98	98	98						

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5	34.50	89	130	157	184	210	239
C*			-0.0195	0.0856	0.2323	0.3137	0.3596	0.3989	0.4331	0.4665
q* from ARC		Approx	0.032	0.032	0.073	0.091	0.100	0.106	0.112	0.116
Peak Flowrate	(q _p)	cumecs	0.0035	0.0245	0.1455	0.2640	0.3500	0.4370	0.5245	0.6230
Peak Flowrate	(q _p)	l/s	4	24	145	264	350	437	524	623
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	5.43	32.97	60.78	81.65	103.15	125.06	149.96
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	122	738	1361	1828	2310	2800	3358

7.5 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Impervious Area, Stormwater Catchment D

Hydrological Soil Group			Group_C	(B&C)
Building Drive & Paths	Building Drive & Paths		Area 0.0000 0.0000	Product
		totals	0.0000	0.0000
% Impervious CN weighted Ia weighted			100.00% 0.0000 0.0000	
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.1950 0.1490	km m/m
Runoff Factor Time of Concentration Use Catchment Area	(t _c) (t _c)		0.0000 0.0000 0.1667 0.0000	hrs min km²
CN Storage	(S)		0.0000 0.0000	mm

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
С*			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
q* from ARC		Approx	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169
Peak Flowrate	(q _p)	cumecs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Peak Flowrate	(q _p)	l/s	0	0	0	0	0	0	0	0
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	0	0	0	0	0	0	0

0.0 min 10.0 min

Existing Flows

			WQV	Ex. Det.	50% AEP	20% AEP	10% AEP	5% AEP	2% AEP	1% AEP
			¹ / ₃ 2yr		2yr ARI	5yr ARI	10yr ARI	20yr ARI	50yr ARI	100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0035	0.0245	0.1455	0.2640	0.3500	0.4370	0.5245	0.6230
Peak Flowrate	(q _p)	l/s	4	24	145	264	350	437	524	623
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	122	738	1361	1828	2310	2800	3358

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Pervious Area, Stormwater Catchment D

Hydrological Soil Group		Group_C						
Grassed		CN 74	Area 0.6900	Product 51.0600				
		totals	0.6900	51.0600				
% Impervious CN weighted Ia weighted			0.00% 74.0000 5.0000					
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.0850 0.1170	km m/m				
Runoff Factor			0.5873					
Time of Concentration	(t _c)		0.0702	hrs				
Use Catchment Area CN	(t _c)		0.1667 0.0069 74.0000	min km²				
Storage	(S)		89.2432	mm				

Table 3.3 - Curve numbers for typical Auckland conditions									
Land use	Group A Soil (volcanic granular loam)	Group C Soil (mudstone/san dstone)							
Bush, humid-climate, not-grazed	30	55	70						
Pasture, lightly grazed, good grass cover	39	61	74						
Urban lawns	39	61	74						
Crops, straight rows, minimal vegetative cover	72	81	88						
Sealed roads, roofs	98	98	98						

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			-0.0288	0.1207	0.3074	0.4012	0.4516	0.4932	0.5283	0.5618
q* from ARC		Approx	0.032	0.038	0.090	0.107	0.114	0.120	0.125	0.129
Peak Flowrate	(q _p)	cumecs	0.0011	0.0092	0.0552	0.0953	0.1238	0.1523	0.1807	0.2124
Peak Flowrate	(q _p)	l/s	1	9	55	95	124	152	181	212
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	7.33	40.88	72.60	95.74	119.16	142.75	169.27
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	51	282	501	661	822	985	1168

4.2 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Impervious Area, Stormwater Catchment D

Hydrological Soil Group		Group_C						
Buildings/Impe Road/Footpath	Buildings/Impervious Road/Footpath			Product 43.1200 34.3000				
		totals	0.7900	77.4200				
% Impervious CN weighted la weighted		100.00% 98.0000 0.0000						
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		km m/m					
Runoff Factor Time of Concentration Use Catchment Area CN Storage	(t _c) (t _c)		0.9608 0.0535 0.1667 0.0079 98.0000 5.1837	hrs min km² mm				
etotago	(0)		0.1007					

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			0.3254	0.7689	0.8959	0.9259	0.9380	0.9466	0.9529	0.9584
q* from ARC		Approx	0.093	0.150	0.161	0.164	0.164	0.165	0.166	0.166
Peak Flowrate	(q _p)	cumecs	0.0037	0.0410	0.1136	0.1675	0.2040	0.2396	0.2746	0.3133
Peak Flowrate	(q _p)	l/s	4	41	114	167	204	240	275	313
24 hour Runoff Depth	(Q ₂₄)	mm	2.45	29.99	84.30	124.62	151.94	178.64	204.86	233.79
24 hour Runoff Volume	(V ₂₄)	cu mtr	19	237	666	984	1200	1411	1618	1847

3.2 min 10.0 min

Calculated Flows

			WQV	Ex. Det.	50% AEP	20% AEP	10% AEP	5% AEP	2% AEP	1% AEP
			¹ / ₃ 2yr		2yr ARI	5yr ARI	10yr ARI	20yr ARI	50yr ARI	100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0048	0.0502	0.1688	0.2628	0.3278	0.3919	0.4553	0.5257
Peak Flowrate	(q _p)	l/s	5	50	169	263	328	392	455	526
24 hour Runoff Volume	(V ₂₄)	cu mtr	19	288	948	1485	1861	2233	2603	3015

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Pervious Area, Stormwater Catchment E

Hydrological Soil Group			Group_C	(B&C)
Grassed		CN 69	Area 1.8720	Product 129.1680
		totals	1.8720	129.1680
% Impervious CN weighted Ia weighted			0.00% 69.0000 5.0000	
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.1900 0.1420	km m/m
Runoff Factor			0.5267	
Time of Concentration	(t _c)		0.1196	hrs
Use Catchment Area CN	(t _c)		0.1667 0.0187 69.0000	min km²
Storage	(S)		114.1159	mm

Table 3.3 - Curve numbers for typical Auckland conditions									
Land use	Group A Soil (volcanic granular loam)	Group A Soil Group B Soil (volcanic granular (alluvial) loam)							
Bush, humid-climate, not-grazed	30	55	70						
Pasture, lightly grazed, good grass cover	39	61	74						
Urban lawns	39	61	74						
Crops, straight rows, minimal vegetative cover	72	81	88						
Sealed roads, roofs	98	98	98						

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5	34.50	89	130	157	184	210	239
C*			-0.0224	0.0969	0.2576	0.3438	0.3917	0.4321	0.4669	0.5007
q* from ARC		Approx	0.032	0.032	0.079	0.097	0.105	0.111	0.117	0.121
Peak Flowrate	(q _p)	cumecs	0.0030	0.0205	0.1318	0.2347	0.3087	0.3832	0.4579	0.5418
Peak Flowrate	(q _p)	l/s	3	20	132	235	309	383	458	542
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	6.06	35.75	65.04	86.79	109.04	131.62	157.17
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	113	669	1217	1625	2041	2464	2942

7.2 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Impervious Area, Stormwater Catchment E

Hydrological Soil Group			Group_C	(B&C)
Building Drive & Paths		CN 98 98	Area 0.0000 0.0000	Product
		totals	0.0000	0.0000
% Impervious CN weighted Ia weighted			100.00% 0.0000 0.0000	
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.1900 0.1420	km m/m
Runoff Factor Time of Concentration Use	(t _c) (t _c)		0.0000 0.0000 0.1667	hrs min
Catchment Area CN Storage	(S)		0.0000 0.0000 0.0000	km² mm

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
C*			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
q* from ARC		Approx	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169
Peak Flowrate	(q _p)	cumecs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Peak Flowrate	(q _p)	l/s	0	0	0	0	0	0	0	0
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	0	0	0	0	0	0	0

0.0 min 10.0 min

Existing Flows

			WQV	Ex. Det.	50% AEP	20% AEP	10% AEP	5% AEP	2% AEP	1% AEP
			¹ / ₃ 2yr		2yr ARI	5yr ARI	10yr ARI	20yr ARI	50yr ARI	100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0030	0.0205	0.1318	0.2347	0.3087	0.3832	0.4579	0.5418
Peak Flowrate	(q _p)	l/s	3	20	132	235	309	383	458	542
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	113	669	1217	1625	2041	2464	2942

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Pervious Area, Stormwater Catchment E

Hydrological Soil Group		Group_C					
Grassed		CN 74	Area Pro 0.2600 19.				
		totals	0.2600	19.2400			
% Impervious CN weighted la weighted			0.00% 74.0000 5.0000				
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.0600 0.0750	km m/m			
Runoff Factor	(†)		0.5873	hro			
Use Catchment Area	(t _c)		0.0637 0.1667 0.0026	min km²			
CN Storage	(S)		74.0000 89.2432	mm			

Table 3.3 - Curve numbers for typical Auckland conditions										
Land use	Group A Soil (volcanic granular loam)	Group C Soil (mudstone/san dstone)								
Bush, humid-climate, not-grazed	30	55	70							
Pasture, lightly grazed, good grass cover	39	61	74							
Urban lawns	39	61	74							
Crops, straight rows, minimal vegetative cover	72	81	88							
Sealed roads, roofs	98	98	98							

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			-0.0288	0.1207	0.3074	0.4012	0.4516	0.4932	0.5283	0.5618
q* from ARC		Approx	0.032	0.038	0.090	0.107	0.114	0.120	0.125	0.129
Peak Flowrate	(q _p)	cumecs	0.0004	0.0035	0.0208	0.0359	0.0467	0.0574	0.0681	0.0800
Peak Flowrate	(q _p)	l/s	0	3	21	36	47	57	68	80
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	7.33	40.88	72.60	95.74	119.16	142.75	169.27
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	19	106	189	249	310	371	440

3.8 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Impervious Area, Stormwater Catchment D

Hydrological Soil Group		Group_C						
Buildings/Impe Road/Footpath	CN 98 98	Product 17.6400 88.2000						
		totals	1.0800	105.8400				
% Impervious CN weighted la weighted		100.00% 98.0000 0.0000						
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.0600 0.0750	0 0 km 0 m/m				
Runoff Factor Time of Concentration Use Catchment Area CN Storage		0.9608 0.0486 0.1667 0.0108 98.0000 5.1837	hrs min km² mm					

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000 0.3254	34.50 0 7689	89 0 8959	130 0 9259	157 0 9380	184 0 9466	210 0 9529	239 0 9584
q* from ARC		Approx	0.093	0.150	0.161	0.164	0.164	0.165	0.166	0.166
Peak Flowrate	(q _p)	cumecs	0.0050	0.0561	0.1553	0.2289	0.2788	0.3276	0.3755	0.4283
Peak Flowrate	(q _p)	l/s	5	56	155	229	279	328	375	428
24 hour Runoff Depth	(Q ₂₄)	mm	2.45	29.99	84.30	124.62	151.94	178.64	204.86	233.79
24 hour Runoff Volume	(V ₂₄)	cu mtr	27	324	910	1346	1641	1929	2213	2525

2.9 min 10.0 min

Calculated Flows

			WQV ¹ / ₃ 2yr	Ex. Det.	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0054	0.0595	0.1761	0.2649	0.3255	0.3850	0.4435	0.5083
Peak Flowrate	(q _p)	l/s	5	60	176	265	325	385	444	508
24 hour Runoff Volume	(V ₂₄)	cu mtr	27	343	1017	1535	1890	2239	2584	2965

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Pervious Area, Stormwater Catchment F

Hydrological Soil Group		Group_C	(B&C)			
Grassed		CN 65	Area 0.9090	Product 59.0850		
		totals	0.9090	59.0850		
% Impervious CN weighted la weighted			0.00% 65.0000 5.0000			
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)	1.0000 0.1700 km 0.1760 m/m				
Runoff Factor			0.4815			
Time of Concentration	(t _c)		0.1094	hrs		
Use Catchment Area CN	(t _c)		0.1667 0.0091 65.0000	min km²		
Storage	(S)		136.7692	mm		

Table 3.3 - Curve numbers for typical Auckland conditions									
Land use	Group A Soil (volcanic granular loam)	Group B Soil (alluvial)	Group C Soil (mudstone/san dstone)						
Bush, humid-climate, not-grazed	30	55	70						
Pasture, lightly grazed, good grass cover	39	61	74						
Urban lawns	39	61	74						
Crops, straight rows, minimal vegetative cover	72	81	88						
Sealed roads, roofs	98	98	98						

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5	34.50	89	130	157	184	210	239
C*			-0.0186	0.0822	0.2245	0.3042	0.3495	0.3884	0.4223	0.4555
q* from ARC		Approx	0.032	0.032	0.071	0.089	0.098	0.105	0.110	0.115
Peak Flowrate	(q _p)	cumecs	0.0014	0.0099	0.0574	0.1049	0.1395	0.1745	0.2098	0.2495
Peak Flowrate	(q _p)	l/s	1	10	57	105	139	174	210	249
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	5.23	32.08	59.40	79.98	101.21	122.90	147.56
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	48	292	540	727	920	1117	1341

6.6 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Impervious Area, Stormwater Catchment F

Hydrological Soil Group			Group_C	(B&C)
Building Drive & Paths	Building Drive & Paths		Area 0.0000 0.0000	Product
		totals	0.0000	0.0000
% Impervious CN weighted la weighted			100.00% 0.0000 0.0000	
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.1700 0.1760	km m/m
Runoff Factor Time of Concentration Use Catchment Area CN Storage	(t _c) (t _c) (S)		0.0000 0.0000 0.1667 0.0000 0.0000 0.0000	hrs min km² mm

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
C*			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
q* from ARC		Approx	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169
Peak Flowrate	(q _p)	cumecs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Peak Flowrate	(q _p)	l/s	0	0	0	0	0	0	0	0
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	0	0	0	0	0	0	0

0.0 min 10.0 min

Existing Flows

			WQV	Ex. Det.	50% AEP	20% AEP	10% AEP	5% AEP	2% AEP	1% AEP
			¹ / ₃ 2yr		2yr ARI	5yr ARI	10yr ARI	20yr ARI	50yr ARI	100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0014	0.0099	0.0574	0.1049	0.1395	0.1745	0.2098	0.2495
Peak Flowrate	(q _p)	l/s	1	10	57	105	139	174	210	249
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	48	292	540	727	920	1117	1341

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Pervious Area, Stormwater Catchment F

Hydrological Soil Group		Group_C					
Grassed		CN 74	Product 54.0200				
		totals	0.7300	54.0200			
% Impervious CN weighted la weighted			0.00% 74.0000 5.0000				
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.0200 0.5000	km m/m			
Runoff Factor Time of Concentration	(t _c)		0.5873 0.0175	hrs			
Use Catchment Area CN	(t _c)		0.1667 0.0073 74.0000	min km²			
Storage	(S)		89.2432	mm			

Table 3.3 - Curve numbers for typical Auckland conditions									
Land use	Group A Soil (volcanic granular loam)	Group C Soil (mudstone/san dstone)							
Bush, humid-climate, not-grazed	30	55	70						
Pasture, lightly grazed, good grass cover	39	61	74						
Urban lawns	39	61	74						
Crops, straight rows, minimal vegetative cover	72	81	88						
Sealed roads, roofs	98	98	98						

SMAF 99%ile 50% AEP 20% AEP 10% AEP 5% AEP 2% AEP 1% AEP 2yr ARI 5yr ARI 10yr ARI 20yr ARI 50yr ARI 100yr ARI 24 hour rainfall depth (P₂₄) mm 5.0000 34.50 89 130 157 184 210 239 c* -0.0288 0.1207 0.3074 0.4012 0.4516 0.4932 0.5283 0.5618 q* from ARC Approx 0.032 0.038 0.090 0.107 0.114 0.120 0.125 0.129 Peak Flowrate (q_p) cumecs 0.0012 0.0097 0.0584 0.1009 0.1310 0.1611 0.1912 0.2247 Peak Flowrate (q_p) l/s 1 10 58 101 131 161 191 225 24 hour Runoff Depth (Q₂₄) 0.00 7.33 40.88 72.60 95.74 119.16 142.75 169.27 mm 24 hour Runoff Volume (V₂₄) cu mtr 0 54 298 530 699 870 1042 1236

1.0 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Impervious Area, Stormwater Catchment F

Hydrological Soil Group		Group_C				
Buildings/Impe Road/Footpath	Buildings/Impervious Road/Footpath			Product 34.3000 16.6600		
		totals	0.5200	50.9600		
% Impervious CN weighted la weighted	100.00% 98.0000 0.0000					
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		km m/m			
Runoff Factor Time of Concentration Use Catchment Area CN Storage	(t _c) (t _c) (S)		0.9608 0.0133 0.1667 0.0052 98.0000 5.1837	hrs min km² mm		

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			0.3254	0.7689	0.8959	0.9259	0.9380	0.9466	0.9529	0.9584
q* from ARC		Approx	0.093	0.150	0.161	0.164	0.164	0.165	0.166	0.166
Peak Flowrate	(q _p)	cumecs	0.0024	0.0270	0.0748	0.1102	0.1343	0.1577	0.1808	0.2062
Peak Flowrate	(q _p)	l/s	2	27	75	110	134	158	181	206
24 hour Runoff Depth	(Q ₂₄)	mm	2.45	29.99	84.30	124.62	151.94	178.64	204.86	233.79
24 hour Runoff Volume	(V ₂₄)	cu mtr	13	156	438	648	790	929	1065	1216

0.8 min 10.0 min

Calculated Flows

			WQV	Ex. Det.	50% AEP	20% AEP	10% AEP	5% AEP	2% AEP	1% AEP
			¹ / ₃ 2yr		2yr ARI	5yr ARI	10yr ARI	20yr ARI	50yr ARI	100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0036	0.0367	0.1332	0.2111	0.2652	0.3188	0.3719	0.4310
Peak Flowrate	(q _p)	l/s	4	37	133	211	265	319	372	431
24 hour Runoff Volume	(V ₂₄)	cu mtr	13	209	737	1178	1489	1799	2107	2451

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Pervious Area, Stormwater Catchment G

Hydrological Soil Group		Group_C (B&C)				
Grassed		CN 68	Area 1.4058	Product 95.5944		
		totals	1.4058	95.5944		
% Impervious CN weighted la weighted			0.00% 68.0000 5.0000			
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.1310 0.2060	km m/m		
Runoff Factor Time of Concentration	(t _c)		0.5152 0.0847	hrs		
Use Catchment Area CN Storage	(t _c)		0.1667 0.0141 68.0000 119 5294	min km² mm		

Table 3.3 - Curve numbers for typical Auckland conditions										
Land use	Group A Soil (volcanic granular loam)	Group B Soil (alluvial)	Group C Soil (mudstone/san dstone)							
Bush, humid-climate, not-grazed	30	55	70							
Pasture, lightly grazed, good grass cover	39	61	74							
Urban lawns	39	61	74							
Crops, straight rows, minimal vegetative cover	72	81	88							
Sealed roads, roofs	98	98	98							

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5	34.50	89	130	157	184	210	239
С*			-0.0214	0.0930	0.2489	0.3335	0.3807	0.4208	0.4554	0.4891
q* from ARC		Approx	0.032	0.032	0.077	0.095	0.103	0.110	0.115	0.120
Peak Flowrate	(q _p)	cumecs	0.0022	0.0154	0.0964	0.1727	0.2278	0.2833	0.3390	0.4016
Peak Flowrate	(q _p)	l/s	2	15	96	173	228	283	339	402
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	5.84	34.80	63.59	85.06	107.06	129.43	154.76
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	82	489	894	1196	1505	1819	2176

5.1 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Impervious Area, Stormwater Catchment G

Hydrological Soil Group			Group_C	(B&C)
Building Drive & Paths	Building Drive & Paths		Area 0.0000 0.0000	Product
		totals	0.0000	0.0000
% Impervious CN weighted la weighted			100.00% 0.0000 0.0000	
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.1310 0.2060	km m/m
Runoff Factor Time of Concentration Use Catchment Area CN Storage	(t _c) (t _c) (S)		0.0000 0.0000 0.1667 0.0000 0.0000 0.0000	hrs min km² mm

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
C*			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
q* from ARC		Approx	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169
Peak Flowrate	(q _p)	cumecs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Peak Flowrate	(q _p)	l/s	0	0	0	0	0	0	0	0
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	0	0	0	0	0	0	0

0.0 min 10.0 min

Existing Flows

			WQV ¹ / ₃ 2yr	Ex. Det.	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0022	0.0154	0.0964	0.1727	0.2278	0.2833	0.3390	0.4016
Peak Flowrate	(q _p)	l/s	2	15	96	173	228	283	339	402
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	82	489	894	1196	1505	1819	2176

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Pervious Area, Stormwater Catchment G

Hydrological Soil Group		Group_C					
Grassed		CN 74	Product 76.2200				
		totals	1.0300	76.2200			
% Impervious CN weighted la weighted			0.00% 74.0000 5.0000				
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.2350 0.0700	km m/m			
Runoff Factor	(+)		0.5873	h			
Use Catchment Area	(t _c) (t _c)		0.1602 0.1667 0.0103	nrs min km ²			
CN Storage	(S)		74.0000 89.2432	mm			

Table 3.3 - Curve numbers for typical Auckland conditions										
Land use	Group A Soil (volcanic granular loam) Group B Soil (alluvial)									
Bush, humid-climate, not-grazed	30	55	70							
Pasture, lightly grazed, good grass cover	39	61	74							
Urban lawns	39	61	74							
Crops, straight rows, minimal vegetative cover	72	81	88							
Sealed roads, roofs	98	98	98							

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			-0.0288	0.1207	0.3074	0.4012	0.4516	0.4932	0.5283	0.5618
q* from ARC		Approx	0.032	0.038	0.090	0.107	0.114	0.120	0.125	0.129
Peak Flowrate	(q _p)	cumecs	0.0016	0.0137	0.0824	0.1423	0.1848	0.2273	0.2697	0.3171
Peak Flowrate	(q _p)	l/s	2	14	82	142	185	227	270	317
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	7.33	40.88	72.60	95.74	119.16	142.75	169.27
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	75	421	748	986	1227	1470	1743

9.6 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Post Development Impervious Area, Stormwater Catchment G

Hydrological Soil Group		Group_C				
Buildings/Impe Road/Footpath	Buildings/Impervious Road/Footpath			Product 49.0000 16.6600		
		totals	0.6700	65.6600		
% Impervious CN weighted la weighted			100.00% 98.0000 0.0000			
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.2350 0.0700	km m/m		
Runoff Factor Time of Concentration Use Catchment Area CN Storage	(t _c) (t _c)		0.9608 0.1222 0.1667 0.0067 98.0000 5.1837	hrs min km² mm		
	(-)					

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5.0000	34.50	89	130	157	184	210	239
C*			0.3254	0.7689	0.8959	0.9259	0.9380	0.9466	0.9529	0.9584
q* from ARC		Approx	0.093	0.150	0.161	0.164	0.164	0.165	0.166	0.166
Peak Flowrate	(q _p)	cumecs	0.0031	0.0348	0.0964	0.1420	0.1730	0.2032	0.2329	0.2657
Peak Flowrate	(q _p)	l/s	3	35	96	142	173	203	233	266
24 hour Runoff Depth	(Q ₂₄)	mm	2.45	29.99	84.30	124.62	151.94	178.64	204.86	233.79
24 hour Runoff Volume	(V ₂₄)	cu mtr	16	201	565	835	1018	1197	1373	1566

7.3 min 10.0 min

Calculated Flows

			WQV ¹ / ₃ 2yr	Ex. Det.	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0048	0.0485	0.1788	0.2843	0.3578	0.4305	0.5027	0.5828
Peak Flowrate	(q _p)	l/s	5	48	179	284	358	431	503	583
24 hour Runoff Volume	(V ₂₄)	cu mtr	16	276	986	1583	2004	2424	2843	3310

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Pervious Area, Stormwater Catchment H

Hydrological Soil Group		Group_C						
Grassed		CN 74	CN Area Pr 74 1.0376 76					
		totals	1.0376	76.7824				
% Impervious CN weighted la weighted			0.00% 74.0000 5.0000					
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)		1.0000 0.1330 0.2180	km m/m				
Runoff Factor Time of Concentration	(t _c)		0.5873 0.0782	hrs				
Use Catchment Area CN Storage	(ı _c) (S)		0.1667 0.0104 74.0000 89.2432	mın km² mm				

Table 3.3 - Curve numbers for typical Auckland conditions								
Land use	Group A Soil (volcanic granular loam)	Group B Soil (alluvial)	Group C Soil (mudstone/san dstone)					
Bush, humid-climate, not-grazed	30	55	70					
Pasture, lightly grazed, good grass cover	39	61	74					
Urban lawns	39	61	74					
Crops, straight rows, minimal vegetative cover	72	81	88					
Sealed roads, roofs	98	98	98					

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	5	34.50	89	130	157	184	210	239
C*			-0.0288	0.1207	0.3074	0.4012	0.4516	0.4932	0.5283	0.5618
q* from ARC		Approx	0.032	0.038	0.090	0.107	0.114	0.120	0.125	0.129
Peak Flowrate	(q _p)	cumecs	0.0016	0.0138	0.0830	0.1434	0.1862	0.2290	0.2717	0.3194
Peak Flowrate	(q _p)	l/s	2	14	83	143	186	229	272	319
24 hour Runoff Depth	(Q ₂₄)	mm	0.00	7.33	40.88	72.60	95.74	119.16	142.75	169.27
24 hour Runoff Volume	(V ₂₄)	cu mtr	0	76	424	753	993	1236	1481	1756

4.7 min 10.0 min

STORMWATER FLOWS - Smith - Lisle Farm Drive - 4553 - Rev C Pre Development Impervious Area, Stormwater Catchment H

Hydrological Soil Group		Group_C	BATCH			
Building Drive & Paths		CN 98 98	Area 0.0000 0.1000	Product 9.8000		
		totals	0.1000	9.8000		
% Impervious CN weighted la weighted	100.00% 98.0000 0.0000					
Channelisation factor Catchment Length Catchment Slope	(C) (I) (S _c)	1.0000 0.1330 km 0.2180 m/m				
Runoff Factor Time of Concentration (t _c) Use (t _c)			0.9608 0.0597 hrs 0.1667 min			
Catchment Area CN Storage	(S)	0.0010 km ² 98.0000 S) 5.1837 mm				

			SMAF	99%ile	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
С*			0.7415	0.7689	0.8959	0.9259	0.9380	0.9466	0.9529	0.9584
q* from ARC		Approx	0.148	0.150	0.161	0.164	0.164	0.165	0.166	0.166
Peak Flowrate	(q _p)	cumecs	0.0044	0.0052	0.0144	0.0212	0.0258	0.0303	0.0348	0.0397
Peak Flowrate	(q _p)	l/s	4	5	14	21	26	30	35	40
24 hour Runoff Depth	(Q ₂₄)	mm	25.32	29.99	84.30	124.62	151.94	178.64	204.86	233.79
24 hour Runoff Volume	(V ₂₄)	cu mtr	25	30	84	125	152	179	205	234

3.6 min 10.0 min

Existing Flows

			WQV ¹ / ₃ 2yr	Ex. Det.	50% AEP 2yr ARI	20% AEP 5yr ARI	10% AEP 10yr ARI	5% AEP 20yr ARI	2% AEP 50yr ARI	1% AEP 100yr ARI
24 hour rainfall depth	(P ₂₄)	mm	29.7333	34.50	89	130	157	184	210	239
Peak Flowrate	(q _p)	cumecs	0.0060	0.0190	0.0974	0.1646	0.2120	0.2593	0.3065	0.3591
Peak Flowrate	(q _p)	l/s	6	19	97	165	212	259	306	359
24 hour Runoff Volume	(V ₂₄)	cu mtr	25	106	508	878	1145	1415	1686	1990

SURVEYORS | RESOURCE CONSULTANTS LAND DEVELOPMENT ENGINEERS | PLANNERS

7.11

21.66

mm

SMAF CALCULATIONS - Post catchment B except roof area

Runoff Depth

Client	Smith		Analysis Date	13-Dec-24
Address	70 Lisle Farm		SMAF Zone	1
Project Number	4553		10% AEP Flood Mitigation Required	Yes
Revision		Rev B		

SMAF 1 Requirements:

Provide Retention (Volume Reduction) of a 5mm 24hr rainfall event for the impervious area for which hydrology mitigation is required

Provide Detention (Temporary Storage) with a volume equal to the increase in runoff volume from the 95th percentile 24hr rainfall event for the impervious area for which hydrology mitigation is required

Site Data

	New and Redevel Percentage of To	loped Impervious Area tal Site Area	55349 m² 65%	Total Site Area Total Post Developn	Total Site Area Total Post Development Impervious Area		5196 m² 5349 m²
	Hydrographical Soil Group 95th %ile 24hr Rainfall Depth		Group_C 34 mm	Impervious Area required to be Mitigated Pervious Area required to be Mitigated		gated 51 ed 29	5349 m² 9847 m²
Pre De	velopment						
	Pre Developed Ar	ea to be Mitigated	85196 m²	Table 3.3 - Curve number	s for typical Auckland	conditions	
	Curve Number (CN) Initial Abstraction (Ia)		74 5 mm	Land use	Group A Soil (volcanic granular loam)	Group B Soil (alluvial)	Group C Soil (mudstone/san dstone)
	Storage	(S)	89.24 mm	Bush, humid-climate, not-grazed	30	55	70
	ΔRI		Design Storm	Pasture, lightly grazed, good grass cover	39	61	74
	24 Hr Rainfall der	oth (P.,)	34 mm	Urban lawns	39	61	74
	Runoff Depth	(Q ₂₄)	7.11 mm	Crops, straight rows, minimal vegetative cover	72	81	88
	Runoff Volume	(V ₂₄)	605.95 m ³	Sealed roads, roofs	98	98	98
Post D	evelopment						
		Areas to be Mitigated		Impervious	Pervious	Т	otal
		Area	m²	55349	29847	8	5196 m²
		Curve Number	CN	98	74		
		Initial Abstraction	(Ia)	0	5		
		Storage	(S)	5.18	89.24		
		24 Hr Rainfall depth	(P ₂₄)	34	34		

	Runoff Volume	Runoff Volume (V ₂₄) 1632.91		1 212.	29	1845.20	m³
			Storm Event	Storm Event	~		
	Storm Event (ARI)		5mm	95th %ile 24hr Rai	nfall		
	24 Hr Rainfall depth	(P ₂₄)	5	34	mm		
	Runoff Depth	(Q ₂₄)	5	21.66	mm		
	Runoff Volume	(V ₂₄)	276.75	1845.20	m³		
SMAF Volur	ne Requirements						
	Total Detention & Retention Volum	e Required	1239.2	24 m³ (Post D	Dev - Pre Dev)		
	Minimum Retention Volum	e Required	276.7	75 m ³ Reuse			

29.50

(Q₂₄)

Minimum Detention Volume Required 962.50 m³ Average Outflow to Detention Volume in 24 hours for Pipe Tank use 0.86 reduction in flow 11.14 l/s Peak Orifice Outflow (2x Average Flow) 22.28 l/s 19.16 l/s Head above Orifice 0.10 m 0.10 m 0.62 Orifice discharge coefficient 0.62 Orifice Diameter (Orifice 1) 181.0 mm 167.8 mm (use 181.0 mm as minimum orfice diameter)