

## STORMWATER MANAGEMENT REPORT



# 57 & 57a Schnapper Rock Road, Schnapper Rock

CIVIL ENGINEERING V SURVEYING V LAND DEVELOPMENT



### **PROJECT INFORMATION**

CLIENT

KBS Design Group

PROJECT

175006

### DOCUMENT CONTROL

DATE OF ISSUE

REVISION

AUTHOR

**REVIEWED BY** 

APPROVED BY

С

31/05/2021

John Duran Engineer

mol

Jignesh Engineer - Team Leader

W. Mun

Will Moore Director

© Maven Auckland Ltd 2018 This document is and shall remain the property of Maven Ltd. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Level 2, 12-14 Walls Road, Penrose. PO Box 11605, Ellerslie, 1542. New Zealand Phone 09 571 0050 www.maven.co.nz

## TABLE OF CONTENTS

| EXE | ECUTIVE SUMMARY                                 | 2    |
|-----|-------------------------------------------------|------|
| 1   | EXISTING SITE APPRAISAL                         | 3    |
| 2   | DEVELOPMENT SUMMARY AND PLANNING CONTEXT        | 9    |
| 3   | MANA WHENUA MATTERS                             | 10   |
| 4   | STAKEHOLDER ENGAGEMENT AND CONSULTATION         | . 10 |
| 5   | PROPOSED DEVELOPMENT                            | . 11 |
| 6   | STORMWATER MANAGEMENT                           | . 13 |
| 7   | DEPARTURES FROM REGULATORY OR DESIGN CODES      | . 23 |
| 8   | CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK | 24   |
|     |                                                 |      |

#### APPENDICIES

| A: CONCEPT PI | LAN |
|---------------|-----|
|---------------|-----|

- B: SW ENG60330592 (55 SCHNAPPER ROCK ROAD)
- C: 55 SCHNAPPER ROCK OLFP DESIGN
- D: CONCEPT CATCHMENT PLANS AND CALCULATIONS

### **EXECUTIVE SUMMARY**

The proposal seeks Council Approval to rezone the site into Residential Mixed – Housing and Residential – Single House from its current Residential Large Lot zoning.

The development is classified as a greenfield site under Schedule 4 of the Regional Network Discharge Consent (NDC). This Stormwater Management Plan (SMP) is intended to address the overall development site in support of the plan change. Final staging of the development shall be confirmed at resource consent stage.

The site was a former Watercare asset which was recently subdivided off, and the balance sold for development by Watercare. The sites land coverage is considered 100% pervious as per large-greenfield site under the NDC.

The current concept plan indicates that the future development will support 93-lots, with access provided through a combination of public roading and private accessways. Primary access will be made from Schnapper Rock Road. The adjacent property (55 Schnapper Rock Road) is subject to an approved subdivision, which is currently under construction. A new roading network has been designed from Kyle Road. The public infrastructure has been designed for the upstream catchment, which is our development site.

The site is situated at the top of catchment contributing to the existing Overland Flow Paths (OLFPs) located within the site. The site is within a Stormwater Management Area– Flow 1 (SMAF) overlay which triggers hydrological mitigation through attenuation and re-use.

The SMP proposes to treat the new impervious areas in accordance with the guidelines of Auckland Council's GD04 Water Sensitive Design for Stormwater, GD01 Stormwater Management Devices: Design guidelines manual of the Auckland Unitary Plan – Operative in Part (AUP – OP).

A portion of the site is within a Significant Ecological Area (SEA). Works within the SEA shall require a specific construction methodology to protect and minimise disturbance to the SEA.

All future public roads proposed as part of the development will be supported by stormwater quality treatment via the use stormwater management devices that achieve 'best practical option' (BPO) and aligned with the values of mana whenua.

### **1 EXISTING SITE APPRAISAL**

#### 1.1 SUMMARY OF DATA SOURCES AND DATES

| Existing site appraisal item       | Source and date of data used                                                                     |
|------------------------------------|--------------------------------------------------------------------------------------------------|
| Topography                         | Maven Associates, 2020                                                                           |
|                                    | Auckland Council GeoMaps, Contours, 2021                                                         |
| Geotechnical / soil conditions     | <ul> <li>Geotechnical Feasibility Report<br/>KGA Geotechnical, 2021</li> </ul>                   |
| Existing/Future stormwater network | Auckland Council GeoMap, 2020                                                                    |
|                                    | • Cato Bolam, 2020 – ENG60330592                                                                 |
| Existing hydrological features     | Maven Associates, 2021                                                                           |
|                                    | <ul> <li>Auckland Council GeoMaps, Catchments and<br/>Hydrology Layer, 2020</li> </ul>           |
| Stream, river, coastal erosion     | • NA                                                                                             |
| Flooding and flowpaths             | <ul> <li>Auckland Council GeoMaps, Overland Flow Paths<br/>Layer, 2021</li> </ul>                |
| Coastal Inundation                 | • NA                                                                                             |
| Ecological / environmental areas   | <ul> <li>Auckland Council Unitary Plan Viewer, significant<br/>vegetation layer, 2021</li> </ul> |
|                                    | • Wildlands, 2021                                                                                |
| Cultural and heritage sites        | <ul> <li>Auckland Council GeoMaps, cultural heritage site,<br/>2021</li> </ul>                   |
| Contaminated Land                  | <ul> <li>Preliminary Site Investigation<br/>Thomas Consultants, 2021</li> </ul>                  |

#### **1.2 LOCATION AND GENERAL INFORMATION**

The site is located south of the intersection of Schnapper Rock Road and Oakway Drive, with road frontage along the eastern and western boundaries. Much of the site is covered with overgrown vegetation with notable trees located within the western portion of the site, identified as an SEA. A Watercare facility is located within the eastern portion of the site access provided along the east. Image 1 shows the location of the subject site with its surrounding features.



Image 1: Site Overview GeoMaps

The total site area is 3.99 Ha. The proposed plan change involves a mix of Mixed Housing, and Single-Lot zoning which allows for impervious areas of circa 60%. The total permitted impervious area allowable is expected to be 23, 927m<sup>2</sup> (2.39 Ha) under the plan change.

| Existing site element     |   |                                              |
|---------------------------|---|----------------------------------------------|
| Site address              | • | 57 & 57 aSchnapper Rock Road, Schnapper Rock |
| Legal description         | • | SECT 2 SO 555200                             |
| Current Land Use          | • | Greenfield                                   |
| Current building coverage | • | NIL                                          |
| Historical Land Use       | • | Watercare Asset                              |

#### 1.3 TOPOGRAPHY

The topography of the site features a formed gully to the west with side slopes ranging from a 1:3 to 1:5. A secondary minor gully is located to the south with less defined slopes. A head scarp is identified along the eastern boundary which forms part of a gully in the adjacent neighbouring lot. The high point of the site is within the northern section which features a mound, generally elevated from the road carriageway of Schnapper Rock Road. The land formation south of the mound has a moderate gradient of 14%. The overall site contours vary between 83m to 50.5m RL.



Image 2: Site Overview GeoMaps

### 1.4 GEOTECHNICAL

A geotechnical feasibility report has been prepared by KGA Geotechnical (dated 15.01.2021) which indicates that the site is suitable for development subject to detailed investigation at subdivision stage. It has been identified that slope stabilisation will be required within the gully to the west and head scarp to the east.

#### 1.5 EXISTING DRAINAGE FEATURES AND STORMWATER INFRASTRUCTURE

Stormwater runoff for the site is conveyed through the gullies to the west and east which flow into Te Wharau Creek. A subdivision at 55 Schnapper Rock Road has approval for a new public stormwater extension, which has been designed to allow for portion of the development site. It is anticipated that the extended network will be constructed prior to the intended start date within the subject site, with the network currently under construction.

Completion of the adjacent subdivision will provide two points of stormwater reticulation which can be utilised for the future site. The connections features a 525Ømm and 300Ømm concrete lines, located north-east and south-east of the site. The 525Ømm discharges into the head of a defined gully within the adjacent subdivision flowing south into Te Wharau Creek. The 300Ømm reticulates further downstream through a new stormwater network discharging through a new outlet structure. The two networks discharge south into the receiving environment of Te Wharau Creek. An extract of the approved stormwater plan for the adjacent subdivision is shown in image 3 and 4 below.



Image 3 & 4: Stormwater EPA plan for 55 Schnapper Rock Road

#### 1.6 RECEIVING ENVIRONMENT

The site discharges via surface runoff into the naturally formed gullies in the east and west. The two gullies converge further downstream towards the south contributing to Te Wharau Creek which continues west into Lucas Creek. To the south of the site are two existing culverts under the carriageway of Kyle Road which provides conveyance of Te Wharau Creek.

#### 1.7 EXISTING HYDROLOGICAL FEATURES

The site is a greenfield site with no existing structures. Majority of the site is made up of low-lying grass with a localised bush area to the west which is contained within the SEA overlay. Based on the information from GeoMaps, the site and neighbouring property discharges stormwater through surface run off into several natural formed gullies that contributes to Te Wharau Creek. The neighbouring dwellings/structures are assumed to discharge into the formed gullies via private outlet structures. Image 5 shows the location of existing hydrological features surrounding the site.

An interface between Te Wharau Creek and the road carriageway of Kyle Road features existing culverts to provide conveyance. It is noted that works are consented for relieving this area as part of the neighbouring subdivision at 55 Schnapper Rock Road.



Image 5: Plan showing existing gullies and SEA

#### 1.8 FLOODING AND FLOWPATHS

Council GeoMaps does not identify any flood sensitive, flood prone or flood plain immediate to the site. However, it is indicated that flooding occurs further downstream where Kyle Road and Te Wharau Creek converge. This flooding is caused by capacity issues associated with the two existing culverts. It is noted that the neighbouring development has an approved design for a new stormwater network to act as a bypass which will alleviate flooding of Kyle Road.

Auckland Council GeoMaps indicates two overland flow paths (OLFP) originating within the site which flow south into Te Wharau Creek. A catchment delineation was undertaken to determine the total areas contributing into the two OLFP as shown in Image 6 and summarised below.

- Western OLFP Catchment: 1.25 Hectares
- Southern OLFP Catchment: 0.95 Hectares



Image 6: GeoMaps catchment delineation plan

The approved subdivision at No. 55 has been designed to protect conveyance of the southern OLFP. Post development OLFP design for the neighbouring development considers part of the subject's sites catchment through engineered swales along the eastern boundary. Refer to **Appendix B** for the neighbouring developments post development OLFP design.

#### **1.9 COASTAL INUNDATION**

The site is not within the coastal inundation zone.

#### 1.10 **BIODIVERSITY**

The western portion is the site is within a Significant Ecological Area – Terrestrial (SEA) which overlays the overall Te Wharau Creek up to Lucas Creek, approximate 1.5km west. Majority of the SEA area within the site comprise of indigenous trees.

An arborist report undertaken by Peers Brown Miller LTD confirms that notable trees (subject to further assessment) are located within the SEA and along the eastern boundary of the site.

An ecology report completed by Wildlands (01/2021) has identified the western SEA to be comprised majority largely woody habitats with the highest values associated with the indigenous Kanuka forest. Vegetation close by has high fauna values that provides habitats for indigenous reptiles and bird species.

#### 1.11 CULTURAL AND HERITAGE SITES

#### \*\*\*Addressed within the plan change report\*\*\*

#### 1.12 CONTAMINATED LAND

A preliminary site investigation completed by Thomas Consultants confirms that the site is unlikely to obtain significant quantities of contamination. It is considered that contaminated land rules under the AUP (OP) does not apply to the site.

### 2 DEVELOPMENT SUMMARY AND PLANNING CONTEXT

#### 2.1 REGULATORY AND DESIGN REQUIREMENTS

| Requirement                                              |   | Relevant regulatory / design to follow                            |
|----------------------------------------------------------|---|-------------------------------------------------------------------|
| Unitary Plan – SMAF hydrology<br>mitigation              | • | AUP Chapter E10 – Stormwater management area                      |
| High Contaminant Generating Areas                        | • | AUP Chapter E9 – Stormwater quality                               |
|                                                          | • |                                                                   |
| Natural Hazards                                          | • | AUP Chapter E36 Natural hazards and flooding                      |
| Auckland Unitary Plan Precinct                           | • | Greenhithe sub-precinct A                                         |
| Existing Catchment Management<br>Plan                    | • | N/A                                                               |
| Auckland Council Regionwide<br>Network Discharge Consent | • | Site is located within the catchment of the Auckland-<br>Wide NDC |

### **3 MANA WHENUA MATTERS**

#### 3.1 MANA WHENUA OUTCOMES

An initial consultation with Ngati Manuhiri and Ngā Maunga Whakahii o Kaipara was undertaken to discuss the following key principles proposed within stormwater management plan.

- The holistic treatment of stormwater prior to discharging in the receiving environment through utilising treatment trains.
- Improvement of the western gully through defining a riparian margin and planting of native species.
- Utilising stormwater devices such as raingardens that treat sediments and trap gross polutants at localised areas and promotion of native planting.

The plan change proposal in respect to stormwater management was positively supported. It is noted that a pro-active involvement through the resource consenting stage will be undertaken.

### **4** STAKEHOLDER ENGAGEMENT AND CONSULTATION

#### \*\*\*Addressed within the plan change report\*\*\*

### **5 PROPOSED DEVELOPMENT**

#### 5.1 GENERAL DEVELOPMENT INFORMATION

The proposal seeks Council approval to rezone the site into Residential Mixed – Housing and Residential – Single House from its current Residential Large Lot zoning. The current concept plan indicates that the future development will support 93-lots, with access provided through a combination of public roading and private accessways. Primary access will be made from Schnapper Rock Road. It is noted that the concept plan is subject to detailed design and is intended only to be used for reference in support of the rezoning.

The proposed development is classified as a large greenfield site under Schedule 4 of the NDC. Staging of the project will be finalised during the resource consenting process and is not currently known. The Watercare designated area to the north-east has been recently subdivided separate to the subject site. The subjects site totals 39, 879m<sup>2</sup>. Image 7 below, shows the current concept plan to supplement the rezoning request.



Image 7: Concept Plan

#### 5.2 LOCATION AND AREA

The subject site is located directly south from the intersection of Schnapper Rock Road and Oakway Drive. The neighbouring residential lots to west of the site are large lots surrounded by notable vegetation with a lower housing density. Located north of the site, are a mix of residential and commercial areas. The ultimate receiving environment, Lucas Creek, is approximately 1.2km west of the site.



Image 9: Locality Plan

#### 5.3 PURPOSE OF THE DEVELOPMENT

The purpose of the proposal is to create residential dwellings in line with the intention of the proposed rezoning application.

#### 5.4 SITE LAYOUT AND URBAN FORM

The development will be guided by the envisaged masterplan which will be used as the basis for the future subdivision. Urban design will consider future upgrades of existing features. These include works such as, replanting a defined riparian margin and providing adequate landscaping to maintain the existing sites natural form.

#### 5.5 EARTHWORKS

Earthworks will be required to prepare formation of building platforms, pavement areas and underground services. No mechanical earthworks shall be undertaken within the SEA and any works within this area will require specific methodology to minimise disturbance of the existing flora/fauna.

Sediment and erosion control measures will be designed and implemented under the guidelines of Auckland Council's GD05 document. Sediment erosion controls shall be inspected and approved by the Engineer before any commencement of earthworks and shall be regularly maintained. Prolonged exposed areas shall be mulched, or grass seeded to minimise erosion.

### **6 STORMWATER MANAGEMENT**

#### 6.1 PRINCIPLES OF STORMWATER MANAGEMENT

#### 6.1.1 ORIGINAL PRINCIPLES

A stormwater strategy has been developed for the site to demonstrate the overarching principles of how stormwater will be managed, as required by the regional NDC, AUP and Stormwater Code of Practice (SWCoP).

The proposed SMP covers management of stormwater runoff from the subject site which works towards improving the current stormwater management onsite (effectively none) by implementing controls through the redevelopment. In turn, producing a positive impact on the receiving environment by managing the post development hydrology and discharge quality. The SMP approaches water sensitive design by maintaining the natural hydrological cycle in existing watercourse by mitigating stormwater runoff through source control, utilising natural systems and processes to manage the quality of stormwater discharging into the wider receiving environment.

Maven Associates considers that the proposed stormwater strategy aligns with mana whenua values ensuring stormwater quality and improvement of existing features that promote growth in the native flora and fauna. Stormwater management devices proposed within the SMP (ie raingardens, rainwater harvesting tanks and swales) are closely aligned closely with mana whenua principles as summarised below:

- **Kaitiakitanga:** The exercise of guardianship by the tangata whenua of an area in accordance with tikanga Māori in relation to natural and physical resources; and includes the ethic of stewardship.
- **Mauri Tu:** The use of organic fertilisers and herbicides and provision for fish passage aligns with the principles of both Taiao and Mauri Tu. Hand weeding and hand maintenance are preferred.
- **Taiao:** Avoiding the mixing of contaminated water into marine and freshwater receiving environments.

#### 6.1.2 UPDATED PRINCIPLES

The proposed stormwater management for the future development has been aligned with the design guidelines of GD01 and with the requirements of Schedule 4 – Regionwide Network Discharge Consent as a Greenfield site.

An assessment against the AUP E8 diversion and discharge of stormwater, E9 stormwater management- High generating car park or roads, E10 stormwater management – flow, has been undertaken and stormwater controls are consistent with these outcomes, as per the below.

- The intended development will create more than 1000m<sup>2</sup> of impervious area requiring multiple levels of stormwater management.
- Future development may include high generating car park (more than 30 spaces) and therefore could require stormwater quality treatment.
- Public roads discharge into a SEA area, and it is considered at-source treatment should be provided.
- The site is located within a SMAF Flow 1 zone which requires retention and detention within the whole site as required by Chapter E10.

Water Sensitive Design (WSD) is a driving component of the SMP which requires treatment of new, public trafficable impervious areas to control the quality of stormwater.

The SMP proposes the treatment of new impervious areas (where relevant) in accordance with the guidelines of Auckland Council's GD04 Water Sensitive Design for Stormwater, GD01 Stormwater Management Devices: in the Auckland Region and E10 (Stormwater Management Area) of the AUP – OP.

#### 6.2 PROPOSED STORMWATER MANAGEMENT

#### 6.2.1 GENERAL

The Auckland Council SWCoP sets out the design and construction standards to enable a means of stormwater disposal for new proposed developments.

The future development of the site will utilise the new stormwater reticulation provided by the neighbouring subdivision to service the eastern catchment of the subject site. The total catchment discharged into the new network will be determined by the capacity downstream based on the 10-year storm event for the finalised scheme plan. The site area within the western and northern portion of the site close to Schnapper Rock Road will be provided with a new stormwater network with the western gully as the main discharge point via a new outlet structure. All new public pipe networks within the site will be designed to convey 10-yr flow. 10-year flow attenuation will be designed for each new lot if required.

Stormwater runoff up to the 100-year event will be directed into existing OLFP exit points of the site to align with the neighbouring developments. Stormwater runoff contributing to the western gully will be maintained.

The site contributes to a significant stream and hydrological mitigation is required to mitigate stormwater runoff as per the AUP – OP for areas within SMAF-1, through re-use and attenuation for storm events within the  $95^{th}$  percentile.

| Stormwater Management<br>Requirements          | Design Approach |                                                                                                                                                                                                           |  |  |
|------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Water Quality                                  | •               | Onsite treatment of high contaminant yielding<br>impervious areas through use of raingardens or<br>proprietary devices that treat equivalent to 75% TSS or<br>better.                                     |  |  |
| Stream Hydrology<br>(SMAF or Stream Discharge) | •               | SMAF 1 mitigation, retention of the first 5mm runoff<br>depth and temporary detention between the difference<br>pre-post development runoff volumes within the 95 <sup>th</sup><br>percentile storm event |  |  |
| Flooding 10% AEP<br>Pipe Network               | •               | Pipe network assessment on downstream network to determine attenuation requirements                                                                                                                       |  |  |
| Flooding 1% AEP<br>Buildings                   | •               | No flood plain located within the vicinity of the site.<br>Maintenance of OLFPs in consideration to the<br>minimum freeboard requirements as per the SWCOP<br>and NZBC                                    |  |  |

The table below summarises the NDC requirements triggered for the proposed development.

#### 6.2.2 WATER QUALITY

High stormwater quality of discharge is required to protect the downstream receiving environment, inclusive of the SEA. The proposed development incorporates a water sensitive design (WSD) approach which focuses on reducing or eliminating stormwater contaminates through source control (inert materials) and utilising natural systems and processes to manage stormwater quality effects (biofiltration).

Future public roads require treatment as per AUP – E10 and the guidelines set out in GD01. The primary water quality objective of the treatment is to remove 75% of total suspended sediment on a long-term average basis prior to discharging into the receiving environment.

Due to the steep topography of the site, a centralised treatment device (wetland) becomes unfeasible as it requires a moderately flat terrain. It is also expected that the development will be restricted in space to allow for the future densification of the site. Localised stormwater devices such as specifically designed bioretention devices (raingardens or swales), are deemed to be the best practical option (BPO) in terms of providing treatment at-source for the future public roads. As much as practical, these stormwater treatment devices will be situated in concentrated areas by installing in long runs within the public road berm. For these treatment devices, a minimum designed surface area of 20m<sup>2</sup> shall be considered as a requirement of the Auckland Transport TDM.

Shared driveways will be subject to high yielding contaminants which will entail stormwater quality treatment through at-source raingardens, tree pits or use of proprietary devices (stormfilters) that achieve a similar treatment outcome. These treatment devices will be contained within the legal boundaries of the areas it is treating and shall be privately owned.

| Opportunities to improve                                                                | Social & cultural values                       |                                              |                  |                                     |                        |           |                     | Environmental values<br>(in addition to water quality) |                 |                          |                   |
|-----------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|------------------|-------------------------------------|------------------------|-----------|---------------------|--------------------------------------------------------|-----------------|--------------------------|-------------------|
| <ul> <li>High potential</li> <li>Some potential</li> <li>Little/no potential</li> </ul> | Potential alignment with<br>mana whenua values | Incorporating Te Aranga<br>design principles | Improved amenity | Improved community<br>connectedness | Improved public safety | Education | Habitat improvement | Connecting green corridors                             | Plant diversity | Bird, insect and reptile | Plant ecosourcing |
| Pervious pavement                                                                       | •                                              | 0                                            | 0                | •                                   | •                      | •         | -                   | -                                                      | -               | -                        | -                 |
| Living roof                                                                             | •                                              | •                                            | •                | •                                   | 0                      | •         | 0                   | 0                                                      | •               | •                        | •                 |
| Rainwater tank                                                                          | •                                              | 0                                            | •                | 0                                   | 0                      | •         | -                   | -                                                      | -               | -                        | -                 |
| Infiltration device                                                                     | 0                                              | 0                                            | -                | 0                                   | 0                      | •         | -                   | -                                                      | -               | -                        | -                 |
| Vegetated swale                                                                         | •                                              | •                                            | 0                | 0                                   | 0                      | •         | 0                   | 0                                                      | 0               | 0                        | •                 |
| Bioretention swale                                                                      | •                                              | •                                            | 0                | 0                                   | 0                      | •         | 0                   | 0                                                      | 0               | 0                        | 0                 |
| Raingardens                                                                             | •                                              | •                                            | 0                | •                                   | •                      | •         | 0                   | 0                                                      | •               | •                        | •                 |
| Stormwater tree pits                                                                    | о                                              | •                                            | 0                | •                                   | •                      | •         | 0                   | -                                                      | 0               | 0                        | •                 |
| Planter boxes                                                                           | 0                                              | •                                            | 0                | •                                   | •                      | •         | 0                   | -                                                      | 0               | 0                        | 0                 |
| Constructed wetland                                                                     | •                                              | •                                            | •                | •                                   | 0                      | •         | •                   | •                                                      | •               | •                        | •                 |
| Wet pond                                                                                | -                                              | -                                            | •                | •                                   | 0                      | •         | •                   | •                                                      | •               | •                        | •                 |
| Dry pond (detention basin)                                                              | 0                                              | 0                                            | •                | •                                   | •                      | •         | 0                   | 0                                                      | 0               | 0                        | 0                 |

Table 16: Multiple benefits of devices

Large gross pollutants (litter) will be captured through utilising sumped catchpits which traps larger pollutants. WSD aims to treat stormwater run-off within the immediate site to achieve the required water quality levels prior to discharging into the wider receiving environment. Utilisation of natural treatment devices (raingardens) is considered to have positive impacts in the social/cultural values as highlighted in Table 16 of GD01.

The stormwater management strategy proposed in the SMP is consistent with the guidelines of Auckland Council's GD04 Water Sensitive Design for Stormwater and the AUP – OP.

All buildings will be roofed with inert roofing materials (e.g.Coloursteel roofing) where stormwater will conveyed. This removes the production of contaminants and thus removing stormwater quality treatment requirement.

#### 6.2.3 STREAM HYDROLOGY

#### Stormwater Management Area - Flow 1

The site is within a SMAF – Flow 1 overlay in which attenuation and re-use is required as detailed in the AUP – OP to regulate stormwater discharge for frequent rainfall event within the 95% percentile event.

The future development incorporates at-source retention and detention devices for impervious areas as summarised below.

- Rainwater harvesting tanks to capture stormwater run-off for re-use for indoor and outdoor purposes such as watering lawn, plants, car washing and shall be plumbed for at least one toilet or indoor washing purposes.
- At-source private raingardens or underground detention/retention device (Chambermaxx) to capture commonly owned private driveways.
- At-source public raingardens to capture proposed public roading.

Testing of infiltration rates and groundwater shall be determined when the location and detailed design of the stormwater devices are finalised. An alternative option such as, permeable pavement for the common accessway can be utilised.

Stormwater management for areas of SMAF1 are applied as per the following:

- Retention of the first 5mm rainfall runoff depth volume generated from impervious areas; and
- Detention of the runoff volume generated from impervious areas for the 95% percentile rainfall event released over a 24-hour period.

The stormwater management methods proposed are as per the SMA - Flow 1 controls in the following table.

:

| Stormwater<br>management<br>area control  | Hydrology mitigation requirements                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| (1) Except as                             | provided for in (2) below the following applies:                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Stormwater<br>management<br>area – Flow 1 | (a) provide retention (volume reduction) of at least 5mm<br>runoff depth for the impervious area for which hydrology<br>mitigation is required; and<br>(b) provide detention (temporary storage) and a drain down                                                                                                                                                                          |  |  |  |  |
|                                           | period of 24 hours for the difference between the pre-<br>development and post-development runoff volumes<br>from the 95th percentile, 24 hour rainfall event minus<br>the 5 mm retention volume or any greater retention<br>volume that is achieved, over the impervious area for<br>which hydrology mitigation is required.                                                              |  |  |  |  |
| Stormwater<br>management<br>area – Flow 2 | <ul> <li>(a) provide retention (volume reduction) of at least 5mm<br/>runoff depth for the impervious area for which hydrology<br/>mitigation is required; and</li> </ul>                                                                                                                                                                                                                  |  |  |  |  |
|                                           | (b) provide detention (temporary storage) and a drain down<br>period of 24 hours for the difference between the pre-<br>development and post-development runoff volumes<br>from the 90th percentile, 24 hour rainfall event minus<br>the 5 mm retention volume or any greater retention<br>volume that is achieved over the impervious area for<br>which hydrology mitigation is required. |  |  |  |  |

| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| (2) Where:                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| (a) a suitably qualified person has confirmed that soil infiltration rates are<br>less than 2mm/hr or there is no area on the site of sufficient size to<br>accommodate all required infiltration that is free of geotechnical<br>limitations (including slope, setback from infrastructure, building<br>structures or boundaries and water table depth); and                                       |  |  |  |  |  |
| (b) rainwater reuse is not available because:                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| <ul> <li>the quality of the stormwater runoff is not suitable for on-site reuse<br/>(i.e. for non-potable water supply, garden/crop irrigation or toilet<br/>flushing); or</li> </ul>                                                                                                                                                                                                               |  |  |  |  |  |
| <ul> <li>(ii) there are no activities occurring on the site that can re-use the full<br/>5mm retention volume of water.</li> </ul>                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| (c) the retention volume can be taken up by detention as follows:                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| (i) provide detention (temporary storage) and a drain down period of<br>24 hours for the difference between the pre-development and post-<br>development runoff volumes from the 95th percentile (SMAF 1) /<br>90 <sup>th</sup> percentile (SMAF 2), 24 hour rainfall event minus any retention<br>volume that is achieved, over the impervious area for which<br>hydrology mitigation is required. |  |  |  |  |  |

The application of above ground rainwater harvesting tanks shall be utilised for each residential lot to cater the volumes required for the first 5mm of retention, and detention of 35mm of rainfall depth (as per the 95<sup>th</sup> rainfall even) to be detailed during subdivision stage.

#### Proposed Public Network

The neighbouring development provides upstream hydrological connectivity for the subject site through a 525Ømm and 300Ømm extension, located northeast and southeast of the site. An extension is proposed on the two connection points to provide servicing of catchments 2 and 3, as shown in image 9 below. Catchment 1 will discharge into the existing western gully via outlet structures. The outfall for catchment 1 shall be appropriately located to not cause erosion and shall be designed using green infrastructure principles at detailed design of the stormwater network.

Areas for catchments 2 and 3 were determined based on the allowances made from the neighbouring developments stormwater network design for the 10-year ARI. Further assessment on the downstream critical pipes has been undertaken to confirm the networks downstream capacity. The capacity calculation for the 10year ARI can be found in Appendix D.

Peak flows have been calculated for each catchment based on the concept plan and used as the basis for the capacity assessment, summarised below.

| Proposed    | Proposed Area (m2) Peak Flow (L/s) |         | Discharge Point                     |  |  |  |
|-------------|------------------------------------|---------|-------------------------------------|--|--|--|
| Catchment # |                                    |         |                                     |  |  |  |
| 1           | 10 390                             | 256.00  | Outlet structure via western stream |  |  |  |
| 2           | 23 492                             | 603.73* | 525Ø pipe located east              |  |  |  |
| 3           | 15 990                             | 392.63* | 300Ø pipe located south             |  |  |  |

\*Calculations are based on the TP108 rainfall depth of 158.5mm (climate change adjusted). Refer to capacity calculation in the appendix.



Image 9: Stormwater Catchment Plan - 10 yr

The proposed stormwater pipe network will be subject to Engineering and Building Consent approval from Auckland Council for the future subdivision.

#### 6.2.4 FLOODING

Flooding occurs downstream of the site, where Te Wharau Creek crosses Kyle Road through two existing culverts. The neighbouring subdivision has an approved design to alleviate flooding through a stormwater network bypass (the layout is shown below, in image 10). This removes flooding of Kyle Road, by redirecting additional flow directly to the stream on the northern side of the road, essentially removing the discharge through the two undersized culverts. As the network has been designed to discharge a portion of the site based on a designed MPD, Catchment 2 and 3 will be delineated within the limits of the downstream network to cause no further additional flow to the designed peak flow MPD.



Image 10: SW Bypass Plan

The western catchment (Catchment 1) will discharge directly into the existing western gully to the west which contributes to Te Wharau Creek outside of the proximity of the Kyle Road flooding.

It is noted that properties in the vicinity of Te Wharau Creek are generally elevated above the flood prone/flood plain area due to the defined gully formation. It is expected that there are no downstream effects on the existing properties.

#### 6.2.5 OVERLAND FLOWPATH AND FLOODPLAIN MANAGEMENT

Management of OLFP within the site has been designed to align with the neighbouring development OLFP plan ensuring conveyance is maintained. The neighbouring subdivision has allowed for several swales along the south-eastern boundary to allow for the existing upstream catchment. The proposed future development will be designed to ensure that the OLFP's conveyed through the swales do not exceed the designed peak flows allowable, an example catchment plan is provided below for the potential catchment delineation. Catchments 1-3 and 5 are conveyed through the OLFPs relief points to the east. It is expected that the engineered swales will not be able to cater for the entire site. Therefore, a portion of the site's catchment will be conveyed through the existing gully to the west (shown in catchment 5). The image below shows a typical catchment to be confirmed during subdivision stage.

| OLFP allowance from 55 Schnapper Rock Road |                        |  |  |  |  |
|--------------------------------------------|------------------------|--|--|--|--|
| OLFP                                       | Design Flow (Q) (m3/s) |  |  |  |  |
| 1                                          | 0.349                  |  |  |  |  |
| 2                                          | 0.173                  |  |  |  |  |
| 3                                          | 0.169                  |  |  |  |  |
| TOTAL                                      | 0.691                  |  |  |  |  |



Image 11: Stormwater Catchment Plan – OLFP

#### 6.2.6 DEVELOPMENT STAGING

The project is proposed to be undertaken in one stage.

#### 6.3 HYDRAULIC CONNECTIVITY

The development site is identified to be the top of the catchment. Therefore, future extension from the development site is unlikely. Works within downstream network is currently under construction and the allowances provided has been taken into consideration within the subject site to ensure no further downstream effects occur.

#### 6.4 ASSET OWNERSHIP

All proposed public stormwater network extension within the development will owned by Auckland Council or the relevant CCO (Healthy Waters). Raingardens treating the public roads shall be vested to Auckland Transport. Stormwater devices treating commonly owned private ways are to be owned through an incorporated society as required.

#### 6.5 ONGOING MAINTENANCE REQUIREMENTS

All public stormwater extensions into the site, pipes and manholes forming the extent there of, are to be maintained by Auckland Council. All private devices are to be maintained by the landowners and any incorporated society formed.

It is proposed that all stormwater devices proposed are proprietary systems that have documented operation and maintenance schedules and plans for such activities.

Operation and maintenance plans will be provided for all stormwater management devices that will be vested with Council. This will be required as a condition of any approved consent, similar to the extract below.

#### **Operations and Maintenance Plan**

a.

12. An Operation and Maintenance Plan for the operation and maintenance of the stormwater network shall be prepared and implemented to ensure the effective operation of the stormwater network. The Operation and Maintenance Plan may be prepared as part of a region-wide Operation and Maintenance Plan for the stormwater network and shall be submitted to the Team Leader Specialist Integration, Auckland Council within 24 months of commencement of this consent.

At a minimum, the Operation and Maintenance Plan must include the following:

- The operation and maintenance of the stormwater network, including stormwater management devices that are part of the network to ensure the effective functioning of the stormwater network;
- Pre and post stormwater inspection of critical or at risk components of the network to minimise blockages and flood risk;
- c. An inspection and maintenance programme for outfalls and other network infrastructure to prevent or minimise erosion, obstructions to flows and hazards; and
- d. Processes to ensure that the Operation and Maintenance Plan is updated following commissioning of any new major stormwater network infrastructure or management devices.

Image 9: Operation and Maintenance Plan Condition

#### 6.6 IMPLEMENTATION OF STORMWATER NETWORK

It is expected that the new stormwater network will be constructed initially but not commissioned until the appropriate stormwater devices are implemented. Provisions on protecting the downstream network shall be through implementing temporary sediment and erosion controls to ensure stormwater discharge is properly treated and discharged during construction.

The methodology for implementation of the proposed networks are as follows:

- Existing site structures, pavement, and minor drainage to be stripped and removed prior to bulk earthworks.
- Bulk Earthworks completed, discharging clean waters captured and treated 'dirty water' to specific existing public structures as part of a specific earthwork's management plan.
- Construction/Relocation of public stormwater infrastructure.
- Construction/installation of attenuation and treatment devices and private drainage under accessways.
- Stabilisation of the site and construction of accessways.
- Vesting of newly constructed public drainage assets.
- Construction of residential dwellings and associated private stormwater attenuation devices.

#### 6.7 **DEPENDENCIES**

It is considered that the downstream network will have no negative effects from the development of the site for the mitigation highlighted in this report, which relates to primary the quality of stormwater discharging from the site.

#### 6.8 RISKS

Construction risks entail working within proximity to the SEA, resulting in sediment runoff or damage to existing significant flora fauna. It is expected that conditions will be placed in the future resource consent for the protection and minimisation of these risks.

A potential delay on the adjoining subdivision is considered a risk to the development as it has allowed provisions for infrastructure that provide connectivity for the site. Consultation with the adjacent development will be undertaken prior to lodgement of resource consent to identify key milestones for the project. The risks is considered low as the civil works has already started.

### DEPARTURES FROM REGULATORY OR DESIGN CODES

There are no known departures from Auckland regulatory and design standards.

### 7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

### 7.1 CONCLUSIONS

The SMP confirm that stormwater will be managed within the subject site. The future pipe network in the neighbouring subdivision and downstream stormwater bypass within Kyle Road has capacity to support the partial development 10-yr and 100-yr flows. Flows will be limited to the current design flows, to ensure no effects on the adjoining site. A new stormwater network is proposed to be discharged into the existing western stream.

Stormwater management devices proposed in the SMP have been chosen to align with the mana whenua values closely related to the principles of Kaitiakitanga, Mauri Tu, and Taiao.

Quality treatment will be provided for all public trafficable areas. This will be provided via either raingardens or stormwater filters. This is in accordance with the guidelines of Auckland Council's GD04 Water Sensitive Design for Stormwater, GD01 Stormwater Management Devices in the Auckland Region. Dependent on the future design, quality treatment will be required for common accessway subject to high-use. This approach is in line with the best practical stormwater management outcome for the site.

Subject to the adoption of the SMP, the proposed stormwater management of the site will accord with Schedule 4 of the Regional NDC.

#### 7.2 RECOMMENDATIONS

It is recommended that the design principles of this SMP be generally acceptable for proposed site.

### **APPENDIX A: CONCEPT PLAN**



## **CONCEPT MASTER PLAN**

#### KEY:

| Terrace Housing 36 (39%                     |
|---------------------------------------------|
| Zero-lot Line Detached Housing              |
| Standard Detached Housing 25 (27%)          |
| Total93 (100%)                              |
| Proposed Public Road (14.0m road reserve)   |
| Proposed Private Accessway                  |
| Significant Ecological Area(protected land) |
| Riparian Margin (protected land)            |

Note:

This site layout is conceptual only, and is subject to further investigations into Planning, Survey, Ecological and Engineering feasibility and may be derived from inaccurate source information. This is also subject to necessary approval from Auckland Council, Auckland Transport and Watercare.

### 53 SCHNAPPER ROCK ROAD, ALBANY

| Project: | Schnapper Rock Road De | ev 2020 |   |
|----------|------------------------|---------|---|
| Date:    | 21 December 2020       |         |   |
| Status:  | Draft                  |         | ) |
| Scale:   | 1:2000 @ A3            |         | , |
|          |                        | \       | / |

This document and design remain the property of Kingstone Property Limited. No liability shall be accepted for unauthroised use. This design is subject to further investigations into Planning, Survey and Engineering feasibility and may be derived from inaccurate source information.

## APPENDIX B: SW ENG60330592 (55 SCHNAPPER ROCK ROAD)

#### NOTES

#### GENERAL

- 1. The Contractor shall be responsible for locating all existing services prior to commencement of works. The Contractor shall make good at their own expense any damage to existing services.
- 2. Levels are in terms of Auckland Vertical Datum 1946.
- 3. All works are to be installed as per
  - Auckland Transport's Code of Practice "ATCOP"
  - Auckland Council Code of Practice for Land Development and . Subdivision - Chapter 4 Stormwater
  - Watercare Services Ltd's "Water and Wastewater Code of Practice for Land Development and Subdivision" and Accepted Materials List.
- 4. Standard Drawings available from their respective websites or the Engineer.
- 5. If discrepancies are found between the standards, confirmation shall be sought from the Engineer and supervising council field officer

#### STORMWATER DRAINAGE

#### 1. Pipes -

- All pipes 200mm diameter or less are to be uPVC AS/NZSS 1260 Solid Wall SN16 otherwise shown.
- All pipes 225mm diameter or greater are to be reinforced concrete rubber ring joint to NZS3107 Depths :
  - Class 2 < 2000mm cover
  - Class 3 < 2001mm 3000mm cover,
    - shown
- 2. All thrusted pipes are to be PE100 SDR17. All diameters shown are minimum inside diameters.
- 3. Bedding details as per SWCoP Standard Detail SW01 SW03
- 4. Manholes and chambers in traffic areas are to be heavy duty.
- 5. All manholes up to 2.4m deep shall be constructed of a single riser to finished ground level.
- Stormwater manhole throats are to be painted blue
- 7. All service connections are to be ramped to within 1.2m of finished level. Connections shall terminate with a factory sealed stopper and marked with a 50mm x 50mm H4 Treated Stake painted blue
- 8. Hardfill be placed where pipelines cross or where lines cross carriageways or trafficable areas.
- 9. Pipe Crossings Hardfill Backfill. If clearance between pipes is less than 150mm, 55mm thick Polystyrene shall be placed against the underside of the pipe. Where clearance is less than 300mm the bell jointed pipes are used, there shall be no joints directly over the wastewater line
- 10. All manholes 1050mmØ flanged base concrete riser unless otherwise shown.
- 11. Drop connections through Stormwater Manholes must not exceed 1m without approval from the Engineer. Benching through drop manholes must be finished with hard 40MPa Concrete.

474

37

A/2

40

41

12. Drainage Trenches to be backfilled with compacted clay or hardfill to Engineers requirements.

02/09/2020

Æ

ŧ



CP 09



BUMH 02

**€**K|4

CP/02



Ш

P SW

This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design

Cesspit

Outlet/Inlet

Private SW Line

 $\smile$ 

### FOR ENGINEERING APPROVAL

| I | No. REVISION (DESCRIPTIONS) |                                  |                | NAM      | E DATE     |
|---|-----------------------------|----------------------------------|----------------|----------|------------|
|   | C                           | Sub & SW layout changed RC issue |                |          | 06/09/19   |
|   | D Issued for EPA            |                                  | AC             | 20/11/19 |            |
| • | Ε                           | Swales removed                   |                | AC       | 03/04/2020 |
|   | F                           | SW alignment & CP                | outlet edits   | AC       | 22/06/2020 |
|   | SURVEYED                    |                                  |                |          |            |
|   | DESIGNED                    |                                  | PJT            | 25/09/18 |            |
|   | DRAWN                       |                                  | PJT            | 25/09/18 |            |
|   | DATE                        |                                  | ORIGINAL SCALE | ORIGI    | NAL SIZE   |
|   | 22/06/2020                  |                                  | 1:1500         |          | A3         |
|   | DRAWING NO.                 |                                  |                |          | REVISION   |
|   | 41351-DR-C-5000             |                                  |                |          | F          |

Cato Bolam creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

HL Developments Albany Ltd & **Golden Horse Land Development Ltd** 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Layout Overall Plan



|          | No.               | <b>REVISION (DESCRIP</b>            | NAM                             | E DATE |            |
|----------|-------------------|-------------------------------------|---------------------------------|--------|------------|
|          | B                 | Subdivision & SW lo                 | Subdivision & SW layout changed |        |            |
|          | C                 | C Swales removed                    |                                 |        | 03/04/2020 |
|          | D                 | SW alignment edits                  |                                 | AC     | 04/06/2020 |
|          | Ε                 | CP & extq 300ø culvert outlet edits |                                 |        | 22/06/2020 |
| SURVEYED |                   |                                     |                                 |        |            |
|          | DESIGNED          |                                     |                                 | PJT    | 25/09/18   |
|          | DRAWN             |                                     |                                 | PJT    | 25/09/18   |
| DATE OR  |                   | ſE                                  | ORIGINAL SCALE                  | ORIGI  | NAL SIZE   |
|          | 22/06/2020 1:1000 |                                     |                                 |        | A3         |
|          | DRAWING NO.       |                                     |                                 |        | REVISION   |
|          | 41351-DR-C-50     |                                     |                                 |        | E          |

Cato 🌈 Bolam creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

HL Developments Albany Ltd & **Golden Horse Land Development Ltd** 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Layout Sheet 1 of 4



|   | No.             | <b>REVISION (DESCRIP</b>         | NAME           | DATE   |            |
|---|-----------------|----------------------------------|----------------|--------|------------|
|   | A               | Issued for EPA                   |                |        | 22/11/18   |
|   | В               | Subdivision & SW layout changed  |                |        | 20/08/19   |
| - | C               | C CP outlets & other minor edits |                |        | 22/06/2020 |
|   |                 |                                  |                |        |            |
|   | SUR             | VEYED                            |                |        |            |
|   | DESIGNED        |                                  |                | PJT    | 25/09/18   |
|   | DRAWN           |                                  |                | PJT    | 25/09/18   |
|   | DATE            |                                  | ORIGINAL SCALE | ORIGIN | IAL SIZE   |
|   | 22/06/2020      |                                  | 1:1000         |        | A3         |
|   | DRAWING NO.     |                                  |                |        | REVISION   |
|   | 41351-DR-C-5002 |                                  |                |        | C          |

Cato Bolam creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Layout Sheet 2 of 3



| No. | No. REVISION (DESCRIPTIONS)    |                |        | E DATE     |
|-----|--------------------------------|----------------|--------|------------|
| Α   | Issued for EPA                 |                |        | 22/11/18   |
| В   | Subdivision & SW lo            | ayout changed  | AC     | 20/08/19   |
| C   | CP outlets & other minor edits |                | AC     | 22/06/2020 |
|     |                                |                |        |            |
| SUR | VEYED                          |                |        |            |
| DES | DESIGNED                       |                |        | 25/09/18   |
| DRA | WN                             |                | PJT    | 25/09/18   |
| DA  | TE                             | ORIGINAL SCALE | ORIGII | NAL SIZE   |
|     | 22/06/2020                     | 1:500          |        | A3         |
| DR  | DRAWING NO.                    |                |        | REVISION   |
|     | 41                             | ( C            |        |            |

Cato 🥖 Bolam creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

### Stormwater Layout Sheet 3 of 4



|   | No.              | <b>REVISION (DESCRIP</b> | (IONS)         | NAM    | DATE       |
|---|------------------|--------------------------|----------------|--------|------------|
|   | A                | Issued for EPA           |                | AC     | 04/11/19   |
|   | В                | SW alignment edits       |                |        | 04/06/2020 |
| _ | C                | Drive 2 RG's moved       |                |        | 22/06/2020 |
|   |                  |                          |                |        |            |
|   | SUR              | VEYED                    |                |        |            |
|   | DESIGNED         |                          |                | PJT    | 25/09/18   |
|   | DRAWN            |                          |                |        | 25/09/18   |
|   | DATE             |                          | ORIGINAL SCALE | ORIGIN | IAL SIZE   |
|   | 22/06/2020 1:250 |                          |                |        | A3         |
|   | DRAWING NO.      |                          |                |        | REVISION   |
|   |                  | 41                       | 04             | C      |            |
|   |                  |                          |                |        |            |

Cato 🌈 **Bolam** creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Layout Sheet 4 of 4

|                               | ¥ 8                                                              | 3<br>105<br>105<br>105                          | 40° 12                                                  | 25°                                                                   | 13°<br>CP 21<br>63°          |
|-------------------------------|------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|
| К                             | [/]3 //                                                          | A/1 A                                           | N/2                                                     | A/3                                                                   | A/4                          |
| MH150                         | COMPACTED<br>HARDFILL<br>BACKFILL                                | COMPACTED<br>HARDFILL<br>BACKFILL<br>0<br>VIIII | COMPACTED<br>HARDFILL<br>BACKFILL                       | OPTIVE COMPACTED<br>HARDFILL<br>BACKFILL<br>DIAMETERS COMPACTED       | MH1050                       |
| GRADE %                       | <u>←</u> 12.32% —                                                | > < 14.63%>                                     | 11.62%                                                  | 7.54%                                                                 | -><                          |
| DESIGN FLOW                   |                                                                  | >< 5571/s>                                      | -≪540I/s                                                | 514I/s                                                                | ~~                           |
| FLOW CAPACITY                 |                                                                  | ><769I/s>                                       | 686l/s                                                  | <del>~~~</del> 553l/s                                                 | ><                           |
| PIPE SIZE (mm)                | 375                                                              | ><──── 375 ────>                                | 375                                                     | 375                                                                   | -><                          |
| PIPE TYPE<br>BEDDING<br>DATUM | CLASS 4 RCRRJ<br>AC-SW-23 7MPa LOW<br>STRENGTH CONCRETE<br>5.000 | AC-SW-23 7MPa LOW                               | CLASS 4 RCRRJ<br>AC-SW-23 7MPa LOW<br>STRENGTH CONCRETE | ───── CLASS 4 RCRRJ ───<br>> <del>&lt;</del> ── AC-SW-03 H2 BEDDING - | CI<br>AC-S<br>STRE<br>15.000 |
| DEPTH TO INVERT               | 99                                                               | 66<br>67                                        | 00                                                      | .73                                                                   | 2.31                         |
| INVERT LEVEL                  | 22.07                                                            | 30.31                                           | 30.71                                                   | 33.79                                                                 | 35.76                        |
| DESIGN SURFACE LEVEL          | 25.63                                                            | 29.39                                           | 32.29                                                   | 35.52                                                                 | 38.07                        |
| DISTANCE                      | 34.55                                                            | \$5.1<br>\$5.1                                  | ଥି 26.52<br>ପ୍ର                                         | 8<br>5<br>8<br>8<br>8<br>8                                            | 108.32                       |

STORMWATER LINE A



This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Longsections Sheet 1 of 12

No. REVISION (DESCRIPTIONS) A Issued for EPA B Subdivision layout changed C Minor edits for EPA

FOR ENGINEERING APPROVAL







STORMWATER LINE A



This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design. HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Longsections Sheet 2 of 12

No. REVISION (DESCRIPTIONS) A Issued for EPA B Subdivision layout changed Minor edits for EPA

FOR ENGINEERING APP

| PROVAL |            | drawing no.<br>41351-DR-C-5101 |                 | 01       | REVISION |
|--------|------------|--------------------------------|-----------------|----------|----------|
|        |            | 17/06/2020                     | H 1:500 V 1:250 |          | A3       |
|        |            | DATE                           | ORIGINAL SCALE  | ORIGIN   | AL SIZE  |
| AC     | 17/06/2020 | DRAWN                          | PJT             | 07/09/18 |          |
| TM     | 04/11/19   | DESIGNED                       | PJT             | 07/09/18 |          |
| AC     | 22/11/18   | SURVEYED                       |                 |          |          |
| NAME   | DATE       |                                |                 | NAME     | DATE     |


#### STORMWATER LINE A

#### STORMWATER LINE B



GRADE %

**DESIGN FLOW** 

PIPE SIZE (mm)

PIPE TYPE

BEDDING

**INVERT LEVEL** 

DISTANCE

DATUM

This drawing and design remains the property of, and may not be reproduced or a mended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Longsections Sheet 3 of 12

#### No. REVISION (DESCRIPTIONS) A Issued for EPA B Subdivision layout changed C Line B extended to existing MH D Line B4 - B5 labeled as outside EPA E MH B4 edit size & made private

F Minor edits for EPA

FOR ENGINEERING APPROVAL





#### STORMWATER LINE C



This drawing and design remains the property of, and may not be reproduced or a mended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Longsections Sheet 4 of 12

#### STORMWATER LINE D

No. REVISION (DESCRIPTIONS) A Issued for EPA B Subdivision layout changed C All of line C now on this sheet D Drainage alignment edits C Minor edits for EPA FOR ENGINEERING APP

| PROVAL |            | DRAWING NO. | 1351-DR-C-51    | 03            | revision<br>E |
|--------|------------|-------------|-----------------|---------------|---------------|
| AL     | 17/06/2020 | 17/06/2020  | H 1:500 V 1:250 |               | A3            |
| AC     | 04/06/2020 | DATE        | ORIGINAL SCALE  | ORIGINAL SIZE |               |
| AC     | 01/05/2020 | DRAWN       |                 | PJT           | 07/09/18      |
| TM     | 04/11/19   | DESIGNED    |                 | PJT           | 07/09/18      |
| AC     | 22/11/18   | SURVEYED    |                 |               |               |
| NAME   | DATE       |             |                 | NAME          | DATE          |

|                     |                | Б1 10 GMH 74<br>03°               | CP 19<br>149°       |                                   | т -18°         | 72°                 | 21°            |                     | 81°    |
|---------------------|----------------|-----------------------------------|---------------------|-----------------------------------|----------------|---------------------|----------------|---------------------|--------|
| C                   |                | ET E/1 E                          | /2                  |                                   | E/3            |                     | E/4            |                     | E/     |
|                     | HW OUTLET      | MH1050                            |                     |                                   | MH1050         | conn @ 14.8 m       | MH1050         |                     | MH1050 |
|                     |                |                                   | Lot 20 conn @ 7.6 m | COMPACTED<br>HARDFILL<br>BACKFILL | 0              |                     |                |                     |        |
| GRADE %             |                | <u></u> 5 53%>                    | <                   | 9 87%                             |                | 7 48%               |                |                     | ~      |
| DESIGN FLOW         |                | ≤                                 | <                   | 134l/s                            |                | 84l/s               |                |                     | ~      |
| FLOW CAPACITY       |                | ≤ 263l/s>                         | <                   | 351l/s                            | ><             | 143l/s              |                | 156l/s              |        |
| PIPE SIZE (mm)      | <              | < 300>                            | <                   | 300                               |                | 225                 | ~~             | 225                 |        |
| PIPE TYPE           | <              |                                   | <                   |                                   |                | CLASS 4 RCRRJ       | ><             | CLASS 3 RCRRJ       |        |
| BEDDING<br>DATUM    | <              | ← AC-SW-03 H2 BEDDING →<br>40.000 | <,                  | AC-SW-03 H2 BEDDING               |                | AC-SW-03 H2 BEDDING | ><             | AC-SW-03 H2 BEDDING | ~      |
| DEPTH TO INVERT     | -0.06          |                                   | 1.41                |                                   | 2.46<br>2.34   |                     | 2.80<br>2.70   |                     | 2.30   |
| INVERT LEVEL        | 57.39<br>57.30 | 58.46<br>58.46                    | 58.56               |                                   | 62.07<br>62.19 |                     | 64.45<br>64.55 |                     | 67.40  |
| DESIGN SURFACE LEVE |                | 60. Xo                            | 59.97               |                                   | 64.53          |                     | 67.25          |                     |        |
| DISTANCE            |                | 19.33                             | 19.33               | 35.56                             | 54.89          | 30.27               | 85.17          | 32.28               |        |

STORMWATER LINE E



This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Longsections Sheet 5 of 12

No. REVISION (DESCRIPTIONS) A Issued for EPA B Subdivision layout changed C Drainage alignment edits D Minor edits for EPA

FOR ENGINEERING APPROVAL







creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

This drawing and design remains the property of, and may not be reproduced or a mended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design. 55 Schnapper Rock Rd & 52 Kyle Rd Albany

# FOR ENGINEERING APPROVAL

41351-DR-C-5105

D

For line K longsection see plan 5700





This drawing and design remains the property of, and may not be reproduced or a mended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Longsections Sheet 7 of 12

B Subdivision layout changed Minor edits for EPA FOR ENGINEERING APPROVAL



Auckland Council

ENG60330592 GREG HALL

Approved Engineering Plan

02/09/2020



**STORMWATER LINE CP 03** 





**GRADE %** 

PIPE TYPE

BEDDING

DISTANCE

DATUM

This drawing and design remains the property of, and may not be reproduced or a mended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Longsections Sheet 8 of 12

FOR ENGINEERING AP

No. REVISION (DESCRIPTIONS) A Issued for EPA

B Subdivision layout changed Minor edits for EPA



#### **STORMWATER LINE CP 05**

| NAME   | DATE       |             |                 | NAME        | DATE     |
|--------|------------|-------------|-----------------|-------------|----------|
| AC     | 22/11/18   | SURVEYED    |                 |             |          |
| ТМ     | 04/11/19   | DESIGNED    |                 | PJT         | 07/09/18 |
| AC     | 17/06/2020 | DRAWN       |                 | PJT 07/09/1 |          |
|        |            | DATE        | ORIGINAL SCALE  | ORIGIN      | AL SIZE  |
|        |            | 17/06/2020  | H 1:500 V 1:250 |             | A3       |
|        |            | DRAWING NO. | •               |             | REVISION |
| PROVAL |            | 4           | 351-DR-C-51     | 07          | C        |



ARCHITECTS | ENVIRONMENTAL

41351-DR-C-5108



PLANNERS | SURVEYORS | ENGINEERS

Auckland Council ENG60330592 GREG HALL Approved Engineering Plan





This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Longsections Sheet 11 of 12

# FOR ENGINEERING APPROVAL

No. REVISION (DESCRIPTIONS) A Issued for EPA

Minor edits for EPA

B Subdivision layout changed







creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

This drawing and design remains the property of, and may not be reproduced or amended without the written pernission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design. Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Longsections Sheet 12 of 12

FOR ENGINEERING APPROVAL



Auckland Council

ENG60330592 GREG HALL Approved Engineering Plan

02/09/2020



-DN100 Perforated draincoil wrapped in filter fabric, min 100mm cover

100mm Ø uPVC SN16 pipe connection between precast units

# Raingarden 11 - Precast Box Raingarden Typical Detail Section D-D

For raingarden layout and sizing see drawings sheets 5010 & 5011

This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

### FOR ENGINEERING APPROVAL

| No.             | <b>REVISION (DESCRIP</b> | NAM            | E         | DATE |            |  |
|-----------------|--------------------------|----------------|-----------|------|------------|--|
| Α               | Issued for EPA           |                | AC        |      | 18/11/19   |  |
| В               | RG entry edits           |                | AC        |      | 22/06/2020 |  |
|                 |                          |                |           |      |            |  |
|                 |                          |                |           |      |            |  |
| SUR             | VEYED                    |                |           |      |            |  |
| DES             | IGNED                    |                | AC        |      | 06/09/19   |  |
| DRA             | WN                       |                | AC 18/11/ |      | 18/11/19   |  |
| DAT             | ſE                       | ORIGINAL SCALE | ORIGI     | VAL  | SIZE       |  |
| 22/06/2020 1:50 |                          |                |           |      | A3         |  |
| DRAWING NO.     |                          |                |           | RE   | VISION     |  |
| 41351-DR-C-56   |                          |                |           |      | В          |  |

Cato 🌈 Bolam creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

**Rain Garden Typical Details** Raingarden 11 - Drive 2



#### STORMWATER LINE K



This drawing and design remains the property of, and may not be reproduced or a mended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Bypass Detail (Line K - longsection) & Manhole Details

# FOR ENGINEERING APPROVAL

No. REVISION (DESCRIPTIONS) A Issued for EPA B Subdivision layout changed

Minor edits for EPA

ſ





# Stream Outlet Plan Scruffy Dome K/2

This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

#### FOR ENGINEERING APPROVAL

| No. | <b>REVISION (DESCRIP</b> | NAM            | E DATE   |            |  |
|-----|--------------------------|----------------|----------|------------|--|
| A   | Issued for EPA           | Issued for EPA |          |            |  |
| В   | Subdivision layout       | changed        | MF       | 09/07/19   |  |
| C   | Hinged lid on scruf      | fy dome        | AC       | 19/06/2020 |  |
|     |                          |                |          |            |  |
| SUR | VEYED                    |                |          |            |  |
| DES | IGNED                    | AC             | 10/08/18 |            |  |
| DRA | WN                       |                | PJT      | 03/10/18   |  |
| DA  | TE                       | ORIGINAL SCALE | ORIGII   | NAL SIZE   |  |
|     | 19/06/2020 1:50          |                |          | A3         |  |
| DRA | AWING NO.                |                | REVISION |            |  |
|     | 41                       | 01             | C        |            |  |

Cato Bolam creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stream Stormwater Outlet Details







STORMWATER LINE E

STORMWATER LINE G



| ENG60330592 GREG HAL<br>Approved Engineering Plan<br>02/09/2020 | <b>L</b><br>n<br>G/3                    |
|-----------------------------------------------------------------|-----------------------------------------|
|                                                                 |                                         |
|                                                                 |                                         |
|                                                                 |                                         |
| 1.76%                                                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 14I/s                                                           |                                         |
| 200                                                             | >                                       |
| PE100 PN10 SDR 17<br>THRUSTED                                   | >                                       |
|                                                                 |                                         |
|                                                                 | 1.60                                    |
|                                                                 | 60.26                                   |
|                                                                 | 61.86                                   |
| 8.84                                                            | 16.66                                   |



STORMWATER LINE H



This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Outlet Detail Line H (Private)

FOR ENGINEERING AP

 No.
 REVISION (DESCRIPTIONS)

 A
 Issued for Engineering approval

 B
 Line H labeled as private

| wall |   |      |      |   |
|------|---|------|------|---|
| t    |   |      |      | _ |
| 19   |   | <br> | <br> |   |
|      | _ |      |      |   |

| NAME | DATE       |             |                 | NAME   | DATE     |
|------|------------|-------------|-----------------|--------|----------|
| AC   | 14/11/19   | SURVEYED    |                 |        |          |
| AC   | 19/06/2020 | DESIGNED    |                 | AC     | 04/11/19 |
|      |            | DRAWN       |                 | AC     | 04/11/19 |
|      |            | DATE        | ORIGINAL SCALE  | ORIGIN | AL SIZE  |
|      |            | 14/11/19    | H 1:100 V 1:100 |        | A3       |
| PRO\ | /ΔΙ        | DRAWING NO. |                 | 70.4   | REVISION |
|      |            | 4           | 1331-DK-C-3/    | 04     | В        |

Approved Engineering Plan

02/09/2020



# Catchpit Bubble-Up Outlet Detail

Not to Scale



PIPE LAID OVERLAND

Not to Scale

This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

#### FOR ENGINEERING APPROVAL

| No.         | <b>REVISION (DESCRIP</b> | NAM                 | E DATE    |           |   |
|-------------|--------------------------|---------------------|-----------|-----------|---|
| A           | Issued for EPA           |                     | AC        | 22/11/18  |   |
| В           | Subdivision layout       | changed             | MF        | 09/07/19  |   |
| C           | Catchpit outlets cho     | inged to bubble ups | AC        | 22/06/202 | 0 |
|             | -                        |                     |           |           |   |
| SUR         | VEYED                    |                     |           |           |   |
| DES         | DESIGNED                 |                     |           | 13/11/18  |   |
| DRA         | WN                       |                     | AC 13/11/ |           |   |
| DA          | ſE                       | ORIGINAL SCALE      | ORIGII    | NAL SIZE  |   |
|             | 22/06/2020               |                     | A3        |           |   |
| DRAWING NO. |                          |                     |           | REVISION  |   |
|             | 41                       | 00                  | C         |           |   |

Cato Bolam creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

Stormwater Pipe Support & Dispersal T-Bar Details

# **APPENDIX C: 55 SCHNAPPER ROCK - OLFP DESIGN**



# - Catchment BB discharges into SW bypass line

This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

### FOR ENGINEERING APPROVAL

| No. | REVISION (DESCRIP  | REVISION (DESCRIPTIONS) |             |          |  |
|-----|--------------------|-------------------------|-------------|----------|--|
| Α   | Issued for EPA     |                         | AC          | 22/11/18 |  |
| В   | Subdivision layout | changed                 | AC          | 06/09/19 |  |
|     |                    |                         |             |          |  |
| SUR | VEYED              |                         |             |          |  |
| DES | IGNED              |                         | AC          | 02/07/18 |  |
| DRA | WN                 |                         | TM 02/07/18 |          |  |
| DA  | TE                 | ORIGINAL SCALE          | ORIGIN      | IAL SIZE |  |
|     | 06/09/19           |                         | A3          |          |  |
| DR  | AWING NO.          |                         | REVISION    |          |  |
|     | 41                 | 00                      | В           |          |  |

Cato Bolam creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

## Stormwater Catchment Plan





| No. | <b>REVISION (DESCRIP</b> | REVISION (DESCRIPTIONS) |        |      |          |
|-----|--------------------------|-------------------------|--------|------|----------|
| A   | Issued for EPA           |                         | AC     |      | 22/11/18 |
| В   | Subdivision layout       | changed                 | AC     |      | 29/08/19 |
|     |                          |                         |        |      |          |
|     |                          |                         |        |      |          |
| SUR | RVEYED                   |                         |        |      |          |
| DES | IGNED                    |                         | AC     |      | 02/07/18 |
| DR/ | AWN                      |                         | TM 02/ |      | 02/07/18 |
| DA  | TE                       | ORIGINAL SCALE          | ORIGI  | AL : | SIZE     |
|     | 06/09/19 1:2000          |                         |        |      | A3       |
| DR  | DRAWING NO.              |                         |        |      | /ISION   |
|     | 41351-DR-C-53            |                         |        |      | В        |

Cato 🌈 Bolam creating great places PLANNERS | SURVEYORS | ENGINEERS ARCHITECTS | ENVIRONMENTAL

HL Developments Albany Ltd & Golden Horse Land Developments Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

# **Overland Flowpath**



## Diagram - Flood Depth Contour

This drawing and design remains the property of, and may not be reproduced or amended without the written permission of Cato Bolam Consultants Ltd. No liability shall be accepted for unauthorised use of this drawing and design.

### FOR ENGINEERING APPROVAL

| No.             | <b>REVISION (DESCRIP</b> | NAM               | E        | DATE |          |
|-----------------|--------------------------|-------------------|----------|------|----------|
| Α               | Previously sheet 5       | 302               | AC       |      | 22/11/18 |
| B               | Flooding updated b       | ased on revised   | TA       |      | 17/07/19 |
|                 | subdivision layout       | & plan renumbered |          |      |          |
|                 |                          |                   |          |      |          |
| SUR             | VEYED                    |                   |          |      |          |
| DES             | IGNED                    |                   | TA<br>TA |      | 15/10/18 |
| DRA             | WN                       |                   |          |      | 17/10/18 |
| DA              | ſE                       | ORIGINAL SCALE    | ORIGI    | VAL  | SIZE     |
| 17/10/18 1:1500 |                          |                   |          |      | A3       |
| DRAWING NO.     |                          |                   |          | RE   | VISION   |
| 41351-DR-C-53   |                          |                   |          |      | В        |



HL Developments Albany Ltd & Golden Horse Land Development Ltd 55 Schnapper Rock Rd & 52 Kyle Rd Albany

## Post-Development Flood Map



#### Manning Formula Calculation Sheet

| Client      | HL Develpoments Albany Ltd & Golden Horse Land Development Ltd |
|-------------|----------------------------------------------------------------|
| Job Address | 55 Schnapper Rock Road & 52 Kyle Rd                            |
|             | Albany                                                         |

Manning Formula V = 1/nR<sup>2/3</sup>s<sup>1/2</sup>

| Job No:<br>Date: | 41351<br>22-Aug-19 | Cato 🏉                |
|------------------|--------------------|-----------------------|
|                  | Inputs             | Bolam                 |
|                  | Calculations       | creating great places |
|                  | Results            | 00                    |

|                                    |                     |                            |                           |                     |                     |                     |                    | Bypass Blocked       | Bypass working       |                            |                         |                   |
|------------------------------------|---------------------|----------------------------|---------------------------|---------------------|---------------------|---------------------|--------------------|----------------------|----------------------|----------------------------|-------------------------|-------------------|
|                                    | Section A<br>OLFP 5 | Section B<br>Drive lot 301 | Section C<br>Road 2 start | Section D<br>OLFP 4 | Section E<br>OLFP 3 | Section F<br>OLFP 2 | Section G<br>OLFP1 | Section H<br>Kyle Rd | Section H<br>Kyle Rd | Section I<br>Drive lot 303 | Section J<br>Road 2 end |                   |
| Parameters                         | Values              | Values                     | Values                    | Values              | Values              | Values              | Values             | Values               | Values               | Values                     | Values                  |                   |
| Mannings Roughness Coefficient (n) | 0.050               | 0.025                      | 0.025                     | 0.050               | 0.050               | 0.050               | 0.050              | 0.025                | 0.025                | 0.025                      | 0.025                   |                   |
| Flow Area (A)                      | 0.20                | 0.09                       | 0.15                      | 0.13                | 0.15                | 0.12                | 0.20               | 1.31                 | 0.39                 | 0.41                       | 0.51                    | m <sup>2</sup>    |
| Wetted perimeter (P)               | 2.09                | 2.56                       | 3.06                      | 1.59                | 1.66                | 1.53                | 1.91               | 13.10                | 6.34                 | 6.97                       | 6.63                    | m                 |
| Hydraulic Radius R = A/P           | 0.096               | 0.037                      | 0.049                     | 0.084               | 0.090               | 0.078               | 0.105              | 0.100                | 0.062                | 0.059                      | 0.077                   |                   |
| Slope S = H/L                      | 0.26                | 0.12                       | 0.12                      | 0.20                | 0.08                | 0.16                | 0.15               | 0.10                 | 0.10                 | 0.11                       | 0.05                    |                   |
| Velocity (V)                       | 2.134               | 1.543                      | 1.879                     | 1.719               | 1.134               | 1.443               | 1.744              | 2.670                | 1.931                | 2.007                      | 1.618                   | m/s               |
| Flow (Q)                           | 0.427               | 0.145                      | 0.282                     | 0.230               | 0.169               | 0.173               | 0.349              | 3.498                | 0.753                | 0.823                      | 0.825                   | m <sup>3</sup> /s |
| TP108 catchment flow               | 0.410               | 0.112                      | 0.23                      | 0.213               | 0.143               | 0.143               | 0.31               | 3.45                 | 0.70                 | 0.81                       | 0.81                    | m <sup>3</sup> /s |
| Channel capacity >= Catchment flow | OK                  | ОК                         | ОК                        | OK                  | OK                  | ОК                  | OK                 | OK                   | OK                   | ОК                         | ОК                      |                   |
| Flow Depth                         | 0.14                | 0.075                      | 0.09                      | 0.11                | 0.12                | 0.1                 | 0.14               | 0.2                  | 0.16                 | 0.14                       | 0.16                    | m                 |

# APPENDIX D: CONCEPT CATCHMENT PLANS AND CALCULATION



| i n                        |                                                       |                         |                                         |                            |                 |              |
|----------------------------|-------------------------------------------------------|-------------------------|-----------------------------------------|----------------------------|-----------------|--------------|
|                            | ]                                                     |                         |                                         |                            |                 |              |
|                            | 1                                                     |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
| $\sim$ $\square$ $\square$ |                                                       |                         |                                         |                            |                 |              |
| · /                        | 1                                                     |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
| $\sim$ /                   |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
| )                          | 1                                                     |                         |                                         |                            |                 |              |
| /                          |                                                       |                         |                                         |                            |                 |              |
| /                          |                                                       |                         |                                         |                            |                 |              |
| /                          | Legend                                                |                         |                                         |                            |                 |              |
| /                          |                                                       |                         |                                         | <ul> <li>EX BDY</li> </ul> | /               |              |
|                            |                                                       |                         |                                         | <ul> <li>PROP I</li> </ul> | 3DY             |              |
|                            | {                                                     |                         |                                         |                            |                 |              |
|                            |                                                       |                         |                                         |                            |                 |              |
| P                          |                                                       |                         |                                         |                            |                 |              |
| /                          | B 59                                                  | 2 CAT                   | CHMENT UP                               | DATE                       | JD              | 04/21        |
| /                          |                                                       |                         |                                         |                            |                 | 02/21        |
| 1                          |                                                       |                         | TANGE                                   |                            |                 | 02/21        |
|                            | Rev De                                                | scriptio                | n                                       |                            | Ву              | Date         |
| $-$ / $\sim$               |                                                       | By                      |                                         | Date                       |                 |              |
|                            | Survey                                                | -                       |                                         | -                          |                 |              |
| /                          | Design                                                | AP                      |                                         | 02/21                      |                 |              |
| /                          | Drawn                                                 | AP                      |                                         | 02/21                      |                 |              |
| 1                          | Checked                                               | JD                      |                                         | 02/21                      |                 |              |
| ブ !                        |                                                       |                         |                                         |                            |                 |              |
| · /                        |                                                       |                         |                                         |                            |                 |              |
| /                          |                                                       |                         |                                         | Maver                      | 1 Ass           | sociates     |
|                            |                                                       |                         |                                         | 09 571 00                  | 50<br>20.00 n 7 |              |
|                            |                                                       |                         | 7 4                                     | www.mave                   | n.co.nz         |              |
| <b>)</b> ′                 |                                                       |                         |                                         | 5 Owens F                  | toad, Ep        | som          |
|                            |                                                       |                         |                                         | Auckland                   | 1023            |              |
|                            | Project                                               |                         |                                         |                            | 00              |              |
|                            | ວ/ ວ                                                  | SCL                     | 1NAPP                                   | EK K                       |                 | N RU         |
|                            | CL                                                    | ли,                     |                                         |                            | N.              |              |
|                            | 301                                                   | 111/                    |                                         |                            | 'n              |              |
| 、                          |                                                       | /FI                     | OPMF                                    | NT                         |                 |              |
| $\land$                    |                                                       |                         |                                         |                            |                 |              |
|                            | FOF                                                   | 2                       |                                         |                            |                 |              |
| $\wedge$                   |                                                       | _                       |                                         |                            |                 |              |
|                            | KBS                                                   | 5 D                     | ESIGN                                   | GRC                        | <b>UP</b>       | LTD.         |
| / ~                        | L                                                     |                         |                                         |                            |                 |              |
|                            | Title                                                 |                         |                                         |                            |                 |              |
| •                          |                                                       | )P(                     | DSED                                    |                            |                 |              |
|                            | ILLL                                                  |                         |                                         |                            |                 |              |
|                            | PRU                                                   | /                       |                                         |                            |                 | <b>-</b>     |
| $\langle \rangle$          | 10 Y                                                  | /EA                     | R CA                                    | ГСНМ                       | IEN             | т            |
|                            | 10 Y                                                  |                         | AR CA                                   | TCHN                       | IEN             | т            |
|                            | 10 Y<br>PLA                                           | (EA                     | AR CA                                   | ГСНМ                       | IEN             | T            |
|                            | 10 Y<br>PLA                                           |                         |                                         | TCHN                       | IEN             | T            |
|                            | PRC<br>10 Y<br>PLA<br>Project no                      | (EA<br>\N<br>           | 175006                                  | TCHN                       | IEN             | T            |
|                            | PRC<br>10 Y<br>PLA<br>Project no<br>Scale             | (EA<br>\N<br>           | 175006                                  |                            | IEN             | T            |
|                            | PRC<br>10 Y<br>PLA<br>Project no<br>Scale             | (EA<br>\\N<br>          | 175006<br>1:1500 @                      | D A3                       | IEN             | T            |
|                            | PRC<br>10 Y<br>PLA<br>Project no<br>Scale<br>Cad file | (EA<br>\\N<br>          | 175006<br>1:1500 @<br>C450 - SV         | CHN<br>D A3<br>V CAPAC     | IEN             | T            |
|                            | PRC<br>10 Y<br>PLA<br>Project nc<br>Scale<br>Cad file | (EA<br>\N<br>           | 175006<br>1:1500 @<br>C450 - SV<br>C450 | D A3                       | IEN             | T<br>WG      |
|                            | Project no<br>Scale<br>Cad file<br>Drawing r          | (EA<br>\\\<br>0.<br>no. | 175006<br>1:1500 @<br>C450 - SW<br>C450 | CHN<br>D A3<br>V CAPAC     | IEN             | T<br>WG<br>A |

|      | М                                       | laven Assoc | ciates               | Job Number           | Sheet                     | Rev              |                 |                |               | Author       | Date       | Checked |
|------|-----------------------------------------|-------------|----------------------|----------------------|---------------------------|------------------|-----------------|----------------|---------------|--------------|------------|---------|
| MAEN | N                                       |             |                      | 175006               | 1                         | В                | Calc Title: Pip | e Capacity Ch  | eck           | JD           | 23/04/2021 | JP      |
|      | <b>Rainfall Depth</b><br>TP108 rainfall | ı<br>data   | ARI 10YR (mm)<br>140 |                      | F                         | Pipe ks factor = | 0.15            | 5 mm (pipes u  | p to 1.0m dia | )            |            |         |
|      | Climate chang                           | e Increase  | 158.48               | (assuming 2.1C incre | ease in temperature)      |                  |                 |                |               |              |            |         |
|      |                                         |             | CN Number            |                      | CN Number                 |                  |                 |                |               |              |            |         |
|      | Impervious are                          | a           | 98                   | Residential Lots     | 89.6                      | Equivalent C     | CN - (65% impe  | ervious covera | ige, 35% perv | vious covera | ge)        |         |
|      | Pervious                                |             | 74                   | Proposed Roads       | 94.4                      | Equivalent C     | CN - (85% impe  | ervious covera | ige, 15% per  | vious covera | ge)        |         |
|      |                                         |             |                      | Proposed ROW         | 98                        | Equivalent C     | CN - (100% imp  | pervious cove  | rage, 0% per  | vious covera | ge)        |         |
|      | Pipe Line                               | Catchment   | Catchment Area       | CN                   | Peak Flow rate - 10YR ARI | Cum. Flow        | Pipe dia        | Gradient       | Capacity      | Velocity     | Check      |         |
|      | number                                  | number      | <i>m</i> 2           |                      | l/s                       | l/s              | m               | %              | l/s           | m/s          | OK         |         |
|      | <u>LINE 1</u>                           |             |                      |                      |                           |                  |                 |                |               |              |            |         |
|      | J/1 to A/7                              | 3 - Resi    | 13740                | 89.6                 | 334.898                   |                  |                 |                |               |              |            |         |
|      |                                         | 3 - Road    | 2250                 | 94.4                 | 57.731                    | 392.629          | 0.300           | 13.80          | 492.52        | 6.97         | ОК         |         |
|      | A/4 - A/3                               | 3.1 - Resi  | 7185                 | 89.6                 | 175.127                   |                  |                 |                |               |              |            |         |
|      |                                         | 3.1 - Road  | 2475                 | 94.4                 | 63.504                    | 631.259          | 0.375           | 7.54           | 651.82        | 5.90         | ОК         |         |
|      | A/1 - K/3                               | 3.2 - Resi  | 1795                 | 89.6                 | 43.751                    |                  |                 |                |               |              |            |         |
|      |                                         | 3.2 - Road  | 1570                 | 94.4                 | 40.283                    | 715.294          | 0.375           | 12.32          | 833.37        | 7.55         | OK         |         |
|      |                                         |             |                      |                      |                           |                  |                 |                |               |              |            |         |
|      | <u>LINE 2</u>                           |             |                      |                      |                           |                  |                 |                |               |              |            |         |
|      | B/4 - B/3                               | 2- Resi     | 6924                 | 89.6                 | 168.765                   |                  |                 |                |               |              |            |         |
|      |                                         | 0 Deed      | 0570                 | 00                   | 470.400                   |                  |                 |                |               |              | 1          |         |

| 2/1 2/0   |                | 0021 | 0010 | 1001100 |         |       |      |         |      |    |
|-----------|----------------|------|------|---------|---------|-------|------|---------|------|----|
|           | 2- Road        | 6570 | 98   | 172.486 |         |       |      |         |      |    |
|           | WATERCARE SITE | 9998 | 98   | 262.484 | 603.735 | 0.525 | 7.74 | 1588.27 | 7.34 | OK |
| B/2 - B/1 | 3.1 - Resi     | 7185 | 89.6 | 175.127 |         |       |      |         |      |    |
|           | 3.1 - Road     | 2475 | 98   | 64.978  | 843.840 | 0.600 | 2.61 | 1305.42 | 4.62 | OK |

Refer to ENG60330592 for designed gradients and sizing of downstream stormwater network.



|                                                                                                                                                              |             |          |             |                          |              |          | _        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-------------|--------------------------|--------------|----------|----------|
| $X \rightarrow X$                                                                                                                                            |             |          |             |                          |              |          |          |
| > > > > > > > > > > > > > > > > > > >                                                                                                                        |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              | -           |          |             |                          |              |          |          |
| $\leq$                                                                                                                                                       |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              | 1           |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              | 1           |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             |                          |              |          |          |
|                                                                                                                                                              | ٦           |          |             |                          |              |          |          |
|                                                                                                                                                              | Leger       | iu       |             | - EX BDY                 |              |          |          |
|                                                                                                                                                              |             |          |             | PROP B                   | DY           |          |          |
| $ \land \land - Z $                                                                                                                                          | -           | >        | >           | OVERLA                   | ND F         | LOWPAT   | Н        |
|                                                                                                                                                              | _           | . – –    |             |                          |              |          | _        |
|                                                                                                                                                              |             |          |             |                          |              | +        | _        |
|                                                                                                                                                              |             |          |             |                          |              |          | -        |
|                                                                                                                                                              | A           | DRAFT    | Г           |                          | AP           | FEB 202  | 1        |
|                                                                                                                                                              | Rev         | Descrip  | otion       | 1                        | By           | Date     | -        |
|                                                                                                                                                              |             | В        | y           | Date                     |              |          |          |
| 1                                                                                                                                                            | Surve       | y -      |             | -                        |              |          |          |
|                                                                                                                                                              | Desig       | n A      | P           | FEB 21                   |              |          |          |
|                                                                                                                                                              | Draw        | ו A      | P           | FEB 21                   |              |          |          |
|                                                                                                                                                              | Chec        | ked J    | D           | FEB 21                   |              |          |          |
|                                                                                                                                                              | 4           |          |             |                          |              |          |          |
|                                                                                                                                                              |             |          |             | Maven                    | Ass          | sociate  | s        |
|                                                                                                                                                              |             |          |             | 09 571 005<br>info@maver | U<br>1.co.nz |          |          |
|                                                                                                                                                              | 1           |          |             | www.maven                | .co.nz       | som      |          |
|                                                                                                                                                              | M           | <u>A</u> | V E N       | Auckland 10              | 123          |          |          |
|                                                                                                                                                              | Projec      |          |             | ים חשנ                   |              | יים א    |          |
|                                                                                                                                                              | <b>יי</b> ן | 30       | <b>HNAP</b> | EK K                     |              | n KD     |          |
| $\sqrt{N}$                                                                                                                                                   | SC          | CHN      | APPER       | ROC                      | Κ            |          |          |
|                                                                                                                                                              | יח          |          |             |                          | -            |          |          |
|                                                                                                                                                              | יטן         | EVE      | LOPINE      | IN I                     |              |          |          |
| $ \langle   \rangle \rangle$ | FC          | )R       |             |                          |              |          |          |
|                                                                                                                                                              |             | ре г     |             |                          | חוו          | חד ו     |          |
|                                                                                                                                                              | Nt          | SOL      | JESIGN      | I GRU                    | υP           | LIV.     |          |
|                                                                                                                                                              | Title       |          |             |                          |              |          | 4        |
|                                                                                                                                                              | PF          | ROP      | OSED        |                          |              |          |          |
| BE CONVEYED                                                                                                                                                  | 1           |          |             | <u>с л т с</u> і         |              |          |          |
| SWALE DESIGNED                                                                                                                                               | 10          | V E K    | LAND        | UAIU                     | IVI I        |          |          |
| NT SUB-DIVISION                                                                                                                                              | JPL         | AN       |             |                          |              |          |          |
|                                                                                                                                                              | 4           |          | /           |                          |              |          | 4        |
|                                                                                                                                                              | Proje       | ct no.   | 175006      |                          |              |          |          |
|                                                                                                                                                              | Scale       | 1        | 1:1500 (    | @ A3                     |              |          |          |
| ATED 11/2019).                                                                                                                                               | Cad f       | ile      | C450 - Ol   | FP.DWG                   |              |          | 1        |
|                                                                                                                                                              |             | na na    | CAE4        |                          | Part         | ^        | $\dashv$ |
|                                                                                                                                                              | L'aw        | ing 110. |             |                          | I vev        | <b>n</b> |          |

|                                                  | MAVEN AS                                             | SOCIATE                                                                | ËS                               | Job N<br>175         | umber<br>5006                      | Sheet<br>1                                       | Rev<br>A                                  |
|--------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|----------------------------------|----------------------|------------------------------------|--------------------------------------------------|-------------------------------------------|
| Job Title<br>Calc Title                          | 53 Schna<br>TP108 Calcu                              | opper Rock Roac<br>lation - Catchme                                    | i<br>ent 1                       | Author<br>AP         |                                    | Date<br>12.02.21                                 | Checked<br>JD                             |
| 1. Runoff Curve Num                              | ber (CN) and initia                                  | al Abstraction                                                         | (la)                             |                      |                                    |                                                  |                                           |
| Soil name and<br>classification<br>C<br>C        | Cover descri                                         | ption (cover typ<br>nydrologic cond<br>Impervious (60<br>Pervious (409 | e, treatn<br>ition)<br>)%)<br>%) | nent, and            | Curve<br>Number<br>CN*<br>98<br>74 | Area (ha)<br>10000m2=<br>1ha<br>0.5400<br>0.3600 | Product of<br>CN x area<br>52.92<br>26.64 |
|                                                  |                                                      | ,                                                                      | 1                                |                      |                                    |                                                  |                                           |
| * from Appendix B<br>CN (weighted) =             | total product =<br>total area                        |                                                                        | 79.56<br>0.900                   |                      | Totals =<br>88.4                   | 0.900                                            | 79.56                                     |
| la (average) =<br>2. Time of Concentra           | <u>5 x pervious are</u><br>total area<br><b>tion</b> | <u>a</u> =                                                             | <u>5 x</u><br>0.                 | <u>0.3600</u><br>900 | 2.0                                | mm                                               |                                           |
| Channelisation factor                            | C                                                    | ) =                                                                    | 0.8                              | (From Table          | e 4.2)                             |                                                  |                                           |
| Catchment length                                 | L                                                    | _ =                                                                    | 0.17                             | km (along d          | rainage path                       | )                                                |                                           |
| Catchment Slope                                  | S                                                    | Sc=                                                                    | 0.01                             | m/m (by equ          | ual area metl                      | nod)                                             |                                           |
| Runoff factor,                                   | <u> </u>                                             | 200-                                                                   | 88.4<br>88.4                     | =                    | 0.79                               | -                                                |                                           |
| t <sub>c</sub> = 0.14 C L <sup>0.66</sup> (CN/20 | 00-CN) <sup>-0.55</sup> Sc <sup>-0.30</sup>          |                                                                        |                                  |                      |                                    |                                                  |                                           |
| = 0.1                                            | 14 0.8                                               | 0.31                                                                   | 1.14                             | 3.98                 | =                                  | 0.16                                             | hrs                                       |
| SCS Lag for HEC-HM                               | S t <sub>i</sub>                                     | $_{\rm p}$ = 2/3 t <sub>c</sub>                                        |                                  |                      | =                                  | 0.11                                             | hrs                                       |
|                                                  |                                                      |                                                                        |                                  |                      |                                    | NO GOOD<br>use<br>0.17                           | hrs                                       |
|                                                  | Worksheet 1:                                         | Runoff Parame                                                          | ters and                         | d Time of C          | oncentratio                        | n                                                |                                           |

|                                                                                                    | MAVEN ASSOCIATES                                                                                                                 |             |               |                                      | ber              | Sheet<br>2    | Rev<br>A |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--------------------------------------|------------------|---------------|----------|
| Job Title<br>Calc Title                                                                            | Title53 Schnapper Rock RoadAuthorTitleTP108 Calculation - Catchment 1AP                                                          |             |               |                                      | Date<br>12.02.21 | Checked<br>JD |          |
| <ol> <li>Data<br/>Catchment A<br/>Runoff curve</li> </ol>                                          | vrea<br>number                                                                                                                   | A=<br>CN=   | 0.009<br>88.4 | km2( 100ha =1km<br>(from worksheet 1 | n2)<br>)         |               |          |
| Initial abstrac                                                                                    | ction                                                                                                                            | la=         | 2.0           | mm (from workshe                     | eet 1)           |               |          |
| Time of cond                                                                                       | entration                                                                                                                        | tc=         | 0.17          | hrs (from workshe                    | et 1)            |               |          |
| 2. Calculate sto                                                                                   | orage, S =(1000/CN - 10)2                                                                                                        | 5.4         |               | =                                    | 33.3             | mm            |          |
| <ol> <li>Average rect</li> <li>24 hour rainf</li> <li>Compute c*</li> <li>Specific peal</li> </ol> | urrence interval, ARI<br>all depth, P24<br>= P24 - 2Ia/P24 - 2Ia+2S<br>k flow rate q*                                            |             |               | 100<br>245.3<br>0.78<br>0.158        | (yr)<br>(mm)     |               |          |
| 7. Peak flow rat                                                                                   | te, q <sub>p</sub> =q*A*P <sub>24</sub>                                                                                          |             |               | 0.349                                | m3/s             |               |          |
| <ol> <li>8. Runoff depth</li> <li>9. Runoff volum</li> </ol>                                       | n, Q <sub>24</sub> = (P <sub>24</sub> -la) <sup>2</sup> /(P <sub>24</sub> -la)+S<br>ne, V <sub>24</sub> = 1000xQ <sub>24</sub> A | 3           |               | 214.0<br>1925.87                     | (m3)             |               |          |
|                                                                                                    | 147-                                                                                                                             | orkshoot 2: | Granhi        | al Doak Flour Det                    |                  |               |          |

|                                                  | MAVEN AS                                                            | Sociates                                                                               | Job N<br>175         | umber<br>5006                      | Sheet<br>1                                       | Rev<br>A                                 |
|--------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|------------------------------------|--------------------------------------------------|------------------------------------------|
| Job Title<br>Calc Title                          | 53 Schnap<br>TP108 Calcula                                          | oper Rock Road<br>ation - Catchment 2                                                  | Au<br>A              | thor<br>\P                         | Date<br>12.02.21                                 | Checked<br>JD                            |
| 1. Runoff Curve Num                              | ber (CN) and initia                                                 | Abstraction (la)                                                                       |                      |                                    |                                                  |                                          |
| Soil name and<br>classification<br>C<br>C        | Cover descrip                                                       | tion (cover type, treatr<br>ydrologic condition)<br>Impervious (60%)<br>Pervious (40%) | nent, and            | Curve<br>Number<br>CN*<br>98<br>74 | Area (ha)<br>10000m2=<br>1ha<br>0.1579<br>0.1053 | Product of<br>CN x area<br>15.48<br>7.79 |
|                                                  |                                                                     |                                                                                        |                      |                                    |                                                  |                                          |
| * from Appendix B<br>CN (weighted) =             | total product =                                                     | 23.27                                                                                  | =                    | Totals =<br>88.4                   | 0.263                                            | 23.27                                    |
| la (average) =<br>2. Time of Concentra           | total area<br><u>5 x pervious area</u><br>total area<br><b>tion</b> | 0.263<br>_= <u>5 x</u><br>0                                                            | <u>0.1053</u><br>263 | 2.0                                | mm                                               |                                          |
| Channelisation factor                            | С                                                                   | =0.8                                                                                   | (From Table          | e 4.2)                             |                                                  |                                          |
| Catchment length                                 | L                                                                   | = 0.82                                                                                 | km (along d          | rainage path                       | )                                                |                                          |
| Catchment Slope                                  | So                                                                  | .= 0.01                                                                                | m/m (by equ          | ual area metl                      | nod)                                             |                                          |
| Runoff factor,                                   | <u>CN</u> =<br>200 - CN                                             | 88.4<br>200- 88.4                                                                      | _=                   | 0.79                               | -                                                |                                          |
| t <sub>c</sub> = 0.14 C L <sup>0.66</sup> (CN/20 | 00-CN) <sup>-0.55</sup> Sc <sup>-0.30</sup>                         |                                                                                        |                      |                                    |                                                  |                                          |
| = 0.1                                            | 4 0.8                                                               | 0.88 1.14                                                                              | 3.98                 | =                                  | 0.44                                             | hrs                                      |
| SCS Lag for HEC-HM                               | S t <sub>p</sub>                                                    | = 2/3 t <sub>c</sub>                                                                   |                      | =                                  | 0.30                                             | hrs                                      |
|                                                  |                                                                     |                                                                                        |                      |                                    | OK<br>use<br>0.444633                            | hrs                                      |
|                                                  | Worksheet 1: R                                                      | unoff Parameters an                                                                    | d Time of Co         | oncentratio                        | n                                                |                                          |

| MAVEN ASSOCIATES                                                                         |                                                                                       |                  |                         | Job Numb<br>175006                                       | er                | Sheet<br>2       | Rev<br>A      |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|-------------------------|----------------------------------------------------------|-------------------|------------------|---------------|
| Job Title<br>Calc Title                                                                  | 53 Schnapper Roc<br>TP108 Calculation - C                                             | k Road<br>atchme | d<br>ent 2              | Author<br>AP                                             |                   | Date<br>12.02.21 | Checked<br>JD |
| <ol> <li>Data<br/>Catchment Area<br/>Runoff curve num<br/>Initial abstraction</li> </ol> | ıber                                                                                  | A=<br>CN=<br>Ia= | 0.002632<br>88.4<br>2.0 | km2( 100ha =1km<br>(from worksheet 1<br>mm (from workshe | 2)<br>)<br>eet 1) |                  |               |
| Time of concentra<br>2. Calculate storage                                                | ation<br>-, S =(1000/CN - 10)25.                                                      | tc=<br>4         | 0.44                    | hrs (from workshe                                        | et 1)<br>33.3     | mm               |               |
| <ol> <li>Average recurren</li> <li>24 hour rainfall de</li> </ol>                        | ce interval, ARI<br>epth, P24                                                         |                  |                         | 100                                                      | (yr)<br>(mm)      |                  |               |
| <ol> <li>Compute c* = P2-</li> <li>Specific peak flow</li> </ol>                         | 4 - 2Ia/P24 - 2Ia+2S<br>v rate q*                                                     |                  |                         | 0.78                                                     | . /               |                  |               |
| <ol> <li>Peak flow rate, q<sub>p</sub></li> <li>Runoff depth, Q<sub>24</sub></li> </ol>  | =q*A*P <sub>24</sub><br>= (P <sub>24</sub> -la) <sup>2</sup> /(P <sub>24</sub> -la)+S |                  |                         | <b>0.102</b><br>214.0                                    | m3/s              |                  |               |
| 9. Runoff volume, V                                                                      | <sub>24</sub> = 1000xQ <sub>24</sub> A                                                |                  |                         | 563.21                                                   | (m3)              |                  |               |
|                                                                                          |                                                                                       |                  |                         |                                                          |                   |                  |               |
|                                                                                          |                                                                                       |                  |                         |                                                          |                   |                  |               |

|                                                  | MAVEN AS                                             | 1AVEN ASSOCIATES                                                                  |                     |               |                                    | Sheet<br>1                                       | Rev<br>A                                 |
|--------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|---------------|------------------------------------|--------------------------------------------------|------------------------------------------|
| Job Title<br>Calc Title                          | 53 Schna<br>TP108 Calcu                              | pper Rock Road<br>lation - Catchment                                              | 3                   | Author<br>AP  |                                    | Date<br>12.02.21                                 | Checked<br>JD                            |
| 1. Runoff Curve Num                              | ber (CN) and initia                                  | al Abstraction (la)                                                               |                     |               |                                    |                                                  |                                          |
| Soil name and<br>classification<br>C<br>C        | Cover descri                                         | ption (cover type, t<br>nydrologic conditio<br>Impervious (60%)<br>Pervious (40%) | reatm<br>n)<br>)    | ent, and      | Curve<br>Number<br>CN*<br>98<br>74 | Area (ha)<br>10000m2=<br>1ha<br>0.2004<br>0.1336 | Product of<br>CN x area<br>19.64<br>9.89 |
|                                                  |                                                      |                                                                                   |                     |               |                                    |                                                  |                                          |
| * from Appendix B                                |                                                      |                                                                                   |                     |               | Totals =                           | 0.334                                            | 29.53                                    |
| CN (weighted) =                                  | total product =<br>total area                        |                                                                                   | 9.53<br>.334        | =             | 88.4                               | -                                                |                                          |
| la (average) =<br>2. Time of Concentra           | <u>5 x pervious are</u><br>total area<br><b>tion</b> | <u>a</u> =                                                                        | <u>5 x</u><br>0.3   | 0.1336<br>334 | 2.0                                | mm                                               |                                          |
| Channelisation factor                            | C                                                    | ) =                                                                               | 0.8                 | (From Table   | 4.2)                               |                                                  |                                          |
| Catchment length                                 | L                                                    | .=                                                                                | 0.13                | km (along d   | rainage path                       | )                                                |                                          |
| Catchment Slope                                  | S                                                    | Sc=                                                                               | 0.01                | m/m (by equ   | ual area meth                      | nod)                                             |                                          |
| Runoff factor,                                   | <u> </u>                                             | 200-                                                                              | <u>88.4</u><br>88.4 | =             | 0.79                               |                                                  |                                          |
| t <sub>c</sub> = 0.14 C L <sup>0.66</sup> (CN/20 | 00-CN) <sup>-0.55</sup> Sc <sup>-0.30</sup>          |                                                                                   |                     |               |                                    |                                                  |                                          |
| = 0.1                                            | 14 0.8                                               | 0.26                                                                              | 1.14                | 3.98          | =                                  | 0.13                                             | hrs                                      |
| SCS Lag for HEC-HM                               | S t                                                  | $_{\rm o}$ = 2/3 t <sub>c</sub>                                                   |                     |               | =                                  | 0.09                                             | hrs                                      |
|                                                  |                                                      |                                                                                   |                     |               |                                    | NO GOOD<br>use<br>0.17                           | hrs                                      |
|                                                  | Worksheet 1:                                         | Runoff Parameter                                                                  | 's and              | Time of Co    | oncentration                       | ı                                                |                                          |

|                                                                                                                         |                                                                                                                                  |           | Job Number<br>175006 |                                              | Sheet<br>2         | Rev<br>A         |               |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|----------------------------------------------|--------------------|------------------|---------------|
| Job Title<br>Calc Title                                                                                                 | b Title 53 Schnapper Rock Road<br>alc Title TP108 Calculation - Catchment 3                                                      |           | nt 3                 | Author<br>AP                                 |                    | Date<br>12.02.21 | Checked<br>JD |
| <ol> <li>Data<br/>Catchment A<br/>Runoff curve</li> </ol>                                                               | Area<br>e number                                                                                                                 | A=<br>CN= | 0.00334<br>88.4      | km2( 100ha =1km2<br>(from worksheet 1)       | 2)                 |                  |               |
| Initial abstra                                                                                                          | ction                                                                                                                            | la=       | 2.0                  | mm (from workshe                             | et 1)              |                  |               |
| Time of cond                                                                                                            | centration                                                                                                                       | tc=       | 0.17                 | hrs (from workshee                           | et 1)              |                  |               |
| 2. Calculate sto                                                                                                        | orage, S =(1000/CN - 10)2                                                                                                        | 5.4       |                      | =                                            | 33.3               | mm               |               |
| <ol> <li>Average rect</li> <li>24 hour raint</li> <li>Compute c*</li> <li>Specific pea</li> <li>Peak flow ra</li> </ol> | urrence interval, ARI<br>fall depth, P24<br>= P24 - 2Ia/P24 - 2Ia+2S<br>k flow rate q*<br>te, $q_p=q^*A^*P_{24}$                 |           |                      | 100 (<br>245.3 (<br>0.78<br>0.158<br>0.130 r | yr)<br>mm)<br>m3/s |                  |               |
| <ol> <li>Runoff depth</li> <li>Runoff volun</li> </ol>                                                                  | n, Q <sub>24</sub> = (P <sub>24</sub> -la) <sup>2</sup> /(P <sub>24</sub> -la)+S<br>ne, V <sub>24</sub> = 1000xQ <sub>24</sub> A | 3         |                      | 214.0                                        | m3)                |                  |               |
|                                                                                                                         |                                                                                                                                  | wkohoo4   | 2. Crashi            | nal Daak Elaw Daá                            |                    |                  |               |

|                                                                                                                                        | MAVEN AS                 | Job Number<br>175006 |                                    | Sheet<br>1                                       | Rev<br>A                                 |       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|------------------------------------|--------------------------------------------------|------------------------------------------|-------|--|--|
| Job Title<br>Calc Title                                                                                                                | 53 Schna<br>TP108 Calcul | Author<br>AP         |                                    | Date<br>12.02.21                                 | Checked<br>JD                            |       |  |  |
| 1. Runoff Curve Number (CN) and initial Abstraction (Ia)                                                                               |                          |                      |                                    |                                                  |                                          |       |  |  |
| Soil name and<br>classification<br>C<br>C                                                                                              | Cover descrip            | tment, and           | Curve<br>Number<br>CN*<br>98<br>74 | Area (ha)<br>10000m2=<br>1ha<br>0.1453<br>0.0969 | Product of<br>CN x area<br>14.24<br>7.17 |       |  |  |
|                                                                                                                                        |                          |                      |                                    |                                                  |                                          |       |  |  |
| * from Appendix B                                                                                                                      |                          |                      |                                    | Totals =                                         | 0.242                                    | 21.41 |  |  |
| $CN \text{ (weighted)} = \underbrace{\text{total product}}_{\text{total area}} \underbrace{21.41}_{0.242} = \underbrace{88.4}_{0.242}$ |                          |                      |                                    |                                                  |                                          |       |  |  |
| la (average) = <u>5 x pervious area</u> =<br>total area<br><b>2. Time of Concentration</b>                                             |                          | <u>a</u> = <u>5</u>  | x 0.0969<br>0.242                  | 2.0                                              | mm                                       |       |  |  |
| Channelisation factor                                                                                                                  | С                        | =0.                  | 8 (From Table                      | e 4.2)                                           |                                          |       |  |  |
| Catchment length                                                                                                                       | L                        | = 0.0                | 0.05 km (along drainage path)      |                                                  |                                          |       |  |  |
| Catchment Slope                                                                                                                        | S                        | c= <u>0.0</u>        | 0.01 m/m (by equal area method)    |                                                  |                                          |       |  |  |
| Runoff factor,                                                                                                                         | <u>CN</u> =<br>200 - CN  | 88.<br>200- 88.      | <u>4</u> =<br>4                    | 0.79                                             | -                                        |       |  |  |
| $t_c = 0.14 \text{ C L}^{0.66} (CN/200-CN)^{-0.55} \text{ Sc}^{-0.30}$                                                                 |                          |                      |                                    |                                                  |                                          |       |  |  |
| = 0.1                                                                                                                                  | 14 0.8                   | 0.14 1.1             | 4 3.98                             | =                                                | 0.07                                     | hrs   |  |  |
| SCS Lag for HEC-HM                                                                                                                     | S t <sub>p</sub>         | = 2/3 t <sub>c</sub> |                                    | =                                                | 0.05                                     | hrs   |  |  |
|                                                                                                                                        |                          |                      |                                    |                                                  | NO GOOD<br>use<br>0.17                   | hrs   |  |  |
| Worksheet 1: Runoff Parameters and Time of Concentration                                                                               |                          |                      |                                    |                                                  |                                          |       |  |  |

| MAVEN ASSOCIATES                                                                                                                                                  |                                                                                                                                                                                                                                        |                                 | Job Number<br>175006            |                                                                                    | Sheet<br>2                           | Rev<br>A         |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------------------------|--------------------------------------|------------------|---------------|
| Job Title<br>Calc Title                                                                                                                                           | o Title 53 Schnapper Rock Road<br>c Title TP108 Calculation - Catchment 4                                                                                                                                                              |                                 | d<br>ent 4                      | Author<br>AP                                                                       |                                      | Date<br>12.02.21 | Checked<br>JD |
| <ol> <li>Data<br/>Catchment A<br/>Runoff curve<br/>Initial abstra<br/>Time of cond<br/>2. Calculate sto</li> </ol>                                                | Area<br>e number<br>ction<br>centration<br>prage, S =(1000/CN - 10)                                                                                                                                                                    | A=<br>CN=<br>la=<br>tc=<br>25.4 | 0.002422<br>88.4<br>2.0<br>0.17 | km2( 100ha =1km<br>(from worksheet 1<br>mm (from workshe<br>hrs (from workshe<br>= | n2)<br>)<br>eet 1)<br>eet 1)<br>33.3 | mm               |               |
| <ol> <li>Average rec</li> <li>24 hour rain</li> <li>Compute c*</li> <li>Specific pea</li> <li>Peak flow ra</li> <li>Runoff depth</li> <li>Runoff volur</li> </ol> | urrence interval, ARI<br>fall depth, P24<br>= P24 - 2la/P24 - 2la+2S<br>k flow rate q*<br>te, q <sub>p</sub> =q*A*P <sub>24</sub><br>h, Q <sub>24</sub> = $(P_{24}-la)^2/(P_{24}-la)+$<br>ne, V <sub>24</sub> = 1000xQ <sub>24</sub> A | S                               |                                 | 100<br>245.3<br>0.78<br>0.158<br>0.094<br>214.0<br>518.27                          | (yr)<br>(mm)<br>m3/s<br>(m3)         |                  |               |
|                                                                                                                                                                   | v                                                                                                                                                                                                                                      | orksheet                        | 2: Granhid                      | cal Peak Flow Rat                                                                  | e                                    |                  |               |

|                                                                                     | MAVEN AS                                                 | Job Number<br>175006 |                                    | Sheet<br>1                                       | Rev<br>A                                   |        |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|------------------------------------|--------------------------------------------------|--------------------------------------------|--------|--|--|
| Job Title<br>Calc Title                                                             | 53 Schnap<br>TP108 Calcula                               | Author<br>AP         |                                    | Date<br>12.02.21                                 | Checked<br>JD                              |        |  |  |
| 1. Runoff Curve Number (CN) and initial Abstraction (Ia)                            |                                                          |                      |                                    |                                                  |                                            |        |  |  |
| Soil name and<br>classification<br>C<br>C                                           | Cover descrip<br>hy                                      | ment, and            | Curve<br>Number<br>CN*<br>98<br>74 | Area (ha)<br>10000m2=<br>1ha<br>1.1742<br>0.7828 | Product of<br>CN x area<br>115.07<br>57.93 |        |  |  |
|                                                                                     |                                                          |                      |                                    |                                                  |                                            |        |  |  |
| * from Appendix B                                                                   |                                                          |                      |                                    | Totals =                                         | 1.957                                      | 173.00 |  |  |
| CN (weighted) = total product = 173.00 = 88.4<br>total area 1.957                   |                                                          |                      |                                    |                                                  |                                            |        |  |  |
| la (average) = <u>5 x pervious area</u> =<br>total area<br>2. Time of Concentration |                                                          | =5>                  | <u>&lt; 0.7828</u> 2.0 mm<br>.957  |                                                  |                                            |        |  |  |
| Channelisation factor                                                               | C                                                        | =0.8                 | (From Table                        | e 4.2)                                           |                                            |        |  |  |
| Catchment length                                                                    | L÷                                                       | - 0.225              | 0.225 km (along drainage path)     |                                                  |                                            |        |  |  |
| Catchment Slope                                                                     | Sc                                                       | = 0.01               | _m/m (by equ                       | ual area metl                                    | hod)                                       |        |  |  |
| Runoff factor,                                                                      | <u>CN</u> =<br>200 - CN                                  | 88.4<br>200- 88.4    | <u> </u> =<br>                     | 0.79                                             | -                                          |        |  |  |
| $t_c = 0.14 \text{ C L}^{0.66} (CN/200-CN)^{-0.55} \text{ Sc}^{-0.30}$              |                                                          |                      |                                    |                                                  |                                            |        |  |  |
| = 0.1                                                                               | 0.8                                                      | 0.37 1.14            | 3.98                               | =                                                | 0.19                                       | hrs    |  |  |
| SCS Lag for HEC-HM                                                                  | S t <sub>p</sub> :                                       | = 2/3 t <sub>c</sub> |                                    | =                                                | 0.13                                       | hrs    |  |  |
|                                                                                     |                                                          |                      |                                    |                                                  | OK<br>use<br>0.189376                      | hrs    |  |  |
|                                                                                     | Worksheet 1: Runoff Parameters and Time of Concentration |                      |                                    |                                                  |                                            |        |  |  |

| MAVEN ASSOCIATES                                                                             |                                                                                                                     |           | Job Number<br>175006   |                                       | Sheet<br>2    | Rev<br>A         |               |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------|------------------------|---------------------------------------|---------------|------------------|---------------|
| Job Title<br>Calc Title                                                                      | Title53 Schnapper Rock RoadTitleTP108 Calculation - Catchment 5                                                     |           | nt 5                   | Author<br>AP                          |               | Date<br>12.02.21 | Checked<br>JD |
| 1. Data<br>Catchment A<br>Runoff curve                                                       | nrea<br>number                                                                                                      | A=<br>CN= | 0.01957<br>88.4<br>2 0 | km2( 100ha =1km<br>(from worksheet 1) | 2)<br>)       |                  |               |
| Time of conc                                                                                 | contration $S = (1000/CN - 10)2$                                                                                    | tc=       | 0.19                   | hrs (from workshe                     | et 1)<br>33.3 | mm               |               |
| 3. Average recu                                                                              | urrence interval, ARI                                                                                               |           |                        | 100                                   | (yr)          |                  |               |
| <ol> <li>24 hour rainfall depth, P24</li> <li>Compute c* = P24 - 2la/P24 - 2la+2S</li> </ol> |                                                                                                                     |           |                        | 0.78                                  | (mm)          |                  |               |
| <ol> <li>Specific peal</li> <li>Peak flow rat</li> </ol>                                     | k flow rate q <sup>*</sup><br>te, q <sub>p</sub> =q*A*P <sub>24</sub>                                               |           |                        | 0.158                                 | m3/s          |                  |               |
| <ol> <li>Runoff depth</li> <li>Runoff volum</li> </ol>                                       | n, Q <sub>24</sub> = (P <sub>24</sub> -ia) /(P <sub>24</sub> -ia)+S<br>ne, V <sub>24</sub> = 1000xQ <sub>24</sub> A | )         |                        | 4187.70                               | (m3)          |                  |               |
|                                                                                              |                                                                                                                     |           |                        |                                       |               |                  |               |
|                                                                                              |                                                                                                                     |           |                        |                                       |               |                  |               |
|                                                                                              | We                                                                                                                  | rkshoot   | 2: Granhi              | al Poak Flow Pat                      | 0             |                  |               |
|                                                                                                                                        | MAVEN ASSOCIATES                                                                                     |                     |                  | Job Number<br>175006            |                                    | Sheet<br>1                                       | Rev<br>A                                 |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------|------------------|---------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------|--|--|--|
| Job Title<br>Calc Title                                                                                                                | 53 Schnapper Rock Road<br>TP108 Calculation - Catchment 6                                            |                     |                  | Author<br>AP                    |                                    | Date<br>12.02.21                                 | Checked<br>JD                            |  |  |  |
| 1. Runoff Curve Number (CN) and initial Abstraction (Ia)                                                                               |                                                                                                      |                     |                  |                                 |                                    |                                                  |                                          |  |  |  |
| Soil name and<br>classification<br>C<br>C                                                                                              | Cover description (cover type, treatn<br>hydrologic condition)<br>Impervious (60%)<br>Pervious (40%) |                     |                  | nent, and                       | Curve<br>Number<br>CN*<br>98<br>74 | Area (ha)<br>10000m2=<br>1ha<br>0.1768<br>0.1178 | Product of<br>CN x area<br>17.32<br>8.72 |  |  |  |
| * from Appendix B                                                                                                                      |                                                                                                      |                     |                  |                                 | Totals =                           | 0.295                                            | 26.04                                    |  |  |  |
| $CN \text{ (weighted)} = \underbrace{\text{total product}}_{\text{total area}} \underbrace{26.04}_{0.295} = \underbrace{88.4}_{0.295}$ |                                                                                                      |                     |                  |                                 |                                    |                                                  |                                          |  |  |  |
| a (average) = <u>5 x pervious area</u> =<br>total area<br>2. Time of Concentration                                                     |                                                                                                      |                     | <u>5 x</u><br>0. | <u>x 0.1178</u> 2.0 mm<br>0.295 |                                    |                                                  |                                          |  |  |  |
| Channelisation factor C = <u>0.8</u> (From Table 4.2)                                                                                  |                                                                                                      |                     |                  |                                 |                                    |                                                  |                                          |  |  |  |
| Catchment length                                                                                                                       | hment length L = <u>0.13</u> km (along drainage path)                                                |                     |                  |                                 |                                    |                                                  |                                          |  |  |  |
| Catchment Slope                                                                                                                        | Sc=0.0                                                                                               |                     |                  | _m/m (by equal area method)     |                                    |                                                  |                                          |  |  |  |
| Runoff factor,                                                                                                                         | <u>CN</u> =<br>200 - CN                                                                              | 200-                | 88.4<br>88.4     | =                               | 0.79                               |                                                  |                                          |  |  |  |
| t <sub>c</sub> = 0.14 C L <sup>0.66</sup> (CN/20                                                                                       | 00-CN) <sup>-0.55</sup> Sc <sup>-0.30</sup>                                                          |                     |                  |                                 |                                    |                                                  |                                          |  |  |  |
| = 0.1                                                                                                                                  | 4 0.8                                                                                                | 0.26                | 1.14             | 3.98                            | =                                  | 0.13                                             | hrs                                      |  |  |  |
| SCS Lag for HEC-HMS                                                                                                                    |                                                                                                      | $t_{p} = 2/3 t_{c}$ |                  |                                 | = <u>0.09</u> hrs                  |                                                  |                                          |  |  |  |
|                                                                                                                                        |                                                                                                      |                     |                  |                                 |                                    | NO GOOD<br>use<br>0.17                           | hrs                                      |  |  |  |
| Worksheet 1: Runoff Parameters and Time of Concentration                                                                               |                                                                                                      |                     |                  |                                 |                                    |                                                  |                                          |  |  |  |

| MAVEN ASSOCIATES                                                                                                                                                  |                                                                                                                                                                                                                                        |                                 |                                 | Job Number<br>175006                                                               |                                      | Sheet<br>2       | Rev<br>A      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------------------------|--------------------------------------|------------------|---------------|
| Job Title<br>Calc Title                                                                                                                                           | Title     53 Schnapper Rock Road       Title     TP108 Calculation - Catchment 6                                                                                                                                                       |                                 | d<br>ent 6                      | Author<br>AP                                                                       |                                      | Date<br>12.02.21 | Checked<br>JD |
| <ol> <li>Data<br/>Catchment A<br/>Runoff curve<br/>Initial abstra<br/>Time of cond<br/>2. Calculate sto</li> </ol>                                                | Area<br>e number<br>ction<br>centration<br>orage, S =(1000/CN - 10)                                                                                                                                                                    | A=<br>CN=<br>la=<br>tc=<br>25.4 | 0.002946<br>88.4<br>2.0<br>0.17 | km2( 100ha =1km<br>(from worksheet 1<br>mm (from workshe<br>hrs (from workshe<br>= | n2)<br>)<br>eet 1)<br>eet 1)<br>33.3 | mm               |               |
| <ol> <li>Average rec</li> <li>24 hour rain</li> <li>Compute c*</li> <li>Specific pea</li> <li>Peak flow ra</li> <li>Runoff depth</li> <li>Runoff volur</li> </ol> | urrence interval, ARI<br>fall depth, P24<br>= P24 - 2la/P24 - 2la+2S<br>k flow rate q*<br>te, q <sub>p</sub> =q*A*P <sub>24</sub><br>h, Q <sub>24</sub> = $(P_{24}-la)^2/(P_{24}-la)+$<br>ne, V <sub>24</sub> = 1000xQ <sub>24</sub> A | s                               |                                 | 100<br>245.3<br>0.78<br>0.158<br>0.114<br>214.0<br>630.40                          | (yr)<br>(mm)<br>m3/s<br>(m3)         |                  |               |
|                                                                                                                                                                   | v                                                                                                                                                                                                                                      | orksheet                        | 2: Graphic                      | al Peak Flow Rat                                                                   | 'ne                                  |                  |               |

Worksheet 2: Graphical Peak Flow Rate

## **APPENDIX E: STORMWATER MANAGEMENT TABLE**

## PROPOSED STORMWATER MANAGEMENT

• Amendments to the SMP will need to include enough detail to complete the below table (as part of the SMP approval process). Please clarify the highlighted sections.

| Stormwater<br>management<br>catchment                                          | Proposed land use                                                | Receiving<br>environment<br>(type & SEA)                                                                 | Water quality management                                                                                     | Hydrology<br>mitigation<br>(retention)                                                                                                                                                | Hydrology<br>mitigation<br>(detention)                                                                                                  | Flood management                                                                                                                                                                                  | Outlet design                                                                                                                                                                         | Assets to be vested with council                                                                        | General comments                                                                                                                                  |
|--------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Catchment 1<br>Total area approx.<br>10,390                                    | <ul> <li>Single house</li> <li>Mixed housing suburban</li> </ul> | Tributary of Te<br>Wharau Creek                                                                          | Public roads to be<br>treated<br>Commonly owned<br>driveways to be<br>treated, through a<br>communal device. | SMAF 1 overlay<br>5mm retention<br>required for all<br>impervious<br>surfaces.<br>Reuse tanks for all<br>roofs plumbed for<br>non potable reuse.                                      | SMAF 1 overlay<br>95th percentile<br>detention<br>Detention volume<br>included into the<br>designed<br>raingardens for<br>public roads. | Overland paths to<br>be maintained<br>through western<br>gully                                                                                                                                    | Erosion protection<br>at new outlet for<br>stream within SEA<br>on western<br>boundary of site.<br>Green space<br>principles shall be<br>designed to<br>minimise potential<br>erosion | <ul> <li>Pipe Network</li> <li>SW management<br/>devices located on<br/>public roads (to AT)</li> </ul> | SW management<br>devices located on<br>private roads or<br>private property to<br>remain the<br>responsibility and<br>ownership of land<br>owner. |
| Catchment 2<br>Total area<br>13,494 m2<br>(plus runoff from<br>watercare site) | Mixed housing<br>suburban                                        | Connection to<br>network in adjacent<br>development.<br>Discharges to<br>tributary of Te<br>Wharau Creek |                                                                                                              | Retention achieved<br>for public roads<br>achieved through<br>volume addition<br>within raingarden<br>Retention to be<br>achieved for<br>common<br>accessways<br>through infiltration | Detention volume<br>to be included in<br>the designed<br>underground tank<br>(proprietary device)                                       | Attenuation not<br>required.<br>Overland flow<br>paths as allowed<br>for by adjacent<br>development<br>Development<br>cannot discharge to<br>adjacent site until<br>downstream pipes<br>completed | n/a - Connection to<br>network in adjacent<br>development                                                                                                                             |                                                                                                         |                                                                                                                                                   |
| Catchment 3<br>Total area 15 990                                               | <ul> <li>Single house</li> <li>Mixed housing suburban</li> </ul> |                                                                                                          |                                                                                                              |                                                                                                                                                                                       |                                                                                                                                         |                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                         |                                                                                                                                                   |