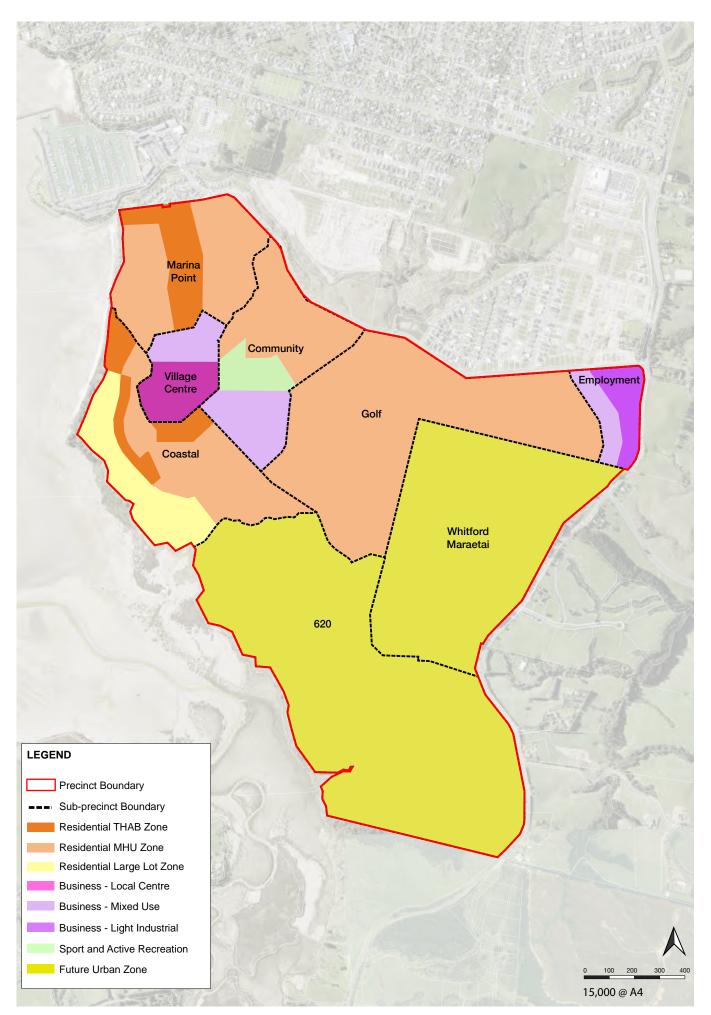
REPORT

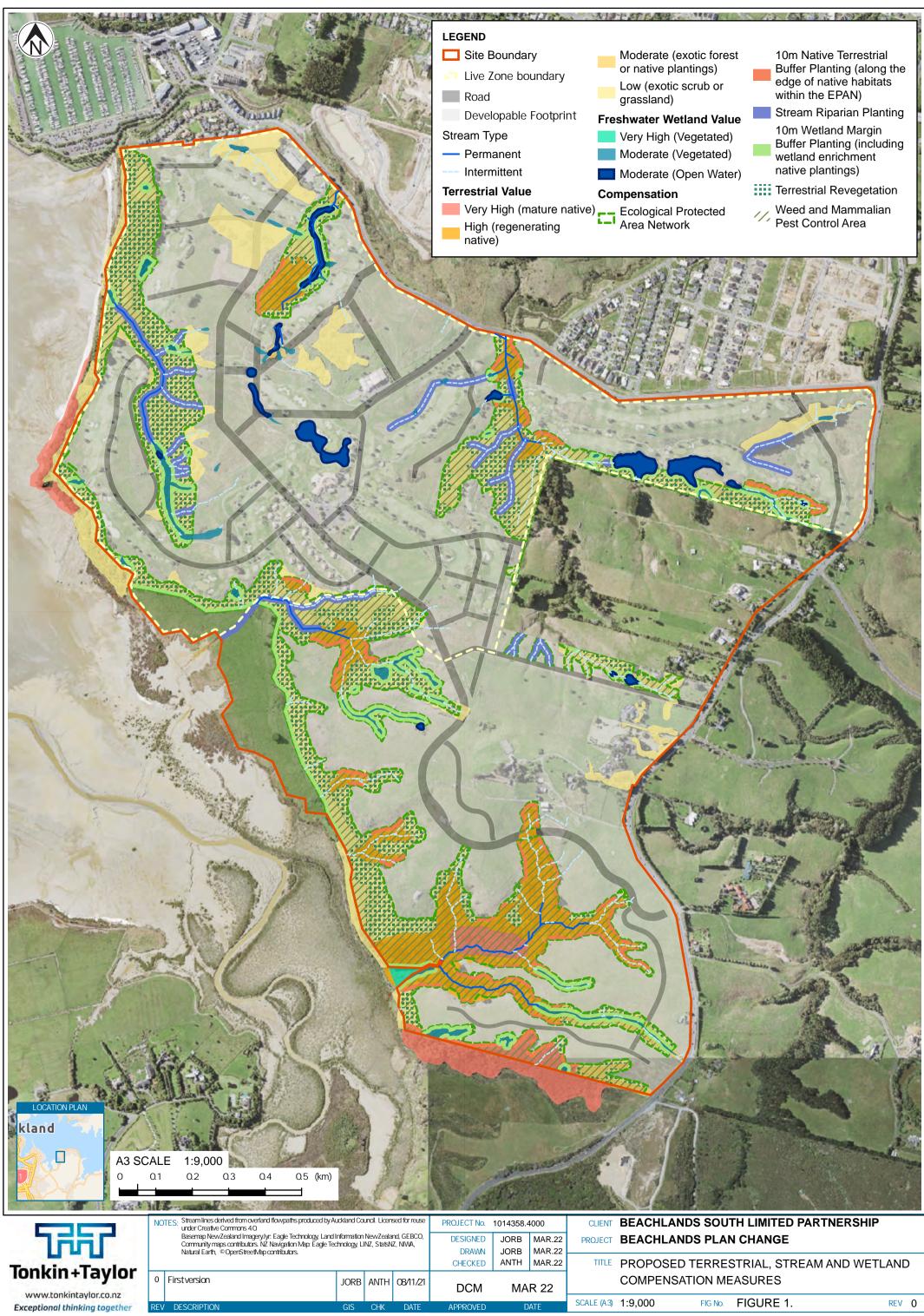
Tonkin+Taylor

<section-header><section-header><text><text><text><text>

Exceptional thinking together www.tonkintaylor.co.nz

Document Control


Title: Ecological Effects Assessment Volume 2: Appendices					
Date	Version	Description	Prepared by:	Reviewed by:	Authorised by:
18/03/2022	1	Compiled Volume 2 Appendices	Matt Baber	Dean Miller	Peter Millar


Distribution:

Beachlands South Limited Partnership Tonkin & Taylor Ltd (FILE) 1 electronic copy 1 electronic copy

Appendix A Combined Ecology Tables and Figures

- Figure 1– PPC area map
- Figure 2 Habitat Restoration and Enhancement Map
- EcIAG (2018) summary tables
- Draft National Policy Statement for Indigenous Biodiversity offsetting and compensation principles

Appendix A Table 1: Ecological values assigned to habitats (adapted from EIANZ, 2018).

Attributes to be considered when assigning ecological value or importance to a site or area of vegetation/habitat/community.				
Matters	Attributes to be considered			
Representativeness	 Attributes for representative vegetation and aquatic habitats: Typical structure and composition Indigenous species dominate Expected species and tiers are present 			
	 Attributes for representative species and species assemblages: Species assemblages that are typical of the habitat Indigenous species that occur in most of the guilds expected for the habitat type 			
Rarity/ distinctiveness	Attributes for rare/distinctive vegetation and habitats: Naturally uncommon, or induced scarcity Amount of habitat or vegetation remaining Distinctive ecological features National priority for protection 			
	 Attributes for rare/distinctive species or species assemblages: Habitat supporting nationally 'Threatened' or 'At Risk' species, or locally uncommon species Regional or national distribution limits of species or community Unusual species or assemblages Endemism 			
Diversity and Pattern	 Level of natural diversity, abundance and distribution Biodiversity reflecting underlying diversity Biogeographical considerations – pattern, complexity Temporal considerations, considerations of lifecycles, daily or seasonal cycles of habitat availability and utilisation 			
Ecological context	 Site history, and local environmental conditions which have influenced the development of habitats and communities The essential characteristics that determine an ecosystem's integrity, form, functioning, and resilience (from "intrinsic value" as defined in RMA) Size, shape and buffering Condition and sensitivity to change Contribution of the site to ecological networks, linkages, pathways and the protection and exchange of genetic material Species role in ecosystem functioning – high level, key species identification, habitat as proxy 			

Appendix A Table 2:	Ecological values assigned to species (adapted from EIANZ, 2018).

Value	Species values
Very high	Nationally Threatened - Endangered, Critical or Vulnerable.
High	Nationally At Risk – Declining.
Moderate	Nationally At Risk - Recovering, Relict or locally uncommon or rare.
Low	Not Threatened Nationally, common locally.
Negligible	Exotic species, including pests.

Appendix A Table 3: Scoring for sites or areas combining values for four matters in Table 1

Value	Description
Very High	Area rates High for 3 or all of the four assessment matters listed in Table 4. Likely to be nationally important and recognised as such.
High	Area rates High for 2 of the assessment matters, Moderate and Low for the remainder; or Area rates High for 1 of the assessment matters, Moderate for the remainder. Likely to be regionally important and recognised as such.
Moderate	Area rates High for one matter, Moderate and Low for the remainder; or Area rates Moderate for 2 or more assessment matters Low or Very Low for the remainder. Likely to be important at the level of the Ecological District.
Low	Area rates Low or Very Low for majority of assessment matters and Moderate for one. Limited ecological value other than as local habitat for tolerant native species.
Negligible	Area rates Very Low for 3 matters and Low or Very Low for remainder.

Appendix A Table 4: Criteria for describing magnitude of effect (EIANZ, 2018).

Magnitude	Description
Very high	Total loss of, or very major alteration to, key elements/features/ of the existing baseline ¹ conditions, such that the post-development character, composition and/or attributes will be fundamentally changed and may be lost from the site altogether; AND/OR Loss of a very high proportion of the known population or range of the element/feature.
High	Major loss or major alteration to key elements/features of the existing baseline conditions such that the post-development character, composition and/or attributes will be fundamentally changed; AND/OR Loss of a high proportion of the known population or range of the element/feature.
Moderate	Loss or alteration to one or more key elements/features of the existing baseline conditions, such that the post-development character, composition and/or attributes will be partially changed; AND/OR Loss of a moderate proportion of the known population or range of the element/feature.
Low	Minor shift away from existing baseline conditions. Change arising from the loss/alteration will be discernible, but underlying character, composition and/or attributes of the existing baseline condition will be similar to pre-development circumstances or patterns; AND/OR

	Having a minor effect on the known population or range of the element/feature.	
Negligible	Very slight change from the existing baseline condition. Change barely distinguishable, approximating the 'no change' situation; AND/OR Having negligible effect on the known population or range of the element/feature.	

¹Baseline conditions are defined as 'the conditions that would pertain in the absence of a proposed action' (EIANZ, 2018).

Appendix A Table 5: Timescale for duration of effects (EIANZ, 2018).

Timescale	Description
Permanent	Effects continuing for an undefined time beyond the span of one human generation (taken as approximately 25 years)
Long-term	Where there is likely to be substantial improvement after a 25 year period (e.g. the replacement of mature trees by young trees that need > 25 years to reach maturity, or restoration of ground after removal of a development) the effect can be termed 'long term'.
Temporary ¹	Long term (15-25 years or longer – see above) Medium term (5-15 years) Short term (up to 5 years) Construction phase (days or months)

¹Note that in the context of some planning documents, 'temporary' can have a defined timeframe.

Appendix A Table 6: Criteria for describing overall levels of adverse ecological effects (EIANZ, 2018).

Ecological Value	Very high	High	Moderate	Low	Negligible
Magnitude					
Very high	Very high	Very high	High	Moderate	Low
High	Very high	Very high	Moderate	Low	Very low
Moderate	High	High	Moderate	Low	Very low
Low	Moderate	Low	Low	Very low	Very low
Negligible	Low	Very low	Very low	Very low	Very low

Appendix A Table 7: Ecological values assigned to freshwater ecology (adapted from Roper-Lindsay *et al.*, 2018)¹

Value	Explanation	Characteristics
Very High	A reference quality watercourse in condition close	Benthic invertebrate community typically has high diversity, species richness and abundance.
	to its pre-human condition with the expected assemblages of flora and fauna and no contributions of contaminants from human induced activities	Benthic invertebrate community contains many taxa that are sensitive to organic enrichment and settled sediments.
		Benthic community typically with no single dominant species or group of species.
		MCI scores typically 120 or greater.
	including agriculture. Negligible degradation e.g., stream within a native forest	EPT richness and proportion of overall benthic invertebrate community typically high.
	catchment.	SEV scores high, typically >0.8.
		Fish communities typically diverse and abundant.
		Riparian vegetation typically with a well-established closed canopy.
		Stream channel and morphology natural.
		Stream banks natural typically with limited erosion.
		Habitat natural and unmodified.
High	A watercourse with high ecological or conservation	Benthic invertebrate community typically has high diversity, species richness and abundance.
	value but which has been modified through loss of riparian vegetation, fish barriers, and stock access or similar, to the extent it is no longer reference quality. Slight to moderate degradation e.g., exotic forest or mixed forest/agriculture catchment.	Benthic invertebrate community contains many taxa that are sensitive to organic enrichment and settled sediments.
		Benthic community typically with no single dominant species or group of species.
		MCI scores typically 80-100 or greater.
		EPT richness and proportion of overall benthic invertebrate community typically moderate to high.
		SEV scores moderate to high, typically 0.6-0.8.
		Fish communities typically diverse and abundant.
		Riparian vegetation typically with a well-established closed canopy.
		No pest or invasive fish (excluding trout and salmon) species present.
		Stream channel and morphology natural.
		Stream banks natural typically with limited erosion.
		Habitat largely unmodified.

Value	Explanation	Characteristics
Moderate	A watercourse which contains fragments of its former values but has a high proportion of tolerant fauna, obvious water quality issues and/or sedimentation issues. Moderate to high degradation e.g., high-intensity agriculture catchment.	Benthic invertebrate community typically has low diversity, species richness and abundance. Benthic invertebrate community dominated by taxa that are not sensitive to organic enrichment and settled sediments. Benthic community typically with dominant species or group of species. MCI scores typically 40-80. EPT richness and proportion of overall benthic invertebrate community typically low. SEV scores moderate, typically 0.4-0.6. Fish communities typically moderate diversity of only 3-4 species. Pest or invasive fish species (excluding trout and salmon) may be present. Stream channel and morphology typically modified (e.g., channelised). Stream banks may be modified or managed and may be highly engineered and/or have evidence of significant erosion. Riparian vegetation may have a well-established closed canopy. Habitat modified.
Low	A highly modified watercourse with poor diversity and abundance of aquatic fauna and significant water quality issues. Very high degradation e.g., modified urban stream.	Benthic invertebrate community typically has low diversity, species richness and abundance. Benthic invertebrate community dominated by taxa that are not sensitive to organic enrichment and settled sediments. Benthic community typically with dominant species or group of species. MCI scores typically 60 or lower. EPT richness and proportion of overall benthic invertebrate community typically low or zero. SEV scores low to moderate, typically less than 0.4. Fish communities typically low diversity of only 1-2 species. Pest or invasive fish (excluding trout and salmon) species present. Stream channel and morphology typically modified (e.g. channelised). Stream banks often highly modified or managed and may be highly engineered and/or have evidence of significant erosion. Riparian vegetation typically without a well-established closed canopy. Habitat highly modified.

1 - Boffa Miskell Limited have developed these assessment criteria and applied them to a wide range of projects.

Appendix A Table 8: Characteristics of estuarine and marine areas/habitats and associated ecological values¹

Ecological Value	Characteristics
Very High	 Benthic invertebrate community typically has very high diversity, species richness and abundance.
	 Benthic invertebrate community is dominated by taxa that are sensitive to organic enrichment and mud.
	 Marine sediments typically comprise < 25 % silt and clay grain sizes (mud).
	 Surface sediment oxygenated with no anoxic sediment present.
	• Annual average sedimentation rates typically less than 1 mm above background levels.
	• Contaminant concentrations in surface sediment significantly below ISQG-low and AC ERC- Orange effects threshold concentrations ² .
	 Water column contaminant values typically at or better than ANZWQG 99 % species protection level.
	• Fish community typically has very high diversity, species richness and abundance.
	Invasive opportunistic and disturbance tolerant species absent.
	Vegetation likely to be nationally important and recognised as such.
	Macroalgae sequences intact and provides significant habitat for native fauna.
	Habitat unmodified.
High	Benthic invertebrate community typically has high diversity, species richness and abundance.
	• Benthic invertebrate community contains many taxa that are sensitive to organic enrichment and mud.
	• Marine sediments typically comprise < 50 % silt and clay grain sizes.
	Surface sediment oxygenated.
	• Annual average sedimentation rates typically less than 2 mm above background levels.
	 Contaminant concentrations in surface sediment rarely exceed ISQG-low and AC ERC- Orange effects threshold concentrations.
	 Water column contaminant values typically between ANZWQG 95 % and 99 % species protection levels.
	Fish community typically has high diversity, species richness and abundance.
	 Invasive opportunistic and disturbance tolerant species largely absent.
	 Vegetation likely to be regionally important and recognised as such.
	 Macroalgae provides significant habitat for native fauna.
	Habitat largely unmodified.
Moderate	Benthic invertebrate community typically has moderate species richness, diversity and abundance.
	 Benthic invertebrate community has both tolerant and sensitive taxa to organic enrichment and mud present.
	• Marine sediments typically comprise < 75 % silt and clay grain sizes.
	Shallow depth of oxygenated surface sediment.
	Annual average sedimentation rates typically less than 5 mm above background levels.
	 Contaminant concentrations in surface sediment generally below ISQG-high or AC ERC-Red effects threshold concentrations.
	 Water column contaminant values typically between ANZWQG 90 % and 95 % species protection levels.
	Fish community typically has moderate species richness, diversity and abundance.

	 Few invasive opportunistic and disturbance tolerant species present.
	 Vegetation likely to be important at the level of the ecological district.
	Macroalgae provides moderate habitat for native fauna.
	Habitat modification limited.
Low	 Benthic invertebrate community degraded with low species richness, diversity and abundance.
	 Benthic invertebrate community dominated by organic enrichment tolerant and mud tolerant organisms with few/no sensitive taxa present.
	 Marine sediments dominated by silt and clay grain sizes (>75 %).
	 Surface sediment predominantly anoxic (lacking oxygen).
	• Annual average sedimentation rates typically less than 10 mm above background levels.
	• Elevated contaminant concentrations in surface sediment, above ISQG-high or AC ERC-Red effects threshold concentrations.
	 Water column contaminant values typically between ANZWQG 80 % and 90 % species protection levels.
	Fish community depleted with low species richness, diversity and abundance.
	 Invasive, opportunistic and disturbance tolerant species dominant.
	 Vegetation has limited ecological value other than as local habitat for tolerant native species.
	Macroalgae provides minimal/limited habitat for native fauna.
	Habitat highly modified.
Negligible	Benthic invertebrate community degraded with very low species richness, diversity and abundance.
	 Benthic invertebrate community dominated by organic enrichment tolerant and mud tolerant organisms with no sensitive taxa present.
	 Marine sediments dominated by silt and clay grain sizes (>85 %).
	Surface sediment anoxic (lacking oxygen).
	 Annual average sedimentation rates typically greater than 10 mm above background levels.
	• Elevated contaminant concentrations in surface sediment, above ISQG-high effects threshold concentrations.
	 Water column contaminant values typically at or worse than ANZWQG 80 % species protection levels.
	• Fish community depleted with very low species richness, diversity and abundance.
	Invasive, opportunistic and disturbance tolerant species highly dominant.
	Vegetation/macroalgae absent or so sparse as to provide very limited ecological value.
	Habitat extremely modified.

1 - Note that the characteristics of marine and estuarine sites with ecological values have been developed by Dr Sharon De Luca, Boffa Miskell Ltd, to guide valuing estuarine environments, and to provide a transparent approach that can be replicated. The characteristics have been applied in Environment Court and Board of Inquiry hearings, including a number of NZTA projects (Transmission Gully, MacKays to Peka Peka, Puhoi to Warkworth) and the Ara Tūhono Project, Warkworth to Wellsford Section; Marine Ecology Report on which Table 2 is based.

2 - ANZWQG (2018) Interim Sediment Quality Guideline (ISQG) contaminant threshold concentrations or Auckland Regional Council's Environmental Response Criteria contaminant threshold concentrations (Auckland Regional Council, 2004).

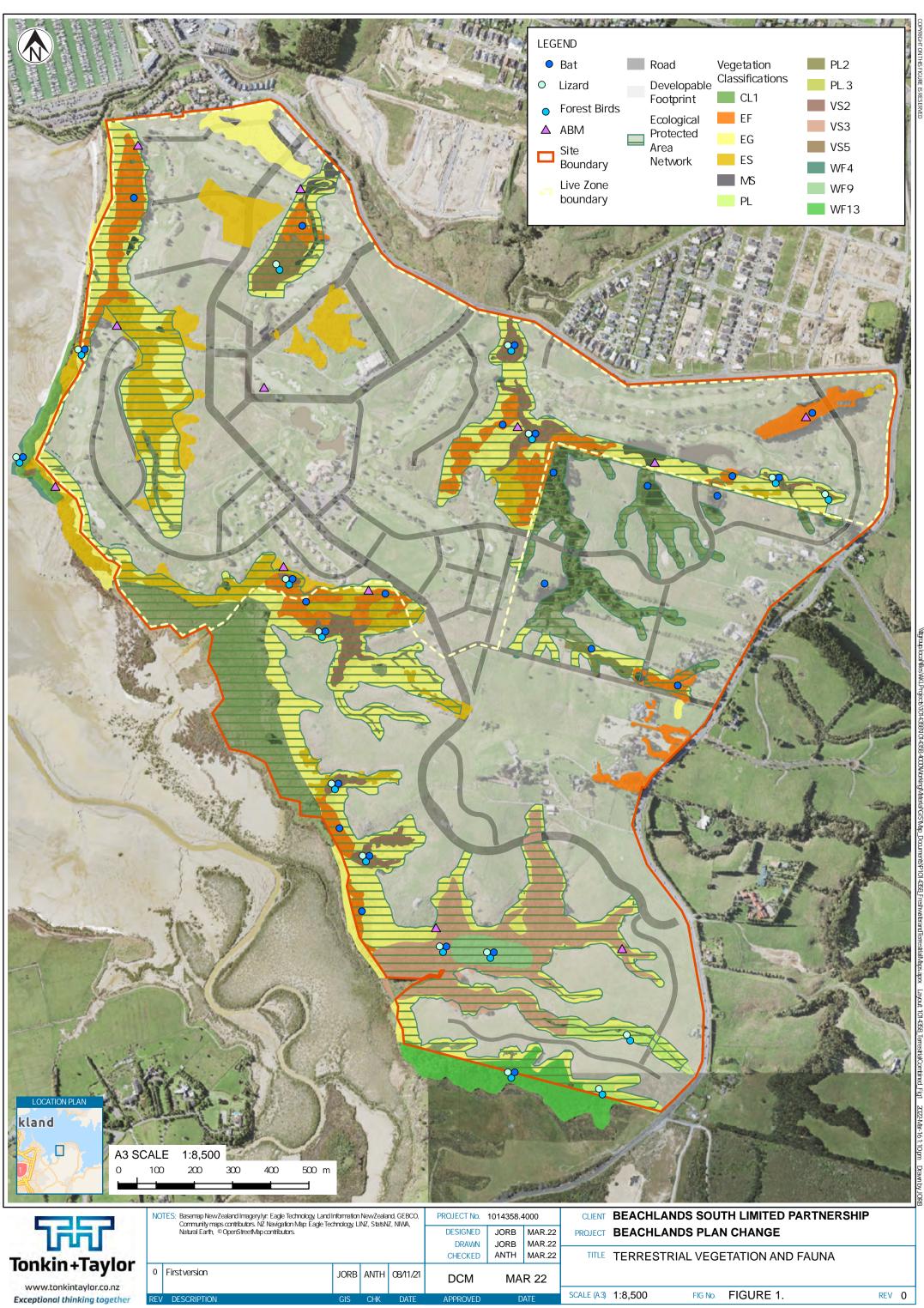
Draft National Policy Statement for Indigenous Biodiversity - offsetting and compensation principles

Principles for biodiversity offsetting

The following sets out a framework and side by side comparison of biodiversity offsetting principles and biodiversity compensation principles as set out in Appendix 3 and 4 of the draft National Policy Statement for Indigenous Biodiversity (NPSIB), November 2019. Principles 1–12 must be *complied with* for an action to qualify as a biodiversity offset. Principles 13–14 should be *met* for an action to qualify as a biodiversity offset.

Appendix A Table 9: Draft National Policy Statement for Indigenous Biodiversity - offsetting and compensation principles

No.	Principle	Offsetting statement	Compensation statement
1	Adherence to mitigation hierarchy	A biodiversity offset is a commitment to redress [more than minor] residual adverse impacts. It should only be contemplated after steps to avoid, remedy and mitigate adverse effects have been demonstrated to have been sequentially exhausted and thus applies only to residual indigenous biodiversity impacts.	Biodiversity compensation is a commitment to redress [more than minor] residual adverse impacts. It must only be contemplated after steps to avoid, remedy, mitigate and offset adverse effects have been demonstrated to have been sequentially exhausted and thus applies only to residual biodiversity impacts.
2	Limits to offsetting / compensation	Many biodiversity values cannot be offset and if they are adversely affected then they will be permanently lost. These situations include where: i) residual adverse effects cannot be offset because of the irreplaceability or vulnerability of the indigenous biodiversity affected ii) there are no technically feasible or socially acceptable options by which to secure gains within acceptable timeframes iii) effects on indigenous biodiversity are uncertain, unknown or little understood, but potential effects are significantly adverse. In these situations, an offset would be inappropriate. This principle reflects a standard of acceptability for offsetting and a proposed offset must provide an assessment of these limits that supports its success.	In deciding whether biodiversity compensation is appropriate, a decision-maker must consider the principle that many indigenous biodiversity values are not able to be compensated for because: a) the indigenous biodiversity affected is irreplaceable or vulnerable b) there are no technically feasible or socially acceptable options by which to secure proposed gains within acceptable timeframes c) effects on indigenous biodiversity are uncertain, unknown or little understood, but potential effects are significantly adverse.
3	No net loss and preferably a net gain (offset)	The values to be lost through the activity to which the offset applies are counterbalanced by the proposed offsetting activity which is at least	The values to be lost through the activity to which the biodiversity compensation applies must be addressed by positive effects to


No.	Principle	Offsetting statement	Compensation statement
	OR Scale of biodiversity compensation (compensation)	commensurate with the adverse effects on indigenous biodiversity so that the overall result is no net loss and preferably a net gain in biodiversity. No net loss and net gain are measured by type, amount and condition at the impact and offset site and require an explicit loss and gain calculation.	indigenous biodiversity that are proportionate to the adverse effects on indigenous biodiversity.
4	Additionality	A biodiversity offset must achieve gains in indigenous biodiversity above and beyond gains that would have occurred in the absence of the offset, including that gains are additional to any remediation and mitigation undertaken in relation to the adverse effects of the activity. Offset design and implementation must avoid displacing activities harmful to indigenous biodiversity to other locations.	Biodiversity compensation must achieve gains in indigenous biodiversity above and beyond gains that would have occurred in the absence of the compensation, including that gains are additional to any remediation and mitigation undertaken in relation to the adverse effects of the activity. Compensation design and implementation must avoid displacing activities harmful to indigenous biodiversity to other locations.
5	Like-for-like	The ecological values being gained at the offset site are the same as those being lost at the impact site across types of indigenous biodiversity, amount of indigenous biodiversity (including condition), over time and spatial context.	N/A
6	Landscape context	Biodiversity offset actions must be undertaken where this will result in the best ecological outcome, preferably close to the location of development or within the same ecological district, and must consider the landscape context of both the impact site and the offset site, taking into account interactions between species, habitats and ecosystems, spatial connections and ecosystem function.	Biodiversity compensation actions must be undertaken where this will result in the best ecological outcome, preferably close to the location of development or within the same ecological district. The actions must consider the landscape context of both the impact site and the compensation site, taking into account interactions between species, habitats and ecosystems, spatial connections and ecosystem function.
7	Long-term outcomes	The biodiversity offset must be managed to secure outcomes of the activity that last as least as long as the impacts, and preferably in perpetuity.	The biodiversity compensation must be managed to secure outcomes of the activity that last as least as long as the impacts, and preferably in perpetuity.
8	Time lags	The delay between loss of indigenous biodiversity at the impact site and gain or maturity of indigenous biodiversity at the offset site must be	N/A

No.	Principle	Offsetting statement	Compensation statement
		minimised so that gains are achieved within the consent period.	
9	Trading up	When trading up forms part of an offset, the proposal must demonstrate that the indigenous biodiversity values gained are demonstrably of higher value than those lost, and the values lost are not indigenous taxa that are listed as Threatened, At-risk or Data deficient in the New Zealand Threat Classification System lists, or considered vulnerable or irreplaceable.	When trading up forms part of biodiversity compensation, the proposal must demonstrate the indigenous biodiversity values gained are demonstrably of higher indigenous biodiversity value than those lost. The proposal must also show the values lost are not indigenous taxa that are listed as Threatened, At-risk or Data deficient in the New Zealand Threat Classification System lists, or considered vulnerable or irreplaceable.
9	Financial contributions	N/A	Financial contributions must only be considered when there is no effective option available for delivering indigenous biodiversity gains on the ground. These contributions must be related to the indigenous biodiversity impact. When proposed, financial contributions must be directly linked to an intended indigenous biodiversity gain or benefit.
10	Offsets/compensation in advance	A biodiversity offset developed in advance of an application for resource consent must provide a clear link between the offset and the future effect. That is, the offset can be shown to have been created or commenced in anticipation of the specific effect and would not have occurred if that effect were not anticipated.	Biodiversity compensation developed in advance of an application for resource consent must provide a clear link between the compensation and the future effect. That is, the compensation can be shown to have been created or commenced in anticipation of the specific effect and would not have occurred if that effect were not anticipated.
11	Proposing a biodiversity offset	A proposed biodiversity offset must include a specific biodiversity offset management plan.	N/A
12	Science and matauranga Māori	The design and implementation of a biodiversity offset must be a documented process informed by science, including an appropriate consideration of matauranga Māori.	The design and implementation of biodiversity compensation must be a documented process informed by science, including an appropriate consideration of matauranga Māori.
13	Stakeholder participation	Opportunity for the effective participation of stakeholders should be demonstrated when planning for biodiversity offsets, including their evaluation, selection, design, implementation and monitoring.	Opportunity for the effective participation of stakeholders should be demonstrated when planning for biodiversity compensation, including evaluation, selection, design, implementation and

No.	Principle	Offsetting statement	Compensation statement
		Stakeholders are best engaged early in the offset consideration process.	monitoring. Stakeholders are best engaged early in the process.
14	Transparency	The design and implementation of a biodiversity offset and communication of its results to the public should be undertaken in a transparent and timely manner. This includes transparency of the loss and gain calculation and the data that informs a biodiversity offset.	The design and implementation of biodiversity compensation and communication of its results to the public should be undertaken in a transparent and timely manner.

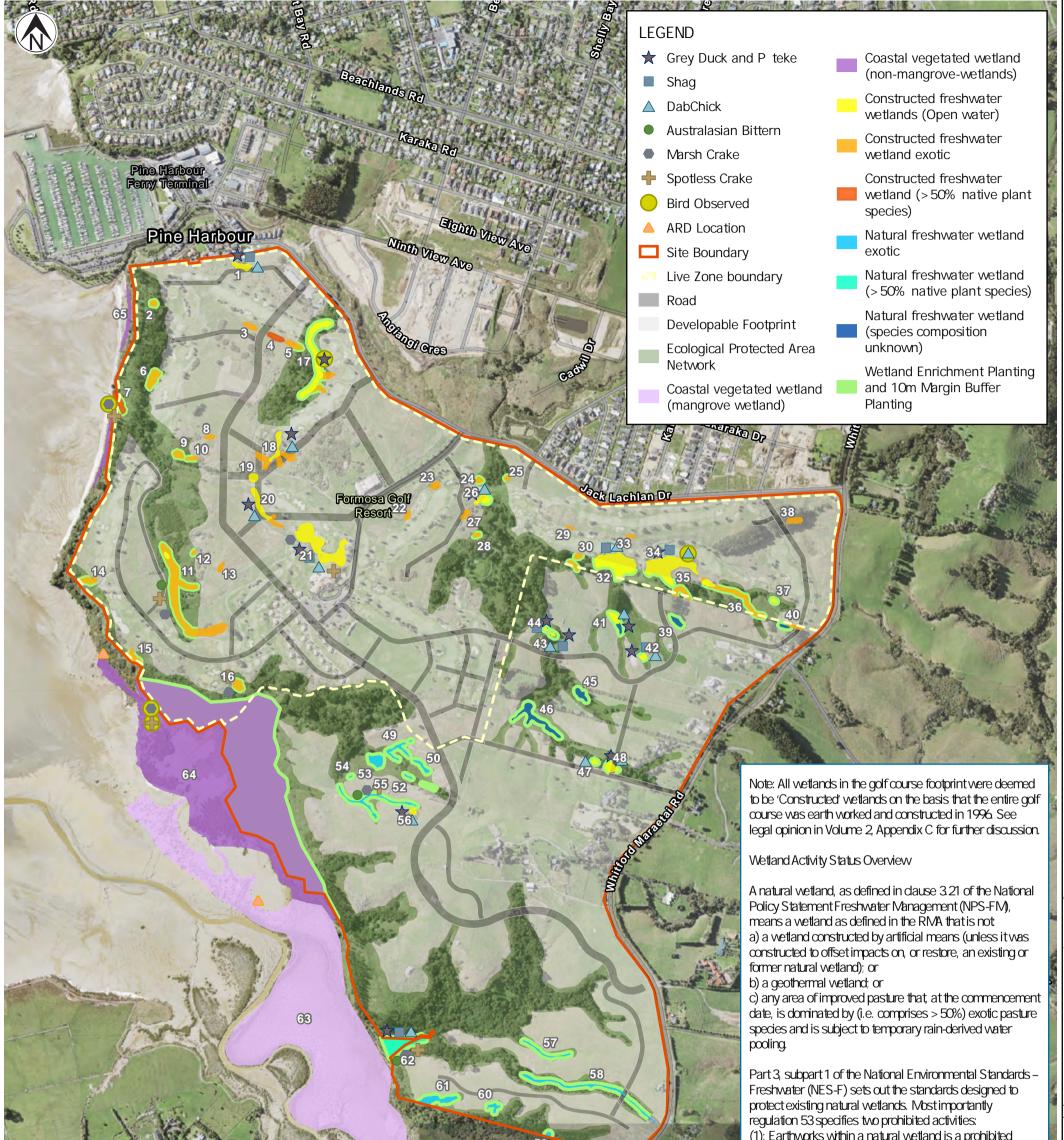
Appendix B: Terrestrial Ecology Tables and Figures

- Figure 1– Terrestrial values map
- Table 1– List of terrestrial plants within the site boundary
- Table 2– Weather data during the acoustic bat survey

Species name	Common name	Threat classification
Acacia mearnsii	Black wattle	Introduced
Agave spp.	Yucca	Introduced
Alocasia brisbanensis	Elephant ear	Introduced
Arthropodium cirratum	Rengarenga	Not Threatened
Astelia hastata	Tank lily	Not Threatened
Astelia solandri	Perching lily	Not Threatened
Austroblechnum novaezelandiae	Kiokio	Not Threatened
Beilschmiedia taraire	Taraire	Not Threatened
Beilschmiedia tawa	Tawa	Not Threatened
Carex spp.	Carex	Not Threatened
Cenchrus clandestinus	Kikuyu grass	Introduced
Coprosma macrocarpa subsp. minor		Not Threatened
Coprosma propinqua x robusta		Not Threatened
Coprosma robusta	Karamu	Not Threatened
Cordyline australis	Cabbage tree	Not Threatened
Cortaderia selloana	Pampas	Introduced
Corynocarpus laevigatus	Karaka	Not Threatened
Cyathea dealbata	Silverfern	Not Threatened
Cyathea medullaris	Mamaku	Not Threatened
Dacrydium dacrydioides	Kahikatea	Not Threatened
Dactylis glomerata	Cocksfoot	Introduced
Dendroconche scandens	Fragrant fern	Not Threatened
Dicksonia squarrosa	Whekī	Not Threatened
Doodia australis	Rasp fern	Not Threatened
Daucus carota	Wild carrot	Introduced
Dysoxylum spectabile	Kohekohe	Not Threatened
Gahnia lacera	Cutty grass	Not Threatened
Freycinetia banksii	Kiekie	Not Threatened
Geniostoma ligustrifolium var. ligustrifolium	Hangehange	Not Threatened
Hedycarya arboreus	Pigeonwood	Not Threatened
Homalanthus populifolius	Queensland poplar	Introduced
Ipomea indica	Blue morning glory	Introduced
Knightia excelsa	Rewarewa	Not Threatened
Kunzea robusta	Kānuka	Threatened - Nationally Vulnerable

Appendix B Table 1: List of terrestrial plants within the site boundary

Species name	Common name	Threat classification
Leptospermum scoparium	Mānuka	At Risk - Declining
Ligustrum sinense	Chinese privet	Introduced
Lonicera japonica	Japanese honeysuckle	Introduced
Lotus corniculatus	Birdsfoot trefoil	Introduced
Melicytus ramiflorus	Māhoe	Not Threatened
Metrosideros excelsa	Pōhutukawa	Threatened - Nationally Vulnerable
Metrosideros perforata	Akatea	Threatened - Nationally Vulnerable
Myrsine australis	Red matipo	Not Threatened
Nephrolepis cordifolia	Ladder fern	Introduced
Olearia angulata	Olearia angulata	At Risk - Naturally Uncommon
Oplismenus hirtellus subsp. imbecillis	Basket grass	Not Threatened
Phormium tenax	Harakeke	Not Threatened
Phyllocladus trichomanoides	Tanekaha	Not Threatened
Pinus radiata	Monterey pine	Introduced
Piper excelsum	Kawakawa	Not Threatened
Pittosporum eugenioides	Lemonwood	Not Threatened
Plantago lanceolata	Narrow-leaved plantain	Introduced
Podocarpus totara	Tōtara	Not Threatened
Prumnopitys taxifolia	Mataī	Not Threatened
Pseudopanax crassifolius	Lancewood	Not Threatened
Pteris macilenta	Sweet fern	Not Threatened
Pteris tremula	Trembling brake	Not Threatened
Pyrrosia eleagnifolia	Leatherleaf fern	Not Threatened
Ranunculus repens	Creeping buttercup	Introduced
Rhopalostylis sapida	Nīkau	Not Threatened
Ripogonum scandens	Supplejack	Not Threatened
Rubus cissoides	Bush lawyer	Not Threatened
Rubus fruticosus agg.	Blackberry	Introduced
Salix cinerea	Grey willow	Introduced
Solanum mauritianum	Woolly nightshade	Introduced
Sophora microphylla	Small-leaved kowhai	Not Threatened
Stenotaphrum secundatum	Buffalo grass	Introduced
Tradescantia fluminensis	Tradescantia	Introduced
Ulex europaeus	Gorse	Introduced
Vitex lucens	Pūriri	Not Threatened
Zantedeschia aethiopica	Arum lily	Introduced


Appendix B Table 2: Weather data during the acoustic bat survey recorded at Mangere Weather Station and retrieved from CliFlo (Station No. 43711).

Date	Min. temperature 2- hours after sunset (°C)	Rainfall 2-hours after sunset (mm)	Overnight minimum relative humidity (%)
12/02/2021	17.3	0	67
13/02/2021	18.8	0	69
14/02/2021	20.2	0	92
15/02/2021	20.5	0.2	57
16/02/2021	19.6	0	56
17/02/2021	16.7	0	56
18/02/2021	14.8	0	76
19/02/2021	16.7	0	78
20/02/2021	17.2	0	84
21/02/2021	19	0	77
22/02/2021	18.8	0	71
23/02/2021	20.7	0	60

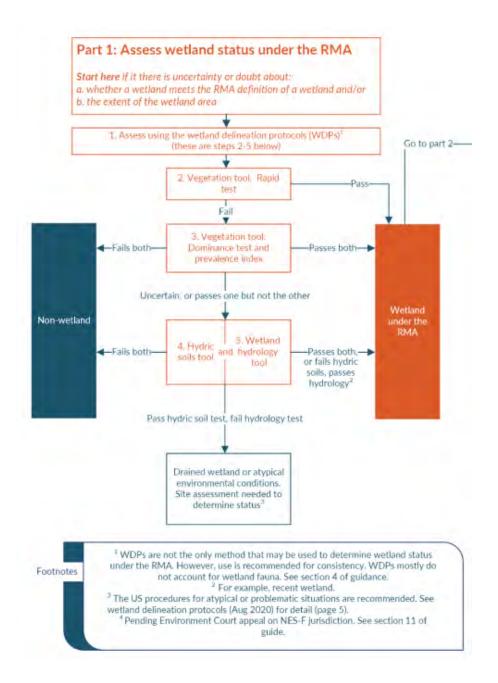
Note: Yellow cells indicate sub-optimal weather conditions.

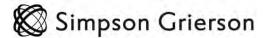
Appendix C: Freshwater Wetland Tables and Figures

- Figure 1– Freshwater Wetland Values Map
- Figure 2 Wetland Delineation Protocol Steps
- Legal opinion on the definition of 'Natural' Wetland

LOCATION kland A3 SCALE 1:11,000 0.2 0.3 0.4 0 0.1 0.5 (km) Pour

activity if it results, or is likely to result, in the complete or partial drainage of all or part of a natural wetland (unless another activity status applies under regulations 38-51); and


(2): The taking, use, damming, diversion, or discharge of water within a natural wetland is a prohibited activity if it results, or is likely to result, in the complete or partial drainage of all or part of a natural wetland (and does not have another status under regulations 38-51).


The NES-F also includes other activity statuses for earthworks, vegetation clearance, or the taking, use, damming, diversion, or discharge of water within and up to a 100m setback from a natural wetland.

0

	NOTES: Basemap Hybrid Reference Layer: Esri Community Maps Contributors, LINZ, Stats NZ,						1014358.	4000	CLIENT	BEACHLAN	NDS SOU	TH LIMITED PARTNERSHIP)
Tonkin+Taylor		gle Technology, Esri, HERE, Garmin, METI/NASA, USGS. gle Technology, Land Information NewZealand, GEBCO, (NewZeal	and Image	ery.lyr:	DESIGNED DRAWN	JORB JORB	MAR.22 MAR.22	PROJECT BEACHLANDS PLAN CHANGE			N CHANGE	
	NZ	Navigation Map: Eagle Technology, LINZ, StatsNZ, NIWA,	Natural È	arth, ©		CHECKED	ANTH	MAR.22	TITLE	WETLAND	DELINEA	TION AND BIRD HABITATS	
IONKIN+Taylor	0	Firstversion	JORB	ANTH	16/03/22	DCM	Mar.2	2					
www.tonkintaylor.co.nz						_							
Exceptional thinking together	RE∖	DESCRIPTION	GIS	СНК	DATE	APPROVED	E	ATE	SCALE (A3)	1:11,000	FIG No.	FIGURE 1.	REV (

Wetland Delineation Protocol Steps

28 March 2022

Beachlands South LP

For: John Dobrowolski

Partner Reference W S Loutit - Auckland

Writer's Details Direct Dial: +64-9-977 5256 Email: sarah.mitchell@simpsongrierson.com

Email: John.Dobrowolski@russellgroup.co.nz

Sent by Email

Dear John

Advice regarding interpretation of wetland definition in National Policy Statement for Freshwater Management

- You have asked for legal advice regarding the correct interpretation to be applied to the National Policy Statement for Freshwater Management 2020 (NPS-FM)'s definition of "natural wetland". We understand that this letter will be provided to Beachlands South LP (BSLP)'s consultant ecologists and will be included as an attachment to the Freshwater Wetland Ecological Effects Assessment that will be lodged in support of BSLP's private plan change (PPC) application.
- 2. We understand that:
 - (a) The Formosa golf course comprises approximately 170 ha of the PPC area;
 - (b) Extensive earthworks were undertaken over the entirety of the golf course site in 1996 as part of the development of the golf course; and
 - (c) During the earthworks stage and development of the golf course all existing wetlands onsite were constructed to contribute to amenity values (e.g. open water ponds) and/or for the purposes of water management (e.g. storage or drainage). The latter wetlands were constructed via re-contouring of the landform to optimise the operation and functioning of the golf course.
- 3. We have been asked to provide our opinion on the correct interpretation of the "natural wetland" definition in the NPS-FM, given that all of the wetlands on the golf course site were created as a result of earthworks/construction activities. The definition provides:

"natural wetland means a wetland (as defined in the Act) that is not:

- (a) a wetland constructed by artificial means (unless it was constructed to offset impacts on, or restore, an existing or former natural wetland); or
- (b) a geothermal wetland; or
- (c) any area of improved pasture that, at the commencement date, is dominated by (that is more than 50% of) exotic pasture species and is subject to temporary rain derived water pooling
- 4. Our interpretation of the exclusion in (a) above is that if a wetland was constructed "by artificial means" it is excluded from the definition of a "natural wetland". If the wetland would not be there "but for" the artificial structure or construction works, then it follows that it was constructed (intentionally or unintentionally) by artificial means. This is the plain and ordinary meaning of the phrase "wetland constructed by artificial means".

36387744_1.DOCX

AUCKLAND: Level 27, 88 Shortland Street, Private Bag 92518, Auckland 1141, New Zealand. T+64 9 358 2222 WELLINGTON: Level 24, HSBC Tower, 195 Lambton Quay, PO Box 2402, Wellington 6140, New Zealand. T +64 4 499 4599 CHRISTCHURCH: Level 1, 151 Cambridge Terrace, PO Box 874, Christchurch, 8140, New Zealand. T +64 3 365 9914 www.simpsongrierson.com

- 5. We have reviewed the non-statutory guidance released by the Ministry for the Environment (**Ministry**) in September 2021, titled *Defining 'natural wetlands' and 'inland natural wetlands'* (**Guidance**).
- 6. In our view the way the Guidance interprets the phrase "constructed by artificial means" is contrary to this plain and ordinary interpretation. The Guidance introduces the concept of "induced wetlands" (a term which is not used in the NPS-FM or National Environmental Standards for Freshwater (**NES**)) and provides at Section 6:

'Induced wetlands' are wetlands that have resulted from any human activity, except the deliberate construction of a wetland or waterbody by artificial means (see section 5). They are considered 'natural wetlands'.

In a highly modified landscape, as we have across New Zealand, wetlands often result from human activities or changes to the landscape. Many wetlands that we have today have historically been induced through these activities, such as deforestation, and have often developed significant values over time and warrant protection.

Wetlands that have been **unintentionally induced** through human activities, for example, as a consequence of in-stream works such as culverts, or through the effects of increased sedimentation caused by deforestation, or as a result of climate change, are not considered wetlands constructed by artificial means. The term 'constructed' in 'wetlands constructed by artificial means' reflects a **deliberate course of action** to create and maintain over time a wetland or waterbody. So, induced wetlands are captured by the definition of 'natural wetland', meaning the Freshwater NES, Stock Exclusion regulations and NPS-FM apply.

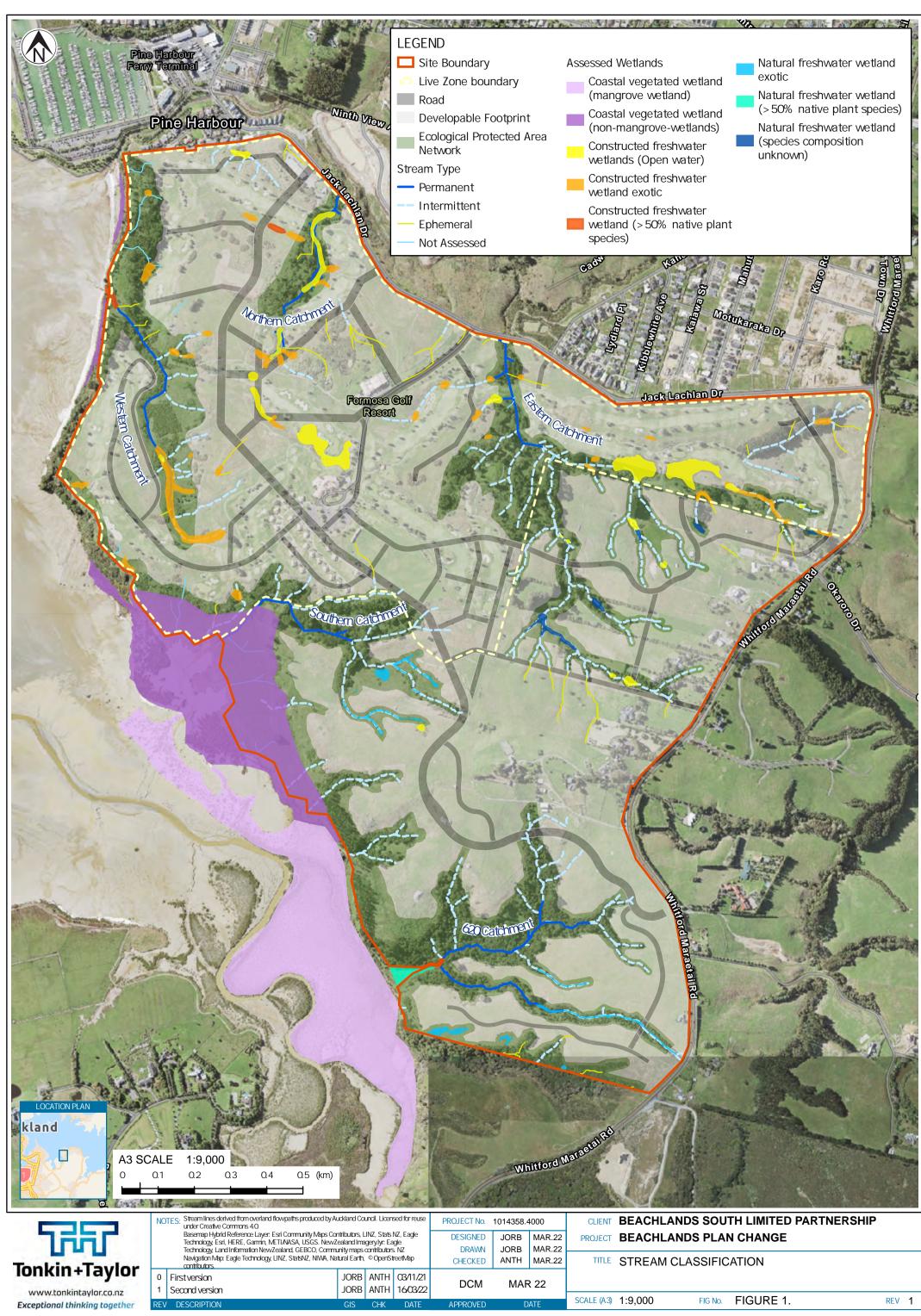
- 7. In this manner the Guidance is attempting to narrow or limit what is a "constructed wetland" to something that has an ongoing specific purpose and requires maintenance associated with that purpose. The Guidance introduces the term "unintentionally induced" and says that those wetlands should not be considered to be wetlands constructed by artificial means. It also refers to the need for a "deliberate course of action".
- 8. Importantly, however, the statutory definition is located in the NPS-FM and does not include any element of whether the wetland was intentionally or unintentionally constructed. This requirement for a specific "intention" has no basis in the statutory documents, nor does the concept of induced wetlands.
- 9. A non-statutory document cannot change the interpretation or meaning of definitions or rules in statutory documents. It is not lawful or appropriate for the Ministry to seek to limit the types of wetlands that fall within the exclusion for "wetlands constructed by artificial means" through a non-statutory guidance document. The intention of the NPS-FM and NES is clear on its wording and the new concept of "induced wetlands" seeks to limit, or is contrary to, those statutory documents.
- 10. Recent decisions of the Environment Court support the view that this non-statutory Guidance cannot alter the meaning of a statutory instrument:
 - (a) In Federated Farmers v Northland Regional Council the Court expressed concerns regarding the Guidance (including that the authorship is not disclosed) and noted that it has no regulatory force. The Court commented "We have put aside any implied directions in the guideline, but the entire Court is uneasy at the implications of the documents and its potential ramifications" 1; and

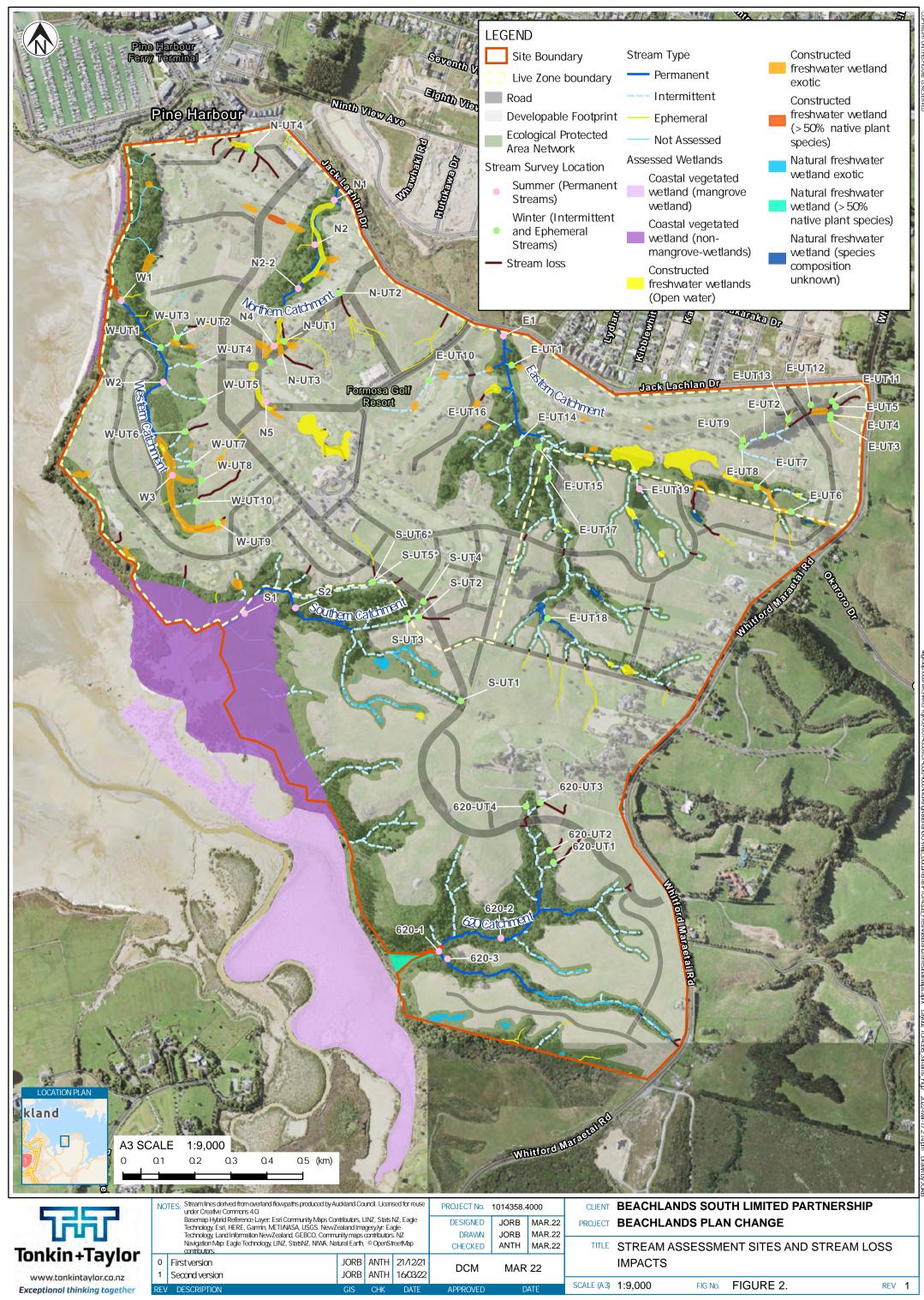
¹ Federated Farmers v Northland Regional Council [2022] NZEnvC 016 at [29].

(b) Similarly in *Greater Wellington Regional Council v Adams* the Court confirmed that the Guidance cannot alter the definition contained in the NPS-FM:²

Firstly, we note that NPS-FM is a statutory instrument established under Part 5 (ss 45-55) RMA, changes to which must be effected in accordance with s 53. The proposition that a definition contained in such a statutory instrument might be altered in some way or its application affected by operation of non-statutory instruments such as the Guidance document and hydrology tool is one with which we have extreme difficulty as a legal proposition. The Guidance document appears to be just that, "guidance", the application of which is tempered by caveats in the document itself which we will refer to shortly but one of which makes it clear that the Guidance document does not purport to alter laws, official guidelines or requirements, a category which the definition contained in NPS-FM must surely fall into.

11. Our view, therefore, is that the correct interpretation of the NPS-FM is that wetlands that have been created through improvement and development works on the Formosa golf course are wetlands constructed by artificial means, and are not "natural wetlands" for the purpose of the NPS-FM definition. This is the plain and ordinary meaning of the definition. If the wetland would not be there "but for" the construction works, then it follows that it was constructed (intentionally or unintentionally) by artificial means.


Yours faithfully SIMPSON GRIERSON


Bill Loutit / Sarah Mitchell Partner / Senior Associate

2 Greater Wellington Regional Council v Adams [2022] NZEnvC 25 at [136]

Appendix D: Stream Ecology Tables and Figures

- Figure 1 Stream Classification Map
- Figure 2 Stream Assessment Sites and Impacts
- Table 1 Intermittent stream classification
- Tables 2 to 4 Water quality results
- Table 5 Macroinvertebrate data
- Tables 6 and 7 SEV summary scores
- ECR calculations

Criteria	620_UT1	620_UT2	620_UT3	620_UT4	620_UT5	S_UT1	S_UT2	S_UT3	S_UT4	S_UT5	S_UT6	N_UT1	N_UT2
Has natural pools	✓	x	✓	х	✓	x	x	~	~	x	~	х	х
Well defined channel, such that bed and banks can be distinguished	~	~	√	~	√	x	~	~	~	~	~	x	x
Contains surface water more than 48 hr after rain event which results in stream flow.	~	?	√	?	V	?	?	~	~	?	~	x	x
Rooted terrestrial vegetation is not established across entire cross-sectional width of channel	~	~	~	x	~	~	~	~	~	~	~	V	✓
Organic debris resulting from floods can be seen on the floodplain	~	x	x	x	x	x	x	x	x	x	x	x	x
Evidence of substrate sorting processes, including scour and deposition	~	x	4	x	x	x	x	~	~	x	~	x	x

Table D1:Stream classification of upper tributaries watercourses indicated as potentially directly impacted by the proposed plan change.Classification criteria follows the Auckland Unitary Plan Practice and Guidance note¹.

Criteria	N_UT3	N_UT4	W_UT1	W_UT2	W_UT3	W_UT4	W_UT5	W_UT6	W_UT7	W_UT8	W_UT9	W_UT10	E_UT1
Has natural pools	~	~	х	✓	~	x	x	x	x	x	~	✓	х
Well defined channel, such that bed and banks can be distinguished	~	~	✓	x	~	x	~	~	x	x	~	~	x
Contains surface water more than 48 hr after rain event which results in stream flow	~	x	~	?	~	x	?	?	?	x	~	~	?
Rooted terrestrial vegetation is not established across entire cross-sectional width of channel	~	~	~	~	x	V	~	x	x	V	~	~	x
Organic debris resulting from floods can be seen on the floodplain	~	x	x	x	x	x	~	x	x	x	~	~	x
Evidence of substrate sorting processes, including scour and deposition	~	~	x	x	~	x	x	~	x	x	~	~	x

Criteria	E_UT2	E_UT3	E_UT4	E_UT5	E_UT6	E_UT7	E_UT8	E_UT9	E-UT10	E_UT11	E_UT12	E_UT13	E_UT14
Has natural pools	\checkmark	х	х	х	x	~	х	x	~	х	х	х	✓
Well defined channel, such that bed and banks can be distinguished	✓	х	х	1	x	~	?	x	~	~	~	~	✓
Contains surface water more than 48 hr after rain event which results in stream flow	✓	x	Ş	?	Ş	~	V	x	~	?	?	?	✓
Rooted terrestrial vegetation is not established across entire cross- sectional width of channel	~	~	~	~	V	~	~	x	~	x	~	x	✓
Organic debris resulting from floods can be seen on the floodplain	✓	x	x	x	x	~	x	x	x	x	x	x	✓
Evidence of substrate sorting processes, including scour and deposition	✓	x	x	x	x	~	x	x	V	x	x	x	✓

Criteria	E_UT15	E_UT16	E_UT17	E_UT18	E_UT19	E-UT18 upper tributaries*
Has natural pools	x	~	✓	~	~	Х
Well defined channel, such that bed and banks can be distinguished	~	~	~	~	~	х
Contains surface water more than 48 hr after rain event which results in stream flow	?	~	V	~	~	х
Rooted terrestrial vegetation is not established across entire cross- sectional width of channel	x	V	¥	~	V	х
Organic debris resulting from floods can be seen on the floodplain	x	~	~	~	~	х
Evidence of substrate sorting processes, including scour and deposition	x	~	~	~	~	х

*Tributaries as indicated in yellow as "Ephemeral Stream" in Appendix D; Figures 1 and 2

Site	Date	Time	Temp (°C)	DO (%)	DO (mg/l)	Turbidity (NTU)	рН	Electrical conductivi ty (mS/m)	TSS (g/m3)	Chemical Oxygen Demand (g O2/m3)	Faecal Coliforms (cfu / 100mL)	Escherichi a coli (cfu / 100mL)		
			Field measu	Field measurements					Laboratory analyses					
N1	12/03/2021	8:45	19.3	6.9	0.6	21	7	34.3	16	38	800	600		
N2	12/03/2021	10:15	-	-	-	2.3	3.6	52.9	6	6	60	60		
N4	12/03/2021	13:30	-	-	-	29	6.8	26.7	29	66	11,000	11,000		
N5	12/03/2021	14:15	30.2	154.6	12.3	103	7.3	19.8	101	90	2,300	2,300		
E1	16/03/2021	12:30	-	3.5	-	25	7	25.8	17	66	3,900	3,700		
S1	15/03/2021	13:00	19.1	49.0	4.54	65	6.6	37.9	119	42	1,100	1,000		
S2	16/03/2021	10:30	20.5	31.0	2.98	3.4	7.2	37	3	32	5,800	4,800		
W1	15/03/2021	8:53	14.8	57.7	5.84	52	7.3	44.6	47	53	3,900	2,000		
W2	15/03/2021	10:10	16.2	15.0	1.4	39	5.6	24.6	22	48	2,600	1,200		
W3	15/03/2021	11:30	20.1	25.4	2.33	165	6.4	13.7	78	92	5,600	3,500		
620-1	15/04/2021	9:15	12	99	10.4	3.4	7.2	33.7	1.5*	48	220	220		
620-2	15/04/2021	11:30	11.8	98.4	10.35	0.79	7.3	30	1.5*	12.5*	900	700		
620-3	15/04/2021	13:00	11.9	98.9	10.36	4.9	7.3	26	16	12.5*	280	230		

Table D2:Water quality (spot field measurements and laboratory analyses) results from samples taken during stream ecological surveys in March and
April 2021.

* Concentrations below laboratory detection limits, values have been halved and italicised.

Site	Date	Total Hardness (g/m3 as CaCO3)	Dissolved Calcium (g/m3)	Dissolved Magnesium (g/m3)	Dissolved Copper (g/m3)	Total Copper (g/m3)	Dissolved Zinc (g/m3)	Total Zinc (g/m3)
N1	12/03/2021	109	30	8.1	0.00025*	0.000265*	0.0005*	0.00055*
N2	12/03/2021	129	38	8.3	0.0032	0.0032	0.33	0.33
N4	12/03/2021	70	18.1	6	0.00025*	0.00088	0.0005*	0.0021
N5	12/03/2021	28	6	3.1	0.00025*	0.00078	0.0011	0.00055*
E1	16/03/2021	60	13.2	6.6	0.00025*	0.000265*	0.0019	0.0022
S1	15/03/2021	97	24	9.1	0.00025*	0.000265*	0.0024	0.0031
S2	16/03/2021	96	18.4	12.2	0.00025*	0.000265*	0.0021	0.0014
W1	15/03/2021	168	51	9.6	0.00025*	0.00088	0.0026	0.0041
W2	15/03/2021	33	6.2	4.3	0.0019	0.0026	0.023	0.021
W3	15/03/2021	29	7.1	2.7	0.0032	0.0057	0.0067	0.0131
620-1	15/04/2021	119	29	11.4	0.00025*	0.000265*	0.0005*	0.00055*
620-2	15/04/2021	95	22	9.9	0.0005	0.00063	0.0005*	0.0021
620-3	15/04/2021	73	16.5	7.7	0.0007	0.00055	0.0005*	0.00055*

 Table D3:
 Metal concentrations in water quality samples taken during stream ecological surveys in March and April 2021.

* Concentrations below laboratory detection limits, values have been halved and italicised

Site	Date	Total Nitrogen (g/m³)	Total Ammoniacal-N (g/m³)	Nitrite-N (g/m³)	Nitrate-N (g/m³)	Nitrate-N + Nitrite-N (g/m³)	Soluble Inorganic Nitrogen (g/m3)	Total Kjeldahl Nitrogen (g/m³)	Total Phosphorus (g/m ³)	Dissolved Reactive Phosphorus (g/m ³)
N1	12/03/2021	1.01	0.011	0.001*	0.001*	0.001*	0.012	1.01	0.086	0.002*
N2	12/03/2021	0.36	0.092	0.001*	0.014	0.014	0.106	0.35	0.013	0.002*
N4	12/03/2021	1.56	0.005*	0.001*	0.01*	0.01*	0.015	1.56	0.2	0.002*
N5	12/03/2021	1.68	0.005*	0.001*	0.001*	0.001*	0.006	1.68	0.106	0.002*
E1	16/03/2021	0.99	0.31	0.005	0.001*	0.006	0.316	0.98	0.131	0.013
S1	15/03/2021	0.68	0.23	0.005	0.001*	0.005	0.235	0.67	0.164	0.035
S2	16/03/2021	0.71	0.2	0.019	0.056	0.075	0.275	0.63	0.052	0.015
W1	15/03/2021	0.64	0.168	0.004	0.014	0.018	0.186	0.62	0.062	0.008
W2	15/03/2021	0.82	0.159	0.003	0.001*	0.004	0.163	0.82	0.163	0.034
W3	15/03/2021	1.89	0.026	0.007	0.001*	0.005	0.031	1.88	0.43	0.029
620-1	15/04/2021	0.51	0.181	0.005	0.024	0.028	0.209	0.48	0.177	0.119
620-2	15/04/2021	0.48	0.015	0.003	0.127	0.13	0.145	0.35	0.182	0.134
620-3	15/04/2021	0.56	0.015	0.005	0.125	0.13	0.145	0.42	0.09	0.039

 Table D4:
 Nutrient concentrations in water quality samples taken during stream ecological surveys in March and April 2021.

* Concentrations below laboratory detection limits, values have been halved and italicised

Table D5: Macroinvertebrate Results

T&T Steven Pratt (Hamilton) 200Fixed count + scan for rare taxa	MCI TV	MCI-sb TV	620-1 15-Apr-21	620-2 15-Apr-21	620-3 15-Apr-21
rare taxa			HB	HB	HB
Job No. 1014358.4000 phase 04					
Ephemeroptera	_				-
Arachnocolus	8	8.1	-	-	3
Zephlebia	7	8.8	-	2	3
Odonata					
Antipodochlora	6	6.3	1	1	-
Austrolestes	6	0.7	1	-	-
Hemiptera	_				c .
Microvelia	5	4.6	1	14	6
Coleoptera	<i>.</i>				
Elmidae	6	7.2	1	-	-
Enochrus	5	2.6	-	-	1
Hydrophilidae	5	8.0	-	-	1
Diptera				-	
Chironomus	1	3.4	1	8	-
Corynoneura	2	1.7	1	-	1
Hexatomini	5	6.7	-	-	1
Paradixa	4	8.5	1	8	6
Paralimnophila	6	7.4	-	-	1
Paucispinigera	6	7.7	-	-	2
Polypedilum	3	8.0	6	9	8
Stratiomyidae	5	4.2	-	1	1
Tanypodinae	5	6.5	17	10	2
Zelandotipula	6	3.6	-	-	1
Trichoptera					
Hydrobiosis	5	6.7	1	-	-
Hydropsyche - Orthopsyche	9	7.5	-	-	1
Polyplectropus	8	8.1	1	4	4
Triplectides	5	5.7	1	-	-
ACARINA	5	5.2	1	2	3
MOLLUSCA					
Gundlachia = Ferrissia	3	2.4	3	-	32
Lymnaeidae	3	1.2	-	1	-
Physa = Physella	3	0.1	6	-	1
Potamopyrgus	4	2.1	43	23	103
Sphaeriidae	3	2.9	2	1	3
PLATYHELMINTHES	3	0.9	-	1	-
NEMERTEA	3	1.8	-	1	1
OLIGOCHAETA	1	3.8	7	8	1
HIRUDINEA	3	1.2	9	1	1
CRUSTACEA					
Copepoda	5	2.4	11	21	-
Ostracoda	3	1.9	95	14	21
Paracalliope	5	5.5	3	80	1
Number of taxa (incl. rare taxa)			22	20	26
Number of rare taxa			7	5	6
Number of individuals			213	210	209
Percentage counted			35.00	25.00	20.00
%EPT richness (excl. Hydroptilidae)			13.64	10.00	15.38
%EPT abundance (excl. Hydroptilidae)			1.41	2.86	5.26
MCI			83	82	94
QMCI			3.52	4.36	3.97
MCI-sb			86	87	99
QMCI-sb			2.73	4.62	3.18
ASPM			0.18	0.17	0.22

Rare Taxa

10 specimens in vial

Samples processed by John Stark (Stark Environmental Ltd) Data entry and calculations by John Stark

T&T Dean Miller, Steven Pratt 200Fixed count + scan for rare taxa	ΜርΙ Τν	MCI-sb TV	W1 15-Mar-21	W2 15-Mar-21	W3 15-Mar-21	N1 13-Mar-21	N2 12-Mar-21
			SB	SB	SB	SB	SB
Job No. 1014358.4000R							
Odonata Austrolestes	6	0.7	-	-	-	-	-
Xanthocnemis	5	1.2	-	-	-	47	1
Hemiptera							
Anisops	5	2.2	-	-	-	-	-
Microvelia Coleoptera	5	4.6	37	-	1	11	7
Enochrus	5	2.6	-	-	-	4	4
Hydraenidae	8	6.7	-	-	-	1	9
Hydrophilidae	5	8.0	1	-	-	1	-
Liodessus	5	4.9	-	-	-	-	-
Scirtidae Diptera	8	6.4					
Ceratopogonidae	3	6.2	-	-	-	-	1
Chironomus	1	3.4	6	-	11	1	-
Corynoneura	2	1.7	- 1	- 5	- 15	- 1	- 6
Culicidae Ephydridae	3 4	1.2 1.4	-	-	-	1	-
Hexatomini	5	6.7	-	-	-	-	1
Molophilus	5	6.3	-	1	-	-	-
Muscidae	3	1.6	-	-	-	-	-
Orthocladiinae Paradixa	2 4	3.2 8.5	1 38	-	-	1	2
Paralimnophila	6	7.4	-	1	-	-	7
Paucispinigera	6	7.7	-	-	-	-	-
Polypedilum	3	8.0	-	1	-	-	40
Psychodidae	1 5	6.1 4.2	1	1	-	- 11	-
Stratiomyidae Tanypodinae	5	4.2 6.5	2	-	-	-	-
Tanytarsus	3	4.5	-	-	-	1	-
Zelandotipula	6	3.6	-	-	-	-	2
Trichoptera	0	0.4	_	-		-	-
Polyplectropus Triplectides	8 5	8.1 5.7	-	-	-	-	-
Collembola	6	5.3	1	-	-	12	6
ACARINA	5	5.2	5	80	1	3	17
MOLLUSCA							
Gundlachia = Ferrissia	3	2.4	-	-	-	-	-
Lymnaeidae Physa = Physella	3 3	1.2 0.1	13	-	1 7	1 1	-
Potamopyrgus	4	2.1	33	-	-	-	3
Sphaeriidae	3	2.9	7	1	-	-	-
PLATYHELMINTHES	3	0.9	1	-	4	64	6
NEMATODA NEMERTEA	3 3	3.1 1.8	-	-	2	-	13
OLIGOCHAETA	1	3.8	5	37	21	5	44
HIRUDINEA	3	1.2	1	-	-	38	2
CRUSTACEA	_						
Cladocera Copepoda	5 5	0.7 2.4	- 10	- 2	- 6	- 2	- 1
Ostracoda	3	1.9	42	-	137	1	1
Paracalliope	5	5.5	1	-	-	-	-
Paraleptamphopus	5	5.5	-	3	1	-	1
Paratya	5	3.6	-	-	-	-	-
Number of taxa (incl. rare taxa)			19	10	13	20	21
Number of rare taxa			1	0	4	3	0
Number of individuals Percentage counted			206 30.00	132 100.00	208 10.00	207 10.00	174 100.00
%EPT richness (excl. Hydroptilidae)			0.00	0.00	0.00	0.00	0.00
%EPT abundance (excl. Hydroptilidae)			0.00	0.00	0.00	0.00	0.00
MCI			71	74	69	78	85
QMCI			3.78	3.75	2.79	3.90	3.39
MCI-sb			77	98	59	63	79
QMCI-sb ASPM			3.87 0.12	4.66 0.12	2.12 0.12	1.94 0.13	4.95 0.14
			0.12	0.12	0.12	0.15	0.14

Rare Taxa

10 specimens in vial

Samples processed by John Stark, & Yvonne Stark Data entry and calculations by John Stark

200Fixed count + scan for rar I	MCI TV	MCI-sb TV	N2-2 12-Mar-21 SB	N4 12-Mar-21 SB	N5 12-Mar-21 SB	S1 15-Mar-21 SB	S2 16-Mar-21 HB	E1 16-Mar-21 HB
Job No. 1014358.4000R			50	50	55	55	110	110
Odonata								
Austrolestes	6	0.7	-	-	-	-	1	3
Xanthocnemis	5	1.2	-	-	23	-	-	4
Hemiptera Anisops	5	2.2	_	_	1	3	-	4
Microvelia	5	4.6	30	18	-	10	8	7
Coleoptera	5			-				
Enochrus	5	2.6	1	6	2	-	1	1
Hydraenidae	8	6.7	-	1	-	-	-	-
Hydrophilidae	5	8.0	-	-	-	-	-	-
<i>Liodessus</i> Scirtidae	5 8	4.9 6.4	-	1 2	-	6	-	-
Diptera	0	0.4		2				
Ceratopogonidae	3	6.2	-	-	-	-	-	-
Chironomus	1	3.4	2	49	1	9	2	2
Corynoneura	2	1.7	-	1	-	-	-	-
Culicidae	3	1.2	138	8	-	16	2	-
Ephydridae	4 5	1.4	-	3	-	-	-	- 1
Hexatomini <i>Molophilus</i>	5	6.7 6.3	-	-	-	- 1	-	-
Muscidae	3	1.6	-	1	-	-	-	-
Orthocladiinae	2	3.2	-	1	2	1	-	-
Paradixa	4	8.5	-	-	-	-	1	3
Paralimnophila	6	7.4	-	-	-	-	-	-
Paucispinigera	6	7.7	-	-	-	1	-	1
Polypedilum Psychodidae	3 1	8.0 6.1	- 1	-	-	-	-	-
Stratiomyidae	5	4.2	-	1	-	1	-	-
Tanypodinae	5	6.5	1	-	-	1	1	15
Tanytarsus	3	4.5	-	-	-	-	-	-
Zelandotipula	6	3.6	1	-	-	1	-	1
Trichoptera								2
Polyplectropus	8 5	8.1	-	-	-	-	-	2 1
Triplectides Collembola	5	5.7 5.3	- 1	- 1	-	-	-	1
ACARINA	5	5.2	2	1	-	5	2	4
MOLLUSCA	0	0.2	_	_		-	_	
Gundlachia = Ferrissia	3	2.4	-	-	-	-	1	1
Lymnaeidae	3	1.2	-	-	-	-	-	1
Physa = Physella	3	0.1	-	-	-	-	-	9
Potamopyrgus	4	2.1	29	-	-	76 16	136 7	105 4
Sphaeriidae PLATYHELMINTHES	3 3	2.9 0.9	-	4	-	10	-	6
NEMATODA	3	3.1	9	20	-	14	-	1
NEMERTEA	3	1.8	-	-	-	-	-	3
OLIGOCHAETA	1	3.8	14	40	1	27	2	5
HIRUDINEA	3	1.2	4	1	1	-	3	1
CRUSTACEA	F	07	-	-	-	-	-	1
Cladocera Copepoda	5 5	0.7 2.4	1	- 5	-	- 4	-	2
Ostracoda	3	1.9	-	43	2	21	36	15
Paracalliope	5	5.5	-	-	-	-	4	4
Paraleptamphopus	5	5.5	-	-	-	-	-	-
Paratya	5	3.6	-	-	-	-	2	2
Number of taxa (incl. rare taxa)		15	20	8	19	16	30
Number of rare taxa			5	4	0	1	2	6
Number of individuals			235	207	33	214	209	210
Percentage counted			20.00	25.00	100.00	30.00	50.00	20.00
PT richness (excl. Hydroptilida			0.00	0.00	0.00	0.00	0.00	6.67
%EPT abundance (excl. Hydrop	tilidae)		0.00	0.00	0.00	0.00	0.00	1.43
MCI			75	80 2 5 4	63 4 20	79 2 2 2 2	76	86 4 02
QMCI MCI-sb			3.30 69	2.54 66	4.39 49	3.33 74	3.80 70	4.02 70
QMCI-sb			2.11	3.08	49 1.62	2.76	2.35	2.76
ASPM			0.12	0.13	0.10	0.13	0.13	0.17

Rare Taxa

10 specimens in vial

Samples processed by John Stark, & Yvonne Stark Data entry and calculations by John Stark

Bottle No.			620_UT1	620_UT3	S_UT3	S_UT4	S_UT6
Sample No.							
Site Name							
Таха	MCI	MCI-sb					
	score	score					
Mayfly Zephlebia	7	8.8					
Caddisfly Oxyethira	2	1.2		1			
Damselfly Xanthocnemis	5	1.2					
Bug Mesovelia	5	5					
Beetle Antiporus	5	3.5					
Beetle Hydrophilidae	5	8					
Beetle Scirtidae	8	6.4					
True Fly Chironomus	1	3.4		7			
True Fly Culicidae	3	1.2		8			
True Fly Hexatomini	5	6.7				1	
True Fly Limonia	6	6.3		1			
True Fly Orthocladiinae	2	3.2		4			
True Fly Paradixa	4	8.5		1	1		1
True Fly Paralimnophila	6	7.4					
True Fly Polypedilum	3	8					
True Fly Sciomyzidae	3	3					
True Fly Tanypodinae	5	6.5	1	9			
True Fly Zelandotipula	6	3.6	3	4		4	1
Moth Hygraula	4	1.3					
Collembola	6	5.3		1	1	3	3
Crustacea Copepoda	5	2.4					
Crustacea Isopoda	5	4.5	200	21		8	54
Crustacea Ostracoda	3	1.9		232			
Crustacea Paracorophium	5	5.5	1				
Crustacea Paraleptamphor	5	5.5	7	2	28	180	158
Crustacea Talitridae	5	5					
SPIDERS Dolomedes	5	6.2	3		2		3
Mollusc Gyraulus	3	1.7				2	
Mollusc Physa	3	0.1					
Mollusc Potamopyrgus	4	2.1				9	
Mollusc Sphaeriidae	3	2.9					
OLIGOCHAETES	1	3.8	1	2	1	4	2
FLATWORMS	3	0.9		1			
Rhabdocoel Flatworms	3	0.9					
NEMERTEANS	3	1.8					
Number of Taxa			7	14	5	8	7
EPT Value			0	0	0	0	0
Number of Individuals			216	294	33	211	222
% EPT (taxa number)			216	294 0	33 0	0	0
Sum of recorded scores			35.6		29.3	33.2	0 37.4
Sum of recorded scores SBMCI Value			35.6 101.71	55.8 79.71	29.3 117.20	83.00	37.4 106.86
Sum of abundance load			983.7	695.2	184	1100.5	1166.2
QMCI-sb Value			4.55	2.36	5.58	5.22	5.25
			4.55	2.30	0.00	J.22	5.25

1/2 scanned 1/4 scanned for VA taxa for VA taxa 1/2 scanned1/2 scannedfor VA taxafor VA taxa

Bottle No.			E_UT2	E_UT7	E_UT10	E_UT14	E_UT16	W_UT9
Sample No.								
Site Name								
Таха	MCI	MCI-sb						
Mayfly Zephlebia	score 7	score 8.8	4					
Caddisfly Oxyethira	2	1.2	4					
Damselfly Xanthocnemis	5	1.2	13					
Bug Mesovelia	5	5	10		2			
Beetle Antiporus	5	3.5			2			
Beetle Hydrophilidae	5	8	1		-		1	
Beetle Scirtidae	8	6.4					6	
True Fly Chironomus	1	3.4		1				
True Fly Culicidae	3	1.2					1	
True Fly Hexatomini	5	6.7				1		
True Fly Limonia	6	6.3						
True Fly Orthocladiinae	2	3.2						
True Fly Paradixa	4	8.5	5	17	1		1	
True Fly Paralimnophila	6	7.4	3					
True Fly Polypedilum	3	8		1				
True Fly Sciomyzidae	3	3	1					1
True Fly Tanypodinae	5	6.5	24	3				
True Fly Zelandotipula	6	3.6			2			
Moth Hygraula	4	1.3			1			
Collembola	6	5.3	1			2	19	5
Crustacea Copepoda	5	2.4			1			
Crustacea Isopoda	5	4.5		2	24		2	4
Crustacea Ostracoda	3	1.9	55	2	67			
Crustacea Paracorophium	5	5.5			1			
Crustacea Paraleptamphor	5	5.5		200	1	240	196	
Crustacea Talitridae	5	5						1
SPIDERS Dolomedes	5	6.2	1	2	1			
Mollusc Gyraulus	3	1.7	1				1	1
Mollusc Physa	3	0.1			1			48
Mollusc Potamopyrgus	4	2.1	38	4		4	7	12
Mollusc Sphaeriidae	3	2.9	56	1			_	. .
OLIGOCHAETES	1	3.8	7	8	53		2	21
FLATWORMS	3	0.9		9	45		13	11
Rhabdocoel Flatworms	3	0.9				-	1	
NEMERTEANS	3	1.8		2		2		3
Number of Taxa			14	13	14	5	12	10
EPT Value			14	0	0	0	0	0
Number of Individuals			210	252	202	249	250	107
% EPT (taxa number)			7.14	0	0	0	0	0
Sum of recorded scores			67.3	56	52.7	21.4	48.8	28.2
SBMCI Value			96.14	86.15	75.29	85.60	81.33	56.40
Sum of abundance load			669	1354	530.9	1349.3	1280.4	179.3
QMCI-sb Value			3.19	5.37	2.63	5.42	5.12	1.68

1/2 scanned for VA taxa 1/4 scanned 1/2 scanned for VA taxa

Bottle No.

E-UT17 3/10/2021

Sample No. Site Name

Таха	MCI	MCI-st)	
	score	score	- 4	
Stonefly Acroperla		5	5.1	1
Caddisfly Oxyethira		2	1.2	6
Caddisfly Paroxyethira		2	3.7	1
Caddisfly Polyplectropus		8	8.1	2
Bug Microvelia		5	4.6	1
Beetle Hydrophilidae		5	8	21
Beetle Liodessus		5	4.9	2
Beetle Scirtidae		8	6.4	1
Beetle Staphylinidae		5	6.2	1
True Fly Austrosimulium		3	3.9	70
True Fly Chironomus		1	3.4	3
True Fly Corynoneura		2	1.7	2
True Fly Hexatomini		5	6.7	1
True Fly Nothodixa		4	9.3	1
True Fly Orthocladiinae		2	3.2	6
True Fly Paradixa		4	8.5	2
True Fly Polypedilum		3	8	5
True Fly Tanypodinae		5	6.5	1
True Fly Tanytarsini		3	4.5	10
True Fly Zelandotipula		6	3.6	7
Collembola		6	5.3	5
Crustacea Cladocera		5	0.7	1
Crustacea Isopoda		5	4.5	3
Crustacea Paraleptamphopu	S	5	5.5	3
Crustacea Phreatogammarus		5	5	2
Crustacea Talitridae		5	5	1
MITES		5	5.2	5
Mollusc Potamopyrgus		4	2.1	48
OLIGOCHAETES		1	3.8	4
FLATWORMS		3	0.9	1
		C C		
Number of Taxa				30
EPT Value				2
Number of Individuals				217
% EPT (taxa number)				6.67
Sum of recorded scores				145.50
SBMCI Value				97.00
Sum of abundance load				897.80
QMCI-sb Value				4.14
				4.14

13/16 examined for 200 count

Function Type	Function		Nort	hern		Eastern	Sout	hern:		Western	1		620	
		N1	N2	N2-2	N5*	E1	S1	S2	W1	W2	W3	620-1	620-2	620-3
Hydraulic	Natural flow regime maintained	0.67	0.92	0.94	0.33	0.64	0.66	0.61	0.80	0.74	0.8	0.83	0.83	0.93
	Connectivity to floodplain intact / Floodplain effectiveness	0.40	0.73	0.56	0.00	0.35	0.08	0.68	0.61	0.43	0.36	0.52	0.40	0.91
	Connectivity for species migrations	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.30	1.00	1.00	1.00	1.00	1.00
	Connectivity to groundwater intact	0.75	0.85	0.89	0.60	0.95	0.71	0.95	0.67	0.69	0.67	0.93	0.92	0.97
Biogeochemical	Water temperature controlled	0.06	0.88	0.60	0.00	0.40	0.08	0.60	0.38	0.50	0.14	0.8	0.8	0.84
	Dissolved oxygen maintained	0.17	0.50	0.50	0.17	0.50	0.17	0.50	0.45	0.20	0.34	0.34	0.40	0.34
	Organic matter input maintained	0.50	0.40	0.70	0.10	0.60	0.50	0.50	0.50	0.40	0.20	1.00	1.00	0.80
	Instream particles retained	0.40	0.92	0.92	0.00	0.96	0.74	0.91	0.60	0.66	0.60	0.90	0.90	0.96
	Decontamination of pollutants	0.50	0.74	0.71	0.49	0.54	0.36	0.80	0.64	0.68	0.45	0.98	1.0	0.99
Habitat	Fish spawning habitat intact	0.11	0.56	0.28	0.05	0.53	0.05	0.05	0.09	0.10	0.05	0.16	0.10	0.10
provision	Habitat for aquatic fauna intact	0.30	0.54	0.51	0.18	0.65	0.23	0.53	0.54	0.42	0.34	0.74	0.75	0.68
Biodiversity	Fish fauna intact	0.23	0.23	0.23	0.23	0.77	0.00	0.50	0.23	0.00	0.00	0.57	0.57	0.47
	Invertebrate fauna intact	0.09	0.28	0.21	0.08	0.23	0.20	0.15	0.24	0.29	0.11	0.31	0.25	0.37
	Riparian vegetation intact	0.18	0.56	0.41	0.00	0.31	0.09	0.34	0.44	0.19	0.14	0.80	0.70	0.52
Overall SEV score	rall SEV score			0.606	0.232	0.546	0.349	0.580	0.464	0.449	0.370	0.705	0.688	0.706

 Table D6:
 Stream Ecological Valuation summary scores for stream ecological monitoring sites visited in March and April 2021.

*N5 was collected on site however features of this location are more akin to a wetland and has been assessed and accounted for separately within the wetland report.

Function Type	Function	Nort	thern			Eastern								Southerr	n	Wes	stern	6	20
		N- UT3	N- UT4	E- UT2	E- UT7	E- UT8	E- UT10	E- UT14	E- UT16	E- UT17	E- UT18	E- UT19	S- UT3	S- UT4	S- UT6	W- UT3	W- UT9	620- UT1	620- UT3
Hydraulic	Natural flow regime maintained	0.40	0.67	0.27	0.18	0.40	0.35	0.87	0.67	0.14	0.53	0.67	0.67	0.67	0.47	0.87	0.14	0.56	0.40
	Connectivity to floodplain intact / Floodplain effectiveness	0.20	0.10	0.50	0.68	0.37	0.14	0.34	0.11	0.68	0.18	0.30	0.16	0.10	0.10	0.19	0.10	0.06	0.29
	Connectivity for species migrations	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Connectivity to groundwater intact	0.73	0.87	0.81	0.97	0.73	0.79	0.80	0.87	0.95	0.83	0.75	0.87	0.87	0.87	0.95	0.71	0.81	0.73
Biogeochemical	Water temperature controlled	0.36	0.22	0.58	0.36	0.06	0.20	0.44	0.48	0.52	0.18	0.04	0.80	0.64	0.58	0.80	0.48	0.32	0.02
	Dissolved oxygen maintained	0.60	0.50	0.34	0.68	1.00	0.50	0.50	0.50	1.00	0.34	0.45	1.00	1.00	1.00	1.00	1.00	1.00	0.50
	Organic matter input maintained	0.00	0.00	0.47	0.25	0.00	0.00	0.20	0.00	0.70	0.01	0.20	0.25	0.03	0.00	0.20	0.00	0.00	0.00
	Instream particles retained	0.20	0.80	0.84	0.20	0.00	0.30	0.60	0.47	0.32	0.20	0.40	0.80	0.42	0.66	0.92	0.56	0.55	0.20
	Decontamination of pollutants	0.55	0.47	0.74	0.77	0.74	0.46	0.60	0.57	0.32	0.41	0.20	0.90	0.62	0.62	0.50	0.50	0.60	0.63

Table D7:Stream Ecological Valuation summary scores for stream ecology assessment sites visited in March and April 2021.

Function Type	Function	Nort	hern					Eastern						Southerr	ı	Wes	tern	62	20
		N- UT3	N- UT4	E- UT2	E- UT7	E- UT8	E- UT10	E- UT14	E- UT16	E- UT17	E- UT18	E- UT19	S- UT3	S- UT4	S- UT6	W- UT3	W- UT9	620- UT1	620- UT3
Habitat provision	Fish spawning habitat intact	0.05	0.05	0.23	0.18	0.05	0.05	0.16	0.40	0.23	0.53	0.05	0.05	0.05	0.05	0.12	0.05	0.16	0.05
	Habitat for aquatic fauna intact	0.34	0.29	0.46	0.27	0.31	0.31	0.46	0.43	0.60	0.46	0.38	0.60	0.46	0.44	0.50	0.44	0.39	0.20
Biodiversity	Fish fauna intact	0.29	0.29	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.63	0.63	0.63	0.00	0.00	0.71	0.71
	Invertebrate fauna intact	0.21*	0.21*	0.48	0.37	0.48*	0.23	0.26	0.30	0.85	0.85	0.85	0.41	0.29	0.38	0.18*	0.18	0.33	0.42
	Riparian vegetation intact	0.13	0.00	0.30	0.33	0.16	0.02	0.00	0.00	0.12	0.28	0.24	0.00	0.00	0.00	0.03	0.00	0.07	0.12
Overall SEV sco	re	0.361	0.391	0.498	0.513	0.447	0.379	0.513	0.482	0.538	0.471	0.392	0.581	0.484	0.485	0.519	0.369	0.468	0.377

*TN: No macroinvertebrate sample was collected at this site. Invertebrate data has been used from closest representative site for this score.

SEV Scores and Stream Wet Widths

SEVi-P Potential scores without fish and invertebrate biodiversity functions

										Si	te								
Function category	Function	N-UT3 P	N-UT4 P	E-UT2 P	E-UT7 P	E-UT8 P	E-UT10 P	E-UT14 P	E-UT16 P	S-UT2 P	S-UT4 P	S-UT6* P	W-UT3 P	W-UT9 P	620-UT1 P	620-UT3 P	E_UT17	E_UT18	E_UT19
Hydraulic	NFR	0.400	0.667	0.268	0.180	0.400	0.355	0.867	0.667	0.667	0.667	0.467	0.867	0.138	0.560	0.400	0.136	0.533	0.667
Hydraulic	FLE	0.680	0.200	0.639	0.940	0.940	0.600	0.600	0.200	0.200	0.200	0.200	0.666	0.196	0.280	1.000	0.980	0.902	0.980
Hydraulic	CSM	1.000	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	0.000
Hydraulic	CGW	0.733	0.867	0.813	0.967	0.733	0.787	0.800	0.867	0.867	0.867	0.867	0.947	0.707	0.813	0.733	0.947	0.833	0.750
Haydrau	lic mean score	0.703	0.683	0.430	0.772	0.768	0.685	0.817	0.683	0.683	0.683	0.633	0.870	0.510	0.663	0.783	0.516	0.817	0.599
Biogeochemical	WTC	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.520	0.180	0.800
Biogeochemical	DOM	0.600	0.503	0.335	0.675	1.000	0.503	0.503	0.503	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.335	0.450
Biogeochemical	OMI	0.500	0.500	1.000	1.000	1.000	1.000	1.000	1.000	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
Biogeochemical	IPR	0.200	0.800	0.840	0.200	0.200	0.440	0.600	0.735	0.800	0.710	0.800	0.920	0.560	0.560	0.200	0.320	0.200	0.400
Biogeochemical	DOP	0.893	0.740	0.900	0.773	0.839	0.760	0.796	0.837	0.900	0.717	0.616	0.808	0.603	0.900	0.900	0.624	0.710	0.502
Biogeochemi	cal mean score	0.599	0.668	0.775	0.690	0.768	0.701	0.740	0.775	0.800	0.745	0.743	0.806	0.693	0.752	0.680	0.593	0.385	0.530
Habitat provision	FSH	0.050	0.050	0.225	0.175	0.050	0.050	0.156	0.400	0.050	0.050	0.050	0.119	0.050	0.156	0.050	0.225	0.525	0.050
Habitat provision	HAF	0.520	0.484	0.558	0.412	0.567	0.507	0.593	0.569	0.663	0.582	0.582	0.611	0.593	0.598	0.463	0.713	0.614	0.554
Habitat provisi	on mean score	0.285	0.267	0.391	0.293	0.308	0.279	0.374	0.485	0.357	0.316	0.316	0.365	0.322	0.377	0.257	0.469	0.569	0.302
Biodiversity	RVI	0.800	0.000	0.346	0.494	0.760	0.136	0.000	0.000	0.000	0.000	0.000	0.152	0.000	0.560	0.720	0.309	0.680	0.680
Biodivers	ity mean score	0.800	0.000	0.346	0.494	0.760	0.136	0.000	0.000	0.000	0.000	0.000	0.152	0.000	0.560	0.720	0.309	0.680	0.680
Overall SEV score		0.598	0.551	0.560	0.635	0.691	0.578	0.643	0.631	0.621	0.591	0.573	0.699	0.512	0.644	0.647	0.523	0.584	0.528

SEVc-C Current scores without fish and invert biodiversity functions

Function category	Function									Si	te								
Function category	Function	N1	N2	N2-2	N-UT4	E1	\$1	S2	W1	W2	W3	620-1	620-2	620-3	E-UT7	E-UT8	E-UT10	E_UT14	E_UT16
Hydraulic	NFR	0.670	0.920	0.940	0.670	0.640	0.660	0.610	0.800	0.740	0.800	0.830	0.830	0.930	0.180	0.400	0.350	0.867	0.667
Hydraulic	FLE	0.400	0.730	0.560	0.100	0.350	0.080	0.680	0.610	0.430	0.360	0.520	0.400	0.910	0.680	0.370	0.140	0.336	0.000
Hydraulic	CSM	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.300	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Hydraulic	CGW	0.750	0.850	0.890	0.870	0.950	0.710	0.950	0.670	0.690	0.670	0.930	0.920	0.970	0.970	0.730	0.790	0.800	0.867
Haydrau	lic mean score	0.705	0.875	0.848	0.660	0.735	0.613	0.810	0.595	0.715	0.708	0.820	0.788	0.953	0.708	0.630	0.570	0.751	0.633
Biogeochemical	WTC	0.060	0.880	0.600	0.220	0.400	0.080	0.600	0.380	0.500	0.140	0.800	0.800	0.840	0.360	0.060	0.200	0.440	0.480
Biogeochemical	DOM	0.170	0.500	0.500	0.500	0.500	0.170	0.500	0.450	0.200	0.340	0.340	0.400	0.340	0.680	1.000	0.500	0.503	0.503
Biogeochemical	OMI	0.500	0.400	0.700	0.000	0.600	0.500	0.500	0.500	0.400	0.200	1.000	1.000	0.800	0.250	0.000	0.000	0.200	0.000
Biogeochemical	IPR	0.400	0.920	0.920	0.800	0.960	0.740	0.910	0.600	0.660	0.600	0.900	0.900	0.960	0.200	0.000	0.300	0.600	0.465
Biogeochemical	DOP	0.500	0.740	0.710	0.470	0.540	0.360	0.800	0.640	0.680	0.450	0.980	1.000	0.990	0.770	0.740	0.460	0.596	0.567
Biogeochemic	al mean score	0.326	0.688	0.686	0.398	0.600	0.370	0.662	0.514	0.488	0.346	0.804	0.820	0.786	0.452	0.360	0.292	0.468	0.403
Habitat provision	FSH	0.110	0.560	0.280	0.050	0.530	0.050	0.050	0.090	0.100	0.050	0.160	0.100	0.100	0.180	0.050	0.050	0.156	0.400
Habitat provision	HAF	0.300	0.540	0.510	0.290	0.650	0.230	0.530	0.540	0.420	0.340	0.740	0.750	0.680	0.270	0.310	0.310	0.459	0.432
Habitat provision	on mean score	0.205	0.550	0.395	0.170	0.590	0.140	0.290	0.315	0.260	0.195	0.450	0.425	0.390	0.225	0.180	0.180	0.308	0.416
Biodiversity	RVI	0.180	0.560	0.410	0.000	0.310	0.090	0.340	0.440	0.190	0.140	0.800	0.700	0.520	0.330	0.160	0.020	0.000	0.000
Biodiversi	ty mean score						0.090	0.340	0.440	0.190	0.140	0.800	0.700	0.520	0.330	0.160	0.020	0.000	0.000
Overall SEV score		0.420	0.717	0.668	0.414	0.619	0.389	0.623	0.502	0.501	0.424	0.750	0.733	0.753	0.489	0.402	0.343	0.496	0.448

SEVc-C Current scores without fish and invert biodiversity functions

Function category	Function	Site										
Function category	Function	E_UT17	E_UT18	E_UT19	S-UT4	W-UT3	S-UT6	S2	S2			
Hydraulic	NFR	0.136	0.533	0.667	0.667	0.867	0.470	0.607	0.260			
Hydraulic	FLE	0.680	0.184	0.300	0.104	0.190	0.100	0.720	0.680			
Hydraulic	CSM	0.000	1.000	0.000	1.000	1.000	1.000	1.000	1.000			
Hydraulic	CGW	0.947	0.833	0.750	0.867	0.947	0.870	0.947	0.947			
Haydra	ulic mean score	0.441	0.638	0.429	0.659	0.751	0.610	0.818	0.722			
Biogeochemical	WTC	0.520	0.180	0.040	0.640	0.800	0.580	0.640	0.600			
Biogeochemical	DOM	1.000	0.335	0.450	1.000	1.000	1.000	0.503	0.335			
Biogeochemical	OMI	0.700	0.010	0.200	0.033	0.200	0.000	1.000	1.000			
Biogeochemical	IPR	0.320	0.200	0.400	0.420	0.920	0.660	0.913	0.913			
Biogeochemical	DOP	0.324	0.410	0.202	0.617	0.498	0.620	0.800	0.800			
Biogeochem	ical mean score	0.573	0.227	0.258	0.542	0.684	0.572	0.771	0.730			
Habitat provision	FSH	0.225	0.525	0.050	0.050	0.119	0.050	0.050	0.050			
Habitat provision	HAF	0.596	0.462	0.383	0.457	0.500	0.440	0.536	0.523			
Habitat provis	ion mean score	0.410	0.493	0.216	0.253	0.309	0.245	0.293	0.287			
Biodiversity	RVI	0.282	0.120	0.240	0.000	0.028	0.000	0.357	0.257			
Biodiver	sity mean score	0.282	0.120	0.240	0.000	0.028	0.000	0.357	0.257			
Overall SEV score	verall SEV score			0.307	0.488	0.589	0.483	0.673	0.614			

Stream widths for intermittent streams

SEV cross-sec	tion	N-UT3	N-UT4	E-UT2	E-UT7	E-UT8	E-UT10	E-UT14	E-UT16	S-UT3	S-UT4	S-UT6*	W-UT3	W-UT9	620-UT1	620-UT3	E_UT17	E_UT18	E_UT19
	1	0.07	0.4	1.1	0.28	0.17	0.2	0.1	0.95	0.11	0.16	0.38	0.15	0.16	0.25	0.23	0.58	E_UT17	1.5
2	2	0.07	0.3	0.37	0.7	0.52	0.12	0.48	0.8	0.07	0.1	0.22	0.16	0.55	0.3	0.35	0.55	E_UT17	1
L L	3	0.08	0.17	0.26	0.55	0.2	0.12	0.76	0.38	0.35	0.22	0.2	0.28	0.38	0.35	0.63	0.37	E_UT17	1.1
ŧ	4	0.1	0.14	0.3	0.5	0.15	0.28	0.32	0.48	0.35	0.26	0.15	0.3	0.35	0.12	0.35	0.346	0.48	0.346
3	5	0.13	0.2	0.9	0.21	0.12	0.32	0.58	0.3	0.3	0.18	0.32	0.27	0.42	0.18	0.59	0.6	0.03	0.6
. A A	6	0.07	0.2	0.15	0.32	0.21	0.17	0.49	0.15	0.09	0.4	0.3	0.28	0.4	0.2	0.56	0.57	0.15	0.57
E E	7	0.09	0.1	0.93	0.27	0.39	0.34	0.22	0.45	0.12	0.05	0.09	0.27	0.3	0.33	0.35	0.86	0.45	0.86
trea	8	0.05	0.1	0.4	0.47	0.3	0.4	0.38	0.38	0.3	0.35	0.11	0.13	0.29	0.01	0.43	0.85	0.38	0.85
v.	9	0.08	0.1	0.33	0.41	0.38	0.4	0.37	0.18	0.25	0.45	0.3	0.35	0.3	0.15	0.55	0.7	0.18	0.7
	10	0.1	0.1	0.55	0.68	0.65	0.34	0.15	0.1	0.32	0.26	0.18	0.28	0.32	0.015	0.95	0.61	0.1	0.61
Wette	d width min (m)	0.05	0.10	0.15	0.21	0.12	0.12	0.10	0.10	0.07	0.05	0.09	0.13	0.16	0.01	0.23	0.35	0.03	0.35
Wette	d width max (m)	0.13	0.40	1.10	0.70	0.65	0.40	0.76	0.95	0.35	0.45	0.38	0.35	0.55	0.35	0.95	0.86	0.48	1.50
Mean w	etted width (m)	0.08	0.18	0.53	0.44	0.31	0.27	0.39	0.42	0.23	0.24	0.23	0.25	0.35	0.19	0.50	0.60	0.25	0.81
Median w	etted width (m)	0.08	0.155	0.385	0.44	0.255	0.3	0.375	0.38	0.275	0.24	0.21	0.275	0.335	0.19	0.49	0.59	0.18	0.775

Stream loss length and area for intermittent streams (no permanent streams impacted)

Site	N-UT2	N-UT3	N-UT4	E-UT2	E-UT5*	E-UT8	E-UT10	E-UT11*	E-UT12*	E-UT13*	E-UT20*	S-UT2	S-UT3	S-UT4	S-UT5*
Stream linear length lost	82.09	94.00	423.00	50.00	77.00	150.00	387.00	40.00	35.00	33.00	50.00	86	.00	40.35	30.06
Stream area lost based on median width	6.57	7.52	65.57	19.25	19.64	38.25	116.10	10.20	8.93	8.42	7.75	23	.65	9.68	6.31
Site	S-UT6*	W-UT3	W-UT5	W-UT6	W-UT9	W-UT10	620-UT1	620-UT2	620-UT3	620-UT5	E_UT17	E_UT18	E_UT19	Adjacent to E-UT19	
Stream linear length lost	30.53	43.19	5.00	59.89	92.47	150.57	99.09	44.03	115.00	33.00	18.00	150.00	18.00	150.00	
Stream area lost based on median width	6.41	11.88	1.38	16.47	30.98	50.44	18.83	8.37	56.35	6.27	13.95	88.50	4.50	37.50	

*Dry at time of survey. Median width for UT8 applied for the purposes of giving a an approximate width (this is a conservative overestimate).

Stream widths for permanent reaches and area available for offset

SEV cross-secti	on	N1	N2	N2-2	E1	\$1	S2	W1	W2	W3
	1	0.70	1.05	0.70	1.60	1.10	1.10	0.40	0.55	0.70
Ē	2	0.80	0.25	0.80	1.80	0.50	0.20	0.50	0.45	1.10
	3	0.70	0.48	0.70	0.90	0.35	1.20	0.80	0.40	0.80
width	4	0.80	0.65	0.80	0.40	1.40	2.40	1.20	0.55	0.70
3	5	0.60	0.54	0.60	1.30	0.80	0.90	0.90	0.70	0.50
Ň	6	0.50	0.25	0.50	1.40	0.35	0.60	1.40	0.60	0.20
E E	7	0.70	0.55	0.70	1.30	0.20	0.10	0.90	0.20	0.15
Stree	8	0.60	1.00	0.60	1.50	0.20	0.90	0.75	0.50	0.20
- v	9	0.70	0.12	0.70	0.55	0.15	0.45	0.75	0.30	0.20
	10	-	0.00	0.00	1.35	0.45	1.20	1.00	0.03	0.20
Wetted	width min (m)	0.50	0.00	0.00	0.40	0.15	0.10	0.40	0.03	0.15
Wetted	width max (m)	0.80	1.05	0.80	1.80	1.40	2.40	1.40	0.70	1.10
Mean we	tted width (m)	0.68	0.49	0.61	1.21	0.55	0.91	0.86	0.43	0.48
Median we	tted width (m)	0.70	0.51	0.70	1.33	0.40	0.90	0.85	0.48	0.35
Stream linear length approx	<	45.00	206.00	65.00	50.00	250.00	115.00	328.40	212.79	88.87
Stream area using median		31.50	105.06	45.50	66.25	100.00	103.50	279.14	101.07	31.10

Stream widths for remaining intermittent reaches (non-impacted reaches available for offset)

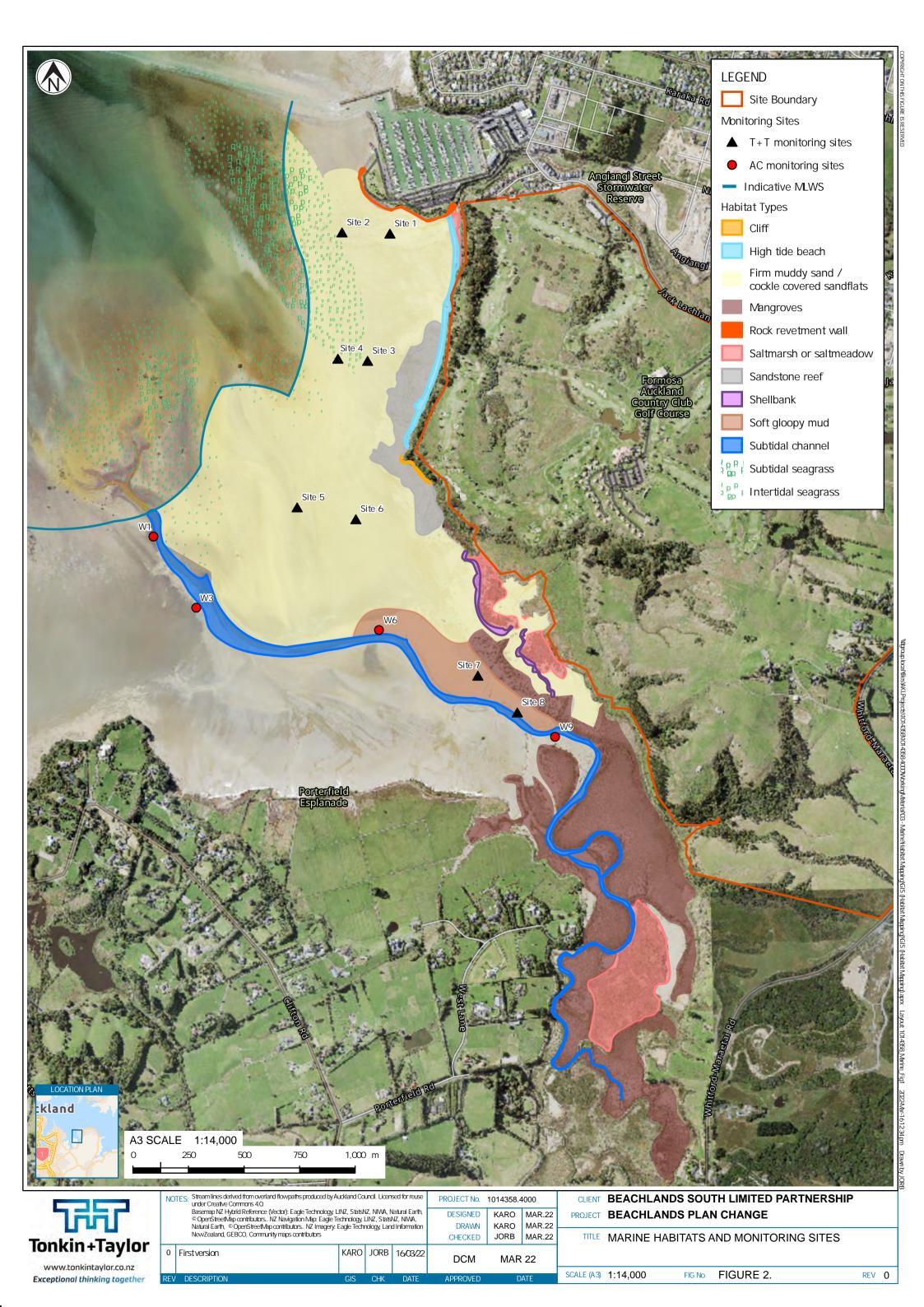
Site	Southern	Western	E-UT6	E_UT7	E_UT14	E_UT16	E_UT19	E_UT18	E_UT17	E_UT14	E_UT16
Stream linear length approx	955.0	783.0	233.4	233.3	277.8	236.5	1158.0	1679.0	420.0	0.1	1.0
Stream area using median	229.2	215.3	102.7	102.7	163.9	42.6	897.5	1301.2	325.5	0.8	0.4

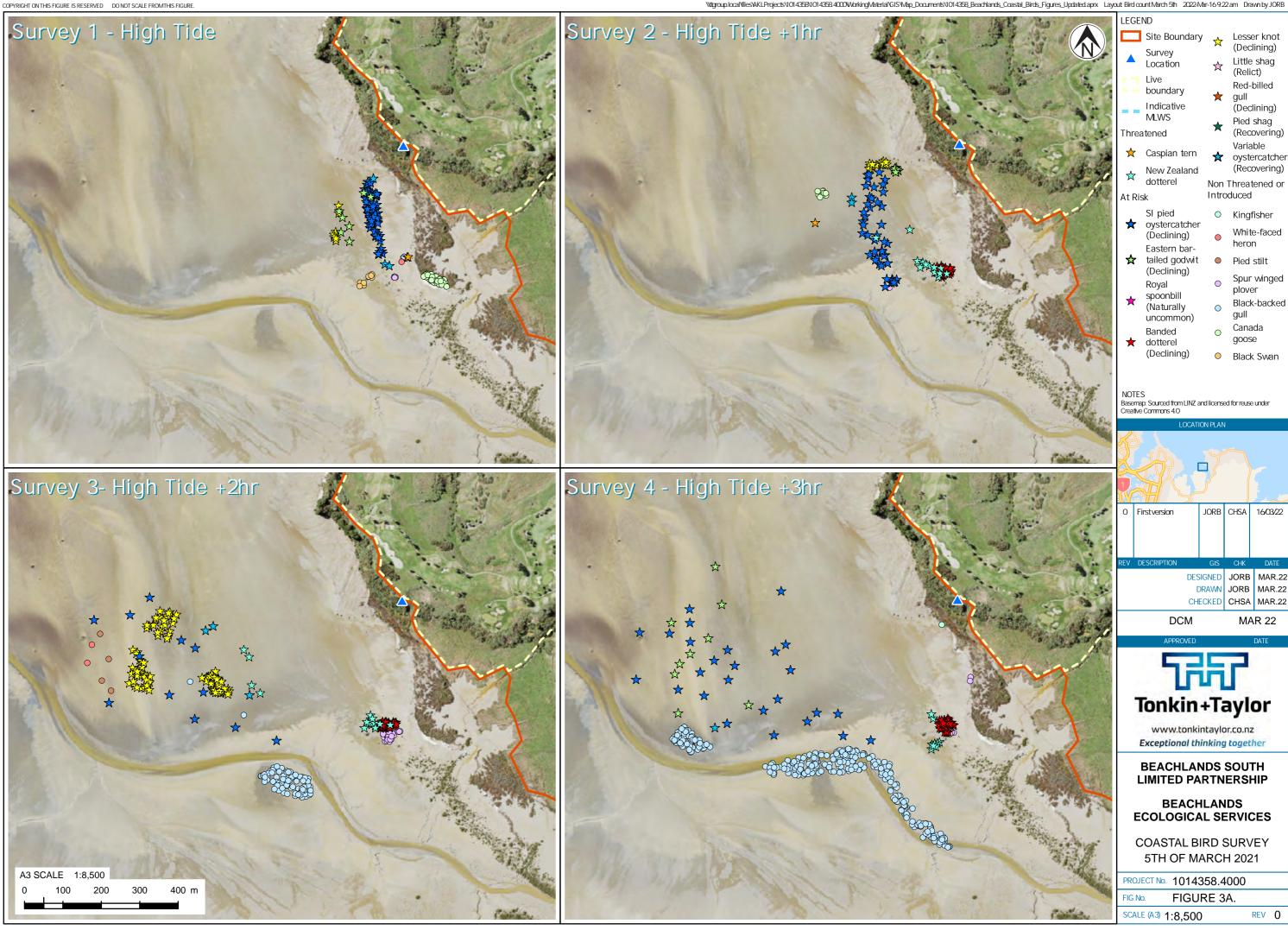
ECR Calculations for the Live Zone

	ECR	=	[(SEVi-P - SEVi-I)	/	(SEVm-P	- SEVm-C)]	x 1.5
Live Zone Catchment	Impact reach	SEVi-P	SEVi-I	Offset reach	SEVm-P	SEVm-C	= ECR
	E-UT2	0.56	0.0	E1 - piped reach	0.7	0.20	1.68
	E-UT13	0.56	0.0	E1 - piped reach	0.7	0.20	1.68
Eastern Catchment	E-UT12	0.56	0.0	E1 - piped reach	0.7	0.20	1.68
Eastern Catchment	E-UT5	0.56	0.0	E-UT18	0.7	0.40	2.80
	E-UT11	0.56	0.0	E-UT8	0.7	0.40	2.82
	E-UT20	0.55	0.0	E-UT7	0.7	0.49	3.92
	N-UT2	0.60	0.0	W1	0.7	0.50	4.52
N	N-UT3	0.60	0.0	E-UT10	0.7	0.34	2.52
Northern	N-UT4	0.55	0.0	E-UT10	0.7	0.34	2.32
Catchment	N-UT4	0.55	0.0	W1	0.7	0.50	4.17
	N-UT4	0.55	0.0	S-UT6 (lower trib)	0.7	0.48	3.80
	S-UT2	0.62	0.0	S1	0.7	0.39	2.99
C	S-UT4	0.59	0.0	S1	0.7	0.39	2.85
Southern	S-UT5*	0.57	0.0	S2	0.7	0.62	11.10
Catchment	S-UT6*	0.57	0.0	W2	0.7	0.50	4.32
	S-UT7	0.57	0.0	W1	0.7	0.50	4.34
	W-UT3	0.70	0.0	W1	0.7	0.50	5.29
	W-UT5	0.70	0.0	W1	0.7	0.50	5.29
Western Catchment	W-UT6	0.70	0.0	W1	0.7	0.50	5.29
	W-UT10	0.51	0.0	W2	0.7	0.50	3.86
	W-UT10	0.51	0.0	Western tribs	0.7	0.59	6.89

ECR Offset Calculations for the Live Zone

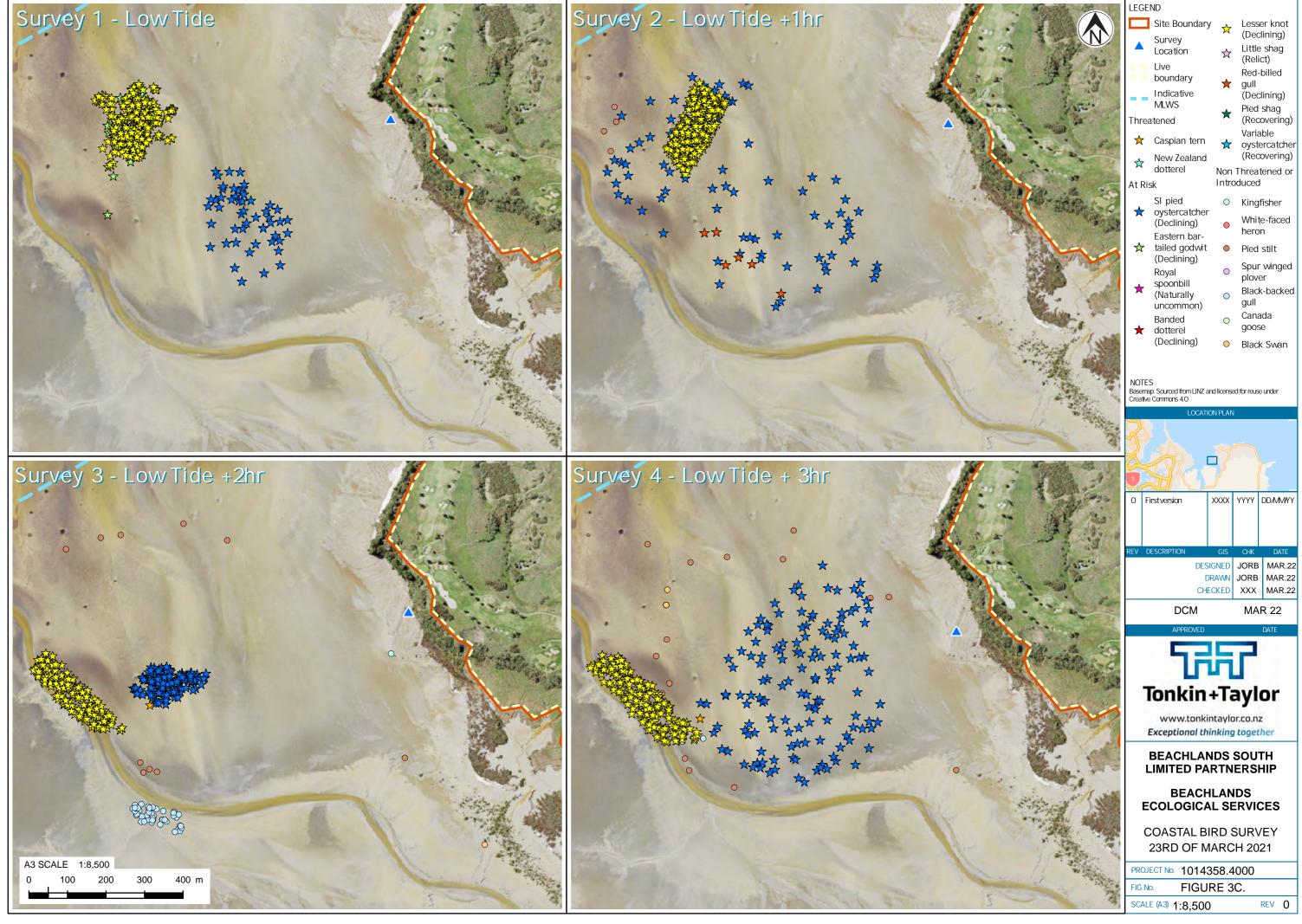
Catchment Order	Impact reach	Linear length	Area lost	ECR	Stream area needed	Stream area available	Offset reach	Balance	Comment
	W-UT3	43.2	11.9	5.29	62.8	279.1	W1	216.3	Working number
	W-UT5	5.0	1.4	5.29	7.3	216.3	W1	209.1	Working number
1 - Western Catchment	W-UT6	59.9	16.5	5.29	87.1	209.1	W1	122.0	Surplus applied to S-UT7
	W-UT10	150.6	20.4	3.86	78.9	101.1	W2	22.2	Surplus applied to S-UT6
	W-0110	150.0	30.0	6.89	206.8	215.3	Western tribs	8.5	Gain
	S-UT2	86.0	23.7	2.99	70.8	100.0	S1	29.2	Working number
	S-UT4	40.4	9.7	2.85	27.6	29.2	S1	1.6	Gain
2 - Southern Catchment	S-UT5*	30.1	6.3	11.10	70.1	103.5	S2	33.4	Gain
	S-UT6*	30.5	6.4	4.32	27.7	22.2	W2	-5.5	Minor deficit
	S-UT7	25.0	6.4	4.34	27.8	122.0	W1	94.2	Surplus applied to N-UT2
	N-UT2	82.1	6.6	4.52	29.7	94.2	W1	64.5	Surplus applied to N-UT4
	N-UT3	94.0	7.5	2.52	18.9	116.1	E-UT10	97.2	Working number
3 - Northern Catchment	N-UT4		41.0	2.32	95.0	97.2	E-UT10	2.2	Gain
	N-UT4	423.0	15.0	4.17	62.5	64.5	W1	2.0	Gain
	N-UT4		9.6	3.80	36.5	37.8	S-UT6 (lower reach)	1.3	Gain
	E-UT2	50.0	19.3	1.68	32.4	66.3	E1 (piped)	33.9	Working number
	E-UT13	33.0	8.4	1.68	14.1	33.9	E1 (piped)	19.7	Working number
	E-UT12	35.0	8.9	1.68	15.0	19.7	E1 (piped)	4.7	Gain
4 - Eastern Catchment	E-UT5	77.0	19.6	2.80	54.8	88.5	E-UT18 Tribs	33.7	Gain
	E-UT11	40.0	10.2	2.82	28.7	38.3	E-UT8	9.5	Surplus applied to E-UT20
	E-UT20	50.0	6.0	3.92	23.5	26.4	E-UT7	2.9	Gain
	E-UT20		1.8	2.82	5.1	9.7	E-UT8	4.6	Gain

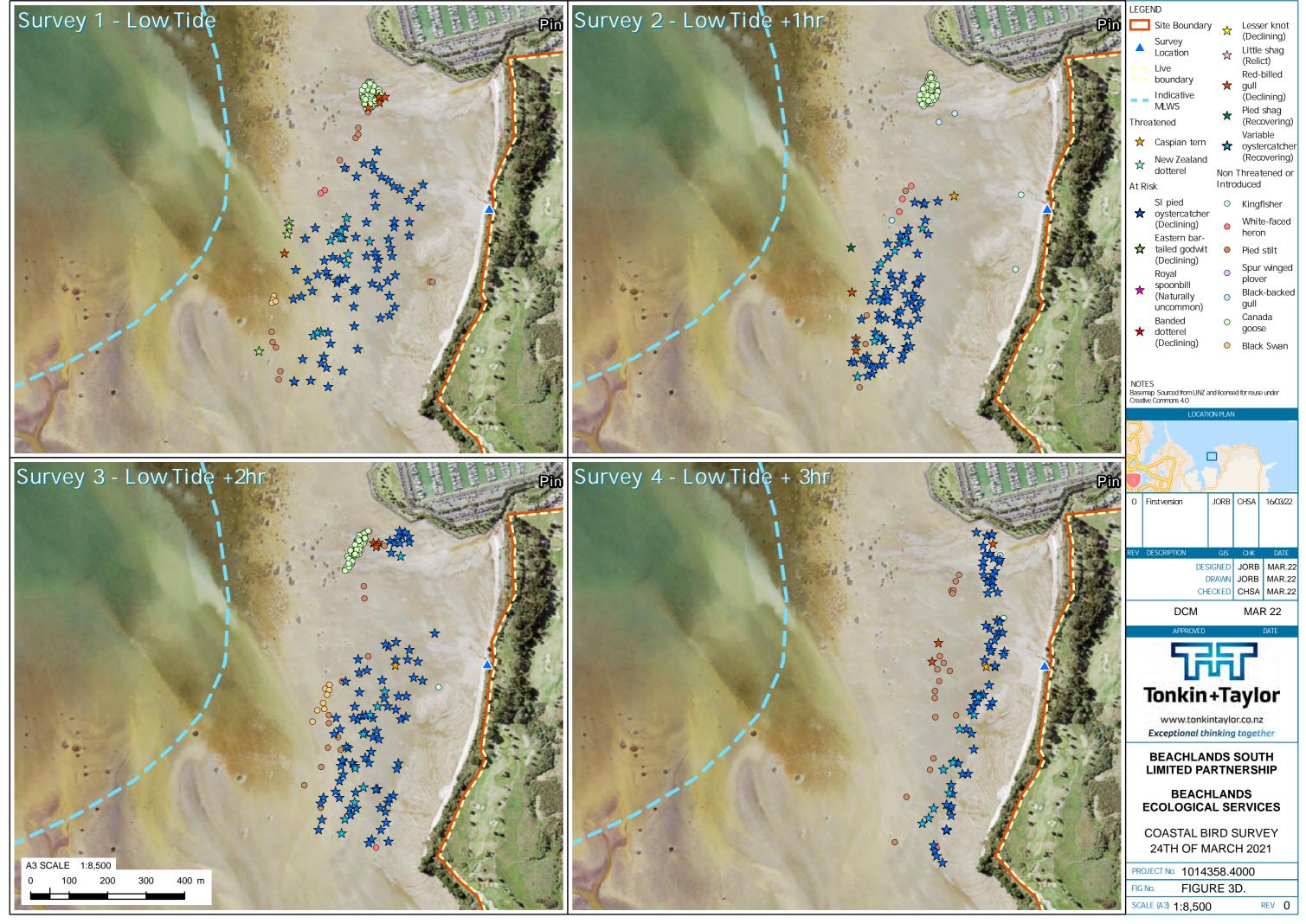

Appendix E: Coastal Marine Ecology Tables and Figures

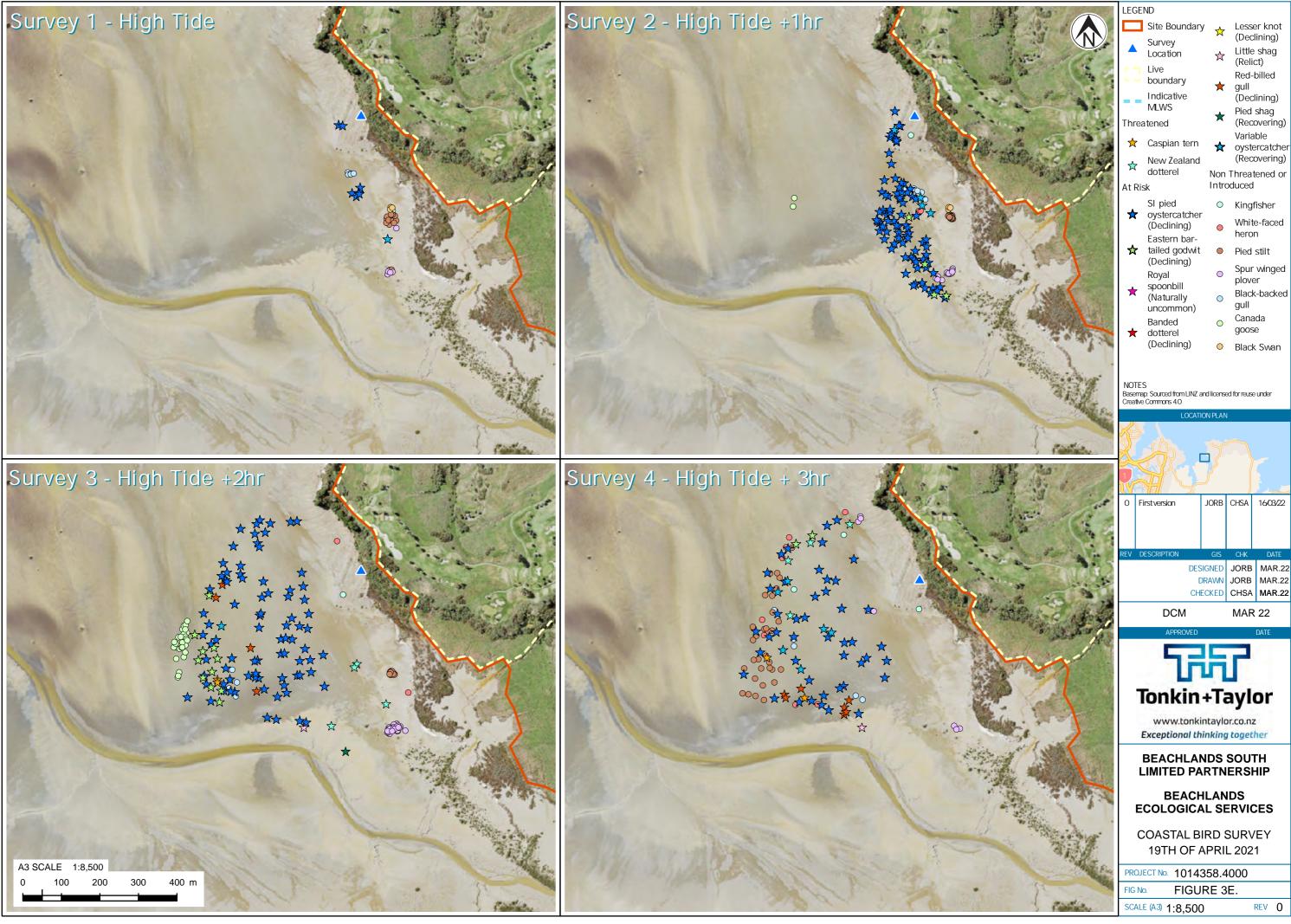

- Figure 1. Auckland Council Significant Ecological Areas Marine and Terrestrial
- Figure 2. Habitat map and survey locations
- Figure 3. Bird Counts:
 - Figure 3a. March 5th
 - Figure 3b. March 22nd
 - Figure 3c. March 23rd
 - Figure 3d. March 24th
 - Figure 3e. April 19th
 - Figure 3f. May 13th
- Table 1 Coastal avifauna survey results
- Table 2 Infauna raw data
- Epifauna quadrat photographs
- Laboratory transcripts

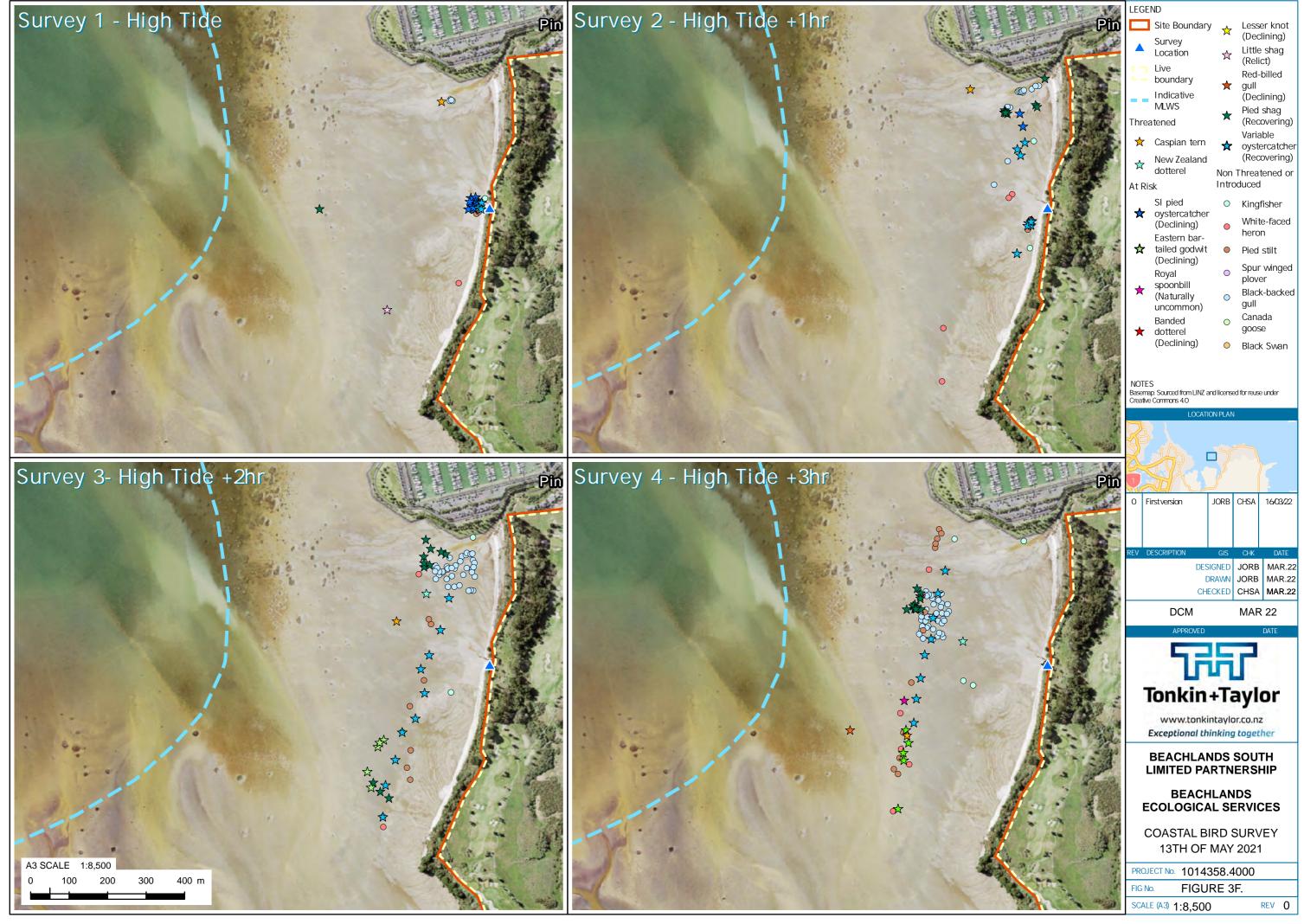
www.tonkintaylor.co.nz Exceptional thinking together

NOTES:	REVISIONS	NO.	BY	PROJECT NO.	1014358.4	1000	CLIENI	DEACHLA	ND2 200		AR INERSHIP	
Hybrid Reference Layer: LINZ, Stats NZ, Eagle Technology, Esri, HERE, Garmin, METI/NASA, USGS. World Imagery: Waikato Regional,	Firstversion (29/07/21)	0	JORB	DESIGNED DRAWN	JORB JORB	MAR.22 MAR.22		BEACHLA	NDS PLA	N CHANGE		
Maxar: NewZealand Imagery.lyr: Eagle Technology, Land Information NewZealand,	()			CHECKED	CHSA	MAR.22 MAR.22		AUCKLAN		IL SIGNIFICAN	T ECOLOGICAL	
GEBCO, Community maps contributors. NZ Navigation Map: Eagle Technology, LINZ, StatsNZ, NIWA, Natural Earth. ©				DCM	MA	R 22		AREAS				
				APPROVED	D	ATE	SCALE (A4)	1:35,000	FIG No.	FIGURE 1.	REV	0






Ntgroup.local/files/AKLProjects/101435810143584 4000 Working/Vaterial/GIS/Wap_Documents/1014368_Beachlands_Coastal_Birds_Figures_Updated.aprx Layout Bird count/Narch 5th 2022-War-16.9.22 am Drawn by JORB


Witgroup.loca/Miles/AKLProjects/10143581/0143584.4000/Working/Vaterial/GIS/Wap_Documents/1014358_Beachlands_Coastal_Birds_Figures_Updated.aprx Layout Bird count March 22nd 2022-Mar-16.9.22 am Drawn by JORB

Wtgroup.localVillesVkLProjects/1014358100143584000Working/Vaterial/GISWap_Documents/1014358_Beachlands_Coastal_Birds_Figures_Updated aprx Layout Bird countApril 19th 2022-War-16.9.56 am Drawn by JORB

Appendix E Table 1: Coastal birds observed during February – March 2021 survey and total number recorded. * = Effects assessment for this species addressed in terrestrial report. ** = Effects assessment for this species in wetland report.

Common name	Species name	Threat status ¹	Location observed and highes number observed at any one t	
			North beach	South beach
			(22 Mar, 24 Mar, 13 May)	(5 Mar, 23 Mar, 19 Apr)
Australasian gannet	Morus serrator	Not threatened	Desktop assessment	t only
Banded rail	Gallirallus philippensis	At risk - declining	0	0
			1	0
			0	0
Bar-tailed godwit	Limosa lapponica	At risk - declining	25	27
			4	33
			5	11
Banded dotterel	Charadrius bicinctus	At risk - declining	0	42
			0	6
			0	0
Black-backed gull	Larus dominicanus	Not threatened	2	319
			3	46
			36	6
Black-billed gull	Larus bulleri	At risk - declining	Desktop assessment	t only
Black shag	Phalacrocorax carbo	At Risk - Relict	Desktop assessment	t only
Black swan	Cygnus atratus	Not Threatened	5	8
			8	3
			0	3
Canada goose	Branta canadensis	Introduced and	73	53
		naturalised	66	0
			0	28
Caspian tern	Hydroprogne caspia	Threatened -	1	2

¹ Robertson, H. A., Baird, K., Dowding, J. E., Elliott, G. P., Hitchmough, R. A., Miskelly, C. M., McArthur, N., O' Donnell, C. F. J., Sagar, P. M., Scofield, R. P. & Taylor, G. A. (2016). Conservation status of New Zealand birds. New Zealand Threat Classification Series 19. 27 p.

Common name	Species name	Threat status ¹	Location observed and highest number observed at any one time				
			North beach	South beach			
			(22 Mar, 24 Mar, 13 May)	(5 Mar, 23 Mar, 19 Apr)			
		Nationally	1	1			
		vulnerable	1	2			
Great knot	Calidris tenuirostris	Vagrant (IUCN threat classification of Endangered) ²	Desktop assessment	t only			
Kingfisher*	Todiramphus sanctus	Not threatened	5	1			
			2	1			
			4	1			
Lesser knot	Calidrus canutus	At risk - declining	2	100			
			0	320			
			0	0			
Little black shag	Phalacrocorax sulcirostris	At risk - Naturally uncommon	Desktop assessment	t only			
Little shag	Phalacrocorax	At risk - relict	1	0			
-	melanoleucos		0	0			
			1	1			
Mallard**	Anas platyrhynchos	Introduced and					
		naturalised					
New Zealand	Charadrius obscurus	Threatened –	1	14			
dotterel		Nationally	0	5			
		increasing	1	4			
Pacific golden plover	Pluvialis fulva	Migrant (IUCN threat classification of Least Concern) ³	Desktop assessment	t only			
Pied shag	Phalacrocorax varius	At risk –	2	0			
		Recovering	1	0			
			1	1			
Pied stilt	Himantopus	Not threatened	8	4			

² BirdLife International (2021) Species factsheet: *Calidris tenuirostris*. Downloaded from <u>http://www.birdlife.org</u> on 04/07/2021.

³ BirdLife International (2021) Species factsheet: *Pluvialis fulva*. Downloaded from <u>http://www.birdlife.org</u> on 04/07/2021.

Common name	Species name	Threat status ¹	Location observed and highest number observed at any one time				
			North beach	South beach			
			(22 Mar, 24 Mar, 13 May)	(5 Mar, 23 Mar, 19 Apr)			
	himantopus		19	22			
			13	33			
Red-billed gull	Larus novaeholandiae	At Risk – Declining	2	33			
			5	2			
			12	7			
Red-necked stint	Calidris reuficollis	Migrant (IUCN classification of Near Threatened) ⁴	Desktop assessment only				
Reef heron	Egretta sacra	Threatened – Nationally Endangered	Desktop assessmen	t only			
Royal spoonbill	Platalea regia	At risk - naturally	0	0			
		uncommon	0	0			
			1	0			
Ruddy turnstone	Calidris ruficollis	Migrant (IUCN threat classification of Least Concern) ⁵	Desktop assessmen	t only			
Shore plover	Thinornis novaeseelandiae	Threatened – Nationally Critical	Desktop assessmen	t only			
South Island pied	Haematopus finschi	At Risk - Declining	87	61			
oystercatcher			82	138			
			97	82			
Spur-winged	Vanellus miles	Not threatened	0	28			
plover*			0	0			
			0	40			
Variable	Haematopus unicolor	At Risk –	10	3			
oystercatcher		Recovering	10	10			
			10	6			
White-faced heron	Egretta	Not threatened	4	2			
	novaehollandiae		3	0			

⁴ BirdLife International (2021) Species factsheet: *Calidris ruficollis*. Downloaded from <u>http://www.birdlife.org</u> on 04/07/2021.

⁵ BirdLife International (2021) Species factsheet: *Arenaria interpres*. Downloaded from <u>http://www.birdlife.org</u> on 04/07/2021.

Common name	Species name	Threat status ¹	Location observed number observed	-
			North beach (22 Mar, 24 Mar, 13 May)	South beach (5 Mar, 23 Mar, 19 Apr)
			7	8
White-fronted tern	Sterna striata	At Risk – Declining	Desktop assessment	only
Wrybill	Anarhynchus frontalis	Threatened - Nationally Increasing	Desktop assessment	: only

Tonkin & Taylor. Susan Jackson Identification & counts of Invertebrates in core samples from Sites 1-8 at Beachlands. Sampled 24 February 2021. Project ref 1014358.4000R

Anthorea						Site 1-D	Site 1-E
Anthozoa	Anthopleura aureoradiata	Anemone		1	2		1
Anthozoa	Edwardsia sp.	Burrowing anemone					
Nemertea	Nemertea	Proboscis worms	2	1	1	1	2
Sipuncula	Themiste sp.	Peanut worm					
Gastropoda	Cominella glandiformis	Mud Flat Whelk	1				2
Gastropoda	Diloma subrostrata	Mud flat topshell		1		2	
Gastropoda	Lunella smaragdus	Cat's Eye					
Gastropoda	Micrelenchus tenebrosus	Grazing snail					
Gastropoda	Neoguraleus sp.	Spiraled shell					
Gastropoda	Notoacmea sp.	Limpet	1	1	3	3	10
Gastropoda	Turbonilla sp.	Small spiral shell					
Gastropoda	Xymene sp.	Small snail					
Gastropoda	Zeacumantus lutulentus	Spireshell					
Gastropoda	Zeacumantus subcarinatus	Small Mud Snail					1
Opisthobranchia	Haminoea zelandiae	Bubble shell					
Bivalvia	Arthritica bifurca	Small bivalve					1
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	8	15	15	24	23
Bivalvia	Felaniella (zemysia) zelandica	Bivalve					
Bivalvia	Macomona liliana	Wedge shell (Hanikura)		2			
Bivalvia	Mysella sp.	Small bivalve					1
Bivalvia	Nucula hartvigiana	Nut Shell					
Bivalvia	Paphies australis	Pipi	1	2	2	5	6
Bivalvia	Soletellina sp.	Golden sunset shell					
Oligochaeta	Oligochaeta	Oligochaete worms	2	1	3	1	
Polychaeta: Sphaerodoridae	Sphaerodoropsis sp.	Small polychaete worm					
Polychaeta: Orbiniidae	Orbinia papillosa	Polychaete worm			2		
, Polychaeta: Orbiniidae	Scoloplos cylindrifer	Polychaete worm				5	
Polychaeta: Paraonidae	Paraonidae	Polychaete worm				1	
, Polychaeta: Paraonidae	Aricidea sp.	Polychaete worm					
, Polychaeta: Spionidae	Aonides trifida	Polychaete worm	5	5	1	1	12
Polychaeta: Spionidae	Boccardia sp.	Polychaete worm					
Polychaeta: Spionidae	Prionospio aucklandica	Polychaete worm	3	44	23	14	100
Polychaeta: Spionidae	Scolecolepides benhami	Polychaete worm	_		-		
Polychaeta: Spionidae	Scolelepis sp.	Polychaete worm					
Polychaeta: Magelonidae	Magelona dakini	Polychaete worm					
Polychaeta: Capitellidae	Heteromastus filiformis	Polychaete worm	1	2	1	2	2
Polychaeta: Maldanidae	Maldanidae	Bamboo Worms	-	-	-	-	-
Polychaeta: Syllidae	Sphaerosyllis sp.	Polychaete worm		2			
Polychaeta: Nereidae	Nereidae (juvenile)	Rag worms	6	7	5	3	7
Polychaeta: Nereidae	Perinereis vallata	Rag worm	0	,	2	5	,
Polychaeta: Glyceridae	Glyceridae	Polychaete worm		1			
Polychaeta: Nephtyidae	Aglaophamus sp.	Polychaete worm		-			
Polychaeta: Serpulidae	Spirobranchus sp.	Fan worm					
Crustacea	Nebalia sp.	Small crustacean					

Cumacea	Cumacea	Cumaceans	1	2	1		1
Tanaidacea	Tanaid sp.	Tanaid Shrimp					
Isopoda	Exosphaeroma planulum	Isopod		2	2	4	2
Amphipoda	Corophiidae	Amphipod (family)					
Amphipoda	Haustoridae	Amphipod (family)					
Amphipoda	Lysianassidae	Amphipod (family)					
Amphipoda	Phoxocephalidae	Amphipod (family)					
Amphipoda	Amphipoda Unid.	Amphipod		1	6	1	
Decapoda	Alpheus sp.	Snapping shrimp					
Decapoda	Austrohelice crassa	Tunnelling Mud Crab					
Decapoda	Halicarcinus whitei	Pill-box Crab					
Decapoda	Hemiplax hirtipes	Stalk-eyed Mud Crab			1		
Ostracoda	Copytus novaezealandiae	Ostracod					
Ostracoda	Diasterope grisea	Ostracod					
Ostracoda	Euphilomedes agilis	Ostracod					
Ostracoda	Parasterope quadrata	Ostracod					
Ostracoda	Phylctenophora zealandica	Ostracod					
Dstracoda	Scleroconcha arcuata	Ostracod					
Copepoda	Copepoda	Copepods					
Cirripedia	Austrominius modestus	Estuarine Barnacle					
nsecta	Dolichopodidae larvae	small fly larvae					
Phoronida	Phoronus sp.	Horseshoe worms					
	Count: No of Individuals		31	90	68	67	171
	Count: No of Taxa		11	17	15	14	15
	SW_Diversity		2.09520006	1.86520004	2.10669994		
	SW_Evenness		0.87379998	0.65829998	0.77789998	0.77759999	0.5697
sen(sroun	Таха	Common Name	Site 1-01	Site 1-02	Site 1-03	Site 1-04	Site 1-05
•	Taxa Austrovenus stutchburvi	Common Name	Site 1-01 Cockles (mm)	Site 1-02	Site 1-03	Site 1-04	Site 1-05
•	Taxa Austrovenus stutchburyi	Common Name Cockle (Huangi)	Cockles (mm))			
•			Cockles (mm) 16mm) 16mm x 2	18mm	19mm	15mm x 3
•			Cockles (mm) 16mm 14mm) 16mm x 2 15mm	18mm 14mm x 3	19mm 17mm x 4	15mm x 3 12mm x 2
•			Cockles (mm) 16mm 14mm 12mm) 16mm x 2 15mm 14mm	18mm 14mm x 3 10mm x 2	19mm 17mm x 4 12mm x 5	15mm x 3 12mm x 2 10mm x 4
•			Cockles (mm) 16mm 14mm 12mm 9mm x 2) 16mm x 2 15mm 14mm 12mm x 4	18mm 14mm x 3 10mm x 2 8mm	19mm 17mm x 4 12mm x 5 11mm	15mm x 3 12mm x 2 10mm x 4 6mm
•			Cockles (mm) 16mm 14mm 12mm 9mm x 2 4mm x 2	16mm x 2 15mm 14mm 12mm x 4 10mm x 5	18mm 14mm x 3 10mm x 2 8mm 2mm x 5	19mm 17mm x 4 12mm x 5 11mm 10mm x 3	15mm x 3 12mm x 2 10mm x 4 6mm 5mm
•			Cockles (mm) 16mm 14mm 12mm 9mm x 2	16mm x 2 15mm 14mm 12mm x 4 10mm x 5 8mm	18mm 14mm x 3 10mm x 2 8mm	19mm 17mm x 4 12mm x 5 11mm 10mm x 3 8mm	15mm x 3 12mm x 2 10mm x 4 6mm 5mm 3mm x 3
•			Cockles (mm) 16mm 14mm 12mm 9mm x 2 4mm x 2	16mm x 2 15mm 14mm 12mm x 4 10mm x 5	18mm 14mm x 3 10mm x 2 8mm 2mm x 5	19mm 17mm x 4 12mm x 5 11mm 10mm x 3 8mm 5mm	15mm x 3 12mm x 2 10mm x 4 6mm 5mm 3mm x 3 2mm x 6
•			Cockles (mm) 16mm 14mm 12mm 9mm x 2 4mm x 2	16mm x 2 15mm 14mm 12mm x 4 10mm x 5 8mm	18mm 14mm x 3 10mm x 2 8mm 2mm x 5	19mm 17mm x 4 12mm x 5 11mm 10mm x 3 8mm 5mm 2mm x 6	15mm x 3 12mm x 2 10mm x 4 6mm 5mm 3mm x 3
•			Cockles (mm) 16mm 14mm 12mm 9mm x 2 4mm x 2	16mm x 2 15mm 14mm 12mm x 4 10mm x 5 8mm	18mm 14mm x 3 10mm x 2 8mm 2mm x 5	19mm 17mm x 4 12mm x 5 11mm 10mm x 3 8mm 5mm	15mm x 3 12mm x 2 10mm x 4 6mm 5mm 3mm x 3 2mm x 6
Bivalvia			Cockles (mm) 16mm 14mm 12mm 9mm x 2 4mm x 2 1mm Pipi (mm)	16mm x 2 15mm 14mm 12mm x 4 10mm x 5 8mm 1mm	18mm 14mm x 3 10mm x 2 8mm 2mm x 5 1mm x 3	19mm 17mm x 4 12mm x 5 11mm 10mm x 3 8mm 5mm 2mm x 6 1mm x 2	15mm x 3 12mm x 2 10mm x 4 6mm 5mm 3mm x 3 2mm x 6 1mm x 3
GenGroup Bivalvia Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	Cockles (mm) 16mm 14mm 12mm 9mm x 2 4mm x 2 1mm	16mm x 2 15mm 14mm 12mm x 4 10mm x 5 8mm 1mm	18mm 14mm x 3 10mm x 2 8mm 2mm x 5 1mm x 3	19mm 17mm x 4 12mm x 5 11mm 10mm x 3 8mm 5mm 2mm x 6 1mm x 2	15mm x 3 12mm x 2 10mm x 4 6mm 5mm 3mm x 3 2mm x 6 1mm x 3
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	Cockles (mm) 16mm 14mm 12mm 9mm x 2 4mm x 2 1mm Pipi (mm)	16mm x 2 15mm 14mm 12mm x 4 10mm x 5 8mm 1mm	18mm 14mm x 3 10mm x 2 8mm 2mm x 5 1mm x 3	19mm 17mm x 4 12mm x 5 11mm 10mm x 3 8mm 5mm 2mm x 6 1mm x 2 24mm 21mm	15mm x 3 12mm x 2 10mm x 4 6mm 5mm 3mm x 3 2mm x 6 1mm x 3 26mm 24mm x3
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	Cockles (mm) 16mm 14mm 12mm 9mm x 2 4mm x 2 1mm Pipi (mm)	16mm x 2 15mm 14mm 12mm x 4 10mm x 5 8mm 1mm	18mm 14mm x 3 10mm x 2 8mm 2mm x 5 1mm x 3	19mm 17mm x 4 12mm x 5 11mm 10mm x 3 8mm 5mm 2mm x 6 1mm x 2 24mm 21mm 22m m	15mm x 3 12mm x 2 10mm x 4 6mm 5mm 3mm x 3 2mm x 6 1mm x 3 26mm 24mm x3 23mm
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	Cockles (mm) 16mm 14mm 12mm 9mm x 2 4mm x 2 1mm Pipi (mm)	16mm x 2 15mm 14mm 12mm x 4 10mm x 5 8mm 1mm	18mm 14mm x 3 10mm x 2 8mm 2mm x 5 1mm x 3	19mm 17mm x 4 12mm x 5 11mm 10mm x 3 8mm 5mm 2mm x 6 1mm x 2 24mm 21mm	15mm x 3 12mm x 2 10mm x 4 6mm 5mm 3mm x 3 2mm x 6 1mm x 3 26mm 24mm x3

General Group	Таха	Common Name	Site 2-A	Site 2-B	Site 2-C	Site 2-D	Site 2-E
Anthozoa	Anthopleura aureoradiata	Anemone	3		1	2	1
Anthozoa	Edwardsia sp.	Burrowing anemone					
Nemertea	Nemertea	Proboscis worms	2	2	1	1	2
Sipuncula	Themiste sp.	Peanut worm					
Gastropoda	Cominella glandiformis	Mud Flat Whelk	7	2		1	1
Gastropoda	Diloma subrostrata	Mud flat topshell	2		3	1	
Gastropoda	Lunella smaragdus	Cat's Eye					
Gastropoda	Micrelenchus tenebrosus	Grazing snail			2	2	3
Gastropoda	Neoguraleus sp.	Spiraled shell					
Gastropoda	Notoacmea sp.	Limpet	3		11	8	
Gastropoda	Turbonilla sp.	Small spiral shell					
Gastropoda	Xymene sp.	Small snail					
Gastropoda	Zeacumantus lutulentus	Spireshell		2		2	4
Gastropoda	Zeacumantus subcarinatus	Small Mud Snail	2	3	1	1	
Opisthobranchia	Haminoea zelandiae	Bubble shell			2		2
Bivalvia	Arthritica bifurca	Small bivalve					
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	42	30	32	25	9
Bivalvia	Felaniella (zemysia) zelandica	Bivalve	1		1		
Bivalvia	Macomona liliana	Wedge shell (Hanikura)	3	1	1	1	
Bivalvia	Mysella sp.	Small bivalve					
Bivalvia	Nucula hartvigiana	Nut Shell	23	26	23	23	2
Bivalvia	Paphies australis	Pipi			1		
Bivalvia	Soletellina sp.	Golden sunset shell	1				
Oligochaeta	Oligochaeta	Oligochaete worms	1			1	
Polychaeta: Sphaerodoridae	Sphaerodoropsis sp.	Small polychaete worm					
Polychaeta: Orbiniidae	Orbinia papillosa	Polychaete worm				1	3
Polychaeta: Orbiniidae	Scoloplos cylindrifer	Polychaete worm					
Polychaeta: Paraonidae	Paraonidae	Polychaete worm					
Polychaeta: Paraonidae	Aricidea sp.	Polychaete worm	1	7	8	10	7
Polychaeta: Spionidae	Aonides trifida	Polychaete worm	7	1	6	8	9
Polychaeta: Spionidae	Boccardia sp.	Polychaete worm			2		
Polychaeta: Spionidae	Prionospio aucklandica	Polychaete worm	62	44	59	25	14
Polychaeta: Spionidae	Scolecolepides benhami	Polychaete worm					
Polychaeta: Spionidae	Scolelepis sp.	Polychaete worm					
Polychaeta: Magelonidae	Magelona dakini	Polychaete worm		1	1	4	
Polychaeta: Capitellidae	Heteromastus filiformis	Polychaete worm					1
Polychaeta: Maldanidae	Maldanidae	Bamboo Worms	1	6	3	3	
Polychaeta: Syllidae	Sphaerosyllis sp.	Polychaete worm					
Polychaeta: Nereidae	Nereidae (juvenile)	Rag worms	2	2	2	1	2
Polychaeta: Nereidae	Perinereis vallata	Rag worm					
Polychaeta: Glyceridae	Glyceridae	Polychaete worm	1			1	1
Polychaeta: Nephtyidae	Aglaophamus sp.	Polychaete worm			1		
Polychaeta: Serpulidae	Spirobranchus sp.	Fan worm					
Crustacea	Nebalia sp.	Small crustacean					
Cumacea	Cumacea	Cumaceans	1	1			
Tanaidacea	Tanaid sp.	Tanaid Shrimp					

AmphipodaCorophiidaeAmphipod (family)AmphipodaHaustoridaeAmphipod (family)AmphipodaLysianassidaeAmphipod (family)AmphipodaPhoxocephalidaeAmphipod (family)AmphipodaAmphipoda Unid.AmphipodAmphipodaAmphipoda Unid.AmphipodAmpandaAlabaura anGranaina akairan	3		
AmphipodaLysianassidaeAmphipod (family)2AmphipodaPhoxocephalidaeAmphipod (family)2AmphipodaAmphipoda Unid.Amphipod4	2		
AmphipodaPhoxocephalidaeAmphipod (family)AmphipodaAmphipoda Unid.Amphipod41	Э		
Amphipoda Amphipoda Unid. Amphipod 4 1	5		
		1	
	18	68	8
Decapoda Alpheus sp. Snapping shrimp			
Decapoda Austrohelice crassa Tunnelling Mud Crab			
Decapoda Halicarcinus whitei Pill-box Crab			
Decapoda Hemiplax hirtipes Stalk-eyed Mud Crab			
Ostracoda Copytus novaezealandiae Ostracod			
Ostracoda Diasterope grisea Ostracod			
Ostracoda Euphilomedes agilis Ostracod	1	3	
Ostracoda Parasterope quadrata Ostracod			
Ostracoda Phylctenophora zealandica Ostracod			
Ostracoda Scleroconcha arcuata Ostracod 1		1	1
Copepoda Copepoda Copepods	1	1	1
Cirripedia Austrominius modestus Estuarine Barnacle			
nsecta Dolichopodidae larvae small fly larvae			
Phoronida Phoronus sp. Horseshoe worms			
Count: No of Individuals 171 130	184	197	71
Count: No of Taxa 21 16	24	26	18
SW_Diversity 2.01539993 1.89470005 2.	2.25399995	2.26810002	2.51009989
).70920002	0.69620001	0.86839998
SW_Evenness 0.662 0.68339998 0.			0.000555550
		Site 2-04	Site 2-05
GenGroup Taxa Common Name Site 2-01 Site 2-02 Sit			
GenGroup Taxa Common Name Site 2-01 Site 2-02 Sit Bivalvia Austrovenus stutchburyi Cockle (Huangi) Cockles (mm)	ite 2-03		
GenGroup Taxa Common Name Site 2-01 Site 2-02 Sit Bivalvia Austrovenus stutchburyi Cockle (Huangi) Cockles (mm) 15mm x 2 5mm x 2 19	i te 2-03 9mm	Site 2-04	Site 2-05
GenGroup Taxa Common Name Site 2-01 Site 2-02 Sit Bivalvia Austrovenus stutchburyi Cockle (Huangi) Cockles (mm) 15mm x 2 5mm x 2 19 14mm 4mm x 2 17	i te 2-03 9mm 7mm	Site 2-04 13mm	Site 2-05 18mm
GenGroupTaxaCommon NameSite 2-01Site 2-02SitBivalviaAustrovenus stutchburyiCockle (Huangi)Cockles (mm)15mm x 25mm x 21914mm4mm x 21713mm x 23mm x 1215	i te 2-03 9mm 7mm 5mm x 2	Site 2-04 13mm 10mm	Site 2-05 18mm 15mm
GenGroupTaxaCommon NameSite 2-01Site 2-02SiteBivalviaAustrovenus stutchburyiCockle (Huangi)Cockles (mm)15mm x 25mm x 21914mm4mm x 21713mm x 23mm x 12159mm2mm x 812	i te 2-03 9mm 7mm 5mm x 2 2mm x 2	Site 2-04 13mm 10mm 4mm x 4	Site 2-05 18mm 15mm 12mm x 2
GenGroupTaxaCommon NameSite 2-01Site 2-02SiteBivalviaAustrovenus stutchburyiCockle (Huangi)Cockles (mm)15mm x 25mm x 21914mm4mm x 21713mm x 23mm x 12159mm2mm x 8128mm x 41mm x 69m	i te 2-03 9mm 7mm 5mm x 2 2mm x 2 mm x 2	Site 2-04 13mm 10mm 4mm x 4 3mm x 4	Site 2-05 18mm 15mm 12mm x 2 9mm
GenGroupTaxaCommon NameSite 2-01Site 2-02SitBivalviaAustrovenus stutchburyiCockle (Huangi)Cockles (mm)15mm x 25mm x 21914mm4mm x 21713mm x 23mm x 12159mm2mm x 8128mm x 41mm x 69m4mm x 67m	i te 2-03 9mm 7mm 5mm x 2 2mm x 2 mm x 2	Site 2-04 13mm 10mm 4mm x 4 3mm x 4 2mm x 9	Site 2-05 18mm 15mm 12mm x 2 9mm 4mm
GenGroupTaxaCommon NameSite 2-01Site 2-02SitBivalviaAustrovenus stutchburyiCockle (Huangi)Cockles (mm)15mm x 25mm x 21914mm4mm x 21713mm x 23mm x 12159mm2mm x 8128mm x 41mm x 69m4mm x 67m3mm x 64m	i te 2-03 9mm 7mm 5mm x 2 2mm x 2 mm x 2 mm x 2 mm	Site 2-04 13mm 10mm 4mm x 4 3mm x 4 2mm x 9	Site 2-05 18mm 15mm 12mm x 2 9mm 4mm 3mm x 2
GenGroupTaxaCommon NameSite 2-01Site 2-02SitBivalviaAustrovenus stutchburyiCockle (Huangi)Cockles (mm)15mm x 25mm x 21914mm4mm x 21713mm x 23mm x 12159mm2mm x 8128mm x 41mm x 69m4mm x 67m3mm x 64m2mm x 202m	i te 2-03 9mm 7mm 5mm x 2 2mm x 2 mm x 2 mm mm	Site 2-04 13mm 10mm 4mm x 4 3mm x 4 2mm x 9	Site 2-05 18mm 15mm 12mm x 2 9mm 4mm 3mm x 2
GenGroupTaxaCommon NameSite 2-01Site 2-02SitBivalviaAustrovenus stutchburyiCockle (Huangi)Cockles (mm)15mm x 25mm x 21914mm4mm x 21713mm x 23mm x 12159mm2mm x 8128mm x 41mm x 69m4mm x 67m3mm x 64m2mm x 202m1mm	i te 2-03 9mm 7mm 5mm x 2 2mm x 2 2mm x 2 mm x 2 mm mm	Site 2-04 13mm 10mm 4mm x 4 3mm x 4 2mm x 9	Site 2-05 18mm 15mm 12mm x 2 9mm 4mm 3mm x 2

General Group	Таха	Common Name	Site 3-A	Site 3-B	Site 3-C	Site 3-D	Site 3-E
Anthozoa	Anthopleura aureoradiata	Anemone	4	18	12	4	11
Anthozoa	Edwardsia sp.	Burrowing anemone			1		
Nemertea	Nemertea	Proboscis worms		2	2		
Sipuncula	Themiste sp.	Peanut worm					
Gastropoda	Cominella glandiformis	Mud Flat Whelk	1		6		
Gastropoda	Diloma subrostrata	Mud flat topshell	1	2	2		2
Gastropoda	Lunella smaragdus	Cat's Eye					
Gastropoda	Micrelenchus tenebrosus	Grazing snail	2	2	4		
Gastropoda	Neoguraleus sp.	Spiraled shell					
Gastropoda	Notoacmea sp.	Limpet	6	24	12	3	9
Gastropoda	Turbonilla sp.	Small spiral shell					
Gastropoda	Xymene sp.	Small snail					
iastropoda	Zeacumantus lutulentus	Spireshell					
astropoda	Zeacumantus subcarinatus	Small Mud Snail					
pisthobranchia	Haminoea zelandiae	Bubble shell					
ivalvia	Arthritica bifurca	Small bivalve		4			
ivalvia	Austrovenus stutchburyi	Cockle (Huangi)	38	34	31	34	24
ivalvia	Felaniella (zemysia) zelandica	Bivalve	50	34	51	54	24
ivalvia	Macomona liliana	Wedge shell (Hanikura)	6	2	1	2	1
livalvia	Mysella sp.	Small bivalve	0	2	1	2	T
ivalvia		Nut Shell	9	12	11	1	4
ivalvia	Nucula hartvigiana		9	12	11	T	4
	Paphies australis Soletellina sp.	Pipi Golden sunset shell					
ivalvia			2	4		4	
ligochaeta	Oligochaeta	Oligochaete worms	2	1		1	1
olychaeta: Sphaerodoridae	Sphaerodoropsis sp.	Small polychaete worm	_				
olychaeta: Orbiniidae	Orbinia papillosa	Polychaete worm	5	4	4		2
olychaeta: Orbiniidae	Scoloplos cylindrifer	Polychaete worm					
olychaeta: Paraonidae	Paraonidae	Polychaete worm					
olychaeta: Paraonidae	Aricidea sp.	Polychaete worm	16	9	18	8	15
olychaeta: Spionidae	Aonides trifida	Polychaete worm	6	8	4		6
olychaeta: Spionidae	Boccardia sp.	Polychaete worm		2	2		
olychaeta: Spionidae	Prionospio aucklandica	Polychaete worm	36	82	50	22	48
olychaeta: Spionidae	Scolecolepides benhami	Polychaete worm		1			
olychaeta: Spionidae	Scolelepis sp.	Polychaete worm					
olychaeta: Magelonidae	Magelona dakini	Polychaete worm		1	1		1
olychaeta: Capitellidae	Heteromastus filiformis	Polychaete worm			1		1
olychaeta: Maldanidae	Maldanidae	Bamboo Worms	2	4	1		2
olychaeta: Syllidae	Sphaerosyllis sp.	Polychaete worm					
olychaeta: Nereidae	Nereidae (juvenile)	Rag worms				1	2
olychaeta: Nereidae	Perinereis vallata	Rag worm					
olychaeta: Glyceridae	Glyceridae	Polychaete worm		1	1		2
olychaeta: Nephtyidae	Aglaophamus sp.	Polychaete worm					
Polychaeta: Serpulidae	Spirobranchus sp.	Fan worm					
Crustacea	Nebalia sp.	Small crustacean					
Cumacea	Cumacea	Cumaceans		2	2	3	1
anaidacea	Tanaid sp.	Tanaid Shrimp					

Isopoda	Exosphaeroma planulum	Isopod		1			
Amphipoda	Corophiidae	Amphipod (family)					
Amphipoda	Haustoridae	Amphipod (family)					
Amphipoda	Lysianassidae	Amphipod (family)					
Amphipoda	Phoxocephalidae	Amphipod (family)	12	13	8		11
Amphipoda	Amphipoda Unid.	Amphipod	24	8	19	63	28
Decapoda	Alpheus sp.	Snapping shrimp		1			
Decapoda	Austrohelice crassa	Tunnelling Mud Crab					
Decapoda	Halicarcinus whitei	Pill-box Crab			1		
Decapoda	Hemiplax hirtipes	Stalk-eyed Mud Crab					
Ostracoda	Copytus novaezealandiae	Ostracod					
Ostracoda	Diasterope grisea	Ostracod					
Ostracoda	Euphilomedes agilis	Ostracod					
Ostracoda	Parasterope quadrata	Ostracod					
Ostracoda	Phylctenophora zealandica	Ostracod					
Ostracoda	Scleroconcha arcuata	Ostracod					
Copepoda	Copepoda	Copepods		1			
Cirripedia	Austrominius modestus	Estuarine Barnacle					
Insecta	Dolichopodidae larvae	small fly larvae					
Phoronida	Phoronus sp.	Horseshoe worms					
	Count: No of Individuals		170	239	194	142	171
	Count: No of Taxa		16	25	23	11	19
	Count: No of Taxa SW_Diversity		16 2.26830006	25 2.3354001	23 2.45539999	11 1.58210003	19 2.2658
			-	2.3354001			2.2658
GenGroup	SW_Diversity	Common Name	2.26830006	2.3354001	2.45539999	1.58210003	2.2658
	SW_Diversity SW_Evenness	Common Name Cockle (Huangi)	2.26830006 0.81809998	2.3354001 0.72549999 Site 3-02	2.45539999 0.78310001	1.58210003 0.65979999	2.2658 0.76950002
	SW_Diversity SW_Evenness Taxa		2.26830006 0.81809998 Site 3-01	2.3354001 0.72549999 Site 3-02	2.45539999 0.78310001	1.58210003 0.65979999	2.2658 0.76950002
	SW_Diversity SW_Evenness Taxa		2.26830006 0.81809998 Site 3-01 Cockles (mm	2.3354001 0.72549999 Site 3-02	2.45539999 0.78310001 Site 3-03	1.58210003 0.65979999 Site 3-04	2.2658 0.76950002 Site 3-05
	SW_Diversity SW_Evenness Taxa		2.26830006 0.81809998 Site 3-01 Cockles (mm 8mm	2.3354001 0.72549999 Site 3-02 26mm	2.45539999 0.78310001 Site 3-03 27mm	1.58210003 0.65979999 Site 3-04 22mm	2.2658 0.76950002 Site 3-05 23mm
	SW_Diversity SW_Evenness Taxa		2.26830006 0.81809998 Site 3-01 Cockles (mm 8mm 5mm x 3	2.3354001 0.725499999 Site 3-02 26mm 23mm x 2	2.455399999 0.78310001 Site 3-03 27mm 22mm x 2	1.58210003 0.65979999 Site 3-04 22mm 4mm x 3	2.2658 0.76950002 Site 3-05 23mm 20mm
	SW_Diversity SW_Evenness Taxa		2.26830006 0.81809998 Site 3-01 Cockles (mm 8mm 5mm x 3 4mm x 5	2.3354001 0.725499999 Site 3-02 26mm 23mm x 2 19mm	2.45539999 0.78310001 Site 3-03 27mm 22mm x 2 20mm	1.58210003 0.65979999 Site 3-04 22mm 4mm x 3 3mm x 2	2.2658 0.76950002 Site 3-05 23mm 20mm 8mm
	SW_Diversity SW_Evenness Taxa		2.26830006 0.81809998 Site 3-01 Cockles (mm 8mm 5mm x 3 4mm x 5 3mm x 9	2.3354001 0.725499999 Site 3-02 26mm 23mm x 2 19mm 16mm	2.45539999 0.78310001 Site 3-03 27mm 22mm x 2 20mm 11mm	1.58210003 0.65979999 Site 3-04 22mm 4mm x 3 3mm x 2 2mm x 15	2.2658 0.76950002 Site 3-05 23mm 20mm 8mm 4mm x 3
GenGroup Bivalvia	SW_Diversity SW_Evenness Taxa		2.26830006 0.81809998 Site 3-01 Cockles (mm 8mm 5mm x 3 4mm x 5 3mm x 9 2mm x 9	2.3354001 0.725499999 Site 3-02 26mm 23mm x 2 19mm 16mm 13mm	2.45539999 0.78310001 Site 3-03 27mm 22mm x 2 20mm 11mm 9mm	1.58210003 0.65979999 Site 3-04 22mm 4mm x 3 3mm x 2 2mm x 15	2.2658 0.76950002 Site 3-05 23mm 20mm 8mm 4mm x 3 3mm x 5
	SW_Diversity SW_Evenness Taxa		2.26830006 0.81809998 Site 3-01 Cockles (mm 8mm 5mm x 3 4mm x 5 3mm x 9 2mm x 9	2.3354001 0.725499999 Site 3-02 26mm 23mm x 2 19mm 16mm 13mm 5mm	2.45539999 0.78310001 Site 3-03 27mm 22mm x 2 20mm 11mm 9mm	1.58210003 0.65979999 Site 3-04 22mm 4mm x 3 3mm x 2 2mm x 15	2.2658 0.76950002 Site 3-05 23mm 20mm 8mm 4mm x 3 3mm x 5 2mm x 5
	SW_Diversity SW_Evenness Taxa		2.26830006 0.81809998 Site 3-01 Cockles (mm 8mm 5mm x 3 4mm x 5 3mm x 9 2mm x 9	2.3354001 0.725499999 Site 3-02 26mm 23mm x 2 19mm 16mm 13mm 5mm 4mm x 2	2.45539999 0.78310001 Site 3-03 27mm 22mm x 2 20mm 11mm 9mm 5mm x 2	1.58210003 0.65979999 Site 3-04 22mm 4mm x 3 3mm x 2 2mm x 15	2.2658 0.76950002 Site 3-05 23mm 20mm 8mm 4mm x 3 3mm x 5 2mm x 5
	SW_Diversity SW_Evenness Taxa		2.26830006 0.81809998 Site 3-01 Cockles (mm 8mm 5mm x 3 4mm x 5 3mm x 9 2mm x 9	2.3354001 0.725499999 Site 3-02 26mm 23mm x 2 19mm 16mm 13mm 5mm 4mm x 2 3mm x 3	2.45539999 0.78310001 Site 3-03 27mm 22mm x 2 20mm 11mm 9mm 5mm x 2 3mm x 6	1.58210003 0.65979999 Site 3-04 22mm 4mm x 3 3mm x 2 2mm x 15	2.2658 0.76950002 Site 3-05 23mm 20mm 8mm 4mm x 3 3mm x 5 2mm x 5

General Group	Таха	Common Name	Site 4-A	Site 4-B	Site 4-C	Site 4-D	Site 4-E
Anthozoa	Anthopleura aureoradiata	Anemone			1	1	1
Anthozoa	Edwardsia sp.	Burrowing anemone					
Nemertea	Nemertea	Proboscis worms		2	1		1
Sipuncula	Themiste sp.	Peanut worm					
Gastropoda	Cominella glandiformis	Mud Flat Whelk			1		
Gastropoda	Diloma subrostrata	Mud flat topshell				1	
Gastropoda	Lunella smaragdus	Cat's Eye					
Gastropoda	Micrelenchus tenebrosus	Grazing snail					
Gastropoda	Neoguraleus sp.	Spiraled shell					
Gastropoda	Notoacmea sp.	Limpet			2	8	5
Gastropoda	Turbonilla sp.	Small spiral shell				1	
Gastropoda	Xymene sp.	Small snail		1			
Gastropoda	Zeacumantus lutulentus	Spireshell				2	
Gastropoda	Zeacumantus subcarinatus	Small Mud Snail	2	1	1	1	
Opisthobranchia	Haminoea zelandiae	Bubble shell					
Bivalvia	Arthritica bifurca	Small bivalve			1		1
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	10	19	31	32	26
Bivalvia	, Felaniella (zemysia) zelandica	Bivalve					
Bivalvia	Macomona liliana	Wedge shell (Hanikura)		1	1		1
Bivalvia	Mysella sp.	Small bivalve					
Bivalvia	Nucula hartvigiana	Nut Shell	14	5	11	20	10
Bivalvia	Paphies australis	Pipi					
Bivalvia	Soletellina sp.	Golden sunset shell					
Oligochaeta	Oligochaeta	Oligochaete worms					1
Polychaeta: Sphaerodoridae	Sphaerodoropsis sp.	Small polychaete worm	1				
Polychaeta: Orbiniidae	Orbinia papillosa	Polychaete worm	_		1		1
Polychaeta: Orbiniidae	Scoloplos cylindrifer	Polychaete worm					
Polychaeta: Paraonidae	Paraonidae	Polychaete worm	2	9	1		
Polychaeta: Paraonidae	Aricidea sp.	Polychaete worm	1	11	-	15	12
Polychaeta: Spionidae	Aonides trifida	Polychaete worm	-				2
Polychaeta: Spionidae	Boccardia sp.	Polychaete worm	1				-
Polychaeta: Spionidae	Prionospio aucklandica	Polychaete worm	5	14	3	29	43
Polychaeta: Spionidae	Scolecolepides benhami	Polychaete worm	5	1.	5	23	10
Polychaeta: Spionidae	Scolelepis sp.	Polychaete worm					
Polychaeta: Magelonidae	Magelona dakini	Polychaete worm	1	1	2		3
Polychaeta: Capitellidae	Heteromastus filiformis	Polychaete worm	-	-	2		5
Polychaeta: Maldanidae	Maldanidae	Bamboo Worms	3	1	3	1	
Polychaeta: Syllidae	Sphaerosyllis sp.	Polychaete worm	3	4	5	Ŧ	1
Polychaeta: Nereidae	Nereidae (juvenile)	Rag worms	1	4	4	7	1
Polychaeta: Nereidae	Perinereis vallata	Rag worm	T	4	4	7	
Polychaeta: Glyceridae	Glyceridae	Polychaete worm		1			
	,	Polychaete worm		T			
Polychaeta: Nephtyidae	Aglaophamus sp.						
Polychaeta: Serpulidae	Spirobranchus sp.	Fan worm					
Crustacea	Nebalia sp.	Small crustacean	2	C	0	2	c
Cumacea	Cumacea	Cumaceans	2	6	9	3	6
Tanaidacea	Tanaid sp.	Tanaid Shrimp	1				

Isopoda	Exosphaeroma planulum	Isopod			1	3	1
Amphipoda	Corophiidae	Amphipod (family)	3	3	1	1	1
Amphipoda	Haustoridae	Amphipod (family)					
Amphipoda	Lysianassidae	Amphipod (family)					
Amphipoda	Phoxocephalidae	Amphipod (family)			1		
Amphipoda	Amphipoda Unid.	Amphipod	8	11	13	21	26
Decapoda	Alpheus sp.	Snapping shrimp					
Decapoda	Austrohelice crassa	Tunnelling Mud Crab					
Decapoda	Halicarcinus whitei	Pill-box Crab					
Decapoda	Hemiplax hirtipes	Stalk-eyed Mud Crab					
Ostracoda	Copytus novaezealandiae	Ostracod				1	
Ostracoda	Diasterope grisea	Ostracod			2	1	
Ostracoda	Euphilomedes agilis	Ostracod			1		
Ostracoda	Parasterope quadrata	Ostracod	2	4			
Ostracoda	Phylctenophora zealandica	Ostracod					
Ostracoda	Scleroconcha arcuata	Ostracod	1		1		1
Copepoda	Copepoda	Copepods		1			
Cirripedia	Austrominius modestus	Estuarine Barnacle					
Insecta	Dolichopodidae larvae	small fly larvae					
Phoronida	Phoronus sp.	Horseshoe worms	1			1	
	Count: No of Individuals		62	99	98	140	143
			02	55	58	149	
	Count: No of Taxa		19	19	24	149	19
							19
	Count: No of Taxa		19	19	24 2.43910003	19 2.24379992	19
GenGroup	Count: No of Taxa SW_Diversity SW_Evenness	Common Name	19 2.51279998 0.85339999	19 2.51900005 0.85549998	24 2.43910003 0.76749998	19 2.24379992 0.76200002	19 2.11339998 0.7177
GenGroup Bivalvia	Count: No of Taxa SW_Diversity SW_Evenness Taxa	Common Name	19 2.51279998 0.85339999 Site 4-01	19 2.51900005 0.85549998 Site 4-02	24 2.43910003	19 2.24379992	19 2.11339998
GenGroup Bivalvia	Count: No of Taxa SW_Diversity SW_Evenness	Common Name Cockle (Huangi)	19 2.51279998 0.85339999 Site 4-01 Cockles (mm)	19 2.51900005 0.85549998 Site 4-02	24 2.43910003 0.76749998 Site 4-03	19 2.24379992 0.76200002 Site 4-04	19 2.11339998 0.7177 Site 4-05
•	Count: No of Taxa SW_Diversity SW_Evenness Taxa		19 2.51279998 0.85339999 Site 4-01 Cockles (mm) 3mm	19 2.51900005 0.85549998 Site 4-02 9mm	24 2.43910003 0.76749998 Site 4-03 12mm	19 2.24379992 0.76200002 Site 4-04 9mm	19 2.11339998 0.7177 Site 4-05 10mm
•	Count: No of Taxa SW_Diversity SW_Evenness Taxa		19 2.51279998 0.85339999 Site 4-01 Cockles (mm) 3mm 2mm x 7	19 2.51900005 0.85549998 Site 4-02 9mm 8mm x 2	24 2.43910003 0.76749998 Site 4-03 12mm 10mm x 3	19 2.24379992 0.76200002 Site 4-04 9mm 6mm	19 2.11339998 0.7177 Site 4-05 10mm 8mm
•	Count: No of Taxa SW_Diversity SW_Evenness Taxa		19 2.51279998 0.85339999 Site 4-01 Cockles (mm) 3mm	19 2.51900005 0.85549998 Site 4-02 9mm 8mm x 2 7mm	24 2.43910003 0.76749998 Site 4-03 12mm 10mm x 3 9mm	19 2.24379992 0.76200002 Site 4-04 9mm 6mm 5mm x 3	19 2.11339998 0.7177 Site 4-05 10mm 8mm 7mm x 2
•	Count: No of Taxa SW_Diversity SW_Evenness Taxa		19 2.51279998 0.85339999 Site 4-01 Cockles (mm) 3mm 2mm x 7	19 2.51900005 0.85549998 Site 4-02 9mm 8mm x 2 7mm 3mm x 3	24 2.43910003 0.76749998 Site 4-03 12mm 10mm x 3 9mm 8mm	19 2.24379992 0.76200002 Site 4-04 9mm 6mm 5mm x 3 4mm x 3	19 2.11339998 0.7177 Site 4-05 10mm 8mm 7mm x 2 6mm
•	Count: No of Taxa SW_Diversity SW_Evenness Taxa		19 2.51279998 0.85339999 Site 4-01 Cockles (mm) 3mm 2mm x 7	19 2.51900005 0.85549998 Site 4-02 9mm 8mm x 2 7mm 3mm x 3 2mm x 2	24 2.43910003 0.76749998 Site 4-03 12mm 10mm x 3 9mm 8mm 7mm	19 2.24379992 0.76200002 Site 4-04 9mm 6mm 5mm x 3 4mm x 3 3mm x 8	19 2.11339998 0.7177 Site 4-05 10mm 8mm 7mm x 2 6mm 4mm x 3
•	Count: No of Taxa SW_Diversity SW_Evenness Taxa		19 2.51279998 0.85339999 Site 4-01 Cockles (mm) 3mm 2mm x 7	19 2.51900005 0.85549998 Site 4-02 9mm 8mm x 2 7mm 3mm x 3	24 2.43910003 0.76749998 Site 4-03 12mm 10mm x 3 9mm 8mm 7mm 4mm	19 2.24379992 0.76200002 Site 4-04 9mm 6mm 5mm x 3 4mm x 3 3mm x 8 2mm x 8	19 2.11339998 0.7177 Site 4-05 10mm 8mm 7mm x 2 6mm 4mm x 3 2mm x 14
•	Count: No of Taxa SW_Diversity SW_Evenness Taxa		19 2.51279998 0.85339999 Site 4-01 Cockles (mm) 3mm 2mm x 7	19 2.51900005 0.85549998 Site 4-02 9mm 8mm x 2 7mm 3mm x 3 2mm x 2	24 2.43910003 0.76749998 Site 4-03 12mm 10mm x 3 9mm 8mm 7mm	19 2.24379992 0.76200002 Site 4-04 9mm 6mm 5mm x 3 4mm x 3 3mm x 8	19 2.11339998 0.7177 Site 4-05 10mm 8mm 7mm x 2 6mm 4mm x 3

Bivalvia

Paphies australis

Pipi

General Group	Таха	Common Name	Site 5-A	Site 5-B	Site 5-C	Site 5-D	Site 5-E
Anthozoa	Anthopleura aureoradiata	Anemone		1			
Anthozoa	Edwardsia sp.	Burrowing anemone					
Nemertea	Nemertea	Proboscis worms			1		2
Sipuncula	Themiste sp.	Peanut worm					
Gastropoda	Cominella glandiformis	Mud Flat Whelk		1	2	1	1
Gastropoda	Diloma subrostrata	Mud flat topshell					
Gastropoda	Lunella smaragdus	Cat's Eye					
Gastropoda	Micrelenchus tenebrosus	Grazing snail					
Gastropoda	Neoguraleus sp.	Spiraled shell					
Gastropoda	Notoacmea sp.	Limpet			1	2	
Gastropoda	Turbonilla sp.	Small spiral shell					
Gastropoda	Xymene sp.	Small snail					
Gastropoda	Zeacumantus lutulentus	Spireshell	1	1	2		2
Gastropoda	Zeacumantus subcarinatus	Small Mud Snail					
Opisthobranchia	Haminoea zelandiae	Bubble shell					
Bivalvia	Arthritica bifurca	Small bivalve				3	
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	3	5	11	14	18
Bivalvia	Felaniella (zemysia) zelandica	Bivalve					
Bivalvia	Macomona liliana	Wedge shell (Hanikura)	2	1	4	8	
Bivalvia	Mysella sp.	Small bivalve					
Bivalvia	Nucula hartvigiana	Nut Shell	2	3	4	7	25
Bivalvia	Paphies australis	Pipi					
Bivalvia	Soletellina sp.	Golden sunset shell					
Oligochaeta	Oligochaeta	Oligochaete worms	8	8	1	2	
Polychaeta: Sphaerodoridae	Sphaerodoropsis sp.	Small polychaete worm	-	-	1		
Polychaeta: Orbiniidae	Orbinia papillosa	Polychaete worm	1	8	-	1	
Polychaeta: Orbiniidae	Scoloplos cylindrifer	Polychaete worm		-			1
Polychaeta: Paraonidae	Paraonidae	Polychaete worm					-
Polychaeta: Paraonidae	Aricidea sp.	Polychaete worm			1		3
Polychaeta: Spionidae	Aonides trifida	Polychaete worm			-	1	Ū
Polychaeta: Spionidae	Boccardia sp.	Polychaete worm	5	3	1	2	2
Polychaeta: Spionidae	Prionospio aucklandica	Polychaete worm	34	24	48	15	19
Polychaeta: Spionidae	Scolecolepides benhami	Polychaete worm	51		10	1	10
Polychaeta: Spionidae	Scolelepis sp.	Polychaete worm				-	1
Polychaeta: Magelonidae	Magelona dakini	Polychaete worm		3		1	3
Polychaeta: Capitellidae	Heteromastus filiformis	Polychaete worm		5	1	-	2
Polychaeta: Maldanidae	Maldanidae	Bamboo Worms		1	Ŧ	1	1
Polychaeta: Syllidae	Sphaerosyllis sp.	Polychaete worm	1	-		-	2
Polychaeta: Nereidae	Nereidae (juvenile)	Rag worms	3	4	3	6	6
Polychaeta: Nereidae	Perinereis vallata	Rag worm	5	-	5	0	0
Polychaeta: Glyceridae	Glyceridae	Polychaete worm		1	1		1
Polychaeta: Nephtyidae	Aglaophamus sp.	Polychaete worm		Ŧ	Ŧ		Ŧ
Polychaeta: Serpulidae	Spirobranchus sp.	Fan worm					
Crustacea	Nebalia sp.	Small crustacean			1		
Cumacea	Cumacea	Cumaceans	6	10	1 2		
			U	10	2		
Tanaidacea	Tanaid sp.	Tanaid Shrimp					

lsopoda	Exosphaeroma planulum	Isopod				3	1
mphipoda	Corophiidae	Amphipod (family)					
Amphipoda	Haustoridae	Amphipod (family)			2	15	5
Amphipoda	Lysianassidae	Amphipod (family)					
Amphipoda	Phoxocephalidae	Amphipod (family)					
Amphipoda	Amphipoda Unid.	Amphipod	2	4	6		2
Decapoda	Alpheus sp.	Snapping shrimp					
Decapoda	Austrohelice crassa	Tunnelling Mud Crab					
Decapoda	Halicarcinus whitei	Pill-box Crab					
Decapoda	Hemiplax hirtipes	Stalk-eyed Mud Crab					
Dstracoda	Copytus novaezealandiae	Ostracod					
Ostracoda	Diasterope grisea	Ostracod					
Ostracoda	Euphilomedes agilis	Ostracod					
Dstracoda	Parasterope quadrata	Ostracod			1		
Ostracoda	Phylctenophora zealandica	Ostracod					
Ostracoda	Scleroconcha arcuata	Ostracod					
Copepoda	Copepoda	Copepods					
Cirripedia	Austrominius modestus	Estuarine Barnacle					
nsecta	Dolichopodidae larvae	small fly larvae					
Phoronida	Phoronus sp.	Horseshoe worms					
	Count: No of Individuals		68	78	94	83	97
	Count: No of Taxa		12	16	20	17	19
	SW_Diversity		1.77719998	2.28500009	1.95949996	2.37129998	2.28449988
	SW_Evenness		0.71520001	0.82410002	0.6541	0.83700001	0.77590001
							Site 5-05
GenGroup	Таха	Common Name	Site 5-01	Site 5-02	Site 5-03	Site 5-04	
GenGroup Bivalvia	Taxa Austrovenus stutchburvi	Common Name Cockle (Huangi)	Site 5-01 Cockles (mm	Site 5-02	Site 5-03	Site 5-04	Sile J-0J
GenGroup Bivalvia	Taxa Austrovenus stutchburyi	Common Name Cockle (Huangi)	Cockles (mm)			
•			Cockles (mm 2mm) 20mm	3mm x 5	4mm	10mm
•			Cockles (mm) 20mm 4mm	3mm x 5 2mm x 3	4mm 3mm	10mm 8mm
•			Cockles (mm 2mm	20mm 4mm 3mm x 2	3mm x 5	4mm 3mm 2mm x 4	10mm 8mm 5mm x 4
•			Cockles (mm 2mm) 20mm 4mm	3mm x 5 2mm x 3	4mm 3mm	10mm 8mm 5mm x 4 4mm x 4
			Cockles (mm 2mm	20mm 4mm 3mm x 2	3mm x 5 2mm x 3	4mm 3mm 2mm x 4	10mm 8mm 5mm x 4

Bivalvia

Paphies australis

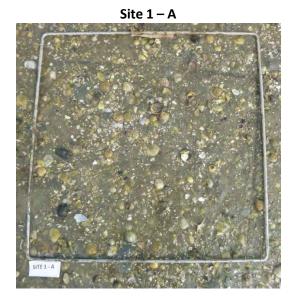
General Group	Таха	Common Name	Site 6-A	Site 6-B	Site 6-C	Site 6-D	Site 6-E
Anthozoa	Anthopleura aureoradiata	Anemone	4	17	4	8	8
Anthozoa	Edwardsia sp.	Burrowing anemone		1	1		1
Nemertea	Nemertea	Proboscis worms	1	2	3	1	1
Sipuncula	Themiste sp.	Peanut worm					
Gastropoda	Cominella glandiformis	Mud Flat Whelk	2	3	1	2	1
astropoda	Diloma subrostrata	Mud flat topshell	4	5	2	3	3
Gastropoda	Lunella smaragdus	Cat's Eye		1			
astropoda	Micrelenchus tenebrosus	Grazing snail	7	6	3	11	2
astropoda	Neoguraleus sp.	Spiraled shell	1	1		1	
astropoda	Notoacmea sp.	Limpet	15	17	12	16	12
astropoda	Turbonilla sp.	Small spiral shell					
iastropoda	Xymene sp.	Small snail					
astropoda	Zeacumantus lutulentus	Spireshell					
astropoda	Zeacumantus subcarinatus	Small Mud Snail	1	1	2		
pisthobranchia	Haminoea zelandiae	Bubble shell	2	_	-		
valvia	Arthritica bifurca	Small bivalve			8	2	
ivalvia	Austrovenus stutchburyi	Cockle (Huangi)	45	66	74	51	34
ivalvia	Felaniella (zemysia) zelandica	Bivalve					
ivalvia	Macomona liliana	Wedge shell (Hanikura)	1	3	2		1
ivalvia	Mysella sp.	Small bivalve	1	-	5		
ivalvia	Nucula hartvigiana	Nut Shell	19	29	42	28	21
ivalvia	Paphies australis	Pipi	20			20	
ivalvia	Soletellina sp.	Golden sunset shell					
ligochaeta	Oligochaeta	Oligochaete worms	1				
olychaeta: Sphaerodoridae	Sphaerodoropsis sp.	Small polychaete worm	-				
blychaeta: Orbiniidae	Orbinia papillosa	Polychaete worm					
olychaeta: Orbiniidae	Scoloplos cylindrifer	Polychaete worm					
olychaeta: Paraonidae	Paraonidae	Polychaete worm					
olychaeta: Paraonidae	Aricidea sp.	Polychaete worm		1	2	1	1
olychaeta: Spionidae	Aonides trifida	Polychaete worm	12	25	15	6	1
olychaeta: Spionidae	Boccardia sp.	Polychaete worm	12	25	15	0	-
olychaeta: Spionidae	Prionospio aucklandica	Polychaete worm	127	241	119	212	144
olychaeta: Spionidae	Scolecolepides benhami	Polychaete worm	127	1	115	212	144
olychaeta: Spionidae	Scolelepis sp.	Polychaete worm		T			
olychaeta: Magelonidae	Magelona dakini	Polychaete worm					
olychaeta: Capitellidae	Heteromastus filiformis	-	1	c	c	F	7
olychaeta: Maldanidae	Maldanidae	Polychaete worm Bamboo Worms	4 1	6 1	6 1	5 2	/
-	Sphaerosyllis sp.		T	T	T	2	
olychaeta: Syllidae		Polychaete worm	1			1	
olychaeta: Nereidae	Nereidae (juvenile)	Rag worms	1			1	
olychaeta: Nereidae	Perinereis vallata	Rag worm Rolychaoto worm					
olychaeta: Glyceridae	Glyceridae	Polychaete worm					
olychaeta: Nephtyidae	Aglaophamus sp.	Polychaete worm		2		2	
olychaeta: Serpulidae	Spirobranchus sp.	Fan worm	1	3		3	
rustacea	Nebalia sp.	Small crustacean	1		1	1	
iumacea	Cumacea	Cumaceans Transid Christer	1		1	1	
anaidacea	Tanaid sp.	Tanaid Shrimp					

Isopoda	Exosphaeroma planulum	Isopod			2	1	
Amphipoda	Corophiidae	Amphipod (family)					
Amphipoda	Haustoridae	Amphipod (family)					
Amphipoda	Lysianassidae	Amphipod (family)					
Amphipoda	Phoxocephalidae	Amphipod (family)	1	12	14	10	6
Amphipoda	Amphipoda Unid.	Amphipod	7	4	2	10	1
Decapoda	Alpheus sp.	Snapping shrimp					
Decapoda	Austrohelice crassa	Tunnelling Mud Crab					
Decapoda	Halicarcinus whitei	Pill-box Crab					2
Decapoda	Hemiplax hirtipes	Stalk-eyed Mud Crab					
Ostracoda	Copytus novaezealandiae	Ostracod					
Ostracoda	Diasterope grisea	Ostracod					
Ostracoda	Euphilomedes agilis	Ostracod	4	1	7	6	3
Ostracoda	Parasterope quadrata	Ostracod					
Ostracoda	Phylctenophora zealandica	Ostracod	1				
Ostracoda	Scleroconcha arcuata	Ostracod					
Copepoda	Copepoda	Copepods				1	
Cirripedia	Austrominius modestus	Estuarine Barnacle	1	13	1	12	4
Insecta	Dolichopodidae larvae	small fly larvae					
Phoronida	Phoronus sp.	Horseshoe worms					
	Count: No of Individuals		265	460	329	394	253
	Count: No of Taxa		27	25	24	24	19
	SW_Diversity		1.94640005	1.82910001	2.08450007	1.83179998	1.63919997
	SW_Evenness		0.59060001	0.56819999	0.6559	0.57639998	0.55669999
GenGroup	Таха	Common Name	Site 6-01	Site 6-02	Site 6-03	Site 6-04	Site 6-05
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	Cockles (mm)			
			28mm	26mm	19mm	26mm	23mm x 2
			22mm	22mm	18mm	18mm	20mm
			20mm x 2	21mm	15mm	5mm	10mm
			15mm	19mm	12mm	4mm x 3	6mm
			14mm	8mm	10mm	3mm x 6	3mm x 5
			3mm x 2	7mm	8mm	2mm x 22	2mm x 18
			2mm x 15	6mm x 2	4mm	1mm x 17	1mm x 6
			1mm x 22	3mm x 8	3mm x 12		
				2mm x 20	2mm x 37		
				1mm x 20	1mm x 18		
Bivalvia	Paphies australis	Pipi					

General Group	Таха	Common Name	Site 7-A	Site 7-B	Site 7-C	Site 7-D	Site 7-E
Anthozoa	Anthopleura aureoradiata	Anemone	3				
Anthozoa	Edwardsia sp.	Burrowing anemone				1	1
Nemertea	Nemertea	Proboscis worms				1	
Sipuncula	Themiste sp.	Peanut worm					
Gastropoda	Cominella glandiformis	Mud Flat Whelk	3				1
Gastropoda	Diloma subrostrata	Mud flat topshell					
Gastropoda	Lunella smaragdus	Cat's Eye					
Gastropoda	Micrelenchus tenebrosus	Grazing snail					
Gastropoda	Neoguraleus sp.	Spiraled shell					
Gastropoda	Notoacmea sp.	Limpet					
Gastropoda	Turbonilla sp.	Small spiral shell					
Gastropoda	Xymene sp.	Small snail					
Gastropoda	Zeacumantus lutulentus	Spireshell					
Gastropoda	Zeacumantus subcarinatus	Small Mud Snail					
Dpisthobranchia	Haminoea zelandiae	Bubble shell					
Bivalvia	Arthritica bifurca	Small bivalve			2		
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	18	13	6	17	8
Bivalvia	Felaniella (zemysia) zelandica	Bivalve			-		-
Bivalvia	Macomona liliana	Wedge shell (Hanikura)					
Bivalvia	Mysella sp.	Small bivalve	6	1	1	3	1
Bivalvia	Nucula hartvigiana	Nut Shell	Ũ	-	-	U U	-
Bivalvia	Paphies australis	Pipi					
Bivalvia	Soletellina sp.	Golden sunset shell					
Digochaeta	Oligochaeta	Oligochaete worms	1				1
Polychaeta: Sphaerodoridae	Sphaerodoropsis sp.	Small polychaete worm	-				-
Polychaeta: Orbiniidae	Orbinia papillosa	Polychaete worm					
Polychaeta: Orbiniidae	Scoloplos cylindrifer	Polychaete worm	13	3	4	3	4
Polychaeta: Paraonidae	Paraonidae	Polychaete worm	15	5	-	5	-
Polychaeta: Paraonidae	Aricidea sp.	Polychaete worm					
Polychaeta: Spionidae	Aonides trifida	Polychaete worm		1	2		
Polychaeta: Spionidae	Boccardia sp.	Polychaete worm		1	2		
Polychaeta: Spionidae	Prionospio aucklandica	Polychaete worm	1	2	2		
Polychaeta: Spionidae	Scolecolepides benhami	Polychaete worm	T	2	2		
Polychaeta: Spionidae	Scolelepis sp.	Polychaete worm					
Polychaeta: Magelonidae	Magelona dakini	Polychaete worm					
Polychaeta: Capitellidae	Heteromastus filiformis	Polychaete worm					
Polychaeta: Maldanidae	Maldanidae	Bamboo Worms					
-							
Polychaeta: Syllidae	Sphaerosyllis sp.	Polychaete worm			1	1	
Polychaeta: Nereidae	Nereidae (juvenile)	Rag worms			1	1	
Polychaeta: Nereidae	Perinereis vallata	Rag worm					
Polychaeta: Glyceridae	Glyceridae	Polychaete worm					
Polychaeta: Nephtyidae	Aglaophamus sp.	Polychaete worm					
Polychaeta: Serpulidae	Spirobranchus sp.	Fan worm					
Crustacea	Nebalia sp.	Small crustacean					
Cumacea	Cumacea	Cumaceans					
Tanaidacea	Tanaid sp.	Tanaid Shrimp					

Isopoda	Exosphaeroma planulum	Isopod					
Amphipoda	Corophiidae	Amphipod (family)					
Amphipoda	Haustoridae	Amphipod (family)					
Amphipoda	Lysianassidae	Amphipod (family)					
Amphipoda	, Phoxocephalidae	Amphipod (family)					
Amphipoda	Amphipoda Unid.	Amphipod					
Decapoda	Alpheus sp.	Snapping shrimp					
Decapoda	Austrohelice crassa	Tunnelling Mud Crab					
Decapoda	Halicarcinus whitei	Pill-box Crab					
Decapoda	Hemiplax hirtipes	Stalk-eyed Mud Crab					
Ostracoda	Copytus novaezealandiae	Ostracod					
Ostracoda	Diasterope grisea	Ostracod					
Ostracoda	Euphilomedes agilis	Ostracod					
Ostracoda	Parasterope quadrata	Ostracod					
Ostracoda	Phylctenophora zealandica	Ostracod					
Ostracoda	Scleroconcha arcuata	Ostracod					
Copepoda	Copepoda	Copepods					
Cirripedia	Austrominius modestus	Estuarine Barnacle	2				
Insecta	Dolichopodidae larvae	small fly larvae			1	1	2
Phoronida	Phoronus sp.	Horseshoe worms					
	Count: No of Individuals		47	20	19	27	18
	Count: No of Taxa		8	5	8	7	7
	SW_Diversity		1.63530004	1.09440005	1.86790001	1.26779997	1.58109999
	SW_Evenness		0.78640002	0.68000001	0.89829999	0.65149999	0.8125
GenGroup	Таха	Common Name	Site 7-01	Site 7-02	Site 7-03	Site 7-04	Site 7-05
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	Cockles (mm		Site 7-05	5112 7-04	Site 7-05
Divalvia	Austrovenus statenburyi		18mm	15mm	2mm x 3	12mm x 2	10mm
			17mm	13mm x 2	1mm x 3	12mm x 2	2mm x 4
			11mm x 2	13mm x 2 11mm	TIIIIIX2	9mm x 3	1mm x 3
			10mm	5mm		7mm	
			2mm x 2	3mm		6mm	
			1mm x 11	2mm x 3		3mm	
			TIIIII X TT	1mm x 4		2mm x 2	
				111111 X 4		1mm x 5	
						TUUUY D	

Paphies australis


General Group	Таха	Common Name	Site 8-A	Site 8-B	Site 8-C	Site 8-D	Site 8-E
Anthozoa	Anthopleura aureoradiata	Anemone					
Anthozoa	Edwardsia sp.	Burrowing anemone					
Nemertea	Nemertea	Proboscis worms					
Sipuncula	Themiste sp.	Peanut worm					1
Gastropoda	Cominella glandiformis	Mud Flat Whelk		1			
Gastropoda	Diloma subrostrata	Mud flat topshell					
Gastropoda	Lunella smaragdus	Cat's Eye					
Gastropoda	Micrelenchus tenebrosus	Grazing snail					
Gastropoda	Neoguraleus sp.	Spiraled shell					
Gastropoda	Notoacmea sp.	Limpet					
Gastropoda	Turbonilla sp.	Small spiral shell					
Gastropoda	Xymene sp.	Small snail					
Gastropoda	Zeacumantus lutulentus	Spireshell					
Gastropoda	Zeacumantus subcarinatus	Small Mud Snail		1			
Opisthobranchia	Haminoea zelandiae	Bubble shell					
Bivalvia	Arthritica bifurca	Small bivalve		3			
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	1	3	1	1	
Bivalvia	Felaniella (zemysia) zelandica	Bivalve					
Bivalvia	Macomona liliana	Wedge shell (Hanikura)					
Bivalvia	Mysella sp.	Small bivalve					
Bivalvia	Nucula hartvigiana	Nut Shell					
Bivalvia	Paphies australis	Pipi					
Bivalvia	Soletellina sp.	Golden sunset shell					
Oligochaeta	Oligochaeta	Oligochaete worms	9	4	5	7	36
Polychaeta: Sphaerodoridae	Sphaerodoropsis sp.	Small polychaete worm					
Polychaeta: Orbiniidae	Orbinia papillosa	Polychaete worm					
Polychaeta: Orbiniidae	Scoloplos cylindrifer	Polychaete worm					
Polychaeta: Paraonidae	Paraonidae	Polychaete worm					
Polychaeta: Paraonidae	Aricidea sp.	Polychaete worm					
Polychaeta: Spionidae	Aonides trifida	Polychaete worm					
Polychaeta: Spionidae	Boccardia sp.	Polychaete worm			1		
Polychaeta: Spionidae	Prionospio aucklandica	Polychaete worm	2	11			1
Polychaeta: Spionidae	Scolecolepides benhami	Polychaete worm		3			
Polychaeta: Spionidae	Scolelepis sp.	Polychaete worm					
Polychaeta: Magelonidae	Magelona dakini	Polychaete worm					
Polychaeta: Capitellidae	Heteromastus filiformis	Polychaete worm	1	2			
Polychaeta: Maldanidae	Maldanidae	Bamboo Worms					
Polychaeta: Syllidae	Sphaerosyllis sp.	Polychaete worm					
Polychaeta: Nereidae	Nereidae (juvenile)	Rag worms					
, Polychaeta: Nereidae	Perinereis vallata	Rag worm		1			
, Polychaeta: Glyceridae	Glyceridae	Polychaete worm			1		
Polychaeta: Nephtyidae	Aglaophamus sp.	Polychaete worm					
Polychaeta: Serpulidae	Spirobranchus sp.	Fan worm					
Crustacea	Nebalia sp.	Small crustacean					
Cumacea	Cumacea	Cumaceans					

Isopoda	Exosphaeroma planulum	Isopod					
Amphipoda	Corophiidae	Amphipod (family)					7
Amphipoda	Haustoridae	Amphipod (family)					
Amphipoda	Lysianassidae	Amphipod (family)					
Amphipoda	Phoxocephalidae	Amphipod (family)					
Amphipoda	Amphipoda Unid.	Amphipod					
Decapoda	Alpheus sp.	Snapping shrimp					
Decapoda	Austrohelice crassa	Tunnelling Mud Crab	3			3	6
Decapoda	Halicarcinus whitei	Pill-box Crab					
Decapoda	Hemiplax hirtipes	Stalk-eyed Mud Crab		1			2
Ostracoda	Copytus novaezealandiae	Ostracod					
Ostracoda	Diasterope grisea	Ostracod					
Ostracoda	Euphilomedes agilis	Ostracod					
Ostracoda	Parasterope quadrata	Ostracod					
Ostracoda	Phylctenophora zealandica	Ostracod					
Ostracoda	Scleroconcha arcuata	Ostracod					
Copepoda	Copepoda	Copepods					
Cirripedia	Austrominius modestus	Estuarine Barnacle		1			
Insecta	Dolichopodidae larvae	small fly larvae				1	
Phoronida	Phoronus sp.	Horseshoe worms					
	Count: No of Individuals		16	31	8	12	53
	Count: No of Taxa		5	11	4	4	6
	SW_Diversity		1.24399996	2.04060006	1.07350004	1.07509995	1.05019999
	SW_Evenness		0.773	0.85100001	0.7744	0.7755	0.58609998
GenGroup	Таха	Common Name	Site 8-01	Site 8-02	Site 8-03	Site 8-04	Site 8-05
Bivalvia	Austrovenus stutchburyi	Cockle (Huangi)	Cockles (mm		5112 8-05	5112 8-04	5112 8-05
Divalvia	Austrovenus statenbaryi		3mm	3 0mm	3mm	1mm	
			511111	3mm	511111	TUIIII	
				1mm			
				T11111			

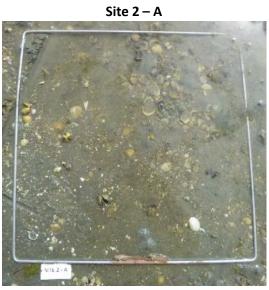
Bivalvia

Paphies australis

<u>Site 1</u>

Site 1 – B

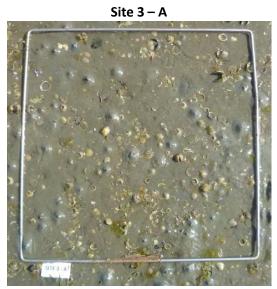
Site 1 – C



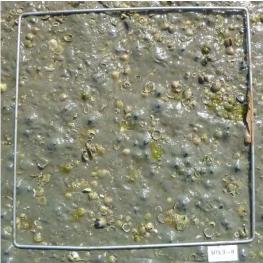
Site 1 – E

Site 2 – C

Site 2 – E

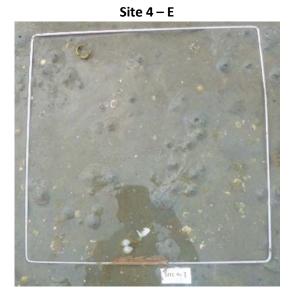

Site 2 – B

Site 2 – D


<u>Site 3</u>

Site 3 – C

Site 3 – D

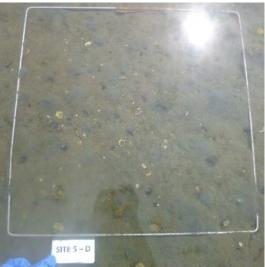

Site 4 – B

Site 4 – C

<u>Site 4</u>

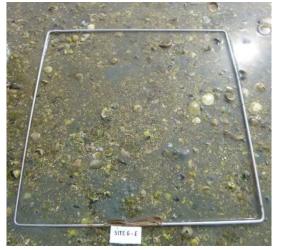
_

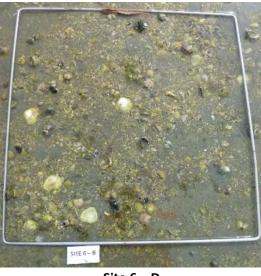
Site 5 – C


Site 5 – E

Site 5 – B

Site 5 - D



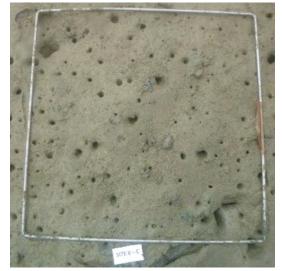

Site 6 – C

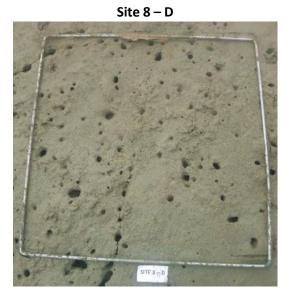
Site 6 – E

Site 6 – B

Site 6 – D

<u>Site 7</u>


Site 8 – A



Site 8 – B

Site 8 – C

Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22)

Page 1 of 2

- +64 7 858 2000 Т
- E mail@hill-labs.co.nz

W www.hill-laboratories.com

Certificate of Analysis

Client:	Tonkin & Taylor	Lab No:	2572498	SUPv2
Contact:	Susan Jackson	Date Received:	31-Mar-2021	
	C/- Tonkin & Taylor	Date Reported:	11-May-2021	
	PO Box 5271	Quote No:	110036	
	Auckland 1141	Order No:	1014358.4000	
		Client Reference:	1014358.4000	
		Submitted By:	Susan Jackson	

Sample Type: Sediment

Sample Type: Sedime	ent				
	Sample Name:	Site 1 24-Feb-2021 9:45 am	Site 2 24-Feb-2021 11:55 am	Site 3 24-Feb-2021 10:50 am	Site 4 25-Feb-2021 12:40 pm
	Lab Number:	2572498.1	2572498.2	2572498.3	2572498.4
Particle size analysis* [‡]		See attached report	See attached report	See attached report	See attached report
Total Recoverable Copper	mg/kg dry wt	1.84 ± 0.29	1.65 ± 0.27	1.10 ± 0.21	1.40 ± 0.24
Total Recoverable Lead	mg/kg dry wt	3.10 ± 0.38	2.89 ± 0.35	2.17 ± 0.27	3.04 ± 0.37
Total Recoverable Zinc	mg/kg dry wt	16.5 ± 2.7	14.6 ± 2.4	12.5 ± 2.1	15.2 ± 2.5
Chlorophyll a*‡	mg/kg as rcvd	8.1	5.4	4.4	5.0
Pheophytin a* [‡]	mg/kg as rcvd	3.3	3.4	2.4	3.4
	Sample Name:	Site 5 25-Feb-2021	Site 6 25-Feb-2021	Site 7 26-Feb-2021	Site 8 26-Feb-2021
	-	11:45 am	10:30 am	11:15 am	12:45 pm
	Lab Number:	2572498.5	2572498.6	2572498.7	2572498.8
Particle size analysis* [‡]		See attached report	See attached report	See attached report	See attached report
Total Recoverable Copper	mg/kg dry wt	1.48 ± 0.25	1.27 ± 0.23	1.19 ± 0.22	2.74 ± 0.41
Total Recoverable Lead	mg/kg dry wt	3.06 ± 0.37	2.47 ± 0.30	2.68 ± 0.33	5.03 ± 0.61
Total Recoverable Zinc	mg/kg dry wt	14.9 ± 2.4	12.9 ± 2.1	14.1 ± 2.3	19.0 ± 3.1
Chlorophyll a*‡	mg/kg as rcvd	7.2	7.2	7.7	10.7
Pheophytin a* [‡]	mg/kg as rcvd	4.8	3.8	2.2	6.5

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro_To_UOM.pdf, or contact the laboratory.

Analyst's Comments

[‡] Analysis subcontracted to an external provider. Refer to the Summary of Methods section for more details.

Appendix No.1 - Waikato University Report

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Sediment						
Test	Method Description	Default Detection Limit	Sample No			
Chlorophyll a and Pheophytin a*		0.1 mg/kg as rcvd	1-8			
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-8			
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation May contain a residual moisture content of 2-5%.	-	1-8			

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Sediment						
Test	Method Description	Default Detection Limit	Sample No			
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-8			
Particle size analysis*	Malvern Laser Sizer particle size analysis from 0.05 microns to 3.4 mm. Samples are measured in volume %. Subcontracted to Earth Sciences Department, Waikato University, Hamilton.	-	1-8			
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, trace level. US EPA 200.2.	0.2 mg/kg dry wt	1-8			
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, trace level. US EPA 200.2.	0.08 mg/kg dry wt	1-8			
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, trace level. US EPA 200.2.	0.8 mg/kg dry wt	1-8			
Chlorophyll a*	Extraction with 95% Ethanol, Spectroscopy. Subcontracted to NIWA, Hamilton. In-house.	0.1 mg/kg as rcvd	1-8			
Pheophytin*	Extraction with 95% Ethanol, Spectroscopy. Subcontracted to NIWA, Hamilton. In-house.	0.1 mg/kg as rcvd	1-8			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

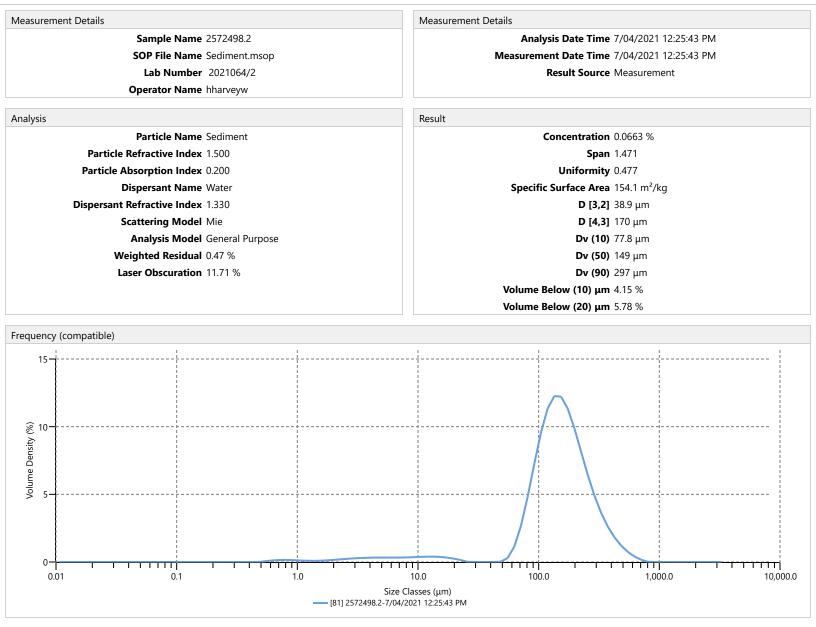
Testing was completed between 07-Apr-2021 and 11-May-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental

Malvern Instruments

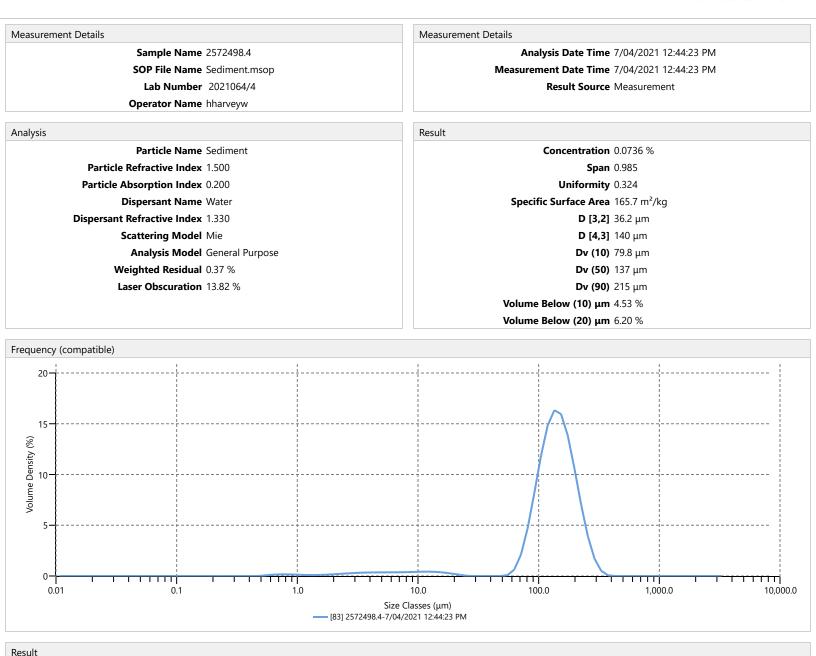

Measurement Details	Measurement Details				
Sample Name 2572498.1	Analysis Date Time 7/04/2021 12:10:48 PM				
SOP File Name Sediment.msop	Measurement Date Time 7/04/2021 12:10:48 PM				
Lab Number 2021064/1	Result Source Measurement				
Operator Name hharveyw	Result Source measurement				
Analysis	Result				
Particle Name Sediment	Concentration 0.0546 %				
Particle Refractive Index 1.500	Span 2.027				
Particle Absorption Index 0.200	Uniformity 0.633				
Dispersant Name Water	Specific Surface Area 219.8 m ² /kg				
Dispersant Refractive Index 1.330	D [3,2] 27.3 μm				
Scattering Model Mie	D [4,3] 166 μm				
Analysis Model General Purpose	Dv (10) 62.0 μm				
Weighted Residual 0.52 %	Dv (50) 132 μm				
Laser Obscuration 13.44 %	Dv (90) 329 μm				
	Volume Below (10) μm 5.69 %				
	Volume Below (20) μm 7.49 %				
Frequency (compatible)					
15					
	\wedge				
<u>چ</u> 10–					
tj					
Density Densit					
> 5 					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.0 100.0 1,000.0 10,000.0				
Size C	lasses (μm)				
[80] 2572498.1-7/04/2	2021 12:10:48 PM				

Result										
Size (µm)	% Volume Under									
0.0500	0.00	7.80	5.09	88.0	22.25	350	91.15	1410	100.00	
0.0600	0.00	15.6	6.90	105	33.48	420	94.01	1680	100.00	
0.120	0.00	31.0	7.86	125	46.21	500	96.33	2000	100.00	
0.240	0.00	37.0	7.86	149	58.88	590	98.10	2380	100.00	
0.490	0.00	44.0	7.86	177	69.57	710	99.36	2830	100.00	
0.980	0.89	53.0	8.28	210	77.90	840	99.94	3360	100.00	
2.00	1.80	63.0	10.27	250	83.77	1000	100.00			
3.90	3.35	74.0	14.44	300	88.22	1190	100.00			

Malvern Instruments

Result										
Size (µm)	% Volume Under									
0.0500	0.00	7.80	3.58	88.0	14.15	350	94.18	1410	100.00	
0.0600	0.00	15.6	5.27	105	23.58	420	97.03	1680	100.00	
0.120	0.00	31.0	6.00	125	35.89	500	98.70	2000	100.00	
0.240	0.00	37.0	6.00	149	49.95	590	99.57	2380	100.00	
0.490	0.00	44.0	6.00	177	63.30	710	99.93	2830	100.00	
0.980	0.53	53.0	6.04	210	74.80	840	100.00	3360	100.00	
2.00	1.02	63.0	6.67	250	83.64	1000	100.00			
3.90	2.10	74.0	8.81	300	90.30	1190	100.00			

Malvern Instruments


Measurement Details	Measurement Details						
Sample Name 2572498.3	Analysis Date Time 7/04/2021 12:35:34 PM						
SOP File Name Sediment.msop	Measurement Date Time 7/04/2021 12:35:34 PM						
Lab Number 2021064/3	Result Source Measurement						
Operator Name hharveyw							
Analysis	Result						
Particle Name Sediment	Concentration 0.1679 %						
Particle Refractive Index 1.500	Span 0.860						
Particle Absorption Index 0.200	Uniformity 0.278						
Dispersant Name Water	Specific Surface Area 72.08 m ² /kg						
Dispersant Refractive Index 1.330	D [3,2] 83.2 µm						
Scattering Model Mie	D [4,3] 145 μm						
Analysis Model General Purpose	Dv (10) 90.4 μm						
Weighted Residual 0.52 %	Dv (50) 140 μm						
Laser Obscuration 14.66 %	Dv (90) 210 μm						
	Volume Below (10) μm 1.97 %						
	Volume Below (20) μm 2.52 %						
Frequency (compatible)							
20							
	\wedge						
15							
(%) / / (%)							
ے 10 1 بو							
Volume Density (%)							
>							
0.01 0.1 1.0	10.0 100.0 1,000.0 10,000.0						
Size C [82] 2572498.3-7/04/2	Size Classes (μm) 3-7/04/2021 12:35:34 PM						
[02] 2312430.3-1/04/2	IN I T.J.J.J. INI						

Result										
Size (µm)	% Volume Under									
0.0500	0.00	7.80	1.54	88.0	8.55	350	99.99	1410	100.00	
0.0600	0.00	15.6	2.50	105	19.93	420	100.00	1680	100.00	
0.120	0.00	31.0	2.52	125	37.08	500	100.00	2000	100.00	
0.240	0.00	37.0	2.52	149	57.72	590	100.00	2380	100.00	
0.490	0.00	44.0	2.52	177	76.28	710	100.00	2830	100.00	
0.980	0.00	53.0	2.52	210	89.88	840	100.00	3360	100.00	
2.00	0.03	63.0	2.65	250	96.88	1000	100.00			
3.90	0.60	74.0	3.77	300	99.56	1190	100.00			

Malvern Instruments

Result							
Size (µm)	% Volume Under						
0.0500	0.00	7.80	3.89	88.0	13.40	350	99.95
0.0600	0.00	15.6	5.73	105	24.47	420	100.00
0.120	0.00	31.0	6.37	125	40.31	500	100.00
0.240	0.00	37.0	6.37	149	59.01	590	100.00
0.490	0.00	44.0	6.37	177	75.99	710	100.00
0.980	0.56	53.0	6.37	210	88.88	840	100.00
2.00	1.09	63.0	6.65	250	96.09	1000	100.00
3.90	2.26	74.0	8.19	300	99.27	1190	100.00

Hill Labs 2021

Size (µm) % Volume Under

100.00

100.00

100.00

100.00

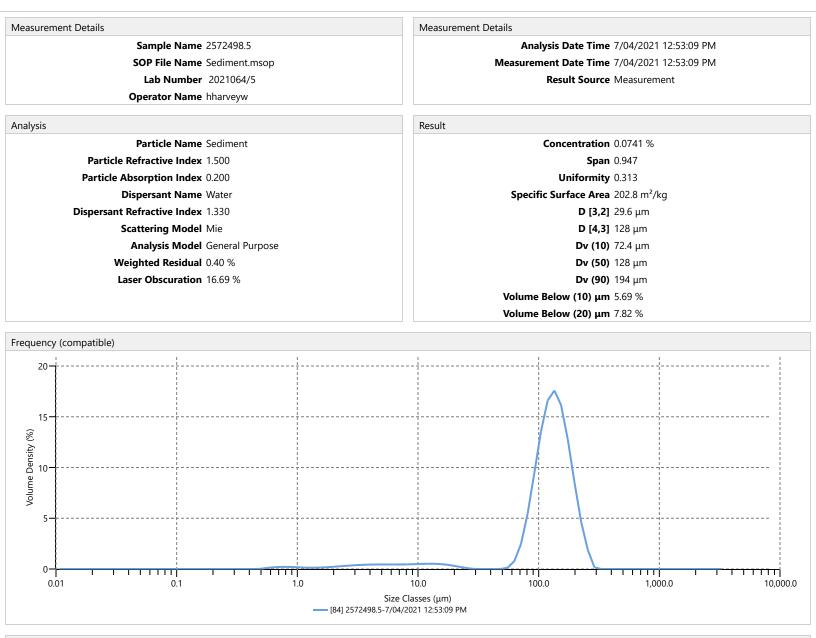
100.00

100.00

1410

1680

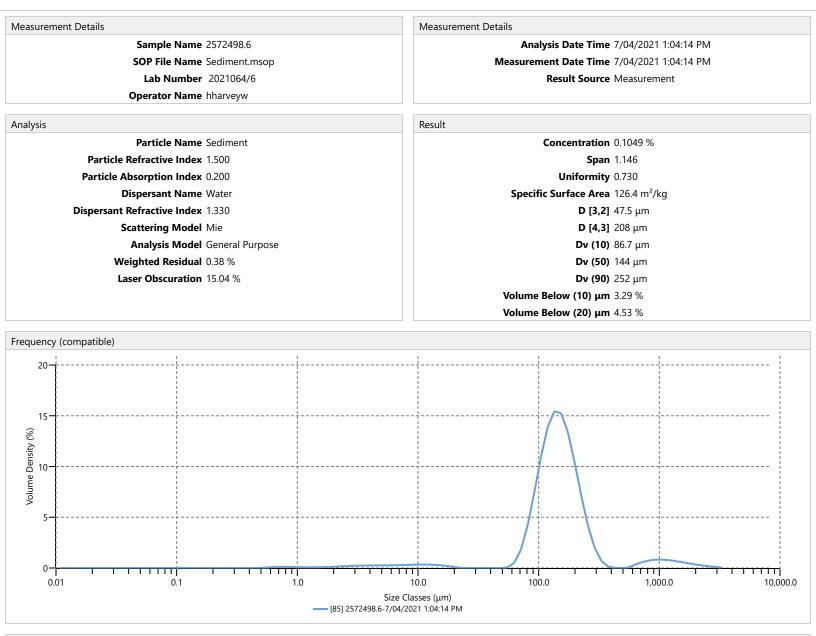
2000


2380

2830

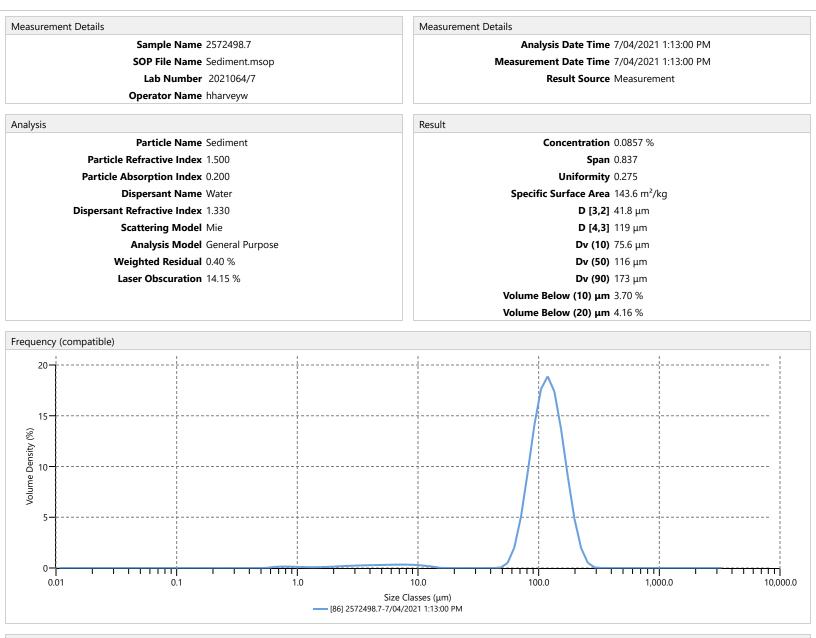
3360

Malvern Instruments



nebure										
Size (µm)	% Volume Under									
0.0500	0.00	7.80	4.93	88.0	16.37	350	100.00	1410	100.00	
0.0600	0.00	15.6	7.16	105	29.13	420	100.00	1680	100.00	
0.120	0.00	31.0	8.16	125	47.03	500	100.00	2000	100.00	
0.240	0.00	37.0	8.16	149	67.01	590	100.00	2380	100.00	
0.490	0.00	44.0	8.16	177	83.56	710	100.00	2830	100.00	
0.980	0.73	53.0	8.17	210	94.43	840	100.00	3360	100.00	
2.00	1.43	63.0	8.53	250	98.99	1000	100.00			
3.90	2.92	74.0	10.33	300	100.00	1190	100.00			

Malvern Instruments


Result

Size (µm)	% Volume Under									
0.0500	0.00	7.80	2.78	88.0	10.74	350	94.29	1410	98.29	
0.0600	0.00	15.6	4.23	105	20.89	420	94.41	1680	98.94	
0.120	0.00	31.0	4.57	125	35.66	500	94.41	2000	99.41	
0.240	0.00	37.0	4.57	149	53.36	590	94.43	2380	99.73	
0.490	0.00	44.0	4.57	177	69.69	710	94.91	2830	99.91	
0.980	0.37	53.0	4.57	210	82.37	840	95.64	3360	99.99	
2.00	0.74	63.0	4.78	250	89.80	1000	96.56			
3.90	1.59	74.0	6.09	300	93.36	1190	97.49			

Malvern Instruments

Size (µm)	% Volume Under									
0.0500	0.00	7.80	3.19	88.0	19.69	350	100.00	1410	100.00	
0.0600	0.00	15.6	4.16	105	37.63	420	100.00	1680	100.00	
0.120	0.00	31.0	4.16	125	58.89	500	100.00	2000	100.00	
0.240	0.00	37.0	4.16	149	78.31	590	100.00	2380	100.00	
0.490	0.00	44.0	4.16	177	91.31	710	100.00	2830	100.00	
0.980	0.42	53.0	4.24	210	97.94	840	100.00	3360	100.00	
2.00	0.86	63.0	5.34	250	99.74	1000	100.00			
3.90	1.79	74.0	9.30	300	99.99	1190	100.00			

Malvern Instruments

Measurement Details	Measurement Details					
Sample Name 2572498.8	Analysis Date Time 7/04/2021 1:20:31 PM					
SOP File Name Sediment.msop	Measurement Date Time 7/04/2021 1:20:31 PM					
Lab Number 2021064/8	Result Source Measurement					
Operator Name hharveyw						
Analyzia	Decult					
Analysis Particle Name Sediment	Result					
Particle Refractive Index 1.500	Concentration 0.0294 % Span 1.905					
Particle Absorption Index 0.200	Uniformity 0.585					
Dispersant Name Water	Specific Surface Area 530.3 m ² /kg					
Dispersant Refractive Index 1.330	D [3,2] 11.3 μm					
Scattering Model Mie	D [4,3] 91.4 μm					
Analysis Model General Purpose	Dv (10) 4.45 μm					
Weighted Residual 0.46 %	Dv (50) 91.6 μm					
Laser Obscuration 17.16 %	Dv (90) 179 μm					
	Volume Below (10) μm 17.07 %					
	Volume Below (20) μm 23.19 %					
Frequency (compatible)						
15						
ଛି 10−						
l su						
Density Den						
> 5						
0.01 0.1 1.0	10.0 100.0 1,000.0 10,000.0					
	lasses (μm)					
[87] 2572498.8-7/04/2	2021 1:20:31 PM					

Result										
Size (µm)	% Volume Under									
0.0500	0.00	7.80	14.95	88.0	47.65	350	100.00	1410	100.00	
0.0600	0.00	15.6	20.96	105	58.52	420	100.00	1680	100.00	
0.120	0.00	31.0	26.36	125	70.10	500	100.00	2000	100.00	
0.240	0.00	37.0	27.21	149	80.97	590	100.00	2380	100.00	
0.490	0.03	44.0	28.18	177	89.54	710	100.00	2830	100.00	
0.980	2.12	53.0	30.14	210	95.46	840	100.00	3360	100.00	
2.00	4.52	63.0	33.78	250	98.56	1000	100.00			
3.90	8.89	74.0	39.22	300	99.87	1190	100.00			
	ļ	1	1		1	1				
		1						<u> </u>		

Appendix F:	Biodiversity Compensation Model –
	Input Descriptions (Table 3.1 Baber et
	al. 2021a)

Appendix F Table 1: Biodiversity Compensation Model – Input Descriptions (Table 3.1 Baber et al. 2021a)

Model inputs	Description
Project reference/ name	Instruction Manually type project reference as applicable.
	Instruction Manually type in the biodiversity type to which the BCM relates, e.g. terrestrial vegetation, kahikatea swamp forest, raupō wetland, indigenous fauna assemblage, lizard assemblage, kānuka or Australasian bittern. Explanation
Biodiversity type	Models can be applied to broad habitat types (e.g. forest habitat or wetland habitat) for which impact scores for several specific forest or wetland habitat types can be independently determined (e.g. exotic wetland versus a raupō wetland). This approach is often taken when the same compensation action or actions are proposed for different impacts on different habitat types. For example, for a long-tailed bat BCM, native revegetation may be proposed as a common compensation measure to address effects associated with the loss of three habitat types (exotic plantation forest, exotic scrub and pasture).
	Instruction Manually type in the names of all technical experts involved in contributing to and agreeing data inputs.
Technical expert input(s)	Explanation Determining data inputs with maximum accuracy requires the involvement of experts, likely a team, including those experienced in implementing, monitoring and reporting on management actions. Evaluating the outputs of the BCM will equally benefit from interpretation by a representative team of suitability qualified and experienced experts.
	Instruction Manually type in 5 (the benchmark is always 5).
	Explanation The benchmark of 5 is a reference measure score which constitutes a hypothetical but realistic potential state. Typically, this would include a large, contiguous, native-dominated terrestrial or wetland ecosystem type that has been subject to intensive mammalian pest control over the long-term with the full suite of indigenous flora and fauna present at or near carrying capacity.
Benchmark	This habitat would generally be of such high quality that compensation actions would provide negligible additional ecological gain.
	 The benchmark is always 5 so that it aligns with the Ecological Impact Assessment Guidelines (EcIAG, Roper-Lindsay <i>et al.</i> 2018). In broad terms the following numerical scores for ecological value align with the following ecological value categories: < 1 = Negligible 1 - < 2 = Low 2 - < 3 = Moderate 3 - < 4 = High 4 - < 5 = Very High 5 = Benchmark

How many habitat types OR sites are impacted	Instruction Select from the drop-down menu the number of different habitat type or sites/locations impacted. Up to 5 different habitat types or sites can be selected. Explanation When the affected biodiversity value constitutes a broad habitat type (e.g. native forest) there may be different habitat types that are impacted. For example, the biodiversity type 'native forest' may include pūriri forest, kānuka forest, and kauri forest. Each of these specific habitat types will likely require different impact contingencies and have different ecological value scores and should therefore be considered separately. When an affected biodiversity value includes a specific habitat type that is impacted at different sites or locations, considering these as separate may be warranted if the ecological value or the type of impacts differ across sites or locations. For example, a project may have different types and magnitude of impacts on a single 0.4 ha of kauri forest, (including 0.1 ha of total habitat loss through vegetation clearance and 0.3 ha of habitat degradation through edge effects and general disturbance associated with land use change). In this situation, the impacts on this kauri forest fragment could be separated out because the type and magnitude of effects differs. Equally though, the areas could be assessed as one, provided the impacts are appropriately captured in the assessment. If there are more than 5 habitat types or sites/locations impacted, a new BCM can be created, and the overall impact scores added.
Number of proposed compensation actions	Instruction Select from the drop-down menu the number of different compensation actions proposed. Up to 5 different compensation actions can be selected. Explanation Where compensation actions differ AND are undertaken in different locations or sites, or the spatial extent of the compensation action is different, then each action must be assessed independently. In some instances, different compensation actions in the same location can be lumped into a single compensation action (e.g. native revegetation and weed control), provided appropriate justification is given. Similarly, it may be appropriate to combine the same compensation action at different locations into a single compensation action, with appropriate explanation.
Net Gain target	Instruction Manually type in the desired Net Gain target as a percentage, e.g. if the number 20 is typed, this will be converted to 20 %. Explanation In general terms, the greater the assigned Net Gain outcome target, the greater the likelihood that No Net Loss or preferably Net Gain outcomes will be achieved. For compensation a Net Gain outcome target of 10 % is considered by the authors to be generally appropriate. This equates to a 10 % exceedance of No Net Loss, i.e. the Compensation Score is 10 % higher than the Impact Score. However, the selected Net Gain outcome target will need to be justified and should be assigned on a case-by-case basis.
Habitat/site impacts	Instruction Manually type the name of the habitat(s) or site(s) impacted. The number of named habitat(s) or site(s) will need to match the number of proposed compensation actions specified above.
Impact risk contingency	Instruction Select from the drop-down menu: 1 = Negligible or low risk/ Negligible or low value (calculated impact score is multiplied by 1.0 (+0 %))

	2 = Moderate risk/Moderate value (calculated impact score is multiplied by 1.05 (+5 %)) 3 = High risk/High value (calculated impact score is multiplied by 1.1 (+10 %)) 4 = Very high risk/Very high value (calculated impact score is multiplied by 1.2 (+20 %))
	Explanation The impact risk contingency addresses the increased likelihood that adverse effects will result in the permanent and irreplaceable loss of significant biodiversity values when impacting on habitats or species that are of higher ecological value. The assigned ecological value is based on the EcIAG ecological value assessment.
	The risk contingency percentage multiplier is commensurate with the EcIAG assigned ecological value with the multiplier assigned to each ecological value category based on testing under a range of scenarios ⁶ .
	For avoidance of doubt, the impact risk contingency relates to the biodiversity type. For example:
	• If the model biodiversity type is 'long-tailed bat' then the impact risk contingency relates to the assigned ecological value for long-tailed bat and would therefore be the same across the different long-tailed bat habitat types that are impacted and included in the model (e.g. pasture versus shelterbelts, versus mature forest).
	 If the model biodiversity type is a broad habitat type, e.g. 'native forest', and the impacts relate to more specific habitat types that differ in their ecological value, then the impact risk contingency for each habitat type will be different (e.g. kauri forest versus young regenerating kānuka forest).
	Instruction Select from the drop-down menu: 1 = Low uncertainty (calculated impact score is multiplied by 1.05 (+5 %)) 2 = Moderate uncertainty (calculated impact score is multiplied by 1.1 (+10 %)) 3 = High uncertainty (calculated impact score is multiplied by 1.2 (+20 %)) 4 = Very high uncertainty (the model will not work if this option is selected)
Impact uncertainty contingency	Explanation By providing for a greater margin of error, the impact uncertainty contingency addresses the increased risk of permanent or irreplaceable biodiversity loss when impacting on more complex habitats, or on species for which there is less information regarding species- specific impacts associated with an effect. The rationale for category selection will need to be justified on ecological grounds.
	Where very high uncertainty exists in relation to adverse effects, this constitutes a limit to the use of the BCM model; project redesign or avoidance of effects should instead be considered.
	The percentage multipliers used for the impact uncertainty contingency levels have been assigned based on testing different multipliers under a range of scenarios. ⁷
Areal extent of impact (ha)	Instruction Manually type in the areal extent of impact in hectares with respect to the value being considered (incorporating both direct and indirect effects).

⁶ In general terms, the application of higher percentage multipliers was difficult to justify and generated predicted Net Loss outcomes when the converse would be expected. Similarly, the use of lower multipliers undermined confidence that predicted Net Gain model outputs would be achieved.

⁷ In general terms, the application of higher percentage multipliers for each level of uncertainty category was difficult to justify and generated predicted Net Loss outcomes when the converse would be expected. Similarly, the use of lower percentage multipliers for each level of uncertainty category undermined confidence that predicted Net Gain model outputs would be achieved.

	Explanation If there is more than one habitat type or more than one site of the same habitat type, then impact (ha) will relate to that specific habitat or site. However, the total habitat loss (ha) will be automatically summed and factored into the impact score calculations.
	Instruction Manually type in a numerical score between 0 and 5 that relates to the value score <u>prior</u> <u>to</u> impact relative to the benchmark value score of 5.
	Explanation The assigned value score in all instances must relate explicitly to the biodiversity type that the model relates to. Adequate detail must be provided to justify the assigned ecological value score based on desktop and field investigations. This enables an understanding of the adequacy and certainty surrounding the assessment and should include an explanation of why the value score was neither higher nor lower.
	Habitat value scores: For habitats, the ecological value prior to impact relates to the representativeness, rarity and distinctiveness, diversity and pattern, and ecological context associated with the habitats/vegetation types within a project footprint as assessed against the benchmark. Refer to Section 5.2 and Table 4 of the Ecological Impact Assessment Guidelines (EcIAG, Roper-Lindsay <i>et al.</i> 2018), the detail of which would be provided in the Assessment of Ecological Effects report for the Project.
	In broad terms: • < 1 = Negligible • 1 - < 2 = Low • 2 - < 3 = Moderate
Value prior to	• 3 - < 4 = High
impact	• 4 - < 5 = Very High
	• 5 = Benchmark
	NB:
	 In some instances, consideration of loss of 'potential value' may be required for impact values (e.g. for natural inland wetlands under the National Policy Statement for Freshwater Management 2020 (NPS FM)). This should be considered in the context of the value affected and the potential value if it were restored (using best practice, reasonable efforts). Ensure that the reporting outputs are clear as to whether the 'existing' or 'potential' values were used to quantify the compensation measures. The EcIAG (Roper-Lindsay <i>et al.</i> 2018) assessment of ecological value does not assess the contribution that a particular habitat type may make to ecological functioning or the provision of ecosystem services. We recommend that these factors are also considered when assessing the value of impacted habitats.
	Species or species assemblage value scores: The EcIAG (Roper-Lindsay <i>et al.</i> 2018) does not include criteria for determining habitat suitability for a given species. Since habitat suitability is a key component of a magnitude of effects assessment, this will ideally be addressed in subsequent versions of the EcIAG. In the interim we set out proposed criteria below:
	• 0 = Habitat not suitable.
	 <1 = Marginal habitat that may be used but is not important for any part of the species or species assemblage life-cycle(s).
	 1 - < 2 = Relatively low value habitat that provides some but not all of a species or species assemblages life-history requirements and/or the habitat is of low quality and

	 the relative abundance within the habitat is low compared to other habitat types. 2 - < 3 = Relatively moderate value habitat that provides for most, if not all, of a species or species assemblage's life-history requirements and/or the habitat quality is of moderate quality and the relative abundance within the habitat is moderate compared to other habitat types.
	 3 - < 4 = Relatively high value habitat that would typically provide for all species or species assemblage life-history requirements and/or provides a critical resource or resource(s) for life-history requirements. The habitat quality is high and the relative abundance within the habitat is, or is likely to be, high compared to other habitat types.
	 4 - < 5 = Relatively very high value habitat that provides for all species or species assemblage life-history requirements and/or provides a critical resource or resource(s) needed for life-history requirements. The habitat quality is very high and the relative abundance within the habitat is or is likely to be very high compared to other habitat types. Likely to be a local hotspot for that species.
	• 5 = Highest quality habitat and/or relative abundance for a given species or species assemblage, likely to be a regional hotspot or benchmark with the species or species assemblage at carrying capacity.
	As with habitat scores, adequate detail must be included from desktop and field investigations to provide transparent justification for each value score. The reader needs to understand the adequacy and certainty surrounding the assessment and requires an explanation of why the score was neither higher nor lower. The model assumes a static rather than temporally dynamic biodiversity baseline at the impact site. The predicted NNL/NG outcome is therefore relative to pre-impact values.
	In instances where population densities or relative abundance appear higher in seemingly less suitable habitats than in more suitable habitats, this will need to be addressed and reflected in the relative value scores.
	Instruction Manually type in a numerical score between 0 and 5 that relates to the value score <u>after</u> the impact relative to the benchmark value score of 5.
Value <u>after</u> impact	Explanation The explanation for determining the habitat or species scores after impact is the same as the method for determining these scores prior to impact except that the assessment value score relates to the impact site after the impact has occurred. NB:
	 The drop in ecological value relates to the magnitude of impact based on the EcIAG, which is a function of the extent, intensity, frequency and permanence of the impact. It is important to factor in all types of impacts associated with the project which may range from earthworks, vegetation and sedimentation to increased exposure to artificial lighting or noise, or domestic mammalian predators.
	• The model does not accept a value score of 0 as the formula will not work, but it does allow for a score of 0.001 (virtually zero).
Compensation	Instruction Manually enter the compensation action proposed. The number of different compensation measures (habitat(s) or site(s)) will need to match the number of proposed compensation actions specified above.
action(s)	Explanation The compensation action relates to each type of habitat creation, restoration, or enhancement activity that is proposed, e.g. native revegetation into existing pasture and/or weed and mammalian pest control in existing forest.

	As long as it is explained, it is appropriate to lump different compensation types where they are applied as a total package within a particular habitat or site (e.g. bush retirement coupled with weed control and mammalian pest control).
Discount rate	 Instruction Manually enter a discount rate. Explanation The discount rate addresses the temporal time lag between the impact occurring and the biodiversity gains being generated by the conservation action(s). A discount rate of 3 % is recommended. This is the same as the discount rate recommended in the BOAM user guide (Maseyk <i>et al.</i> 2015), which is informed by research in Gibbons <i>et al.</i> 2015. That said, we note that a discount rate of 3 % rewards benefits that deliver faster than those that take longer but provide greater ecological outcomes in the longer term, i.e. it punishes the tortoise and rewards the hare). For example, revegetation may deliver greater biodiversity gains in the long term for habitats than mammalian pest control, but all else being equal, a discount rate of 3 % will favour mammalian pest control over revegetation because gains would be predicted to occur almost immediately after commencement of pest control operations.
Finite end-point	 Instruction Manually enter the number of years between impact and assessment of biodiversity gain at the compensation site(s) resulting from compensation actions. Explanation The finite end-point is the time period (years) over which to calculate NPBV. This equates to the time between the commencement of proposed compensation action(s) and an assessment of the associated benefits for the affected biodiversity value (e.g. native revegetation at 20 years). For pest control this time period would be short because biodiversity gains occur almost immediately after commencement of pest control operations. However, these biodiversity gains will diminish once the pest control is terminated, and this needs to be addressed when applying the model. The finite end-point should generally be tied to the duration of the biodiversity management and monitoring programmes that are used to verify that the benefits at compensation sites have been achieved. For instance, if the finite end point is set at 10 years from commencement of compensation, then the biodiversity management and monitoring programme should be undertaken for 10 years (but possibly longer if predicted biodiversity gains are not achieved and adaptive management or contingency measures are required).
Compensation confidence contingency	Instruction Select from the drop-down menu: 1 = Very high confidence (> 90 %) 2 = High confidence (75 % - 90 %) 3 = Moderate confidence (50 - 75 %) 4 = Low confidence (< 50 %) (The model will not work if this option is selected). Explanation The approach used to assign compensation confidence contingency is aligned with the approached used in Maseyk <i>et al.</i> (2015) except that the term 'offset' has been changed to 'compensation'.

	 The compensation confidence contingency relates to the level of confidence in the likely success of the proposed compensation measures and methodology (see above). This reflects that even well-established management methods sometimes fail to achieve targets for a multitude of reasons. The model does not consider confidence in the implementer of the proposed compensation. Nor does it consider likelihood of abandonment of the project post-impact but prior to the implementation of compensation actions. Very high confidence: The proposed compensation measure uses methods that are well tested and repeatedly proven to achieve intended biodiversity gains; evidence-based expert opinion is that success is very likely. Likelihood of success is > 90 %. Calculated biodiversity gain is multiplied by 0.925. High confidence: The proposed compensation measure uses methods that are well known, often implemented, and which have been proven to succeed greater than 75 % of the time. However, complicating factors and/or expert opinion precludes greater
	 confidence in this compensation measure. Likelihood of success is greater than 75 % but less than 90 %. Calculated biodiversity gain is multiplied by 0.825. Moderate confidence: The proposed compensation measure uses methods that have either been successfully implemented in New Zealand or in the situation and context
	relevant to the compensation site but infrequently, or the outcomes of the proposed compensation measures are not well proven or documented, or success rates elsewhere have been shown to be variable. Likelihood of success is > 50 % but < 75 %. Calculated biodiversity gain is multiplied by 0.625.
	 Low confidence: Should not use the compensation measure and <u>the model will not</u> work if this option is selected on the basis that uncertainty is too high.
Areal extent (ha) of compensation action	Instruction Manually enter the areal extent (ha) of the proposed compensation action.
	Instruction Manually type in a numerical value score between 0 and 5 that relates to the value score at the compensation site(s) <u>prior to</u> implementation of compensation action(s).
	Explanation Adequate detail must be provided to justify the assigned ecological value score based on desktop and field investigations and assessed using EcIAG (Roper-Lindsay <i>et al.</i> 2018 or an updated version). This enables an understanding of the adequacy and certainty surrounding the assessment and should include an explanation of why the value score prior to the implementation of the compensation action(s) was neither higher nor lower.
	The EcIAG (Roper-Lindsay <i>et al.</i> 2018) assessment of ecological value does not include an assessment of value in relation to ecological functioning or the provision of ecosystem services. We recommend that these factors are also considered when assessing the habitat value associated with a compensation action(s).
	Note that the model does not accept a value score of 0 as the formula will not work, but it does allow for a score of 0.001 (virtually 0).
Value score after compensation	Instruction Manually type in a numerical value score between 0 and 5 that relates to the value score at the compensation site(s) <u>after</u> implementation of compensation action(s) as assessed at the finite end point (years).
measure	Explanation Adequate detail must be provided to justify the assigned ecological value score after implementation of compensation actions based on desktop and field investigations and

assessed using EcIAG (Roper-Lindsay et al. 2018 or an updated version).
This enables an understanding of the adequacy and certainty surrounding the assessment and should include an explanation of why the compensation value score after implementation of the compensation action(s) was neither higher nor lower.
The EcIAG (Roper-Lindsay <i>et al.</i> 2018) assessment of ecological value does not include an assessment of value in relation to ecological functioning or the provision of ecosystem services. We recommend that these factors are also considered when assessing the habitat value associated with a compensation action(s).

	+ + + + + +
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	T T T T T T T
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + +
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + +
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
www.tonkintavlor.co.nz	
www.tonkintaylor.co.nz	

+ + +

+ +