REPORT

# **Tonkin**+Taylor

# **Detailed Site Investigation**

110 Jack Lachlan Drive and 620 Whitford-Maraetai Road

Prepared for Beachlands South Limited c/- Russell Property Group

Prepared by Tonkin & Taylor Ltd Date February 2022 Job Number 1014358.v4





**Exceptional thinking together** www.tonkintaylor.co.nz

# **Document Control**

| Title: Detailed Site Investigation |         |             |              |                 |                   |
|------------------------------------|---------|-------------|--------------|-----------------|-------------------|
| Date                               | Version | Description | Prepared by: | Reviewed<br>by: | Authorised<br>by: |
| 30/07/21                           | 1       | Draft       | C. Thornton  | N. O'Rourke     | P. Millar         |
| 05/08/21                           | 1.2     | Draft       | C. Thornton  | N. O'Rourke     | P. Millar         |
| 13/08/21                           | 2       | Draft       | C. Thornton  | N. O'Rourke     | P. Millar         |
| 17/12/21                           | 3       | Draft       | C. Thornton  | N. O'Rourke     | P. Millar         |
| 28/01/22                           | 3.3     | Draft       | C. Thornton  | N. O'Rourke     | P. Millar         |
| 03/02/2022                         | 4       | Final       | C. Thornton  | N. O'Rourke     | P. Millar         |

Distribution:

Beachlands South Limited c/- Russell Property Group Tonkin & Taylor Ltd (FILE) 1 electronic copy 1 copy

# **Table of contents**

| 1            | Intro                       | duction           |                                                                                                                              | 1            |  |  |
|--------------|-----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
|              | 1.1                         | Backgrou          | und                                                                                                                          | 1            |  |  |
|              | 1.2                         | Objectiv          | e and scope of work                                                                                                          | 2            |  |  |
| 2            | Site d                      | lescriptio        | n and identification                                                                                                         | 4            |  |  |
|              | 2.1                         | Site cond         | dition                                                                                                                       | 5            |  |  |
|              | 2.2                         | Surround          | ding land use                                                                                                                | 7            |  |  |
|              | 2.3                         | Site setti        | ing                                                                                                                          | 7            |  |  |
|              |                             | 2.3.1             | Published geology                                                                                                            | 7            |  |  |
|              |                             | 2.3.2             | Site geological information                                                                                                  | 8            |  |  |
| -            |                             | 2.3.3             | Hydrogeology and hydrology                                                                                                   | 8            |  |  |
| 3            | Previ                       | ous inves         | tigations<br>Built in a City I was in the Development for the difference in the table of the table of the table of the table | 9            |  |  |
|              |                             | 3.1.1             | Drive, Beachlands <sup>3</sup>                                                                                               | achlan.<br>9 |  |  |
|              |                             | 3.1.2             | Environmental Site Assessment (ESA) – 650-680 Whitford-Maraetai Ro                                                           | ad⁴10        |  |  |
| 4            | Site h                      | istory – 7        | 12 Whitford-Maraetai Road                                                                                                    | 12           |  |  |
|              | 4.1                         | Summar            | У                                                                                                                            | 12           |  |  |
|              | 4.2                         | Historica         | al aerial photographs                                                                                                        | 12           |  |  |
|              | 4.3                         | Council p         | property files                                                                                                               | 13           |  |  |
|              | 4.4                         | Council           | contamination enquiry                                                                                                        | 14           |  |  |
| 5            | Potential for contamination |                   |                                                                                                                              |              |  |  |
| 6            | Intrus                      | sive field        | investigation                                                                                                                | 19           |  |  |
|              | 6.1                         | Rationale         |                                                                                                                              |              |  |  |
|              | 6.2                         | Investiga         | ation design                                                                                                                 | 19           |  |  |
|              | 6.3                         | Site observations |                                                                                                                              |              |  |  |
|              | б.4<br>С.Г                  | Soli sam          | pling procedure and data quality                                                                                             | 20           |  |  |
|              | 0.5<br>6.6                  | Laborato          | on chiefid                                                                                                                   | 20           |  |  |
| 7            | Conce                       |                   |                                                                                                                              |              |  |  |
| /            | Conce                       | eptual site       |                                                                                                                              | 25           |  |  |
| 8            | Deve                        | Iopment I         | Implications                                                                                                                 | 25           |  |  |
|              | 8.1                         | Regulato          | NECC                                                                                                                         | 25           |  |  |
|              |                             | 0.1.1<br>8 1 2    |                                                                                                                              | 25           |  |  |
|              |                             | 813               | Ashestos regulations                                                                                                         | 20           |  |  |
|              |                             | 8.1.4             | Earthworks and disposal implications                                                                                         | 27           |  |  |
| 9            | Concl                       | usions an         | nd Recommendations                                                                                                           | 29           |  |  |
|              | 9.1                         | Conclusi          | ons                                                                                                                          | 29           |  |  |
|              | 9.2 Recommendations         |                   |                                                                                                                              |              |  |  |
| 10           | Appli                       | cability          |                                                                                                                              | 32           |  |  |
| Appe         | ndix A                      | :                 | Structure Plan                                                                                                               |              |  |  |
| Appe         | ndix B                      | :                 | Site Photographs                                                                                                             |              |  |  |
| Appe         | ndix C                      | :                 | Historical aerial photographs – 712 Whitford-Maraetai Road                                                                   |              |  |  |
| Appe         | ndix D                      | :                 | Property file                                                                                                                |              |  |  |
| Appe         | ndix E                      | :                 | Site contamination enquiry                                                                                                   |              |  |  |
| Appendix F : |                             |                   | Summary Tables and Laboratory Analytical Results                                                                             |              |  |  |

# 1 Introduction

Tonkin & Taylor Ltd (T+T) has been commissioned by Beachlands South Limited Partnership (Beachlands South LP) c/- Russell Property Group (Russell Property) to undertake a ground contamination detailed site investigation (DSI) for the development area across three land parcels (hereafter referred to as "the site"), being Formosa Golf Resort at 110 Jack Lachlan Drive and the neighbouring properties at 620 and 712 Whitford-Maraetai Road (refer **Figure 1.1**).

This report has been prepared in general accordance with the requirements for a Preliminary Site Investigation (PSI) and DSI referred to in the National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health (NESCS)<sup>1</sup>, and as outlined in the Ministry for the Environment (MfE) Contaminated Land Management Guideline No. 1<sup>2</sup>.

The persons undertaking, managing, reviewing, and certifying this investigation are suitably qualified and experienced practitioners (SQEP), as required by the NESCS and defined in the NESCS Soil Users' Guide (April 2012).



Figure 1.1: Site Location plan (Image sourced from Auckland Council (AC) Geomaps)

# 1.1 Background

T+T understand that Beachlands South LP wish to apply for a private plan change to rezone the land for urban development purposes. A copy of the draft structure plan is presented in **Appendix A**. The plans indicate that the proposed plan change will divide the plan change area into a series of sub-precincts (such as Village Centre, Marina Point, Community, Coastal, Golf, Whitford-Maraetai Rd

<sup>&</sup>lt;sup>1</sup> Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.

<sup>&</sup>lt;sup>2</sup> Ministry for the Environment, updated 2021, Contaminated land management guidelines No. 1: Reporting on Contaminated Sites in New Zealand.

properties, 620). The structure plans show the site will include amenities such as coastal walkways, ecological areas, school, and village shops.

This ground contamination assessment has been prepared to support the plan change application and guide potential future resource consents required for subdivision, change in use and soil disturbance under the NESCS and contaminated land rules in the Auckland Unitary Plan (AUP).

Two assessments<sup>3+4</sup> have previously been carried out (one per mentioned property – a desktop assessment of Formosa Golf Resort at 110 Jack Lachlan Drive and an assessment, including targeted soil sampling, at the neighbouring property at 620 Whitford-Maraetai Road). The investigation and desktop assessment of Formosa Golf Resort at 110 Jack Lachlan Drive is presented in **Appendix A** and a summary of both mentioned assessments is provided in **Section 3**. The previous investigations identified potential contamination sources at the site (refer **Table 5.1**) which required further investigation to support the plan change application.

# **1.2** Objective and scope of work

T+T has undertaken this investigation to assess whether the NESCS and contaminated land rules in the Auckland Unitary Plan (AUP) apply to the site in support of the proposed plan change, and to provide an assessment of contaminated related soil handling and disposal implications for the proposed redevelopment.

The purpose of this investigation is to determine if any potentially contaminating activities have occurred (potentially impacting soil quality) and therefore if the proposed land use changes will be subject to National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health Regulations 2011 (NESCS) or if contaminated soil provisions in Auckland Unitary Plan (Operative in Part) are applicable. If either are applicable, further (intrusive) investigation may be needed before development and the proposed change in land use.

The scope of work for this assessment comprised:

#### 110 Jack Lachlan Drive and 620 Whitford-Maraetai Road

- Review of the existing desktop assessment reports, and preparation of an internal sampling strategy based on these reports.
- A site walkover for the collection of surface samples and advancement of hand auger boreholes. Samples will be visually assessed and logged by a suitably qualified T+T geotechnical and/or environmental staff.
- Laboratory analysis of select soil samples for heavy metals (arsenic, cadmium, chromium, copper, lead, nickel and zinc), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and semi-quantitative asbestos.
- Collection of duplicate samples for quality assurance and quality control (QA/QC) purposes.
- Assessment of the results with respect to the relevant regulatory criteria and typical soil disposal criteria for Auckland.

<sup>&</sup>lt;sup>3</sup> T+T 2020. Preliminary Site Investigation Report for Land Remediation – 110 Jack Lachlan Drive, Beachlands, 1013482.0000.v2.

<sup>&</sup>lt;sup>4</sup> Fraser Thomas Consultants, December 2012, Proposed Ahuareka rural subdivision at 650 Whitford-Maraetai Road Environmental assessment, #31883

#### 712 Whitford-Maraetai Road

- Complete a desk study to review the site history to ascertain the potential for on-site activities to have resulted in ground contamination. These activities are defined by the MfE's Hazardous Activities and Industries list (HAIL). The desk study comprised:
  - Review Council property files and planning maps
  - Review of "Site Contamination Enquiry" and Council records of pollution incidents.
  - Review of selected historical aerial photographs from Retrolens and Auckland Council's GIS Viewer.
  - A site walkover inspection.

This report documents our findings and comments on the potential for ground contamination at the site, in the context of future residential land use, including potential resource consents and disposal and earthworks implications with regard to ground contamination.

# 2 Site description and identification

The site is located to the west of Whitford-Maraetai Road, Beachlands adjoining the Waikopua Estuary in the Botany-Clevedon Ward of Manukau City. The site comprises a golf course and function centre in the north, and farmlands and residential dwellings in the south. The properties assessed within this report are identified in **Table 2.1** and **Figure 2.1**.

| Street address    | 110 Jack Lachlan Drive, 620 and 712 Whitford-Maraetai Road |  |  |
|-------------------|------------------------------------------------------------|--|--|
| Legal description | Lot 2 DP 501271                                            |  |  |
|                   | Lot 100 DP 504488                                          |  |  |
|                   | • Lot 4 DP 54105                                           |  |  |
| Site area         | A total area of 250.5075 hectares (ha) comprising:         |  |  |
|                   | • 170.4740 ha (110 Jack Lachlan Drive)                     |  |  |
|                   | • 79.9444 ha (620 Whitford-Maraetai Road)                  |  |  |
|                   | • 4.7518 ha (712 Whitford-Maraetai Road)                   |  |  |
| Current zoning    | Coastal – General Coastal Marine Zone                      |  |  |
|                   | Rural – Countryside Living Zone                            |  |  |

Table 2.1: Site identification

The properties under investigation relative to the plan change/structure plan area is shown in **Figure 2.1.** Properties within the plan change area that have not been assessed as part of this investigation are outside of Beachlands South LP control. Additionally, live zoning is not being sought for the properties outside of the areas displayed below as part of this plan change. Further assessment for those properties will be required in advance of the future plan change to rezone those areas to a live zoning.



Figure 2.1: Sites under investigation relative to the plan change/structure plan area.

# 2.1 Site condition

On 6 and 9 July 2021 T+T staff completed a site walkover of external areas of Formosa Golf Resort on 110 Jack Lachlan Drive and 620 Whitford-Maraetai Road for the purpose of soil sampling. The following site features were observed during the site walkover:

- The topography of the site is undulating, elevated at approximately 70 meters above mean sea level (m asl) in the eastern portion of the site along Whitford-Maraetai Road, gradually sloping to 10 m asl in the west. The undulating landscape is mostly natural except for some areas which were constructed using cut to fill.
- The majority of the site is vacant grazing land and golf playing fields. Access tracks and internal pathways consist of gravel and asphalt hardfill in moderately good condition, visible cracks and potholes were present.
- T+T conducted a walkover of the gully area at 620 Whitford-Maraetai Road. There was no evidence of buried rubble or rubbish as identified in previous investigations. Hand augers

advanced in the gulley identified potential fill material however this was thought to be associated with the construction of the equestrian arena.

- There was no evidence of the historical inground sheep dip or former spray race identified during the site visit.
- A stockpile of tyres was observed along the western boundary of 620 Whitford-Maraetai Road; however their use was unknown. We understand that the area where the tyre stockpile is located on is classed as a Significant Ecological Area (SEA) and that whilst no development is proposed in this area, minimal earthworks to remove the tyres may be required.
- The main Formosa function centre, bungalows and carparking is located in the centre of site. A wastewater treatment system comprised of a series of inground concrete settling tanks, control room and above ground tanks was visible to the west of the function centre.
- The large rectangular building along the northern boundary of the site was utilised for the storage of cleaning chemicals and agrichemicals. T+T personnel did not enter the building; however fertiliser bags and plastic jerry cans were identified in an open garage in the northwestern corner of the building. Minor oil staining from vehicles parking on the gravel hardstand to the west of the building was also identified, a sample was collected from this area.
- No other staining, odours or evidence of contamination was observed on-site by field staff, and no visible ACM fragments were observed in soil within the soil sampling area.

On 10 December 2021 T+T staff undertook a site walkover of external areas of 712 Whitford-Maraetai Road. The following site features were observed during the site walkover:

- The property is currently leased to The Turning Point New Zealand wellness centre in the east and grazing land in the west. Access tracks and internal pathways consist of a concrete driveway in good condition and grassed paddocks.
- Storage of small quantities (e.g. 20 L containers) of herbicides, fungicides, pest poison and a jerry can of fuel was noted in the storage shed to the east of the carport. The chemicals were stored in sealed containers either on the concrete hardstand or on shelving. There were no signs of staining or spills evident surrounding the chemical storage.
- Fruit trees, a large vegetable garden, firewood storage and wooden compost bins were identified in the eastern paddock adjacent to Whitford-Maraetai Road.
- A historic stock yard and loading race was identified to the south of the vegetable garden. There was no evidence of a former spray race within the stock yard.
- A tennis court, pavilion, ornamental garden and fruit trees were identified to the west of the residential dwelling. There was no evidence of ACM in externally viewed building materials. The observed structures consisted of timber weatherboard, brick, copper and tin.
- The grazing land in the western portion of the property was overgrown. A stream and pond runs through the centre of the property surrounded by bush and native trees. Several beehives were located along the southern boundary in addition to a small stockpile of inorganic waste which was associated with felling of a tree and bush clearance.
- There was no visual evidence of burning, staining, or contamination observed on-site by field staff.

Relevant observations made at the time of the walkovers are summarised below and selected photographs are included in **Appendix B**.

#### 2.2 Surrounding land use

The land uses in the area surrounding the site include:

- North Jack Lachlan Drive, Beachlands residential suburbs.
- South Farmland, mangroves of the Waikopua Estuary, and Whitford-Maraetai Road.
- East Farmland and Whitford-Maraetai Road.
- West Jack Lachlan Drive Esplanade Reserve, Waikopua Estuary and Tamaki Strait.

#### 2.3 Site setting

#### 2.3.1 Published geology

The published geological map of Auckland<sup>5</sup> indicates that the site is underlain by alternating sandstone and mudstone with variable volcanic content and interbedded volcaniclastic grit beds of the Waitemata Group, East Coast Bays Formation (red shading).

A portion of the site along the western boundary bordering the Waikopua Estuary consists of pumice sands, silts and gravels of the Tauranga Group (green shading).

The location of the site in context of the regional geology is presented in Figure 1.1.



Figure 2.2: Published geology of the area (source Kermode, 1992)

7

<sup>&</sup>lt;sup>5</sup> Kermode, L.O. 1992: Geology of Auckland urban area. Scale 1:50,000. Institute of Geological & Nuclear Sciences geological map 2. 1 sheet + 63 p. Institute of Geological Nuclear Sciences Ltd., Lower Hutt, New Zealand.

#### 2.3.2 Site geological information

The subsurface profile observed during intrusive investigation works consisted of topsoil followed by natural ground conditions which generally align with the published geological information. However, cut to fill earthworks were undertaken during construction of the Formosa Golf Course. The depth of fill is unknown and there is potential that the fill was non-engineered. Some marine sediments have also been disposed of near the coastal edge of 620 Whitford-Maraetai Rd.

#### 2.3.3 Hydrogeology and hydrology

No published groundwater data was available for the site. Based on topography and proximity to Tamaki Strait, groundwater is expected to be encountered between 1.5 and 5.0 m below ground level (bgl) depending on the ground level elevation. Groundwater in the northern portion of the site is expected to follow topography and flow in a north-westerly direction, whereas groundwater in the southern portion of the site flows in a south-westerly direction

AC's online GeoMaps indicates that surface water flows to the west via overland flow paths that are connected to permanent streams which run through the site, some of which are intermittent and ultimately flow to the Waikopua Creek to the west of the site. Surface water at 110 Jack Lachlan Drive also discharges into wetlands (constructed, natural, and coastal) and associated ponds.

# **3** Previous investigations

As part of the ground contamination assessment, T+T reviewed the previous desktop assessment reports undertaken by T+T (T+T 2020) and Fraser Thomas (2012). Results from these investigations are discussed below. T+T utilised information from these reports to supplement the rationale for this investigation.

The 2012 assessment of 620 Whitford-Maraetai Road identified two potential contamination sources. Testing at these locations show low levels of contaminants. Suspected asbestos fragments were identified within fill material on the site, however no asbestos analysis of this material was carried out.

The following sections provide a summary of the key findings of these investigations with respect to the potential ground contamination related risk.

# **3.1.1** Preliminary Site Investigation Report for Land Remediation – 110 Jack Lachlan Drive, Beachlands<sup>3</sup>

A desk study assessment was undertaken by T+T in 2020 to determine whether existing and historical activities listed on the MfE's HAIL have been undertaken on site, and to ascertain the potential for soil contamination which may require land remediation, in relation to the proposed change of land use at the Formosa Golf Resort. The following provide a summary of the desk study works undertaken:

- The site was used as a golf resort from approximately 1996. Prior to this it was used as pastoral land with a residential dwelling and associated farm sheds.
- Cut to fill earthworks were undertaken as part of the construction of the golf course to either create level playing fields or constructed gullies. These areas of cut to fill were identified as borrow disposal areas.
- Council records indicated the site has potentially been subject to HAIL Category A10 persistent pesticide bulk storage use due to the use of the site as a golf course.
- Council advised that their records also indicated "incidents of raw sewage dumping in relation to the on-site wastewater treatment and effluent disposal". We understand from the client that this has been rectified.
- Resource consents for the discharge of contaminants to air, and onto land or water were included in the contamination enquiry provided by AC. The consents were related to neighbouring properties that are outside of the plan change area, and were considered unlikely to have resulted in soil contamination at the site due to their location, distance and nature of contaminants.
- The desk study identified four activities as having the potential to have impacted site soils:
  - Filling during site development, depending on the source of the fill material.
  - Use of pesticides, herbicides and fungicides on the golf course.
  - Buildings built/demolished during the period when asbestos containing materials (ACM) and lead based paints were used.
  - Sewage from the on-site wastewater treatment plant.
- The impacts of the activities listed above were expected to be confined to historically filled areas, near surface soils around the existing/former buildings and the fairways, and within the

footprint of the wastewater treatment plant and constructed wetland (open water/pond, and vegetated – mixed native and exotic)<sup>6</sup>.

#### 3.1.2 Environmental Site Assessment (ESA) – 650-680 Whitford-Maraetai Road<sup>4</sup>

An ESA was undertaken by Fraser Thomas in 2012 as part of a resource consent application for the proposed Ahuareka Rural Subdivision. The following provides a summary of the ESA works:

- The site was used for mixed sheep and beef farming activities since the early 1900s. Site interviews conducted with landowners confirmed that no horticultural activities had been undertaken on the site.
- Fuel for farm equipment was stored in 44-gallon drums in a permanent location. No visual or olfactory evidence of hydrocarbon contamination was observed during the site visit.
- Two sheep dips were located on-site. The former owners identified that the older immersion sheep dip was located on flat land in the south-western corner of the site, however the sheep dip was unable to be located during the site walkover. Evidence of old fence posts were visible in the estuary; therefore it was assumed that the sheep dip was reclaimed by the tide. From the 1960s sheep dipping was undertaken via a spray race which was located on flat land midway between the old woolshed and the gulley. No visual evidence of stock yards, a spray race or in-ground structures were observed during the site visit.
- In 2003 marine sediment fill was placed to the north-west of the main residence, and along the coastal land of the western boundary. The source of the fill material was excess dredging material associated with the Pine Harbour development.

Intrusive soil sampling was conducted on 16 May 2011 at two areas based on the desktop findings detailed above. Sample results were compared to NESCS for residential 10% produce, AUP permitted activity criteria, and the published volcanic background concentrations for Auckland. The sampling rationale is outlined below:

- Six (6) samples were collected from the gulley and areas of fill at surface (0-0.2 m), 0.5 m and 1.0 m.
- Eight (8) surface samples (0-0.2 m) were collected from the former spray race area.
- Analysis of soil samples for metals, OCPs, and semi volatile organic compounds (SVOCs).

<sup>&</sup>lt;sup>6</sup> T+T, April 2021, Beachlands Plan Change: Interim deliverable – on-site wetland delineation, 1014358.4000.

|             |                                    |     | Metals  |          |        | Pesticides |                  |                   |                     |
|-------------|------------------------------------|-----|---------|----------|--------|------------|------------------|-------------------|---------------------|
|             |                                    |     | Cadmium | Chromium | Copper | Lead       | Nickel           | Zinc              | Dieldrin            |
| NES Resider | ntial (10 % produce) <sup>1</sup>  | 20  | 3       | 460      | >10000 | 210        | 400 <sup>5</sup> | 7400 <sup>₅</sup> | 2.6                 |
| AUP Permit  | ted Activity Criteria <sup>2</sup> | 100 | 7.5     | 400      | 325    | 250        | 105              | 400               | 2.7~                |
| Background  | Levels (volcanic) <sup>3</sup>     | 12  | 0.65    | 55       | 45     | 65         | 35               | 180               | <lor< td=""></lor<> |
| Typical Mar | aged Fill Criteria*                | 70  | 7.5     | 400      | 325    | 250        | 320              | 400               | 0.2                 |
| Sample ID   | Laboratory Sample ID               |     |         |          |        |            |                  |                   |                     |
| SR1         | 897258.1                           | 6   | <0.10   | 10       | 12     | 9.2        | 3                | 35                | <0.010              |
| SR2         | 897258.2                           | 7   | 0.15    | 17       | 19     | 13.9       | 26               | 86                | <0.010              |
| SR3         | 897258.3                           | 7   | <0.10   | 12       | 12     | 12         | 4                | 52                | 0.031               |
| SR4         | 897258.4                           | 7   | 0.14    | 13       | 12     | 13         | 6                | 55                | 0.027               |
| SR5         | 897258.5                           | 11  | 0.21    | 15       | 19     | 18         | 4                | 101               | 0.017               |
| SR6         | 897258.6                           | 7   | 0.32    | 13       | 23     | 14.1       | 6                | 127               | 0.017               |
| G1a         | 897258.7                           | 43  | 0.68    | 45       | 56     | 37         | 6                | <u>480</u>        | -                   |
| G1b         | 897258.8                           | 18  | 0.13    | 24       | 21     | 11.5       | 4                | 113               | -                   |
| G2a         | 897258.9                           | 47  | 0.79    | 85       | 103    | 39         | 9                | <u>1030</u>       | -                   |
| G2b         | 897258.1                           | 10  | <0.10   | 21       | 124    | 31         | 4                | 62                | -                   |
| G3a         | 897258.11                          | 49  | 0.48    | 67       | 48     | 33         | 8                | 250               | -                   |
| G3b         | 897258.12                          | 40  | 0.35    | 44       | 45     | 25         | 6                | <u>620</u>        | -                   |

#### Table 3.1: Fraser Thomas Screening Results

**Notes:** All values in mg/kg unless otherwise indicated (i.e. asbestos). '-' indicates not analysed or no relevant acceptance criteria. <LOR = less than laboratory limit of reporting. Grey font indicates values <LOR. Red values indicate that the results exceed NES recreational criteria. <u>Underlined values</u> indicates that results exceed the AUP Permitted Activity Criteria. **Bold values** indicate that results exceed the published background concentrations for volcanic soils in Auckland \* values indicate that results exceed fill criteria

- Surface samples undertaken in the vicinity of the former spray race identified the following exceedances:
  - Low levels of dieldrin in exceedance of the published background concentrations for volcanic soils in Auckland at SR3 through SR6.
- Test pit excavations at the base of gullies on the eastern part of the site identified fill material containing tyres, steel pipe, concrete, corrugated iron and pieces of suspected ACM. Analysis of samples from this area identified the following exceedances:
  - Concentrations of arsenic in exceedance of the NESCS for residential 10% produce at G1a, G2a, G3a and G3b.
  - Concentrations of zinc in exceeded of the AUP permitted activity criteria G1a, G2a and G3b.
  - Concentrations of arsenic, cadmium, chromium, copper zinc exceeded the published background concentrations for volcanic soils in Auckland.

Fraser Thomas considered that the desktop study and limited sampling investigation did not identify significant contamination issues that may impact the proposed development. However, T+T note that during the site walkover undertaken by Fraser Thomas, field personnel identified suspected ACM within fill material in a gulley. Laboratory analysis of asbestos was not included in the Fraser Thomas sampling regiment.

# 4 Site history – 712 Whitford-Maraetai Road

# 4.1 Summary

A review of the sources of historical information obtained for the site and surrounding area is set out in the following subsections.

In summary, the information reviewed shows that the site was likely originally used for grazing purposes from at least circa 1955. Site levelling activities were undertaken in the eastern portion of the property associated with the re-setting of a residential dwelling, new garage and driveway. The western portion of the property was utilised for grazing. The site use was changed from a private residence to a detoxification and rehabilitation facility run by The Turning Point New Zealand Limited in September 2021.

A small-scale vegetable garden was visible to the east of the residence by 2001 which was relocated to the eastern paddock in 2008 and replaced with a tennis court. Storage of small quantities (e.g. 20 L containers) of herbicides and fungicides glyphosate, chlorocarb, sprinter 700 DS, relay, and conquest were noted in the shed to the east of the carport. The chemicals were stored in sealed containers either on the concrete hardstand or on shelving. Containers of Zapp Encore, combination sheep drench, pest poison and a jerry can of fuel was also noted. There were no signs of staining or spills evident surrounding the chemical storage.

Review of the Auckland Council property files indicate that the roof material of the residential dwelling consisted of fibrolite (asbestos cement) shingles.

# 4.2 Historical aerial photographs

Historical aerial photographs were sourced from Retrolens and Auckland Council GeoMaps GIS viewer which are attached in **Appendix C**. Relevant features of the site and surrounding land from each aerial photograph are described in **Table 4.1** below.

| Date<br>(Source)    | Key site features                                                                                                                                             | Surrounding land features                                                                                                                                                 |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1955<br>(Retrolens) | The site consists of vacant farmland with<br>a gully feature traversing from the north-<br>western boundary terminating in the<br>eastern corner of the site. | The surrounding land use consists of vacant<br>farmland, residential dwellings and multiple<br>streams. Whitford-Maraetai Road is established<br>to the east of the site. |
| 1961<br>(Retrolens) | There were no significant changes evident.                                                                                                                    | There were no significant changes evident.                                                                                                                                |
| 1968<br>(Retrolens) | There were no significant changes evident.                                                                                                                    | Earthwork activities associated with the establishment of residential dwellings, and partially infilling the gully is visible to the north.                               |
| 1975<br>(Retrolens) | There were no significant changes evident.                                                                                                                    | No significant changes other than continual residential development of the properties to the north and south of the site.                                                 |
| 1987<br>(Retrolens) | Earthwork activities associated with the levelling the site for the purpose of a residential dwelling.                                                        | No significant changes other than the establishment of horticultural land use to the north of the site.                                                                   |
| 1996<br>(Retrolens) | A residential dwelling and pond are visible in the eastern portion of the site.                                                                               | Horticultural land use activities on the property to the north of the site has ceased. Significant                                                                        |

#### Table 4.1: Summary of aerial photograph review

|                     |                                                                                                                                                                                                                                                                                                   | earthworks is visible on the land to the north of the site, and a tree plantation to the south-east.                                                                                                                                                                                                         |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2001<br>(Retrolens) | A vegetable garden has been established<br>to the west of the residential dwelling.<br>Two unknown rectangular structures are<br>visible in the centre and western portion<br>of the site.<br>A wooden structure is visible along the<br>southern boundary in the eastern portion<br>of the site. | Small stockpiles of soil is visible on the property<br>directly north of the site, and on the property to<br>the south-east.<br>A golf course, function centre and<br>accommodation has been established on the<br>land to the north and north-west.<br>Horticultural land use is visible to the south-east. |
| 2008<br>(Retrolens) | The vegetable garden has been replaced<br>with a tennis court and moved to the<br>eastern portion of the site adjacent to the<br>stock race.                                                                                                                                                      | No significant changes other than earthworks activities to the south-east.                                                                                                                                                                                                                                   |
| 2017<br>Retrolens)  | There were no significant changes evident<br>other than fruit trees were planted in the<br>eastern paddock adjacent to Whitford-<br>Maraetai Road.                                                                                                                                                | No significant changes other than a concrete accessway and branching roads to the south-<br>east.                                                                                                                                                                                                            |

# 4.3 Council property files

The property file for 712 Whitford-Maraetai Road was received from Auckland Council on 10 December 2021. The documents in the file most relevant to prior land use are summarised in **Table 4.2** below, selected documents are included in **Appendix D**.

#### Table 4.2: AC property file review

| Date              | Summary                                                                                                                                                                                                                                                        |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| October 1976      | Application for a building permit notes that the roof shingles are to be fibrolite shingles.                                                                                                                                                                   |  |  |
| October 1976      | Drainage plans indicate the proposed re-siting of the residence, suggested driveway and proposed new garage for Mr and Mrs Macindoe. The original location of the house is unknown.                                                                            |  |  |
| May 1988          | Application by Arthur Morgenstern to install a groundwater bore on the property. The site plans for the proposed bore also identifies the location of the septic tank.                                                                                         |  |  |
| May 1988          | Drilling lots prepared by Drillwell Exploration NZ Limited indicated that the site geology consisted of clay to 0.3 m underlain by Waitemata sand to 130 m followed by Greywacke to 171 m.                                                                     |  |  |
| April 2004        | Application for building consent and plans prepared for Bruce Gillespie for a proposed barn replacing the existing car port and new septic tank system. The site plans indicate stock yards in the eastern portion of the site, and existing house and garage. |  |  |
| November<br>2020  | Maintenance record identifies that the on-site wastewater systems is in good condition and routinely checked 6 monthly.                                                                                                                                        |  |  |
| September<br>2021 | Resource consent application by The Turning Point New Zealand Limited to change the use of the existing building from residential to a detoxification and rehabilitation facility.                                                                             |  |  |

A site contamination enquiry (SCE) was placed with Auckland Council on 7 December 2021. The response provided is attached in **Appendix E** and summarised below:

- There was no contamination information held within Council records, however due to the age of the dwelling on site there is potential for asbestos or lead paint within building materials.
- An expired consent to construct a 100 mm diameter bore to a depth of approximately 180 m and installation of steel casing to a depth of approximately 91.2 m, for the extraction of groundwater for stock and domestic supply.
- Three expired consents for bore construction are located within approximately 200 m of the site.

# 5 Potential for contamination

The assessments outlined in **Section 3** identified that potential HAIL activities may have been undertaken at the site. The activities, and our interpretation of their potential contaminants of concern and an assessment of the likelihood, potential magnitude and possible extent of contamination for them are presented in **Table 5.1**. The sampling locations undertaken (see **Section 6**) are presented on **Figure 5.1** and **Figure 5.2** below.

#### Table 5.1: Potential HAIL Activities

| Land use/activity                                                                        | Potential contaminants                                                                                         | Likelihood, magnitude and possible extent of contamination                                                                                                                                                                                                                      | HAIL reference                                                                                                                                                                         | Associated<br>investigation<br>location (refer to<br>Section 0)           |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 110 Jack Lachlan Drive, Be                                                               | eachlands                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                           |
| Filling during site<br>development                                                       | Heavy metals, heavy end hydrocarbons and asbestos.                                                             | Historical filling in 1995 when the site was first developed into a golf resort.                                                                                                                                                                                                | HAIL Activity I – Intentional or<br>accidental release of<br>contaminants in fill pose a risk<br>to human health and the<br>environment.                                               | HA07, HA10,<br>HA11, HA12,<br>HA13, HA14,<br>HA15, HA16, HA17<br>and HA22 |
| Golf course – potential<br>for application of and<br>storage of persistent<br>pesticides | Arsenic, cadmium, lead,<br>mercury, copper; wide range of<br>pesticides and herbicides.                        | The site was utilised as a golf resort from<br>approximately 1995 to present day. Low<br>concentrations possible in shallow soil (typically to<br>400 mm depth).                                                                                                                | HAIL Activity A10 – Persistent<br>pesticide bulk storage or use<br>including sports turfs, market<br>gardens, orchards, glass<br>houses or spray sheds.                                | SS01 through SS10                                                         |
| Buildings<br>built/demolished during<br>time ACM and lead<br>based paints were used      | Asbestos as fibres, fines or fragments, lead.                                                                  | Construction and demolition of buildings on-site<br>between 1955 and approximately 1996. The extent<br>of contamination would likely be localised and<br>shallow soils in 'halos' immediately around the<br>buildings, unless mobilised by soil disturbance or<br>water runoff. | HAIL Activity I – Intentional or<br>accidental release of<br>contaminants, if contaminants<br>are present at concentrations<br>that pose a risk to human<br>health or the environment. | HA07, HA08,<br>HA18, SS05                                                 |
| Sewage – on-site<br>wastewater treatment<br>plant and effluent                           | Domestic waste – biological<br>hazards (bacteria, viruses)<br>Nitrogen species (nitrate,<br>nitrite, ammonia). | Council records indicate raw sewage dumping in<br>relation to the on-site wastewater treatment and<br>effluent disposal at the site. The constructed<br>wetland areas shown on the site plans indicates                                                                         | HAIL Activity G6 – Waste<br>recycling or waste or<br>wastewater treatment. If<br>contaminants are present at                                                                           | No samples<br>collected to date                                           |

| Land use/activity                                                                             | Potential contaminants                                                                                                                  | Likelihood, magnitude and possible extent of contamination                                                                                                                                                                                                                                                                                                                                                                                                                   | HAIL reference                                                                                                                                                                                           | Associated<br>investigation<br>location (refer to<br>Section 0) |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| disposal to constructed wetland areas                                                         |                                                                                                                                         | the area affected. We understand from the client<br>that this issue has been rectified. Low potential for<br>leached contaminants into underlying soil.<br>Contamination leached is usually restricted to near<br>surface soils.                                                                                                                                                                                                                                             | concentrations that pose a risk<br>to human health or the<br>environment.                                                                                                                                |                                                                 |  |
| 620 Whitford-Maraetai R                                                                       | oad                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                        | •                                                               |  |
| Filling of gullies                                                                            | Variable depending on the<br>source of the fill, however<br>commonly heavy metals, heavy<br>end hydrocarbons and<br>asbestos.           | Test pit excavation undertaking in 2012 identified<br>fill material at the base of gullies on the eastern<br>part of the site.                                                                                                                                                                                                                                                                                                                                               | HAIL Activity I – Intentional or<br>accidental release of<br>contaminants in fill pose a risk<br>to human health and the<br>environment.                                                                 | HA01 and HA04                                                   |  |
| Mixed sheep and beef<br>farming - potential for<br>livestock drip or spray<br>race operations | Arsenic, organochlorines (e.g.<br>aldrin, dieldrin, DDT, lindane)<br>and organophosphates,<br>carbamates, and synthetic<br>pyrethroids. | Site interviews confirmed the presence of a<br>historical in-ground sheep dip and above ground<br>spray race. Contamination is likely limited to<br>surface soils and localised.                                                                                                                                                                                                                                                                                             | HAIL Activity A8 – Livestock dip<br>or spray race operations.                                                                                                                                            | Sampled as part of<br>the 2012<br>investigation.                |  |
| Storage of fuel for farm equipment                                                            | Hydrocarbons including BTEX,<br>PAHs, and solvents; lead and<br>other metals, particularly if<br>waste oil handled.                     | Fuel stored in 44-gallon drums and mobile tanker<br>trailers. Low potential for localised contamination<br>of near surface soils beneath the drum storage<br>area.                                                                                                                                                                                                                                                                                                           | HAIL Activity A17 – Storage<br>tanks or drums for fuel,<br>chemicals or liquid waste.                                                                                                                    |                                                                 |  |
| 712 Whitford-Maraetai Road                                                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                          |                                                                 |  |
| Buildings<br>built/demolished during<br>time ACM and lead<br>based paints were used           | Lead, asbestos as fibres, fines,<br>or fragments.                                                                                       | Building plans held on the Auckland Council<br>property files indicated that current buildings on-<br>site were built prior to 1988. Furthermore the<br>property file indicated that the roof was<br>constructed with fibrolite (asbestos cement)<br>shingles. Given the age of the buildings, it is likely<br>that the building materials contained ACMs and/or<br>lead based paints. The extent of contamination<br>would likely be localised and shallow soils in 'halos' | Potentially a HAIL, Activity I –<br>Intentional or accidental<br>release of contaminants, if<br>contaminants are present at<br>concentrations that pose a risk<br>to human health or the<br>environment. | No soil samples<br>collected to date                            |  |

| Land use/activity                                                                  | Potential contaminants                                                                                                                                        | Likelihood, magnitude and possible extent of contamination                                                                                                                                                                    | HAIL reference                                                                                                                           | Associated<br>investigation<br>location (refer to<br>Section 0) |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                                    |                                                                                                                                                               | immediately around the buildings, unless mobilised by soil disturbance or water runoff.                                                                                                                                       |                                                                                                                                          |                                                                 |
| Potential partial infilling<br>of gully and levelling for<br>residential dwelling. | Variable depending on the<br>source of the fill. Typical<br>contaminants include heavy<br>metals, polycyclic aromatic<br>hydrocarbons (PAHs) and<br>asbestos. | Aerial photograph identified potential historical<br>filling in the 1987 aerial when the residential<br>dwelling was placed on-site. The magnitude of<br>contamination is unknown and dependent on the<br>source of the fill. | HAIL Activity I – Intentional or<br>accidental release of<br>contaminants in fill pose a risk<br>to human health and the<br>environment. | No samples<br>collected to date                                 |





Exceptional thinking together www.tonkintaylor.co.nz

| n+I | aylor                                    | LINZ | Z, StatsNZ, NIWA, Natural Earth, © OpenStreetMap contributors NZ Imagery: Eagle Technology, L<br>3CO, Community maps contributors | and Inform | ation New | Zealand, |
|-----|------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------|------------|-----------|----------|
|     | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 0    | First version                                                                                                                     | RUKO       | JORB      | 05/08/21 |

REV DESCRIPTION

|    |      | and the second second |
|----|------|-----------------------|
| нк | DATE | LOCATION PLA          |

....

Auckland-



s\210720.RUKO.Sampling locations map\210720.RUKO.1014358.5000.aprx Layout: Form with sub boundaries 2021-Dec-21 4:38 pm Drawn by MOLI

> TITLE BEACHLANDS - SAMPLE LOCATION MAP - 110 JACK LACHLAN DRIVE

| 1:10,000 | FIG No. | FIGURE 5.1 | REV | 0 |
|----------|---------|------------|-----|---|
|          |         |            |     |   |

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE - IF IN DOUBT, ASK.

14358\1014358.5000



|  | 777 | Tonkin+Taylo |
|--|-----|--------------|
|--|-----|--------------|

| Exceptional thinking together w | vww.tonkintaylor.co.nz |
|---------------------------------|------------------------|
|---------------------------------|------------------------|

| (Vecto | Vector): Eagle Technology, LINZ, StatsNZ, NIWA, Natural Earth, © OpenStreetMap contributors. |      |      | DRAWN<br>CHECKED | RUKO          | JUL.21   |   |     |
|--------|----------------------------------------------------------------------------------------------|------|------|------------------|---------------|----------|---|-----|
| 0      | First version                                                                                | XXXX | YYYY | 10/09/19         | Auckland-     |          |   |     |
| REV    | DESCRIPTION                                                                                  | GIS  | СНК  | DATE             | LOCATION PLAN | APPROVED | D | ATE |

map\210720.RUKO.1014358.5000.Contam sample map\210720.RUKO.1014358.5000.aprx Layout: Site 620 2021-Jul-30 2:45 PM Drawn by RUKO

**PROJECT CONTAMINATION SAMPLING** 

TITLE BEACHLANDS - SAMPLE LOCATION MAP - 110 JACK LACHLAN DRIVE

| 1:5.600 | FIG No.  | FIGURE 5.2 |
|---------|----------|------------|
| 1.0,000 | 110 110. | 1100110.2  |

SCALE (A3)

REV ()

# 6 Intrusive field investigation

# 6.1 Rationale

Intrusive investigations were undertaken at 110 Jack Lachlan Drive and 620 Whitford-Maraetai Road to establish if the identified contaminant sources have resulted in soil contamination at the site and provide information on earthworks management particularly to protect risks to human health and for soil disposal purposes. The investigations were also undertaken to determine potential future consenting requirements under the NESCS and Auckland Unitary Plan (AUP).

# 6.2 Investigation design

An intrusive investigation was undertaken by T+T in September 2021. The sampling locations were targeted at the potential contaminant sources described in **Table 5.1**, to achieve general coverage across the site and to align with testing previously undertaken by Fraser Thomas.

The investigation comprised surface samples at 10 locations, the excavation of 25 augered boreholes to a maximum depth of 1.0 metres below ground level (m bgl), visual observations of subsurface conditions and the collection of soil samples for laboratory analysis.

Additional sampling was undertaken by T+T in November 2021 at four locations (HA103, HA103a, HA103b, and HA103c) in the vicinity of HA06. The purpose of the sampling was to assess whether the reworked soil, including gravel, in this area could be classified as 'clean fill'.

# 6.3 Site observations

The geology observed during the intrusive investigation is discussed in **Section 2.3.2**. The following features were observed during the intrusive investigation:

- 110 Jack Lachlan Drive (Formosa Golf Course):
  - Key observations made during soil sampling at the Formosa Golf Course were:
    - Topsoil comprising of a brown to dark brown SILT/ silty CLAY with fibrous organics and occasional gravels was observed from ground level in all locations.
       Topsoil ranged between 0.1 0.3 m in thickness.
    - Yellow/orange silty CLAY was observed underlying the topsoil in all locations from the Formosa Golf Course to termination depths of approximately 0.5 m bgl.
- 620 Whitford-Maraetai Road:
  - Five (5) hand augered boreholes were advanced in the gulley area to determine the potential of filling south of what is understood to be a former equestrian area.
     Observations made during the investigations included:
    - o Topsoil comprising of a brown silty CLAY with fibrous organics was observed in all locations during this investigation from ground surface. Topsoil was observed to be 0.1 0.4 m in thickness.
    - Orange silty CLAY was observed to the termination depth of the hand auger between 0.7 – 0.8 m bgl in all locations during this investigation. Some gravel was observed in HA03 between 0.5 – 0.7 m bgl. HA03 was located on the southern bank of the former equestrian track and may be an indication of filling or reworking of material.

# 6.4 Soil sampling procedure and data quality

Sampling and analysis were conducted in general accordance with the MfE Contaminated Land Management Guidelines<sup>7</sup> and NZ Asbestos in Soil Guidelines<sup>8</sup>.

- New gloves worn for collection and placement of each sample into laboratory supplied containers.
- Non-dedicated sampling equipment was decontaminated between sampling locations using Decon-90 (a phosphate-free detergent) and freshwater rinses.
- Soils encountered were logged in general accordance with the NZ Geotechnical Society guidance.
- Preservation of samples with ice during transport from the field to the laboratory, travelling under chain of custody (CoC) documentation.
- Compliance with laboratory sample holding times was maintained.
- Laboratory testing by an accredited laboratory.

The laboratory testing was undertaken by Hill Laboratories Ltd, which is accredited for the analysis undertaken and audited annually by International Accreditation New Zealand (IANZ). The laboratory's quality control measures include testing of blanks with all batches of samples and frequent replicates and spikes, along with peer review of worksheets. Standard laboratory QA/QC reports were not examined as part of this project but are available from the laboratory on request. No anomalies were reported by the laboratory.

In addition to standard laboratory QA/QC, a quantitative measure of the overall variability or precision of the soil results was undertaken independently of the laboratory by analysis of a duplicate pair of samples collected from the site and calculating the relative percentage difference (RPD) of the metal results. The RPDs were calculated as follows (where Co is the primary sample concentration and Cd is the duplicate sample concentration):

$$RPD = \frac{(C_0 - C_d) \cdot 100\%}{\frac{(C_0 + C_d)}{2}}$$

Four duplicate samples were collected in the field during the investigation. QA/QC analytical results are presented in **Table F1, Appendix F**.

It is typically considered acceptable (refer to MfE Contaminated Land Management Guidelines No. 5) if an RPD range of less than 50% is achieved for soil samples. All parameters fall within this range.

# 6.5 Evaluation criteria

The soil testing data has been evaluated according to the requirements of the regulatory framework and applies to the site as follows:

- For the protection of human health:
  - For chemical contaminants:
    - The results have been compared to all pathways of the NESCS Contaminant Standard (SCS) to support the proposed plan change to allow for change of land use. Residential land use criteria have been adopted to be conservatively used as a proxy.

<sup>&</sup>lt;sup>7</sup> Ministry for the Environment. Contaminated Land Management Guidelines No. 5: Site Investigation and Analysis of Soil (Revised 2011).

<sup>&</sup>lt;sup>8</sup> BRANZ Ltd, 2017. New Zealand Guidelines for Assessing and Managing Asbestos in Soil.

- For asbestos:
  - For the semi-quantitative assessment of asbestos in soil, commercial/industrial and high-density residential land use Asbestos in Soil Guidelines criterion for ACM (i.e. > 7 mm fraction), and 'all site uses' for asbestos fines (AF) and fibrous asbestos (FA) (i.e. < 2 mm fraction).
- For discharges to the environment:
  - The Permitted Activity (PA) Soil Acceptance Criteria as defined in Section E30.6.1.4 of the Auckland Unitary Plan – Operative in part (AUP).
  - Given that volcanic soils were encountered in one part of the site, the published volcanic concentrations for Auckland described in the Auckland Regional Council *"Technical Publication 153 Background Concentrations of Inorganic Elements in Soils from the Auckland Region"* has been adopted for the site.
- For soil disposal (relevant for development phase of works):
  - Given the geology encountered during the site investigation, the published volcanic background concentrations for Auckland described in the Auckland Regional Council *"Technical Publication 153 – Background Concentrations of Inorganic Elements in Soils from the Auckland Region"* (and cited in Section E30.6.1.4 of the AUP) are used as a basis for acceptance of soil to clean fill sites.
  - For an initial assessment of acceptance of materials to managed fill sites, the results have also been compared to typical acceptance criteria for the Ridge Road disposal facility.

#### 6.6 Laboratory results

35 samples (including four duplicate samples) were analysed for heavy metals, PAHs, OCPs and, and 24 samples were analysed for semi-quantitative asbestos in soils. A summary of the soil results is provided in **Table F2**. Laboratory transcripts are provided in **Appendix F.** 

The analytical results show:

- For the protection of human health:
  - Concentrations of arsenic exceeded the NESCS residential (10% produce) criteria in sample SS09 collected along the northern boundary of Formosa Golf Resort.
  - Asbestos was not detected in the samples analysed.
- For discharges to the environment:
  - All analyte concentrations were below the AUP Permitted Activity Criteria (Discharge).
- Background/ disposal criteria:
  - Natural/topsoil material:
    - o Reported concentrations of contaminants were below the published background concentrations for volcanic soils in Auckland in samples.
  - Fill material:
    - <u>Fill material and underlying topsoil around SS09</u> (area of minor oil staining and potential borrow disposal area) arsenic concentrations exceed the NESCS for residential 10% produce, and PAHs were reported above the published background concentrations for volcanic soils in Auckland. Soil in this area, if proposed to be removed off-site during future development, should be disposed of to a managed fill facility.</u>

 <u>Fill material and underlying topsoil around HA06</u> – perylene exceeded the published background concentrations for volcanic soils in Auckland, however additional sampling undertaken in November 2021 did not report concentrations of contaminants above published background concentrations for volcanic soils in Auckland. Soil from this area, if proposed to be removed offsite during future development, should therefore be disposed of to a clean fill facility.

# 7 Conceptual site model

A conceptual model as defined by the MfE Contaminated Land Guideline No. 5, sets out known and potential sources of contamination, potential exposure pathways, and potential receptors. For there to be an effect from the proposed activity there has to be a contamination source and a mechanism (pathway) for contamination to affect human health or the environment (receptor).

A conceptual site model (CSM) has been developed for the proposed redevelopment of the site. The CSM takes into account the available information about the site, and our understanding of the potential effects on human health and the environment. The model is presented in **Table 7.1**.

| Source                                                                                                       | Pathway                                                                                                                                                                                                                                                                                                                    | Receptors                                                                                                                                                                                                                                                              | Pathway<br>assessment                     | Human<br>Health/Environmental<br>Effects                                                                                                                                              |  |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 110 Jack Lachlan Drive                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        |                                           |                                                                                                                                                                                       |  |  |
| Soil containing<br>elevated<br>concentrations<br>of arsenic<br>outside the<br>hazardous<br>chemical stores   | Dermal<br>contact<br>Ingestion<br>of soil<br>Inhalation<br>of dust                                                                                                                                                                                                                                                         | On-site - Future and<br>current site users<br>On-site –<br>maintenance/excavation<br>and other on-site<br>workers during soil<br>disturbance                                                                                                                           | Complete – for<br>residential land<br>use | <ul> <li>Negligible if:</li> <li>Appropriate controls<br/>are implemented during<br/>excavation works</li> <li>Impacted soil is<br/>removed off-site or<br/>capped on-site</li> </ul> |  |  |
| (1+1 2021), and<br>arsenic and zinc<br>in the gulley fill<br>material (Fraser<br>Thomas 2012).               | Migration<br>of<br>sediment<br>to the<br>environm<br>ent                                                                                                                                                                                                                                                                   | Off-site – workers and<br>general public in vicinity<br>of the disposal site<br>receiving excavated<br>materials                                                                                                                                                       | Potentially<br>complete                   | <ul> <li>Negligible if:</li> <li>Materials are disposed to an appropriate facility and capped</li> </ul>                                                                              |  |  |
| Existing on-site<br>wastewater<br>treatment and<br>disposal to land                                          | Existing on-site<br>wastewaterFurther analysis to be carried out prior to soil disturbance to confirm, although we<br>understand from the client that this issue has been rectified. Low potential for leached<br>contaminants into underlying soil. Contamination leached is usually restricted to near<br>surface soils. |                                                                                                                                                                                                                                                                        |                                           |                                                                                                                                                                                       |  |  |
| 620 Whitford-Mar                                                                                             | aetai Road                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                           |                                                                                                                                                                                       |  |  |
| Gulley fill<br>potentially<br>containing<br>asbestos (Fraser<br>Thomas 2012)                                 | Inhalation<br>of dust                                                                                                                                                                                                                                                                                                      | On-site - Future and<br>current site usersPotentially<br>completeNegligible effects if:On-site -<br>maintenance/excavation<br>and other on-site<br>workers during soil<br>disturbancePotentially<br>complete• Appropriate contr<br>are implemented<br>excavation works |                                           | <ul> <li>Negligible effects if:</li> <li>Appropriate controls<br/>are implemented during<br/>excavation works</li> <li>Impacted soil is<br/>removed off-site</li> </ul>               |  |  |
| 712 Whitford-Maraetai Road                                                                                   |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        |                                           |                                                                                                                                                                                       |  |  |
| Historic filling<br>activities and<br>buildings<br>comprising ACM<br>(and potential<br>lead-based<br>paint). |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        |                                           |                                                                                                                                                                                       |  |  |

Table 7.1: Conceptual site model

The CSM shows that arsenic and zinc concentrations could potentially pose a risk to human health during future development of the site, and works will be required to ensure that exposure is minimised. All other analyte concentrations were below NESCS and AUP criteria, and therefore are not considered to be a source of potential contamination or pose a risk to human or environmental health.

The assessment of the existing on-site wastewater treatment plant and effluent disposal to constructed wetland areas has thus far been limited to one sample location. For the purposes of this evaluation the constructed wetlands and treatment plant have been considered a confirmed HAIL activity and retained as a potential source of contamination. Further testing is recommended as part of the pre-works sampling for soil disturbance consents.

Suspected ACM was observed in the gulley fill by Fraser Thomas, however testing undertaken in this area did not report concentration of asbestos above the Asbestos in Soil Guidelines. Fill material and general rubbish identified by Fraser Thomas was not observed during the T+T intrusive investigation. This assessment would need to be confirmed by pre-works testing as part of the Site Management Plan (SMP) to confirm whether asbestos is present.

There is potential for contamination in underlying soil at 712 Whitford-Maraetai Road due to former land uses identified during the desktop review as identified in **Table 7.1**. No sampling was undertaken as part of this investigation. Further testing is recommended as part of the pre-works sampling for any subdivision, change of use or soil disturbance consents as required under the current regulatory framework of the NESCS.

The implications for consenting and managing identified contamination are discussed in further detail in the following section.

# 8 Development implications

#### 8.1 Regulatory implications

The rules and associated assessment criteria relating to the control of contaminated sites in the Auckland region are specified in the following documents:

- NESCS.
- AUP.
- Health and Safety at Work (Asbestos) Regulation 2016 (Asbestos Regulations).

The need, or otherwise, for contamination-related resource consents for the site redevelopment has been evaluated against these regulatory requirements.

#### 8.1.1 NESCS

The NESCS applies to specific activities on land where a HAIL activity has or is more likely than to have occurred. Activities covered under the NESCS include soil disturbance, soil sampling, fuel systems removal, subdivision and land use change.

#### 110 Jack Lachlan Drive and 620 Whitford-Maraetai Road

This investigation indicates that HAIL activities have occurred at the site as outlined in **Section 5**, **Table 5.1**. The areas identified at HAIL are outlined **Table 2.1** and present in **Figure 1.1**.

| Identified HAIL                                | Area (m²)                                                                                                     |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| Potential hazardous storage area               | 2,508                                                                                                         |  |
| Constructed wetland                            | 7,559                                                                                                         |  |
| Sewage plant                                   | 884                                                                                                           |  |
| Gulley                                         | 1,395 [to be updated<br>if additional sampling<br>is carried out to<br>determine the extent<br>of the gulley] |  |
| Potential former spray race and disturbed area | 341                                                                                                           |  |
| Total area of HAIL                             | 12,687                                                                                                        |  |

#### Table 8.1: Areas of HAIL

#### Soil Disturbance

The volume of soil disturbance would be determined at the time of future development following the proposed rezoning process. Based on the total area of identified HAIL areas comprising 12,687  $m^2$ , the permitted soil disturbance and disposal thresholds under the NESCS are calculated to be:

- Soil disposal 127 m<sup>3</sup> per year.
- Soil disturbance 635 m<sup>3</sup>.

Any disturbance or disposal of soil exceeding these thresholds will require as consent as a controlled activity or a restricted discretionary activity (depending on whether the level of contamination is above human health standards) under Regulation 9 of the NESCS regulations.

We anticipate that as a requirement of consent, Council will require a SMP in order to demonstrate how the site works will be managed to prevent exposure to workers, the public and environmental receptors during works.

#### 712 Whitford-Maraetai Road

Based on the information reviewed as part of this Desk Study, it remains unclear whether the site would be considered a piece of land under Regulation 5(7) of the NESCS. This is because all of the HAIL activities identified are potential only and would require sampling and testing to make a judgement. If investigations identify contaminant concentrations above human health criteria for the land use, then the NESCS would apply and it is likely that soil disturbance consents would be required for any significant redevelopment. Sampling will be undertaken prior to consent applications for soil disturbance, subdivision or change of use.

#### Change in use and subdivision

The potential change in use and subdivision have been assessed against the Permitted Activity standards under the NES Soil Regulations 8(4) as detailed in **Table 8.2** below.

| Table 8.2: | NES Soil Permitted Activity conditions for subdividing or changing land use |
|------------|-----------------------------------------------------------------------------|
| TUDIC OIL! | the source of the subarrang of thanging land use                            |

| NES S<br>cond | Soil – Subdividing or changing land use permitted activity<br>itions (Regulation 8(4))                                                                                               | Assessment                                                                                                                                   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| а             | A preliminary site investigation of the land or piece of land must exist.                                                                                                            | COMPLIES - This report.                                                                                                                      |
| b             | The report on the preliminary site investigation must state<br>that it is highly unlikely that there will be a risk to human<br>health if the activity is done to the piece of land. | DOES NOT COMPLY – Soil results to<br>date indicate that a risk to human<br>health exists with respect to the<br>future proposed development. |
| с             | The report must be accompanied by a relevant site plan to which the report is referenced.                                                                                            | COMPLIES – Figures within this report.                                                                                                       |
| d             | The consent authority must have the report and plan.                                                                                                                                 | CAN COMPLY – On submission of this report to Auckland Council.                                                                               |

The private plan change application to rezone the land will enable future urban development as indicated on the Structure Plan. At the time of future development involving scenarios of soil disturbance, subdivision or change of use, and due to the concentration in contaminants in soil results to date, the NESCS will apply to the site under Regulation 8(4).

Future development of the site will <u>require a consent as a controlled activity or a restricted</u> <u>discretionary activity (depending on whether the level of contamination is above human health</u> <u>standards) under Regulation 9 of the NESCS regulations.</u>

Any future development of sites within the plan change area that are not covered by this report will require an assessment prior to rezoning.

#### 8.1.2 AUP

Intrusive ground investigations undertaken at the site have determined the concentrations of zinc within the gulley fill exceeded the permitted activity criteria set out in Table E30.6.1.4.1 of the AUP. Therefore, resource consent for the discharge of contaminants at the time of carrying out the proposed development that would be enabled by the plan change, is likely to be required under the AUP's contaminated land related rules if the volume of soil disturbance is expected to exceed 200 m<sup>3</sup>.

#### 8.1.3 Asbestos regulations

Current structures at the site were constructed in the late 1990s therefore are unlikely to contain asbestos. However, historic and current building structures at 712 Whitford-Maraetai Road site were on-site in the late 1980s. The Asbestos Regulations require an asbestos survey to be undertaken for any pre-2000 structure prior to demolition of the structure.

We have been provided with an asbestos management survey<sup>9</sup> by the client for 110 Jack Lachlan Drive. The surveyed buildings included A: Main Clubhouse, B: Condo Villas (50 total units), D: Driving Range, E: Tee Off Kiosk, and F: Gym Building. The report notes that due to time constraints, access could not be gained to Driving Range (D) and Tee Off Kiosk (E). We have been provided an email<sup>10</sup> by the client confirming that no asbestos was identified in the Tee Off Kiosk and Driving Range.

Asbestos was not detected in the samples analysed during the 2021 investigation, however it is possible that unexpected asbestos contamination could be discovered during earthworks across the site, and suspected ACM was observed in the gulley fill investigated by Fraser Thomas. The SMP should outline the pre-construction works sampling to establish the health and safety controls (under the Asbestos in Soil Guidelines) and soil disposal requirements for the gulley fill. The SMP should also include procedures for the management of unexpected contamination of this nature. These controls and procedures are required under the NESCS Regulations and existing provisions of the AUP.

#### 8.1.4 Earthworks and disposal implications

Soil disposal implications are provided here for consideration for future earthworks. Based on the findings of this investigation, and taking into consideration Fraser Thomas 2012, the following implications have been noted for 110 Jack Lachlan Drive and 620 Whitford-Maraetai Road (the additional soil testing recommended for 712 Whitford-Maraetai Road will determine any earthworks and disposal implications from this property):

- Apart from the elevated concentrations of arsenic and zinc, and the potential for ACM in the gulley, standard earthworks controls are likely to be appropriate unless unexpected conditions are encountered during development work.
- If geotechnically suitable, spoil from outside the identified HAIL areas can be reused on-site. This should be included into the planning and design of the site redevelopment to promote environmentally sustainable outcomes and minimise disposal cost.
- If soil is to be removed from the site as part of future development, the implications for offsite disposal are outlined below:
  - Natural/topsoil material:
    - Reported concentrations of contaminants were below the published background concentrations for volcanic soils in Auckland (which is relevant to the site). <u>Soil</u> <u>removed off-site can be disposed as cleanfill.</u>
    - <u>Concentrations of dieldrin, arsenic, cadmium, chromium, copper, and zinc</u> were above the published background concentrations for volcanic soils in Auckland within the vicinity of the historic spray race at 620 Whitford-Maraetai Road. <u>Soil</u> in this area should be disposed of to a managed fill facility.

<sup>&</sup>lt;sup>9</sup> Precise Consulting, June 2019, Asbestos Management Survey - Formosa Golf Resort, 110 Jack Lachlan Drive, Beachlands, Auckland 2571, JS208092/J022864.

<sup>&</sup>lt;sup>10</sup> Email – 2 May 2020 – From: Precise Consulting (James Robinson), To: Craig Lyford, Subject: Formosa Golf Resort – Asbestos Survey Revisit.

- Fill material:
  - <u>Fill material and underlying topsoil around SS09</u> (area of minor oil staining and potential borrow disposal area) – arsenic concentrations exceed the NESCS for residential 10% produce, and PAHs were reported above the published background concentrations for volcanic soils in Auckland. Soil in this area should be disposed of to a managed fill facility.
  - <u>Fill material and underlying topsoil around HA06</u> perylene concentrations exceeded the published background concentrations for volcanic soils in Auckland, however additional sampling undertaken in November 2021 did not report concentrations of contaminants above published background concentrations for volcanic soils in Auckland. <u>Soil in this area, if proposed to be removed off-site</u> <u>during future development, should be disposed of to a managed fill facility.</u>
  - <u>Fill material in the gulley at 620 Whitford-Maraetai Road</u> arsenic exceeded the NESCS for residential 10% produce, zinc exceeded the AUP discharge criteria, and concentrations of other metals exceeded the published background concentrations for volcanic soils in Auckland. Soil from this area should therefore be disposed of to a managed fill facility. This assessment would need to be confirmed by pre-works testing as part of the SMP to confirm whether asbestos is present.

28

# 9 Conclusions and Recommendations

# 9.1 Conclusions

T+T has undertaken ground contamination investigations at 110 Jack Lachlan Drive and the neighbouring property at 620 Whitford-Maraetai Road, and desktop assessment at 712 Whitford-Maraetai Road, to determine if any potentially contaminating activities have occurred (potentially impacting soil quality) and therefore if the proposed land use changes will be subject to National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health Regulations 2011 (NESCS) or if contaminated soil provisions in Auckland Unitary Plan (operative in part) are applicable, and to provide an assessment of contamination-related soil handling and disposal implications.

The key findings of the investigation are summarised below:

#### Desk based assessment and potential for contamination

Previous investigations undertaken at the site identified potential sources of contamination, as listed on the HAIL, within the proposed structure plan and plan change area. Sources of potential contamination included areas of uncontrolled fill material, application of pesticides, former livestock spray race, sewage/wastewater treatment, fuel storage, ACM in building materials, and lead based paints.

Previous soil testing undertaken by Fraser Thomas in 2011 had identified metals contamination (above NESCS, AUP and background levels) in fill material within a gulley (HA01-HA05) on 620 Whitford-Maraetai Road and dieldrin contamination above background levels within a historic spray race.

A site walkover and desktop assessment were undertaken at 712 Whitford-Maraetai Road in December 2021. Sources of potential contamination included ACM in building materials, potential use of lead-based paints and potentially filling activities of a single gulley when forming the house site. Soil sampling was not undertaken as part of this desktop assessment.

#### Intrusive site investigation findings

- Arsenic was reported in exceedance of the NESCS for residential 10% produce at location SS09 collected from 110 Jack Lachlan Drive. PAHs above background concentrations (assumed to be the limit of reporting) were also reported for SS09.
- Perylene was reported above published background concentrations for volcanic soils in fill at one location (HA06). Additional sampling undertaken in November 2021 did not report concentrations of contaminants above published background concentrations.
- Concentrations of potential contaminants in natural material and topsoil were within background ranges for volcanic soils.
- Asbestos was not detected in any of the samples analysed.
- No other contaminant concentrations in T+T's investigation exceeded the NESCS, however, arsenic concentrations above the NESCS had been previously detected in the gulley on 620 Whitford-Maraetai Road by Fraser Thomas. Zinc had also been previously detected in exceedance of the AUP Permitted Activity Criteria (Discharge) in fill within a gulley. Concentrations of dieldrin were detected above background concentrations, but below human health and environmental criteria, in samples from the area of the historic spray race collected by Fraser Thomas in 2012.

#### **Contaminated land resource consents**

- This assessment has identified no evidence to suggest the presence of contamination that would prevent the proposed rezoning and change in use under the Structure Plan and Plan Change.
- Resource consent under the soil disturbance regulations of the NESCS will be required if the permitted activity thresholds within the HAIL areas of the site are exceeded (127 m<sup>3</sup> of soil disturbance or 635 m<sup>3</sup> of soil needing disposal. Disturbance or disposal of soil exceeding these thresholds will require a controlled activity or restricted discretionary consent (depending on the level of the contamination within the HAIL area) under Regulation 9 of the NESCS regulations.
- A resource consent for the discharge of contaminants is likely to be required under the AUP's contaminated land related rules if the volume of soil disturbance is expected to exceed 200 m<sup>3</sup>.
- No testing has been undertaken at 712 Whitford-Maraetai Road. Testing of soils will be carried out prior to applications for soil disturbance, subdivision or change of use and would be assessed against the current NESCS and AUP framework for contaminated land as part of the necessary Detailed Site Investigation reporting.

#### Earthworks and disposal implications

Apart from the elevated concentration of arsenic and zinc, and the potential for ACM (noting the test results indicated no asbestos in the 620 gulley samples) in the 620 gulley (HA01 – HA05) at Site 620, standard earthworks controls in accordance with the AC Erosion and Sediment Control Guide<sup>11</sup> are appropriate unless unexpected conditions are encountered during development work.

Natural material at the site do not require off-site disposal from a contamination perspective as they are below NESCS-SCS and AUP discharge criteria soil acceptance criteria. However, if these soils require removal for redevelopment purposes (for example are geotechnically unsuitable material to build on), they may be disposed of as cleanfill.

Fill material and underlying topsoil around SS09 and in the 620 gulley at exceeded the NESCS and/or AUP discharge criteria. Soil from these areas will required disposal to a managed fill facility.

Intrusive investigations will be required in one gulley (that was filled when the house site was formed), and potentially around the existing house at 712 Whitford-Maraetai Road to assess potential contamination of underlying soils and if these need to be incorporated into the SMP.

# 9.2 Recommendations

This assessment has identified no evidence to suggest the presence of contamination that would prevent the proposed rezoning of land as shown in the Structure Plan and Plan Change.

A Site Management Plan (SMP) will be prepared to support future soil disturbance resource consent applications which describes how any potential ground contamination effects will be managed during the proposed works.

Soil testing will be carried out prior to the soil disposal consent applications, to determine the potential presence of contamination at the wastewater treatment plant, building footprint of the existing 'hazardous storage' area, and to assess the potential risks to human health and the environment at 712 Whitford-Maraetai Road.

Soil testing could also be carried out to delineate the, the 620 gully fill area for soil disposal purposes.

Tonkin & Taylor Ltd Detailed Site Investigation - 110 Jack Lachlan Drive and 620 Whitford-Maraetai Road Beachlands South Limited c/- Russell Property Group

30

<sup>&</sup>lt;sup>11</sup> Auckland Council, 2016, Erosion and Sediment Control Guide for Land Disturbing Activities in the Auckland Region.

An asbestos building survey will be required prior to demolition of the building at 712 Whitford-Maraetai Road (if it is to be demolished). The results of the building survey and sampling for asbestos in soil will assist with determining the appropriate controls required under the Asbestos Regulations.

# 10 Applicability

This report has been prepared for the exclusive use of our client Beachlands South Limited c/-Russell Property Group, with respect to the particular brief given to us and it may not be relied upon in other contexts or for any other purpose, or by any person other than our client, without our prior written agreement.

We understand and agree that this report will be used by Auckland Council in undertaking its regulatory functions in connection with the proposed plan change.

Recommendations and opinions in this report are based on discrete sampling data. The nature and continuity of subsoil away from the sampling points are inferred and it must be appreciated that actual conditions could vary from the assumed model.

Tonkin & Taylor Ltd

Report prepared by:

Authorised for Tonkin & Taylor Ltd by:

.....

Carmen Thornton Environmental Scientist

Reviewed by:

Peter Millar Project Director

Natalie O'Rourke

Senior Contaminated Land Consultant, CEnvP SC

CAVE

 $\ttp: local files alprojects 1014358 1014358.5000 issued documents dsi 03.02.2022 dsi report_final_v4.docx block alpha alpha$
#### LEGEND











Pine Harbour Ferry Terminal ,**!!**! **Beachlands North** Shopping Centre LEGEND Structure Plan Area Boundary  $\mathbb{Z}$ 🛛 Road Reserve 10m Landscape Buffer Ecological Areas **Existing Roads** Existing Coastal Connections C Existing Ferry Connection Indicative Bus Route on Primary Collector Road Indicative On-road Separated Cycle lane Indicative Coastal Pathway Indicative Greenway with Shared Path along Local Road đ6 (Ķ Indicative Local Road ----- Potential Shared Path Links ←→ Potential Future Connections 100 Potential Bridge Link across Stream to Beachlands Settlement 15,000 @ A4







### 110 Jack Lachlan Drive and 620 Whitford-Maraetai Road



Photograph Appendix B.1: Facing west, storage of tyres observed along the western boundary of 620 Whitford-Maraetai Road.



Photograph Appendix B.2: View south-east towards Whitford-Maraetai Road from 620 Whitford-Maraetai Road. The south-eastern end of the site is grassed with no indication of stressed vegetation. The site slopes down in the western/north-western direction.



Photograph Appendix B.3: Looking south from 620 Whitford-Maraetai Road



Photograph Appendix B.4: Natural geology photographed at HA15.



Photograph Appendix B.5: Looking north/north-west, the Formosa wastewater treatment system which comprises of a series of concrete setting tanks was observed towards the centre of the golf course. Control room and above ground tanks observed in the photo.



Photograph Appendix B.6: Close up of concrete settling tanks observed at the wastewater treatment station.



Photograph Appendix B.7: View east towards Whitford-Maraetai Road taken from the north-eastern corner of the site.



Photograph Appendix B.8: View north-east from the north-eastern portion of the site towards Whitford-Maraetai Road.



Photograph Appendix B.9: View north-west towards the area of visual staining and Hazchem storage area.

### 712 Whitford-Maraetai Road



Photograph Appendix B.10: View south-west towards the storage shed and garage. Building materials were timber weatherboard and tin roof.



Photograph Appendix B.11: Storage of herbicides and fungicides on sealed concrete slab within the storage shed. Containers were labelled, Green glyphosate 510, Zelam Chlorocarb fungicide, Sprinter 700 DS and Relay



Photograph Appendix B.12: Containers stored on the shelving at the back of the shed were identified as: pest off, rabbit pellet, paint containers, fuel jerry can, combination sheep drench, Zapp Encore lice treatment for sheep and Conquest spot spray for pasture weeds.



Photograph Appendix B.13: View east towards Whitford-Maraetai Road of fruit trees and vegetable garden.



Photograph Appendix B.14: View south-west of the stock loading race.



*Photograph Appendix B.15: View south-east towards the residential dwelling. Building materials consisted of timber weatherboard, tin, brick and copper.* 



*Photograph Appendix B.16: View west towards the tennis court and fruit trees along the northern boundary.* 



Photograph Appendix B.17: View south towards the pond running through the centre of the site.



Photograph Appendix B.18: View west of pastoral land and bush occupying the remainder of the site.



Photograph Appendix B.19: View south-east towards 702 Whitford-Maraetai Road. Several beehives are visible along the fence line.



Photograph Appendix B.20: Stockpile or inorganic vegetation along the southern boundary. The vegetables as noted to be associated with a recent felled tree and bush clearing.



Photograph Appendix B.21: View east of inground septic tank system.



*Photograph Appendix B.22: Sand and shells noted in the surface soils to the west of the residential dwelling.* 

# Appendix C: Historical aerial photographs – 712 Whitford-Maraetai Road



Photograph Appendix C.1: 1955 aerial photograph (Source: Retrolens)



Photograph Appendix C.2: 1961 aerial photographer (Source: Retrolens)



Photograph Appendix C.3: 1968 aerial photograph (Source: Retrolens)



Photograph Appendix C.4: 1975 aerial photograph (Source: Retrolens)



Photograph Appendix C.5: 1987 aerial photograph (Source: Retrolens)



Photograph Appendix C.6: 1996 aerial photograph (Source: Auckland Council Geomaps)



Photograph Appendix C.7: 2001 aerial photograph (Source: Auckland Council Geomaps)



Photograph Appendix C.8: 2008 aerial photograph (Source: Auckland Council Geomaps)



Photograph Appendix C.9: 2017 aerial photographs (Source: Auckland Council Geomaps)



in the second second

Ľ

Several Section Section Section

P

10 TO 10 TO 10



152<sup>5</sup> 525 CITY OF MANUKAU DATE RECEIVED 11 10 7 6 OATE BEFURDED ISTANUTED VALUE \$ 9. 0 7.00 .00 CITY OF ALAMANKAU Sure 14/4,722.9 钀 AUCKLAND GITY COUNCIL Application For Building Permit APPLICATION Application For Building Permit Art THERE' HIS THE AT Marcindos MESSIT ABSTESS A. Hollowins Rd Ren BURDER HAVE I A Tacon -----for BUILDING PERMIT ALTA MONS SOLATE Department Department of Works Monthly a build for Sere Town of the Sere Sere of Sere of Sere of Sere Sere of Sere of Sere Sere of Sere of Sere of Sere of Sere of Sere Sere of Sere of Sere of Sere of Sere Sere of Sere of Sere of Sere of Sere Sere of Sere of Sere of Sere of Sere of Sere Sere of Sere of Sere of Sere of Sere of Sere Sere of \*\*\*\*\*\*\*\* CITT COULDER ADDRESS. He Balant Teo X ONDER T Helderich CHALLA OF MARTERY MC LAD D.C. MERCHAN ADDRESS \_1.5. BERTHAMAN ... ADDRESS ADDRESS ADDRESS \_ MARKER ADDRESS \_ ADDRESS none 546.765 FULLING ANOTHER IN THE PARTY OF MINT 4 04 54105 MINT HARD HARDEN Paramanage 3 Margaria trained and MINT four harden trained and Mine. 378316 104200, 443 18-8020128 10090 100 10114/06 Designing Coprese beigen Teacht Farrier and State 1998 1999 No. J.F. Karinaka, 19 Mantauror Badd Rabaro, MCRUAY 5, PAHTICULARS OF LALD PARTICIA ARS OF LAND Ver su die jahoog soo Benr Sir/Hedar, CENTIFICACE OF DESCENSION OF DOLLARSS hereby early for approval to the removal and theoretical of the fully-bay "secondated ballform." HI DESCRIPTION HE SUITOS HE STORY AND R. A. Maradai MANTING AND CF BLICOMO Starts, Philippine at miting the starting heading the er saturne \_\_\_\_\_ Degracemer Area of the The realised city General, house a tool antherity to which too constrained at applies, because medifics : an induction of features and applied the initial day described the induction breaks on a price of the initial day described importing is ind to discide that there was builded at a discribed the initial of initial to discide that there was builded at a discribed the initial of initial at the tree of information. Report, allocation or encoders as in evening Anno d' deterroit Action Come <u>3.1.</u>C. Manuarpat Centrum ten re Are of Galaxies 5.7 AND DEALES INCOME SO. 19 AND MARKED AND TRANSPORTED AND Property for starty many part of property distances on the call of a property. conum \_\_\_\_\_\_ C\_Luceta.A AN Totel Tay and SCHEDULE 17850 Sin 20 \_\_\_\_\_ \$ \_\_\_ \$ 4/05 Partners for adapt from part of property Dutility of to be used or stronged Bus defrey wood dealling comparing 25 years adormalizately, denoted recruits, strengt and second parties, appeared on Lot 1, W.P. 53122, (-1, 259)(25). STREET Many Road - MANUACTAL R.D. MONICE. change .... terned strengt store on 1.9 Dailing Speed - Participants Ri Binjye Pedrlang\_\_\_\_ DWELLING 19 Keerbrooms Bend, Roberry, Architant 1. WHIGHT'S SHOWING \_ ti Smory Rembin <u>2000-00</u> A. Darres PLEAST HESSIN TO REVENSE S DE OF THIS FORM NAFORE SIGNAL norm more some Chile 1976 18) Beller Beller 10 Denker Total 2000-00 Total 2000-00 Beller Total 2000-00 Beller Total 2000-00 Beller Total 2000-00 Beller Bell NEET LONG 19 Nationman 23 - Bourd mon South Алитика Как Мандт Валбар Болеро Адатыра Сайдар Издар Hobo: In Socian 211) of the Replice Act, Neel, Vernites Ste defined as "any species of fremites not tadiperous to You Search". This Gerüfficate shoe as cover any native epecte. This Gerüfficate shoe as cover any mative epecte. - report of rg spinetize i sched the following details at specthod a the intermeter most sopplied with the form 1 Hadrin 6 Structurel Aughrany 5 Tang Planting Intermetice loss applies were star serve. FOR OFFICE USE DRLY 1.16 -FLEE PAYABLE Hompson and Database and 1/27 × Pan Rec 8 \_ 652 - 420 By \_ 2002 \_ \_\_\_\_ \_ Pane W: D⊂ color Yours faithfully. inter ∾riting ™ret Centraction R.R. heave . REFFA TO BACK OF FORM FOR ENDORSEMENTS OR COMME IDAIN INFORMATION KINDORSE PERMIT concrements to 1992 (2000) nor in 1968, nor of 1967. WP 10-5-80 YES NO agenerate and the second states and the seco - total \$ / 356 1464 OTY OF MARKIN CITY OF MANUKAU a. ' CITY OF MANUKAU 525 000 000 12/10/72 000 00 4 APPLICATION FOR PERMIT TO HAVE APPLICATION FOR PERMIT TO HAVE DRAINAGE PLAN PLUMBING OR DRAINAGE WORK CARRIED OUT CITY OF MANUKAU PLUMBING OR DRAINAGE WORK CARRIED OUT 1 4 20. 54105 mere this placetai bd & B. Housek In the second se FOR OTHER BOLL POA OFFICE LIDE data RECEIM HA HIG MACINODE To the Day language Mittakar Gry Cause I Print & Beg. MANURCUS. Dis manalar, City Council -3 MW 1977 63 4 4 3.12 7. WHEN A LOADSTEAR MAR. 1:207 termine strategies Care House Book GO: STOCO P Sales and Sales Application 196 formed afternat Reynord John bloir APPLICATION THE PARTY PRIMATION FOR THE REPAIRS. Bit with sampling on the web wather and the bit of the state of the state of the same and or the formation the same state of the same is the larger and the same state of the same is the larger and the same is the same state of the same state o The unit of the bards make and on the second to an in the second se for BUILDING PERMIT the stren A. h. S. Master les. His & Mendee A consideration of spectra of the second sec UNAL CANDOR totilid herete mus w 4 A 54.05 Hard Arrieda como to states -state a for more sont a states -tomare al Ales - sont a states -the on the bala fromptoton 1200 HOR OFFICE USE OWNY The Rusen and a series 14 a 
 In Another start in users the second start in the second start in the second start is and the second start in the second start in the second start is start in the second start is start in the second start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start is start in the second start in the second start in the second start is start in the second start is start in the second st (n) all and the Chatter points in the englishment of the SV Band Streetline will be dry wak, governments and . Herieraan oo AMALENTE & CALLER TORY 10. 9199 Morified for these th Decay when to be obtain one restatory and i to be option one is a depart of small in the and other close we do not whether we do not a set of the close of the set icina lui-Sto Tout tong while A fairing constrained and a shell grant H Schwerzentheitung 1356 un un 14/0/76 un un <u>A</u> -fr and Albertin and Stand Street March Linkowski Orff COMMIL
 Linkowski politiku
 Linkowski poli ream h. T. Hair - and the though any should be a sort and a sort and a sort and a sort and a sort of the sort of t References Alterter . JAC OG THE OF ANTICALS CONTRACT OF ANTICAL AN HOR OFFICE AND DRAW Respondent Control in State St and other thinking the streets is a street 7 Comprove Gente Accesso Sector Constants 5 Accesso Acc Castra at and ythe and the нi -...... " on ISI & MY AFTER TO BACK OF ACOM FOR ENDORSTINESSED OF COMMUNIC · · · · Day 2 11. 19.7 55700/476/04 1986 2 5 and a stand and the second second stands of the stand stands to be a stand of the second stands and a stand of (Let) "Madeumenicka

:

....

• • • 1

| AL DIAT. GIGO.                                                                                      | Auckland Regional Count                                                                                      |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| FAX TO: A DEMOREN 20212                                                                             | -21412-12-2188                                                                                               |
| To: The General Manager, Environment<br>Auckland Regional Council<br>Private Bag 92 012<br>AUCKLAND | For Office Use Only 3/97<br>Consent No.;                                                                     |
| Fax (09) 366 2155                                                                                   | ncil                                                                                                         |
| Pursuant to Section 68 of the Resource Management Act. 1991, th<br>ance with the details below;-    | e undersigned hereby applies for a permit, in accord-                                                        |
| Please read information on the accompanying sheet before filling in All units should be in metric.  | n this form.                                                                                                 |
| PARTA 21412                                                                                         | ') YOUUED                                                                                                    |
| 1. Applicant details -                                                                              |                                                                                                              |
| X a. Full name(s) or Company name of Applicant(s):<br>ARTHUR SYLVAN M                               | 108 GENSTERN                                                                                                 |
| X b. Postal Address: 712 WHITFORM                                                                   | MARITIES ROAD RPI                                                                                            |
| X c. Telephone Number: (Business): 093663                                                           | 001_(Private):09 5366023                                                                                     |
| Fax Number: 09 5366374.                                                                             |                                                                                                              |
| x d. Name of Contact Person: ARTHUL                                                                 | OR TANYA.                                                                                                    |
| Details of driller or person carrying out works -                                                   |                                                                                                              |
| DEVICE                                                                                              | EXPLORATION NZ LTD                                                                                           |
| a. Full-name(s) or company name:                                                                    |                                                                                                              |
| a. Full-name(s) or company name:P.O. D                                                              | NEW ZEALAND                                                                                                  |
| <ul> <li>a. Full-name(s) or company name:</li></ul>                                                 | NEW ZEALAND                                                                                                  |
| <ul> <li>a. Full-name(s) or company name:</li></ul>                                                 |                                                                                                              |
| <ul> <li>a. Full-name(s) or company name:</li></ul>                                                 | Fax Number: (09) 267 8100                                                                                    |
| <ul> <li>a. Full-name(s) or company name:</li></ul>                                                 | Fax Number: (69) 267 8100<br>BY APPLICAND                                                                    |
| <ul> <li>a. Full-name(s) or company name:</li></ul>                                                 | Fax Number: <u>(09)</u> 267 8100<br>e indicate:<br><u>BY APPLICAND</u>                                       |
| <ul> <li>a. Full-name(s) or company name:</li></ul>                                                 | PEW ZEALAND<br>Fax Number: <u>(09)</u> 267 8100<br>e indicate:<br><u>BY APPLICAND</u><br>(private) <u>NA</u> |
| <ul> <li>a. Full-name(s) or company name:</li></ul>                                                 |                                                                                                              |
| <ul> <li>a. Full-name(s) or company name:</li></ul>                                                 |                                                                                                              |

MORGENSTERN BORE PERMIT APPLICATION JITE 02-MAY-1998 17:28 BOUNDARY LINE Rent 50.47 NORTH 1 LAN. PARE 4944. 87-4-1998. N 64-651 3 RESIDENCE CTED MALE EMOVAL 601.17 ENTING GITE. NORTH Arrioc Tet SEPTIC TANK 32.9 M. 33:0 K NOTE. ERISTING E \* ON NEKHBO Nore \* PEOPATY. OWNE KENS TOTAL P.05 EXISTING SHALLOW BORE PROPOS



SCALE .- 1:1000

29-APR-1998 09:50

64 9 5366374

P.04

## DRILLWELL EXPLORATION N.Z. LIMITED

9 Rawson Way Takanini

### DRILLING CONTRACTORS

LOG No. 26930

| AUCKLAND 214(2 DAILY L                                                                                                                                                                                                                                                                                                                                                                               | OG SHEET     | P.O. BOX 360 MANUREW                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------|
| Client: <u>A.S. Morgenstern</u><br>Consultant/Engineer:<br>Location: <u>712</u> Whitford - Marcail<br>Purpose of Bore: <u>Water</u> . Map Reference No: <u>R</u>                                                                                                                                                                                                                                     | Day: Tursday | Date:       21.5.3.8.         Rig No:       3.         Tender Truck No:       27         Compressor No:             |
| Work Details:<br><u>Arrived on pite 1000</u><br><u>Cleared pite moved in</u><br><u>rig at set up mast at</u><br><u>abill-pit</u><br><u>Bergan to diill 6" hole</u><br><u>to 63m. Flusted whe</u><br><u>elean. Pailled out reads.</u><br><u>Cleared out diill pit.</u><br><u>Cleared out diill pit.</u><br><u>Cleared cout diill pit.</u><br><u>Cleared cout 3.30.</u><br><u>BROUNDWATER A.R.W.B.</u> | Bore Log:    | Leng.<br>Waitanata Sale<br>Dalamata I/5 r<br>Ualstone layers<br>Traywaalie -<br>pakara linestone.<br>Hard Graywach. |
| W.R. No<br>NAME<br>TECHNICAL FILES<br>/ / /<br>ACTIONEL<br>SORELOG<br>PUMP TEST                                                                                                                                                                                                                                                                                                                      | R BOAT       | RD                                                                                                                  |



Ph 09 238 6518 Fax 09 238 5620 29a Pukekohe East Rd, Pukekohe Email customkit@clear.net.nz Web www.customkit.co.nz




|                                                                                   | BCN-001                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B dins from distance in                                                           | IE Issue 14<br>Page 1 of 4<br>DC 72                                                                                                                                                                                                |
| Te Kaunihera a                                                                    |                                                                                                                                                                                                                                    |
| MANUKAU                                                                           | e e de la constante de la const<br>Constante de la constante de la |
| City Council                                                                      |                                                                                                                                                                                                                                    |
|                                                                                   |                                                                                                                                                                                                                                    |
| APPLICATION FOR BU<br>Section 33, Buildin                                         | ILDING CONSENT<br>g Act 1991<br>relevant documents in triplicate                                                                                                                                                                   |
| or duplicate if not completing                                                    | g Part B of this form]                                                                                                                                                                                                             |
| APPLICATION No: 04/1229 TEMP BAG                                                  | No: <u>BIAZ85</u><br>Correspondence.<br>Private Bag<br>Manukau City                                                                                                                                                                |
| PART A: G<br>[Complete Part A                                                     | ENERAL New Zealand<br>Telephone: (09) 263 7100<br>A in all cases] Facsimile: (09) 262 5154<br>DX EP 75557                                                                                                                          |
| 1 OWNER                                                                           | 2 CONTACT (if not owner)                                                                                                                                                                                                           |
| Name*: Bruce Gillospie                                                            | Contact Name: James listolog Hoge                                                                                                                                                                                                  |
| Postal Address: 702 Whithord Marnetai                                             | Postal Address: <u>112</u> Whittorch Marchen Not                                                                                                                                                                                   |
| Rd, Whittord, Howlick R. D. I.                                                    | Whiter Howich Nell-                                                                                                                                                                                                                |
| Phone No: Fax No                                                                  | Finally in all's have & Partia (D. N.S.                                                                                                                                                                                            |
| E-mail:                                                                           |                                                                                                                                                                                                                                    |
| 3 PROJECT LOCATION                                                                | minut                                                                                                                                                                                                                              |
| Address: 712 Whitford Marnetal A                                                  | ?d                                                                                                                                                                                                                                 |
| 4 LEGAL DESCRIPTION                                                               | 6. PROJECT                                                                                                                                                                                                                         |
| Valuation Number:                                                                 | New building                                                                                                                                                                                                                       |
|                                                                                   | Alteration                                                                                                                                                                                                                         |
|                                                                                   | Relocation OR                                                                                                                                                                                                                      |
|                                                                                   | Demolition Specified as years                                                                                                                                                                                                      |
| Property ID: Holding No:                                                          |                                                                                                                                                                                                                                    |
| Yyaiu.                                                                            | Building a barn                                                                                                                                                                                                                    |
| Lot(s): $4$ DP(s): $54/05$                                                        | + New Ceptic tank system.                                                                                                                                                                                                          |
| Area(s):                                                                          |                                                                                                                                                                                                                                    |
| Square metres hectares                                                            |                                                                                                                                                                                                                                    |
|                                                                                   | 6.4 Intended Use(s):                                                                                                                                                                                                               |
| 5. SCANNING FEES                                                                  |                                                                                                                                                                                                                                    |
| A4 A3 A2 pages pages pages                                                        | 6.5 Estimated value of stage \$ _ <del>40</del> , 690 _ (incl GST)                                                                                                                                                                 |
| 7. RESOURCE CONSENT                                                               | 8. CONFIDENTIALITY                                                                                                                                                                                                                 |
| A resource consent associated with this application has been:                     | Do you wish to have the details of your project kept confidential?                                                                                                                                                                 |
| granted (Resource Consent No)                                                     | Yes                                                                                                                                                                                                                                |
| applied for (date of application)      there is no resource consent for this work |                                                                                                                                                                                                                                    |
|                                                                                   | (See panel at back of application)                                                                                                                                                                                                 |
| Signed by or for and on behalf of the owner:                                      | *Under Section 33 of the Building Act 1991, the applicant must<br>be owner of the land on which building work is contemplated or<br>a person who or which has acreed in writing, whether                                           |
|                                                                                   | conditionally or unconditionally, to purchase the land or any                                                                                                                                                                      |
| Name: <u>Armes yorcon Hocci</u> Date: <u>X.5 [9]</u><br>(PLEASE PRINT)            | Iand, while the agreement remains in force (or their lawful agent).                                                                                                                                                                |
|                                                                                   |                                                                                                                                                                                                                                    |
|                                                                                   |                                                                                                                                                                                                                                    |
|                                                                                   |                                                                                                                                                                                                                                    |



# Onsite Wastewater System Maintenance Record (Secondary & Tertiary)

| *Required fields                                                                                      |                              |                                                                                                            |                                                       |                        |
|-------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------|
| 1. Property information                                                                               |                              | 2. Inspection details                                                                                      |                                                       |                        |
| *Property address:<br>712 Whitford - Maraetai rd Howick                                               |                              | *Service company: Hydrovac                                                                                 |                                                       |                        |
| *Type of property:<br>Residential                                                                     |                              | *Inspection date and time: 27/11                                                                           | /2020 08:58                                           |                        |
| *Are there multiple systems on this property?                                                         | No                           | Weather condition: Dry                                                                                     |                                                       |                        |
| *Does this system have a resource consent?                                                            | Unknown                      | Reason for inspection:<br>Routine inspection for secondary                                                 | //tertiary system (6 month                            | ly)                    |
| Customer Name/ Reference Number: Gillespie,                                                           | Bruce                        |                                                                                                            |                                                       |                        |
| 3. Treatment system                                                                                   |                              | 4. General site inspection                                                                                 |                                                       |                        |
| *Type of device:<br>Secondary                                                                         |                              | *Is there noticeable sewage odo<br>*Is there an insect infestation (i.e<br>*Has owner reported issues with | ur?<br>e. flies, mosquitos)?<br>drainage within home? | No<br>No<br>No         |
| *Brand<br>Hynds                                                                                       |                              | *Are there any signs of effluent c                                                                         | lischarge off the property?                           | ? No                   |
| Model<br>Elite                                                                                        |                              | Number of tank chambers:                                                                                   | 5                                                     |                        |
|                                                                                                       |                              | Water supply:                                                                                              | Rain                                                  | Tank                   |
| 5. Treatment tanks                                                                                    |                              |                                                                                                            |                                                       |                        |
| *Tank lids are sealed when arrived site?                                                              | Yes                          | Vacuum clarifier functioning                                                                               |                                                       | Yes                    |
| Lid depth                                                                                             | 300 mm                       | Liquor quality<br>Venturi Aerator functioning                                                              |                                                       | Good<br>Not applicable |
| Wall condition                                                                                        | Good                         | Tank riser condition                                                                                       |                                                       | Good                   |
| Inlet condition                                                                                       | Good                         | Filter on blower cleaned or repla                                                                          | ced                                                   | Cleaned                |
| Outlet condition                                                                                      | Good                         | UV treatment<br>Sand filers                                                                                |                                                       |                        |
| *Working Tank Depth                                                                                   | 1800 mm                      | Textile filters                                                                                            |                                                       |                        |
| *Estimated solid top (scull)                                                                          | 50 mm                        | *Tank lids are sealed when left s                                                                          | ite                                                   | Yes                    |
| Level of sludge in aeration tank                                                                      |                              |                                                                                                            |                                                       |                        |
|                                                                                                       |                              | [                                                                                                          |                                                       |                        |
|                                                                                                       |                              | *Overall tank function: Good                                                                               |                                                       |                        |
| *Signs of storm water/groundwater entering cha<br>*Any visible cracks. root infiltration or other dam | mber No<br>age to tank No    | If poor, issues identified:                                                                                |                                                       |                        |
| Air diffusers functioning (blowers/air diffuser/jets<br>Meter reading                                 | ) Yes<br>Kl                  | Recommended further remedial                                                                               | actions:                                              |                        |
| 6. Effluent filters                                                                                   |                              | 7. Electrical components (i.e. ala                                                                         | arm)                                                  |                        |
| *Present Yes                                                                                          |                              | *Present Ye                                                                                                | es                                                    |                        |
| Functioning Yes<br>If not functioning, issues identified:                                             |                              | If not functioning, issues identified                                                                      | es<br>ed:                                             |                        |
| Recommended further remedial actions:                                                                 |                              | Recommended further remedial                                                                               | actions:                                              |                        |
| 8. Pump                                                                                               | 9. Irrigation Chamber        |                                                                                                            | 10. Greywater                                         |                        |
| *Present Yes<br>Functioning Yes                                                                       | *Present<br>Functioning      | Yes<br>Yes                                                                                                 | *Present<br>Functioning                               | No                     |
| If not functioning, issues identified:                                                                | If not functioning, issu     | ues identified:                                                                                            | If not functioning, issue                             | s identified:          |
| Recommended further remedial actions:                                                                 | Recommended furthe           | er remedial actions:                                                                                       | Recommended further                                   | remedial actions:      |
| 10.* Disposal field                                                                                   |                              |                                                                                                            |                                                       |                        |
| Pressure Compensating Drip Irrigation                                                                 |                              |                                                                                                            |                                                       |                        |
| *Ponding around the disposal field                                                                    | No                           | Disposal field located within 15m<br>Distribution pipes flushed with go                                    | of stream/river/wetland                               | No<br>Yes              |
| Signs of breakout downstream of disposal field                                                        | No                           | Even effluent distribution<br>Distribution pipe systems follow of                                          | contour of the land                                   | Yes                    |
| *Signs of effluent discharge off the property                                                         | No                           | All flush valves are clearly marke                                                                         | a, protected, in good cond                            | dition Yes             |
| *Evidence of overland flow paths through dispos                                                       | al field No                  | *Overall disposal field function:                                                                          | Good                                                  |                        |
| Evidence of upslope cut-off drains around dispos                                                      | al field No                  | If poor, issues identified:                                                                                |                                                       |                        |
| *Evidence of soil distrubance or compaction in di<br>(construction, rubbish, dumping, machinery, stor | sposal field<br>k damage) No | Recommended further remedial a                                                                             | actions:                                              |                        |
| (concertablich, respect, compility, machinery, stor                                                   |                              |                                                                                                            |                                                       |                        |
|                                                                                                       |                              |                                                                                                            |                                                       |                        |

| 11. Photos and site sketch   |                               |                                                             |
|------------------------------|-------------------------------|-------------------------------------------------------------|
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
| 12. Summary                  |                               |                                                             |
| Summary of issues identified | d during inspection which may | revent the onsite wastewater system functioning adequately. |
| List items                   | Functions                     | Issues identified                                           |
| General site inspection      | Good                          |                                                             |
|                              | 6000                          |                                                             |
|                              |                               |                                                             |
| Treatment tanks              | Good                          |                                                             |
|                              | 0000                          |                                                             |
|                              |                               |                                                             |
| Effluent filters             | Good                          |                                                             |
|                              |                               |                                                             |
| Electrical components        | Good                          |                                                             |
| (i.e. alarm)                 |                               |                                                             |
| Dump                         | Good                          |                                                             |
| Pump                         | 0000                          |                                                             |
|                              | Good                          |                                                             |
| Irrigation Chamber           |                               |                                                             |
|                              |                               |                                                             |
| Greywater system             | Not present                   |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
| Disposal field               | Good                          |                                                             |
|                              |                               |                                                             |
| 13. Overall onsite wastewate | er system condition           |                                                             |
|                              |                               |                                                             |
| *On this date, the system is | performing adequately Y       | es                                                          |
|                              |                               |                                                             |
| *Printed name: Johnnie       | *Date: 27/11/2020             |                                                             |
|                              | /                             |                                                             |
| Signature:                   | Y                             |                                                             |
|                              |                               |                                                             |
| Notes                        |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |
|                              |                               |                                                             |

# Decision on an application for resource consent under the Resource Management Act 1991



**Discretionary activity** 

| LUC60384266                                          |
|------------------------------------------------------|
| Peter Dawson – The Turning Point New Zealand Limited |
| 712 Whitford-Maraetai Road, Whitford                 |
| Lot 4 DP 54105                                       |
|                                                      |

## Proposal:

The proposal is for the change of use of the existing building on the site, from residential to a detoxification and rehabilitation facility, defined as a healthcare activity, for people recovering from substance abuse, with an infringement to the minimum car parking space requirement and use of the existing vehicle crossing which is subject to a vehicle access restriction.

Resource consent is required for the following reasons:

# Land use consent (s9) - LUC60384266

# Auckland Unitary Plan (Operative in part)

## 1441 Whitford Precinct

• **Discretionary Activity** for the existing dwelling and outbuildings being located on a site where the Record of Title does not have an attached consent specifying a building platform area pursuant to Standard I441.6.4(3).

# H19 Rural Zones – Rural Countryside Living Zone

• **Discretionary Activity** under Activity Table H19.8.1(A47) for the change in land use activity of the existing building on the site from residential to a healthcare activity.

# E27 Transport

- **Restricted Discretionary Activity** under Activity Table E27.4.1(A5) for the use of an existing vehicle crossing where a vehicle access restriction applies since it has a frontage to an arterial road (Whitford-Maraetai Road) as prescribed under Standard E27.6.4.1(3)(c).
- **Restricted Discretionary Activity** under Activity Table E27.4.1(A2) where the proposal involves accessory parking and access that does not meet the following parking and access standards:

Zealand Pouhere Taonga Act 2014. This consent does not remove the need to comply with all other applicable Acts (including the Property Law Act 2007 and the Health and Safety at Work Act 2015), regulations, relevant Bylaws, and rules of law. This consent does not constitute building consent approval. Please check whether a building consent is required under the Building Act 2004.

# Delegated decision maker:

Name: Robert Chieng

Title: Team Leader, Resource Consents

Signed:

On

Date:

30 September 2021



9 December 2021

Tonkin & Taylor 105 Carlton Gore Road AUCKLAND 1023

## Site Contamination Enquiry – 712 Whitford-Maraetai Road, Whitford

This letter is in response to your enquiry requesting available site contamination information within Auckland Council records for the above site. Please note this report does not constitute a site investigation report; such reports are required to be prepared by a (third-party) Suitably Qualified and Experienced Practitioner.

The following details are based on information available to the Contamination, Air & Noise Team in the Resource Consent Department. The details provided may be from former regional council information, as well as property information held by the former district/city councils. For completeness the relevant property file should also be requested to obtain all historical records and reports via 09 3010101 or online at:

https://www.aucklandcouncil.govt.nz/buying-property/order-property-report/Pages/order-property-file.aspx.

### 1. Hazardous Activities and Industries List (HAIL) Information

This list published by the Ministry for the Environment (MfE) comprises activities and industries that are considered likely to cause land contamination as a result of hazardous substance use, storage, and/or disposal.

There is no contamination information held within Council's records for 712 Whitford-Maraetai Road, Whitford

Due to the age of the dwelling on site the potential for asbestos and/or lead paint may need to be considered.

#### Please note:

- If you are demolishing any building that may have asbestos containing materials (ACM) in it, you have obligations under the Health and Safety at Work (Asbestos) Regulations 2016 for the management and removal of asbestos, including the need to engage a Competent Asbestos Surveyor to confirm the presence or absence of any ACM.
- Paints used on external parts of properties up until the mid-1970's routinely contained lead, a poison and a persistent environmental pollutant. You are advised to ensure that soils affected by old, peeling or flaking paint are assessed in relation to the proposed use of the property, including high risk use by young children.

## 2. Consents and Incidents Information (200m radius of the selected site)

The Council database was searched for records of the following activities within approximately 200 metres of the site:

- Pollution Incidents (including air discharges, oil or diesel spills)
- Bores
- Contaminated site and air discharges, and industrial trade process consents
- Closed Landfills
- Air quality permitted activities



Relevant details of any pollution incidents and consents are appended to this letter (Attachment A). Please refer to the column titled 'Property Address' on the spreadsheet to aid in identifying corresponding data on the map.

While the Auckland Council has carried out the above search using its best practical endeavours, it does not warrant its completeness or accuracy and disclaims any responsibility or liability in respect of the information. If you or any other person wishes to act or to rely on this information, or make any

financial commitment based upon it, it is recommended that you seek appropriate technical and/or professional advice.

If you wish to clarify anything in this letter that relates to this site, please contact <u>contaminatedsites@aucklandcouncil.govt.nz</u>. Any follow up requests for information on other sites must go through the online order process.

Should you wish to request any of the files referenced above and/or listed in the attached spreadsheet for viewing, please contact the Auckland Council Call Centre on 301 0101 and note you are requesting former Auckland Regional Council records (the records department requires three working days' notice to ensure the files will be available).

Please note Auckland Council cost recovers officer's time for all site enquiries. As such an invoice for \$128 for the time involved in this enquiry will follow shortly.

Yours Sincerely,

Contamination, Air and Noise Team Specialist Unit | Resource Consents Auckland Council

# Appendix F: Summary Tables and Laboratory Analytical Results

# Table F1 - Relative percentage differences

| Sample ID                                   | 3022       | Duplicate 1 |                                                                                                                                                                                                                                                                                             | HA11       | Dunlicate 2 |                                                                                                                                                                                                                                                                                                                                                                 | ΗΔ17       | Dunlicate 3 |                                                                                                                                                                                                                                                                                               | НАЛА       | Dunlicate / |                                                                                                                                                                                                            | UA102 0.5   | Dun1 0 F    |                                                                                                                         | UA102A 0.E  | Dun2 0 E    |                                      |
|---------------------------------------------|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------------------------------|
| Sample Name / Guideline Values              | 3022       | 3022        | -                                                                                                                                                                                                                                                                                           | НА11       | HA11        |                                                                                                                                                                                                                                                                                                                                                                 | HA17       | HA17        |                                                                                                                                                                                                                                                                                               | HA06       |             |                                                                                                                                                                                                            | HA103 - 0.5 | Dup1 0.5    |                                                                                                                         | LIA102A     | Dup2 - 0.5  |                                      |
| Dopth                                       | 0.00       | 0.00        | DDD%                                                                                                                                                                                                                                                                                        | 0.00       | 0.00        | DDD%                                                                                                                                                                                                                                                                                                                                                            | 0.00       | 0.00        | DDD%                                                                                                                                                                                                                                                                                          | 0.50       | 0.50        | DDD%                                                                                                                                                                                                       | HA103 - 0.5 | Dup1 - 0.5  | DDD%                                                                                                                    | HATUSA      | Dup2 - 0.5  | DDD%                                 |
| Depth                                       | 0.00       | 0.00        | KPD%                                                                                                                                                                                                                                                                                        | 0.00       | 0.00        | KPD %                                                                                                                                                                                                                                                                                                                                                           | 0.00       | 0.00        | KPD %                                                                                                                                                                                                                                                                                         | 0.50       | 0.50        | KPD 76                                                                                                                                                                                                     | 0.5         | 0.5         | KPD %                                                                                                                   | 0.5         | 0.5         | KPD 70                               |
|                                             |            |             | -                                                                                                                                                                                                                                                                                           |            |             |                                                                                                                                                                                                                                                                                                                                                                 |            |             |                                                                                                                                                                                                                                                                                               | FIII       | FIII        |                                                                                                                                                                                                            | Clayey SILT | Clayey SILT |                                                                                                                         | Clayey SILT | Clayey SILT |                                      |
| Date                                        | 06/07/2021 | 06/07/2021  |                                                                                                                                                                                                                                                                                             | 06/07/2021 | 06/07/2021  |                                                                                                                                                                                                                                                                                                                                                                 | 06/07/2021 | 06/07/2021  |                                                                                                                                                                                                                                                                                               | 06/07/2021 | 06/07/2021  |                                                                                                                                                                                                            | 23-INOV-21  | 23-INOV-21  |                                                                                                                         | 23-INOV-21  | 23-INOV-21  |                                      |
| Metals                                      | -          | 1           |                                                                                                                                                                                                                                                                                             |            |             |                                                                                                                                                                                                                                                                                                                                                                 | -          | 1           |                                                                                                                                                                                                                                                                                               |            | 1           |                                                                                                                                                                                                            |             |             |                                                                                                                         |             |             |                                      |
| Arsenic                                     | 2          | 5           | 86                                                                                                                                                                                                                                                                                          | 4          | 5           | 22                                                                                                                                                                                                                                                                                                                                                              | 3          | 3           | 0                                                                                                                                                                                                                                                                                             | 5          | 5           | 0                                                                                                                                                                                                          | 5           | 5           | 0                                                                                                                       | 4           | 3           | 29                                   |
| Cadmium                                     | 0.15       | < 0.10      | <lor< th=""><th>0.23</th><th>0.21</th><th>9</th><th>0.13</th><th>0.1</th><th>26</th><th>&lt; 0.10</th><th>&lt; 0.10</th><th><lor< th=""><th>&lt; 0.10</th><th>&lt; 0.10</th><th><lor< th=""><th>&lt; 0.10</th><th>&lt; 0.10</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<> | 0.23       | 0.21        | 9                                                                                                                                                                                                                                                                                                                                                               | 0.13       | 0.1         | 26                                                                                                                                                                                                                                                                                            | < 0.10     | < 0.10      | <lor< th=""><th>&lt; 0.10</th><th>&lt; 0.10</th><th><lor< th=""><th>&lt; 0.10</th><th>&lt; 0.10</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                        | < 0.10      | < 0.10      | <lor< th=""><th>&lt; 0.10</th><th>&lt; 0.10</th><th><lor< th=""></lor<></th></lor<>                                     | < 0.10      | < 0.10      | <lor< th=""></lor<>                  |
| Chromium                                    | 11         | 14          | 24                                                                                                                                                                                                                                                                                          | 12         | 13          | 8                                                                                                                                                                                                                                                                                                                                                               | 10         | 10          | 0                                                                                                                                                                                                                                                                                             | 15         | 14          | 7                                                                                                                                                                                                          | 13          | 15          | 14                                                                                                                      | 20          | 14          | 35                                   |
| Copper                                      | 5          | 9           | 57                                                                                                                                                                                                                                                                                          | 5          | 5           | 0                                                                                                                                                                                                                                                                                                                                                               | 23         | 16          | 36                                                                                                                                                                                                                                                                                            | 10         | 9           | 11                                                                                                                                                                                                         | 9           | 10          | 11                                                                                                                      | 12          | 10          | 18                                   |
| Lead                                        | 8.5        | 6.7         | 24                                                                                                                                                                                                                                                                                          | 8.9        | 8.9         | 0                                                                                                                                                                                                                                                                                                                                                               | 17.1       | 15.1        | 12                                                                                                                                                                                                                                                                                            | 7.1        | 6.7         | 6                                                                                                                                                                                                          | 6.4         | 7.4         | 14                                                                                                                      | 6.9         | 6.7         | 3                                    |
| Nickel                                      | 4          | 9           | 77                                                                                                                                                                                                                                                                                          | 14         | 13          | 7                                                                                                                                                                                                                                                                                                                                                               | 9          | 6           | 40                                                                                                                                                                                                                                                                                            | 14         | 12          | 15                                                                                                                                                                                                         | 10          | 13          | 26                                                                                                                      | 17          | 11          | 43                                   |
| Zinc                                        | 16         | 28          | 55                                                                                                                                                                                                                                                                                          | 30         | 32          | 6                                                                                                                                                                                                                                                                                                                                                               | 51         | 40          | 24                                                                                                                                                                                                                                                                                            | 30         | 27          | 11                                                                                                                                                                                                         | 24          | 32          | 29                                                                                                                      | 37          | 28          | 28                                   |
| Organochlorine Pesticides                   |            |             |                                                                                                                                                                                                                                                                                             |            |             |                                                                                                                                                                                                                                                                                                                                                                 |            |             |                                                                                                                                                                                                                                                                                               |            |             |                                                                                                                                                                                                            |             |             |                                                                                                                         |             |             |                                      |
| 2,4'-DDD                                    | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th>-</th><th>NA</th><th>-</th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th>-</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              | -          | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th>-</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                               | < 0.013     | -           | <lor< th=""><th>-</th><th>-</th><th><lor< th=""></lor<></th></lor<>                                                     | -           | -           | <lor< th=""></lor<>                  |
| 2,4'DDE                                     | < 0.014    | < 0.013     | <lor< th=""><th></th><th></th><th>NA</th><th></th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                     |            |             | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                 | < 0.013     |             | <lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<>                                                      | -           |             | <lor< th=""></lor<>                  |
| 2,4'-DDT                                    | < 0.014    | < 0.013     | <lor< th=""><th></th><th>-</th><th>NA</th><th>-</th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                   |            | -           | NA                                                                                                                                                                                                                                                                                                                                                              | -          | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                 | < 0.013     |             | <lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<>                                                      | -           |             | <lor< th=""></lor<>                  |
| 4,4'-DDD                                    | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th>-</th><th>NA</th><th>-</th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                   | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              | -          | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                  | < 0.013     |             | <lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<>                                                       |             |             | <lor< th=""></lor<>                  |
| 4,4'-DDE                                    | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th>-</th><th>NA</th><th>-</th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                   | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              | -          | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                  | < 0.013     |             | <lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<>                                                       |             |             | <lor< th=""></lor<>                  |
| 4,4'-DDT                                    | < 0.014    | < 0.013     | <lor< th=""><th></th><th>-</th><th>NA</th><th></th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>  .  </th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                |            | -           | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>  .  </th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                             | < 0.013     | .           | <lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<>                                                       |             |             | <lor< th=""></lor<>                  |
| Aldrin                                      | < 0.014    | < 0.013     | <lor< th=""><th></th><th>-</th><th>NA</th><th></th><th></th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                      |            | -           | NA                                                                                                                                                                                                                                                                                                                                                              |            |             | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                  | < 0.013     |             | <lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<>                                                       |             |             | <lor< th=""></lor<>                  |
| Alpha-BHC                                   | < 0.014    | < 0.013     | <lor< th=""><th></th><th>-</th><th>NA</th><th></th><th></th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                      |            | -           | NA                                                                                                                                                                                                                                                                                                                                                              |            |             | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                  | < 0.013     |             | <lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<>                                                       |             |             | <lor< th=""></lor<>                  |
| Beta-BHC                                    | < 0.014    | < 0.013     | <lor< th=""><th></th><th>-</th><th>NA</th><th></th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                     |            | -           | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                  | < 0.013     |             | <lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<>                                                       |             |             | <lor< th=""></lor<>                  |
| cis-Chlordane                               | < 0.014    | < 0.013     | <lor< th=""><th></th><th>-</th><th>NA</th><th></th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                     |            | -           | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                  | < 0.013     |             | <lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<>                                                       |             |             | <lor< th=""></lor<>                  |
| Delta_BHC                                   | < 0.014    | < 0.013     | <l or<="" th=""><th></th><th></th><th>NA</th><th></th><th></th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></l>                                      |            |             | NA                                                                                                                                                                                                                                                                                                                                                              |            |             | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                  | < 0.013     |             | <lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<>                                                       |             |             | <lor< th=""></lor<>                  |
| Dieldrin                                    | < 0.014    | 0.012       |                                                                                                                                                                                                                                                                                             |            |             | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | 0.012       |                                                                                                                                                                                                            | < 0.013     |             |                                                                                                                         |             |             |                                      |
| Endoculfon                                  | < 0.014    | < 0.013     |                                                                                                                                                                                                                                                                                             |            |             | NA                                                                                                                                                                                                                                                                                                                                                              |            |             | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     |                                                                                                                                                                                                            | < 0.013     |             |                                                                                                                         |             |             |                                      |
|                                             | < 0.014    | < 0.013     |                                                                                                                                                                                                                                                                                             |            |             | NA                                                                                                                                                                                                                                                                                                                                                              |            |             | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     |                                                                                                                                                                                                            | < 0.013     |             |                                                                                                                         |             |             |                                      |
| Endosulian II                               | < 0.014    | < 0.013     | LOR                                                                                                                                                                                                                                                                                         |            | -           | NA                                                                                                                                                                                                                                                                                                                                                              |            | •           | N/A<br>N/A                                                                                                                                                                                                                                                                                    | < 0.013    | < 0.013     | LOD                                                                                                                                                                                                        | < 0.013     | -           | LOR                                                                                                                     | •           |             | LOR                                  |
|                                             | < 0.014    | < 0.013     | <luk< th=""><th>-</th><th>-</th><th>NA<br/>NA</th><th>-</th><th>-</th><th>NA<br/>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><luk< th=""><th>&lt; 0.013</th><th></th><th><luk< th=""><th>•</th><th></th><th><luk< th=""></luk<></th></luk<></th></luk<></th></luk<>                    | -          | -           | NA<br>NA                                                                                                                                                                                                                                                                                                                                                        | -          | -           | NA<br>NA                                                                                                                                                                                                                                                                                      | < 0.013    | < 0.013     | <luk< th=""><th>&lt; 0.013</th><th></th><th><luk< th=""><th>•</th><th></th><th><luk< th=""></luk<></th></luk<></th></luk<>                                                                                 | < 0.013     |             | <luk< th=""><th>•</th><th></th><th><luk< th=""></luk<></th></luk<>                                                      | •           |             | <luk< th=""></luk<>                  |
| Endrin                                      | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th>-</th><th>NA</th><th></th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                   | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                 | < 0.013     |             | <lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<>                                                      | -           |             | <lor< th=""></lor<>                  |
| Endrin aldehyde                             | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th>-</th><th>NA</th><th>-</th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                 | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              | -          | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                | < 0.013     | -           | <lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<>                                                      | -           |             | <lor< th=""></lor<>                  |
| Endrin ketone                               | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th>-</th><th>NA</th><th></th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                   | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                 | < 0.013     |             | <lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<>                                                      | -           |             | <lor< th=""></lor<>                  |
| Gamma-BHC (Lindane)                         | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th></th><th>NA</th><th></th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                    | -          |             | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                 | < 0.013     |             | <lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<>                                                      | -           |             | <lor< th=""></lor<>                  |
| Heptachlor                                  | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th></th><th>NA</th><th></th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                   | -          |             | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                | < 0.013     | -           | <lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<>                                                      | -           |             | <lor< th=""></lor<>                  |
| Heptachlor epoxide                          | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th>-</th><th>NA</th><th></th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                   | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th></th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                 | < 0.013     |             | <lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<>                                                      | -           |             | <lor< th=""></lor<>                  |
| Hexachlorobenzene                           | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th>-</th><th>NA</th><th>-</th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                 | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              | -          | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                | < 0.013     | -           | <lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<>                                                      | -           |             | <lor< th=""></lor<>                  |
| Methoxychlor                                | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th>-</th><th>NA</th><th>-</th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                 | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              | -          | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                | < 0.013     | -           | <lor< th=""><th>-</th><th></th><th><lor< th=""></lor<></th></lor<>                                                      | -           |             | <lor< th=""></lor<>                  |
| Total DDT Isomers                           | < 0.08     | < 0.08      | <lor< th=""><th>-</th><th>-</th><th>NA</th><th></th><th>-</th><th>NA</th><th>&lt; 0.08</th><th>&lt; 0.08</th><th><lor< th=""><th>&lt; 0.08</th><th></th><th><lor< th=""><th>-</th><th>-</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                     | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              |            | -           | NA                                                                                                                                                                                                                                                                                            | < 0.08     | < 0.08      | <lor< th=""><th>&lt; 0.08</th><th></th><th><lor< th=""><th>-</th><th>-</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                 | < 0.08      |             | <lor< th=""><th>-</th><th>-</th><th><lor< th=""></lor<></th></lor<>                                                     | -           | -           | <lor< th=""></lor<>                  |
| trans-Chlordane                             | < 0.014    | < 0.013     | <lor< th=""><th>-</th><th>-</th><th>NA</th><th>-</th><th>-</th><th>NA</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th>-</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                | -          | -           | NA                                                                                                                                                                                                                                                                                                                                                              | -          | -           | NA                                                                                                                                                                                                                                                                                            | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>-</th><th><lor< th=""><th>-</th><th>-</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                               | < 0.013     | -           | <lor< th=""><th>-</th><th>-</th><th><lor< th=""></lor<></th></lor<>                                                     | -           | -           | <lor< th=""></lor<>                  |
| Polycyclic Aromatic Hydrocarbons            |            |             |                                                                                                                                                                                                                                                                                             |            |             |                                                                                                                                                                                                                                                                                                                                                                 |            |             |                                                                                                                                                                                                                                                                                               |            |             |                                                                                                                                                                                                            |             |             |                                                                                                                         |             |             |                                      |
| 1-Methylnaphthalene                         |            | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.3</th><th>&lt; 0.3</th><th><lor< th=""><th>&lt; 0.3</th><th>&lt; 0.3</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                             | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.3</th><th>&lt; 0.3</th><th><lor< th=""><th>&lt; 0.3</th><th>&lt; 0.3</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                             | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.3</th><th>&lt; 0.3</th><th><lor< th=""><th>&lt; 0.3</th><th>&lt; 0.3</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                            | < 0.3       | < 0.3       | <lor< th=""><th>&lt; 0.3</th><th>&lt; 0.3</th><th><lor< th=""></lor<></th></lor<>                                       | < 0.3       | < 0.3       | <lor< th=""></lor<>                  |
| 2-Methylnaphthalene                         |            | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Acenaphthene                                | -          | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Acenaphthylene                              | -          | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Anthracene                                  | -          | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| BaP equivalent                              |            |             | NA                                                                                                                                                                                                                                                                                          | < 0.04     | < 0.03      | <lor< th=""><th>&lt; 0.03</th><th>&lt; 0.03</th><th><lor< th=""><th>&lt; 0.03</th><th>&lt; 0.03</th><th><lor< th=""><th></th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                                                                 | < 0.03     | < 0.03      | <lor< th=""><th>&lt; 0.03</th><th>&lt; 0.03</th><th><lor< th=""><th></th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                                                               | < 0.03     | < 0.03      | <lor< th=""><th></th><th></th><th><lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                            |             |             | <lor< th=""><th></th><th></th><th><lor< th=""></lor<></th></lor<>                                                       |             |             | <lor< th=""></lor<>                  |
| Benzo (e ) pyrene                           |            |             | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Benzo[a]anthracene                          | -          |             | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Benzo(a)pyrene (BAP)                        |            |             | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Benzo(b)fluoranthene + Benzo(i)fluoranthene |            |             | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Benzola h ilpervlene                        |            |             | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Benzo[k]fluoranthene                        |            |             | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Chrysene                                    |            |             | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Dihenzo[a b]anthracene                      |            | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Eluoranthene                                |            |             | NΔ                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <1 OP                                                                                                                                                                                                                                                                                                                                                           | < 0.012    | < 0.012     | CLOR                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | CLOR                                                                                                                                                                                                       | < 0.013     | < 0.013     | <1 OP                                                                                                                   | < 0.013     | < 0.013     | CLOR                                 |
|                                             |            | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     |                                                                                                                                                                                                                                                                                                                                                                 | < 0.012    | < 0.012     |                                                                                                                                                                                                                                                                                               | < 0.013    | < 0.013     |                                                                                                                                                                                                            | < 0.013     | < 0.013     |                                                                                                                         | < 0.013     | < 0.013     |                                      |
|                                             | -          | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | LOR                                                                                                                                                                                                                                                                                                                                                             | < 0.012    | < 0.012     | <lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; U.U13</th><th><lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></lor<br></th></lor<></lor<br></th></lor<></lor<br>                                     | < 0.013    | < 0.013     | <lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; U.U13</th><th><lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></lor<br></th></lor<></lor<br>                                     | < 0.013     | < U.U13     | <lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></lor<br>                                     | < 0.013     | < 0.013     |                                      |
| Indeno(1,2,3-c,0)pyrene                     | · ·        | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor<br><lor< th=""></lor<></lor<br></th></lor<></lor<br></th></lor<></lor<br></th></lor<></lor<br></th></lor<> | < 0.012    | < 0.012     | <lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor<br><lor< th=""></lor<></lor<br></th></lor<></lor<br></th></lor<></lor<br></th></lor<></lor<br> | < 0.013    | < 0.013     | <lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor<br><lor< th=""></lor<></lor<br></th></lor<></lor<br></th></lor<></lor<br> | < 0.013     | < 0.013     | <lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor<br><lor< th=""></lor<></lor<br></th></lor<></lor<br> | < 0.013     | < 0.013     | <lor<br><lor< th=""></lor<></lor<br> |
| NaphthaleNe                                 | -          | -           | NA                                                                                                                                                                                                                                                                                          | < U.U /    | < U.U/      | <luk< th=""><th>&lt; 0.06</th><th>&lt; 0.06</th><th><luk< th=""><th>&lt; 0.07</th><th>&lt; U.U /</th><th><luk< th=""><th>&lt; 0.07</th><th>&lt; U.U/</th><th><luk< th=""><th>&lt; 0.07</th><th>&lt; U.U/</th><th><luk< th=""></luk<></th></luk<></th></luk<></th></luk<></th></luk<>                                                                            | < 0.06     | < 0.06      | <luk< th=""><th>&lt; 0.07</th><th>&lt; U.U /</th><th><luk< th=""><th>&lt; 0.07</th><th>&lt; U.U/</th><th><luk< th=""><th>&lt; 0.07</th><th>&lt; U.U/</th><th><luk< th=""></luk<></th></luk<></th></luk<></th></luk<>                                                                          | < 0.07     | < U.U /     | <luk< th=""><th>&lt; 0.07</th><th>&lt; U.U/</th><th><luk< th=""><th>&lt; 0.07</th><th>&lt; U.U/</th><th><luk< th=""></luk<></th></luk<></th></luk<>                                                        | < 0.07      | < U.U/      | <luk< th=""><th>&lt; 0.07</th><th>&lt; U.U/</th><th><luk< th=""></luk<></th></luk<>                                     | < 0.07      | < U.U/      | <luk< th=""></luk<>                  |
| Perylene                                    | -          | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>0.017</th><th>0.022</th><th>26</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                                                | < 0.012    | < 0.012     | <lor< th=""><th>0.017</th><th>0.022</th><th>26</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                                                                | 0.017      | 0.022       | 26                                                                                                                                                                                                         | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Phenanthrene                                | -          | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |
| Pyrene                                      | -          | -           | NA                                                                                                                                                                                                                                                                                          | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.012    | < 0.012     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>                                                                     | < 0.013    | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<></th></lor<>                                                    | < 0.013     | < 0.013     | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th><lor< th=""></lor<></th></lor<>                                   | < 0.013     | < 0.013     | <lor< th=""></lor<>                  |

Notes:

All values in mg/kg unless otherwise indicated (i.e. asbestos).

'-' indicates not analysed or no relevant acceptance criteria

<LOR = less than laboratory limit of reporting

Grey font indicates values <LOR

| Sample ID                                   |                          |                    |                           |                        |                         |                        |                                                                                                                                                                                                           |                        |                                                                                                                                                     | PT-BL_HA01_0.00m-0.15m | PT-BL_HA02_0.00m-0.10m | PT-BL_HA03_0.40m-0.65m  | PT-BL_HA04_0.00m-0.10m | PT-BL_HA05_0.00m-0.15m | PT-BL_HA06_0.00m-0.10m                | PT-BL_HA06_0.50m-0.60m | PT-BL_HA07_0.00m-0.10m | PT-BL_HA08_0.50m-0.60m |
|---------------------------------------------|--------------------------|--------------------|---------------------------|------------------------|-------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|-------------------------|------------------------|------------------------|---------------------------------------|------------------------|------------------------|------------------------|
| Sample Name / Guideline Values              |                          |                    |                           |                        | NEC Dural Dealdeatial ( |                        | Dublished Australiand                                                                                                                                                                                     |                        |                                                                                                                                                     | HA01                   | HA02                   | HA03                    | HA04                   | HA05                   | HA06                                  | HA06                   | HA07                   | HA08                   |
| Depth                                       | NES Commercial /         | 1h                 | NES High Density          | NES Residential (10 %  | NES Rural Residential / | AUP Permitted Activity | Published Auckland<br>Rackground Louols                                                                                                                                                                   | Typical Managed Fill   |                                                                                                                                                     | 0.00                   | 0.00                   | 0.40                    | 0.00                   | 0.00                   | 0.00                                  | 0.50                   | 0.00                   | 0.50                   |
| Strata                                      | Industrial <sup>1a</sup> | NES Recreational   | Residential <sup>1c</sup> | produce) <sup>1d</sup> | 11estyle block (25%     | Criteria <sup>2</sup>  | 6 colored and 20                                                                                                                                                                                          | Criteria               | Maximum                                                                                                                                             | Topsoil                | Topsoil                | Fill                    | Topsoil                | Topsoil                | Topsoil                               | Fill                   | Topsoil                | Fill                   |
| Date                                        |                          |                    |                           |                        | produce)                |                        | (VOICALIIC)                                                                                                                                                                                               |                        |                                                                                                                                                     | 06/07/2021             | 06/07/2021             | 06/07/2021              | 06/07/2021             | 06/07/2021             | 06/07/2021                            | 06/07/2021             | 06/07/2021             | 06/07/2021             |
| Asbestos (Semi-Quantitative)                |                          |                    |                           |                        |                         |                        |                                                                                                                                                                                                           |                        |                                                                                                                                                     |                        |                        | •                       |                        |                        |                                       |                        |                        |                        |
| Ashestos tyne                               |                          |                    |                           |                        |                         |                        | ND                                                                                                                                                                                                        | At operator discretion |                                                                                                                                                     | Ashestos NOT detected  | Ashestos NOT detected  | Ashestos NOT detected   | Ashestos NOT detected  | Ashestos NOT detected  |                                       | Ashestos NOT detected  | Ashestos NOT detected  | Ashestos NOT detected  |
| Achietas form                               |                          |                    |                           |                        |                         |                        | ND                                                                                                                                                                                                        | At operator discretion |                                                                                                                                                     | /bbcstos nor detected. | Appendent det cetted.  | historius nor detected. | hobestos non detected. | robostos nor actorida. |                                       | Abbested Hor detected. | Abbestes not detected. | Abbestos nor detected. |
| Asbestos as ACM (w/w%)                      | 0.05%4                   | 0.02%4             | 0.04%                     | 0.01%4                 | 0.01%                   |                        | ND                                                                                                                                                                                                        | At operator discretion |                                                                                                                                                     |                        |                        |                         |                        |                        |                                       |                        |                        |                        |
| Asbestos Fibros/Fine (w/w%)                 | 0.001%"                  | 0.001%"            | 0.001%                    | 0.001%                 | 0.001%                  |                        | ND                                                                                                                                                                                                        | At operator discretion |                                                                                                                                                     |                        |                        |                         |                        |                        |                                       |                        |                        |                        |
| Motole                                      |                          |                    |                           |                        |                         |                        | 110                                                                                                                                                                                                       | All operator aberetion |                                                                                                                                                     |                        |                        |                         |                        |                        |                                       |                        |                        |                        |
| Annula                                      | 70                       | 00                 | 45                        | 20                     | 17                      | 100                    | 10                                                                                                                                                                                                        | 70                     | 25                                                                                                                                                  | r                      | r                      | 1                       | 1                      | 1                      | · · · · · · · · · · · · · · · · · · · | r                      | ,                      |                        |
| Ai seriic                                   | 70                       | 0U                 | 40                        | 20                     | 1/                      | 100                    | 12                                                                                                                                                                                                        | 70                     | 30                                                                                                                                                  |                        |                        |                         |                        |                        |                                       | 5                      | 6                      | 4                      |
| cadmium                                     | 1300                     | 400                | 230                       | 3                      | 0.8                     | /.5                    | 0.65                                                                                                                                                                                                      | 7.5                    | 0.23                                                                                                                                                | · ·                    |                        |                         |                        |                        |                                       | < 0.10                 | 0.14                   | 0.12                   |
|                                             | 6300                     | 2/00               | 10000                     | 460                    | 290                     | 400                    | 55                                                                                                                                                                                                        | 400                    | 34                                                                                                                                                  | · ·                    |                        |                         |                        |                        |                                       | 15                     | 12                     | 12                     |
| copper                                      | >10000                   | >10000             | >10000                    | >10000                 | >10000                  | 325                    | 45                                                                                                                                                                                                        | 325                    | 31                                                                                                                                                  |                        |                        |                         |                        |                        |                                       | 10                     | 22                     | 15                     |
| Lead                                        | 3300                     | 1000               | 500                       | 210                    | 160                     | 250                    | 00                                                                                                                                                                                                        | 250                    | 1/.1                                                                                                                                                | · ·                    |                        |                         |                        |                        |                                       | 7.1                    | 15.4                   | 13.9                   |
| NICKEI                                      | 400000                   | 1200               | 1200                      | 400                    |                         | 105                    | 35                                                                                                                                                                                                        | 320                    | 19                                                                                                                                                  |                        |                        |                         |                        |                        |                                       | 14                     | 14                     | 9                      |
|                                             | 400000                   | 30000              | 00000                     | 7400                   |                         | 400                    | 100                                                                                                                                                                                                       | 400                    | 11                                                                                                                                                  |                        |                        |                         |                        |                        |                                       | 30                     | /1                     | /8                     |
| Organochlorine Pesticides                   | 1                        | r                  | 1                         | r                      | 1                       |                        |                                                                                                                                                                                                           |                        | -                                                                                                                                                   | -                      | 1                      |                         | 1                      | 1                      |                                       | 1                      |                        |                        |
| 2,4'-DDD                                    | -                        |                    |                           | •                      |                         |                        | <lor< th=""><th></th><th><lor< th=""><th>· ·</th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></th></lor<>                                |                        | <lor< th=""><th>· ·</th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<>               | · ·                    |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| 2,4'DDE                                     |                          |                    | -                         |                        |                         |                        | <lor< th=""><th></th><th><lor< th=""><th>· ·</th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></th></lor<>                                |                        | <lor< th=""><th>· ·</th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<>               | · ·                    |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| 2,4'-DD1                                    |                          | -                  | -                         | -                      |                         |                        | <lor< th=""><th></th><th><lor< th=""><th>· ·</th><th>-</th><th></th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></th></lor<>                              |                        | <lor< th=""><th>· ·</th><th>-</th><th></th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<>             | · ·                    | -                      |                         | -                      |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| 4,4'-DDD                                    |                          | -                  | -                         | -                      | -                       | -                      | <lor< th=""><th></th><th><lor< th=""><th>· ·</th><th>-</th><th></th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></th></lor<>                              |                        | <lor< th=""><th>· ·</th><th>-</th><th></th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<>             | · ·                    | -                      |                         | -                      |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| 4,4'-DDE                                    | -                        |                    |                           | •                      |                         |                        | <lor< th=""><th></th><th><lor< th=""><th>· ·</th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></th></lor<>                                |                        | <lor< th=""><th>· ·</th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<>               | · ·                    |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| 4,4'-DDT                                    | -                        |                    |                           | •                      |                         |                        | <lor< th=""><th></th><th><lor< th=""><th>· ·</th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></th></lor<>                                |                        | <lor< th=""><th>· ·</th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<>               | · ·                    |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Aldrin                                      | 160                      | 70                 | 45                        | 2.6                    | 1.1                     | •                      | <lor< th=""><th>•</th><th><lor< th=""><th></th><th></th><th></th><th></th><th>•</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></th></lor<>                                 | •                      | <lor< th=""><th></th><th></th><th></th><th></th><th>•</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<>                 |                        |                        |                         |                        | •                      | < 0.013                               | < 0.013                | < 0.013                |                        |
| Alpha-BHC                                   | -                        | •                  | •                         | •                      | •                       | •                      | <lor< th=""><th>•</th><th><lor< th=""><th></th><th></th><th></th><th></th><th>•</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></th></lor<>                                 | •                      | <lor< th=""><th></th><th></th><th></th><th></th><th>•</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<>                 |                        |                        |                         |                        | •                      | < 0.013                               | < 0.013                | < 0.013                |                        |
| Beta-BHC                                    | •                        | •                  | •                         | •                      | -                       | -                      | <lor< th=""><th></th><th><lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></th></lor<>                                   |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<>                  |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| cis-chiordane                               | •                        | •                  | •                         | •                      |                         |                        | <lor< th=""><th></th><th><lok< th=""><th></th><th></th><th></th><th>•</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lok<></th></lor<>                                  |                        | <lok< th=""><th></th><th></th><th></th><th>•</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lok<>                 |                        |                        |                         | •                      |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Dieldein                                    | 140                      | - 70               | -                         | -                      |                         | -<br>2 7 <sup>10</sup> | <lok< th=""><th></th><th><lok< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lok<></th></lok<>                                   |                        | <lok< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lok<>                  |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
|                                             | 100                      | 70                 | 40                        | 2.0                    | 1.1                     | 2.1                    | <lur< th=""><th>0.2</th><th><luk< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></luk<></th></lur<>                                | 0.2                    | <luk< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></luk<>                  |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Endosultan I                                |                          |                    |                           |                        |                         |                        | <lok< th=""><th></th><th><lok< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lok<></th></lok<>                                   |                        | <lok< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lok<>                  |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Endosultan II                               | •                        |                    |                           |                        |                         |                        | <lok< th=""><th></th><th><lok< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lok<></th></lok<>                                   |                        | <lok< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lok<>                  |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Endrin                                      |                          |                    |                           |                        |                         |                        | <lur<br>d.oP</lur<br>                                                                                                                                                                                     |                        | <lur< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lur<>                  |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Endrin aldobydo                             | -                        |                    |                           |                        |                         |                        | <luk< th=""><th></th><th><luk<br>d oR</luk<br></th><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th></luk<>                                 |                        | <luk<br>d oR</luk<br>                                                                                                                               |                        |                        |                         |                        |                        | < 0.013                               | < 0.012                | < 0.013                |                        |
| Endrin kotono                               |                          |                    |                           |                        |                         |                        | <lur< th=""><th></th><th><luk< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th></th></luk<></th></lur<>                                   |                        | <luk< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th></th></luk<>                  |                        |                        |                         |                        |                        | < 0.013                               | < 0.012                | < 0.012                |                        |
| Gamma-BHC (Lindane)                         | 14000 <sup>10</sup>      | 1400 <sup>10</sup> | 700 <sup>10</sup>         | 139 <sup>10</sup>      | 3310                    | 140 <sup>10</sup>      | <lor<br><lor< th=""><th></th><th><lor<br><lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></lor<br></th></lor<></lor<br> |                        | <lor<br><lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></lor<br> |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Hentachlor                                  |                          |                    |                           |                        |                         |                        | <lor<br><lor< th=""><th></th><th><l op<="" th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></l></th></lor<></lor<br>                 |                        | <l op<="" th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></l>                 |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Hentachlor enovide                          |                          |                    |                           |                        |                         |                        | <lor<br><lor< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></lor<br>                                     |                        |                                                                                                                                                     |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Heyachlorobenzene                           |                          |                    |                           |                        |                         |                        | <lor<br><lor< th=""><th></th><th><l op<="" th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></l></th></lor<></lor<br>                 |                        | <l op<="" th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></l>                 |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Methoxychlor                                |                          |                    |                           |                        |                         |                        | <lor<br><lor< th=""><th></th><th><l or<="" th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></l></th></lor<></lor<br>                 |                        | <l or<="" th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></l>                 |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Total DDT Isomers                           | 1000                     | 400                | 240                       | 70                     | 45                      | 12                     | <l or<="" th=""><th>12</th><th><l or<="" th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.08</th><th>&lt; 0.08</th><th>&lt; 0.08</th><th></th></l></th></l>                                  | 12                     | <l or<="" th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.08</th><th>&lt; 0.08</th><th>&lt; 0.08</th><th></th></l>                    |                        |                        |                         |                        |                        | < 0.08                                | < 0.08                 | < 0.08                 |                        |
| trans-Chlordane                             |                          |                    |                           |                        |                         |                        | <lor< th=""><th></th><th><lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<></th></lor<>                                   |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th></th></lor<>                  |                        |                        |                         |                        |                        | < 0.013                               | < 0.013                | < 0.013                |                        |
| Polycyclic Aromatic Hydrocarbons            |                          | 1                  | 1                         | 1                      | 1                       | 1 1                    |                                                                                                                                                                                                           |                        |                                                                                                                                                     | 1                      | 1                      | 1                       | 1                      | 1                      |                                       |                        |                        | 1                      |
| 1-Methylnaphthalene                         | -                        | -                  | -                         | -                      | -                       |                        | <lor< th=""><th></th><th><lor< th=""><th>· ·</th><th></th><th>-</th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<></th></lor<>                               |                        | <lor< th=""><th>· ·</th><th></th><th>-</th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>              | · ·                    |                        | -                       |                        |                        |                                       | < 0.013                | < 0.013                | < 0.012                |
| 2-Methylnaphthalene                         | -0                       | -6                 | -6                        | -6                     | -6                      |                        | <lor< th=""><th></th><th><lor< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<></th></lor<>                                   |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                  |                        |                        |                         |                        |                        |                                       | < 0.013                | < 0.013                | < 0.012                |
| Acenaphthene                                | -                        | -                  | -                         | -                      | -                       |                        | <lor< th=""><th>-</th><th><lor< th=""><th></th><th></th><th></th><th></th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<></th></lor<>                                 | -                      | <lor< th=""><th></th><th></th><th></th><th></th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                 |                        |                        |                         |                        | -                      |                                       | < 0.013                | < 0.013                | < 0.012                |
| Acenaphthylene                              |                          |                    |                           |                        |                         |                        | <lor< th=""><th></th><th><lor< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<></th></lor<>                                   |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                  |                        |                        |                         |                        |                        |                                       | < 0.013                | < 0.013                | < 0.012                |
| Anthracene                                  | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>-</th><th><lor< th=""><th></th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<></th></lor<>                             | -                      | <lor< th=""><th></th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>             |                        | -                      | -                       | -                      | -                      | -                                     | < 0.013                | < 0.013                | < 0.012                |
| BaP equivalent                              | 35                       | 40                 | 24                        | 10                     | 6                       | 20                     | <lor< th=""><th>20</th><th>0.03</th><th></th><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.03</th><th>&lt; 0.03</th><th>&lt; 0.03</th></lor<>                                                   | 20                     | 0.03                                                                                                                                                |                        |                        |                         |                        |                        |                                       | < 0.03                 | < 0.03                 | < 0.03                 |
| Benzo (e ) pyrene                           |                          |                    |                           |                        |                         |                        | <lor< th=""><th></th><th>0.016</th><th></th><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                                 |                        | 0.016                                                                                                                                               |                        |                        |                         |                        |                        |                                       | < 0.013                | < 0.013                | < 0.012                |
| Benzo[a]anthracene                          | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th></th><th>0.025</th><th></th><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                                 |                        | 0.025                                                                                                                                               |                        |                        |                         |                        |                        |                                       | < 0.013                | < 0.013                | < 0.012                |
| Benzo[a]pyrene (BAP)                        | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th></th><th>0.017</th><th></th><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                                 |                        | 0.017                                                                                                                                               |                        |                        |                         |                        |                        |                                       | < 0.013                | < 0.013                | < 0.012                |
| Benzo[b]fluoranthene + Benzo[j]fluoranthene | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th></th><th>0.029</th><th></th><th>-</th><th></th><th>-</th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                               |                        | 0.029                                                                                                                                               |                        | -                      |                         | -                      |                        |                                       | < 0.013                | < 0.013                | < 0.012                |
| Benzo[g,h,i]perylene                        |                          | -                  | -                         | -                      | -                       | -                      | <lor< th=""><th></th><th>0.012</th><th>-</th><th>-</th><th>-</th><th>-</th><th></th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                            |                        | 0.012                                                                                                                                               | -                      | -                      | -                       | -                      |                        | -                                     | < 0.013                | < 0.013                | < 0.012                |
| Benzo[k]fluoranthene                        | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th></th><th>0.011</th><th></th><th>-</th><th>-</th><th>-</th><th></th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                             |                        | 0.011                                                                                                                                               |                        | -                      | -                       | -                      |                        | -                                     | < 0.013                | < 0.013                | < 0.012                |
| Chrysene                                    | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>-</th><th>0.018</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                           | -                      | 0.018                                                                                                                                               | -                      | -                      | -                       | -                      | -                      |                                       | < 0.013                | < 0.013                | < 0.012                |
| Dibenzo[a,h]anthracene                      | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>-</th><th><lor< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<></th></lor<>                            | -                      | <lor< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>            | -                      | -                      | -                       | -                      | -                      | -                                     | < 0.013                | < 0.013                | < 0.012                |
| Fluoranthene                                | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th></th><th>0.031</th><th></th><th>-</th><th>-</th><th>-</th><th></th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                             |                        | 0.031                                                                                                                                               |                        | -                      | -                       | -                      |                        | -                                     | < 0.013                | < 0.013                | < 0.012                |
| Fluorene                                    | -                        | -                  | -                         | -                      | -                       | -                      | <lor< th=""><th>-</th><th><lor< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<></th></lor<>                            | -                      | <lor< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>            | -                      | -                      | -                       | -                      | -                      | -                                     | < 0.013                | < 0.013                | < 0.012                |
| Indeno(1,2,3-c,d)pyrene                     | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>-</th><th>0.012</th><th></th><th></th><th>-</th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                               | -                      | 0.012                                                                                                                                               |                        |                        | -                       |                        |                        |                                       | < 0.013                | < 0.013                | < 0.012                |
| Naphthalene                                 | 210                      | 63                 | 63                        | 63                     | 7.2                     | 0.288                  | <lor< th=""><th>-</th><th><lor< th=""><th></th><th>-</th><th>-</th><th>-</th><th>-</th><th></th><th>&lt; 0.07</th><th>&lt; 0.07</th><th>&lt; 0.06</th></lor<></th></lor<>                                 | -                      | <lor< th=""><th></th><th>-</th><th>-</th><th>-</th><th>-</th><th></th><th>&lt; 0.07</th><th>&lt; 0.07</th><th>&lt; 0.06</th></lor<>                 |                        | -                      | -                       | -                      | -                      |                                       | < 0.07                 | < 0.07                 | < 0.06                 |
| Perylene                                    | -                        | -                  | -                         | -                      |                         | -                      | <lor< th=""><th>-</th><th>0.017</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th>0.017</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                                  | -                      | 0.017                                                                                                                                               |                        |                        | -                       | -                      | -                      |                                       | 0.017                  | < 0.013                | < 0.012                |
| Phenanthrene                                |                          | -                  | -                         | -                      | -                       | -                      | <lor< th=""><th>-</th><th><lor< th=""><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<></th></lor<>                               | -                      | <lor< th=""><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>               |                        |                        | -                       | -                      | -                      |                                       | < 0.013                | < 0.013                | < 0.012                |
| Pyrene                                      | NL                       | 1600'              | 1600'                     | 1600'                  | 160′                    | 7.9                    | <lor< th=""><th></th><th>0.027</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th></lor<>                                                |                        | 0.027                                                                                                                                               |                        |                        |                         |                        |                        | -                                     | < 0.013                | < 0.013                | < 0.012                |

### Table F2 - Analytical Results

Notes:

All values in mg/kg unless otherwise indicated (i.e. asbestos).

'-' indicates not analysed or no relevant acceptance criteria <LOR = less than laboratory limit of reporting</p>

Grey font indicates values <LOR

'ND or Asbestos NOT detected' = asbestos not identified to be present by the laboratory method. NL = Not limiting (i.e. >10,000 mg/kg)

Red values indicate that the results exceed NES Soil criteria: commercial / industrial criteria

values indicate that the results exceed NES soil criteria: commercial industrial criteria
 values indicate results exceed NES recreational criteria
 Dashed outlined values indicate that the results exceed NES Soil criteria: High density residential criteria
 Grey Shaded values indicate that the results exceed NES Soil criteria: Residential 10% produce criteria
 <u>Underlined</u> values indicates that results exceed NEP Soil criteria

Add values indicate that results exceed the published background concentrations for non-volcanic soils in the Auckland Region
 values indicate that results exceed typical managed fill criteria

1a - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Commercial/Industrial use (and adopted conservative preliminary screening standard for construction works), unless otherwise stated. 1b - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Recreational use, unless otherwise stated.

1c - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: High density residential use, unless otherwise stated.

1d - MtE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Residential 10% produce, unless otherwise stated. 2 - Auckland Unitary Plan: Operative in Part Version (AUP). Permitted Activity Soil Criteria Table E30.6.1.4.1 (unless otherwise stated).

Auckando Unitary Parative in Part Version (AUP). Permitted Activity Soli Uniteria Lable 23.06.1.4.1 (unitess otherwise stated).
 Background Concentrations of inorganic elements in solis from the Auckland Region: non-volcanic solis
 Assessment of Site Contamination National Environment Protection Measures (ASC NEPM) Toolbox – http://www.nepc.gov.au/nepms/assessment-site-contamination/toolbox.
 USPEA Regional Screening Levels - https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
 ME 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, Revised 2011. Tier 1 Soil acceptance criteria for applicable pathway.
 Ridge Road acceptance criteria based on the published maximum truckload concentrations for deep fill (>2.0m).

|                                             |                          |                                |                   |                        |                         |                        |                                                                                                                                                                                                                                    | -                      | -                      |                        |                        |                        |                        |                        |                        |                        |                        |
|---------------------------------------------|--------------------------|--------------------------------|-------------------|------------------------|-------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Sample ID                                   |                          |                                |                   |                        |                         |                        |                                                                                                                                                                                                                                    | PT-BL_HA09_0.00m-0.10m | PT-BL_HA10_0.00m-0.10m | PT-BL_HA11_0.00m-0.10m | PT-BL_HA11_0.50m-0.60m | PT-BL_HA12_0.00m-0.10m | PT-BL_HA13_0.00m-0.10m | PT-BL_HA14_0.00m-0.20m | PT-BL_HA14_0.20m-0.60m | PT-BL_HA15_0.00m-0.05m | PT-BL_HA16_0.00m-0.10m |
| Sample Name / Guideline Values              |                          |                                |                   |                        | NES Rural Residential / |                        | Published Auckland                                                                                                                                                                                                                 | HA09                   | HA10                   | HA11                   | HA11                   | HA12                   | HA13                   | HA14                   | HA14                   | HA15                   | HA16                   |
| Depth                                       | NES Commercial /         | NES Recreational <sup>1b</sup> | NES High Density  | NES Residential (10 %  | lifestyle block (25%    | AUP Permitted Activity | Background Levels                                                                                                                                                                                                                  | 0.00                   | 0.00                   | 0.00                   | 0.50                   | 0.00                   | 0.00                   | 0.00                   | 0.20                   | 0.00                   | 0.00                   |
| Strata                                      | Industrial               |                                | Residential       | produce)               | produce) <sup>1e</sup>  | Criteria               | (volcanic) <sup>3b</sup>                                                                                                                                                                                                           | Topsoil                | Topsoil                | Topsoil                | Natural                | Topsoil                | Topsoil                | Topsoil                | Natural                | Topsoil                | Topsoil                |
| Date                                        |                          |                                |                   |                        |                         |                        |                                                                                                                                                                                                                                    | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             |
| Asbestos (semi-Quantitative)                | 1                        | 1                              | 1                 | 1                      | 1                       | 1                      | ND                                                                                                                                                                                                                                 | Ashastas NOT datastad  | Ashestes NOT detected  | Ashestes NOT datasted  | 1                      | Ashestes NOT detected  |                        | Ashestes NOT detected  |                        | Ashestes NOT detected  | Ashestes NOT detected  |
| Asbestos type                               |                          |                                |                   |                        |                         |                        | ND                                                                                                                                                                                                                                 | ASDESIOS NOT detected. | Aspestos NOT detected. | ASDESIUS NUT delected. |                        | ASDESIUS NUT DETECTED. | •                      | ASDESIOS NOT delected. | •                      | Aspesios NOT detected. | ASDESIOS NOT delected. |
| Asbestos Ionni<br>Asbestos as ACM (w/w%)    | 0.05%                    | 0.02%4                         | 0.04%4            | 0.01%4                 | 0.01%                   |                        | ND                                                                                                                                                                                                                                 |                        |                        |                        |                        |                        |                        |                        |                        | ļ                      |                        |
| Asbestos Fibres/Fine (w/w %)                | 0.001%"                  | 0.001%"                        | 0.001%"           | 0.001%"                | 0.001%"                 |                        | ND                                                                                                                                                                                                                                 |                        |                        |                        |                        |                        |                        |                        |                        | ļ                      |                        |
| Metals                                      |                          | 1                              | 1                 |                        | 1                       | 1                      |                                                                                                                                                                                                                                    | 1                      | 1                      |                        | 1                      |                        |                        |                        |                        |                        |                        |
| Arsenic                                     | 70                       | 80                             | 45                | 20                     | 17                      | 100                    | 12                                                                                                                                                                                                                                 | < 2                    | 2                      | 4                      | 2                      | 2                      | 5                      | 3                      | 2                      | 3                      | < 2                    |
| Cadmium                                     | 1300                     | 400                            | 230               | 3                      | 0.8                     | 7.5                    | 0.65                                                                                                                                                                                                                               | 0.11                   | < 0.10                 | 0.23                   | < 0.10                 | < 0.10                 | 0.22                   | 0.19                   | < 0.10                 | < 0.10                 | 0.17                   |
| Chromium                                    | 6300                     | 2700                           | 1500              | 460                    | 290                     | 400                    | 55                                                                                                                                                                                                                                 | 9                      | 13                     | 12                     | 10                     | 12                     | 16                     | 22                     | 34                     | 30                     | 11                     |
| Copper                                      | >10000                   | >10000                         | >10000            | >10000                 | >10000                  | 325                    | 45                                                                                                                                                                                                                                 | 4                      | 5                      | 5                      | 7                      | 5                      | 8                      | 6                      | 10                     | 7                      | 4                      |
| Lead                                        | 3300                     | 880                            | 500               | 210                    | 160                     | 250                    | 65                                                                                                                                                                                                                                 | 6.4                    | 6.7                    | 8.9                    | 6.7                    | 9.1                    | 9.8                    | 8.3                    | 9.3                    | 9.3                    | 7.9                    |
| Nickel                                      | 6000 <sup>5</sup>        | 12005                          | 1200 <sup>5</sup> | 400                    |                         | 105                    | 35                                                                                                                                                                                                                                 | 3                      | 4                      | 14                     | 6                      | 4                      | 7                      | 4                      | 5                      | 3                      | 3                      |
| Zinc                                        | 400000                   | 30000                          | 60000             | 7400                   | -                       | 400                    | 180                                                                                                                                                                                                                                | 11                     | 8                      | 30                     | 14                     | 13                     | 20                     | 16                     | 22                     | 14                     | 10                     |
| Organochlorine Pesticides                   |                          | 1                              | 1                 | 1                      | 1                       |                        |                                                                                                                                                                                                                                    | 1                      | r                      | 1                      | 1                      | 1                      |                        | [                      |                        |                        |                        |
| 2,4'-DDD                                    |                          |                                | •                 |                        |                         |                        | <lor< th=""><th>•</th><th></th><th></th><th>•</th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th>· · ·</th></lor<>                                                                                           | •                      |                        |                        | •                      |                        | < 0.013                |                        |                        | < 0.013                | · · ·                  |
| 2,4'DDE                                     | •                        | •                              | •                 | •                      | •                       | •                      | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th>· · ·</th></lor<>                                                                                             |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                | · · ·                  |
| 2,4 -DD1                                    |                          |                                |                   |                        |                         |                        | <lok< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th>· · ·</th></lok<>                                                                                             |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                | · · ·                  |
| 4.4-000                                     |                          |                                |                   |                        |                         |                        |                                                                                                                                                                                                                                    |                        |                        |                        |                        |                        | < 0.013                | -                      | -                      | < 0.013                |                        |
| 4,4 • DDE                                   |                          |                                |                   |                        |                         |                        | <lor<br><lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th></th></lor<></lor<br>                                                                                 |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                |                        |
| Aldrin                                      | 160                      | 70                             | 45                | 2.6                    | 1.1                     |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th></th></lor<>                                                                                                  |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                |                        |
| Alpha-BHC                                   |                          |                                |                   |                        |                         |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th></th></lor<>                                                                                                  |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                |                        |
| Beta-BHC                                    | -                        |                                | -                 |                        |                         | -                      | <lor< th=""><th></th><th>-</th><th></th><th></th><th></th><th>&lt; 0.013</th><th>-</th><th></th><th>&lt; 0.013</th><th>-</th></lor<>                                                                                               |                        | -                      |                        |                        |                        | < 0.013                | -                      |                        | < 0.013                | -                      |
| cis-Chlordane                               | -                        |                                |                   |                        | -                       | -                      | <lor< th=""><th></th><th>-</th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th>-</th></lor<>                                                                                                |                        | -                      |                        |                        |                        | < 0.013                |                        |                        | < 0.013                | -                      |
| Delta-BHC                                   |                          |                                |                   |                        |                         |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th>-</th></lor<>                                                                                                 |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                | -                      |
| Dieldrin                                    | 160                      | 70                             | 45                | 2.6                    | 1.1                     | 2.7 <sup>10</sup>      | <lor< th=""><th></th><th>-</th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th></th></lor<>                                                                                                 |                        | -                      |                        |                        |                        | < 0.013                |                        |                        | < 0.013                |                        |
| Endosulfan I                                |                          |                                |                   |                        |                         |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th>· · ·</th></lor<>                                                                                             |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                | · · ·                  |
| Endosulfan II                               |                          |                                |                   |                        |                         |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th></th></lor<>                                                                                                  |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                |                        |
| Endosulfan sulphate                         |                          |                                |                   | -                      |                         |                        | <lor< th=""><th></th><th>-</th><th></th><th></th><th></th><th>&lt; 0.013</th><th>-</th><th></th><th>&lt; 0.013</th><th></th></lor<>                                                                                                |                        | -                      |                        |                        |                        | < 0.013                | -                      |                        | < 0.013                |                        |
| Endrin                                      |                          |                                |                   |                        |                         |                        | <lor< th=""><th></th><th>-</th><th></th><th></th><th></th><th>&lt; 0.013</th><th>-</th><th></th><th>&lt; 0.013</th><th>· · ·</th></lor<>                                                                                           |                        | -                      |                        |                        |                        | < 0.013                | -                      |                        | < 0.013                | · · ·                  |
| Endrin aldehyde                             | •                        |                                | -                 | •                      |                         | -                      | <lor< th=""><th></th><th></th><th></th><th></th><th>-</th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th></th></lor<>                                                                                                 |                        |                        |                        |                        | -                      | < 0.013                |                        |                        | < 0.013                |                        |
| Camma RHC (Lindano)                         | -<br>14000 <sup>10</sup> | -<br>1400 <sup>10</sup>        | 700 <sup>10</sup> | -<br>130 <sup>10</sup> | 3310                    | - 140 <sup>10</sup>    | <lok<br>d oP</lok<br>                                                                                                                                                                                                              |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                |                        |
| Hentachlor                                  | 14000                    | 1400                           | 700               | 137                    |                         | 140                    | <lor<br><lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th></th></lor<></lor<br>                                                                                 |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                |                        |
| Hentachlor enoxide                          |                          |                                |                   |                        |                         |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th></th></lor<>                                                                                                  |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                |                        |
| Hexachlorobenzene                           |                          |                                |                   | -                      |                         | -                      | <lor< th=""><th></th><th>-</th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th></th></lor<>                                                                                                 |                        | -                      |                        |                        |                        | < 0.013                |                        |                        | < 0.013                |                        |
| Methoxychlor                                |                          |                                |                   |                        |                         |                        | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th></th><th></th><th>&lt; 0.013</th><th></th></lor<>                                                                                                  |                        |                        |                        |                        |                        | < 0.013                |                        |                        | < 0.013                |                        |
| Total DDT Isomers                           | 1000                     | 400                            | 240               | 70                     | 45                      | 12                     | <lor< th=""><th>-</th><th>-</th><th></th><th></th><th></th><th>&lt; 0.08</th><th></th><th></th><th>&lt; 0.08</th><th>-</th></lor<>                                                                                                 | -                      | -                      |                        |                        |                        | < 0.08                 |                        |                        | < 0.08                 | -                      |
| trans-Chlordane                             |                          |                                | -                 |                        |                         | -                      | <lor< th=""><th></th><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>-</th><th></th><th>&lt; 0.013</th><th></th></lor<>                                                                                                 |                        |                        |                        |                        |                        | < 0.013                | -                      |                        | < 0.013                |                        |
| Polycyclic Aromatic Hydrocarbons            |                          |                                |                   |                        |                         |                        | -                                                                                                                                                                                                                                  | -                      | -                      |                        |                        |                        |                        |                        |                        |                        |                        |
| 1-Methylnaphthalene                         | -                        | -<br>-                         | -                 | -                      | -<br>-                  |                        | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| 2-Methylnaphthalene                         | -                        | -                              | -                 | -                      | -                       | -                      | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Acenaphthene                                |                          |                                |                   |                        |                         |                        | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Acenaphthylene                              | -<br>                    | -                              | -                 | -<br>                  | -<br>                   | -                      | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Anthracene<br>BoD ogulusiont                | refer BAPeq              | refer BAPeq                    | refer BAPeq       | rerer BAPeq            | refer BAPeq             | refer BAPeq            | <lok< th=""><th>&lt; 0.014</th><th>&lt; 0.01</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lok<>                   | < 0.014                | < 0.01                 | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
|                                             | 35                       | 40                             | 24                | 10                     | 0                       | 20                     | <lor<br><lor< th=""><th>&lt; 0.04</th><th>&lt; 0.04</th><th>&lt; 0.04</th><th>&lt; 0.03</th><th>&lt; 0.03</th><th>&lt; 0.04</th><th>&lt; 0.03</th><th>&lt; 0.04</th><th>&lt; 0.03</th><th>&lt; 0.04</th></lor<></lor<br>           | < 0.04                 | < 0.04                 | < 0.04                 | < 0.03                 | < 0.03                 | < 0.04                 | < 0.03                 | < 0.04                 | < 0.03                 | < 0.04                 |
| Benzo(alanthracene                          | refer BAPen              | refer BAPen                    | refer BAPen       | refer BAPen            | refer BAPen             | refer BAPen            | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Benzo[a]pvrene (BAP)                        | refer BAPeg              | refer BAPeg                    | refer BAPeg       | refer BAPeg            | refer BAPeg             | refer BAPeg            | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Benzo[b]fluoranthene + Benzo[j]fluoranthene | refer BAPeq              | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Benzo[g,h,i]perylene                        |                          |                                |                   | · ·                    | -                       |                        | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Benzo[k]fluoranthene                        | refer BAPeq              | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Chrysene                                    | refer BAPeq              | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Dibenzo[a,h]anthracene                      | refer BAPeq              | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Fluoranthene                                | refer BAPeq              | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Fluorene                                    |                          |                                | -                 | -                      | -                       | -                      | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Indeno(1,2,3-c,d)pyrene                     | refer BAPeq              | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Napnthalene                                 | 210                      | 63                             | 63                | 63                     | 7.2                     | 0.28                   | <lor< th=""><th>&lt; 0.07</th><th>&lt; 0.07</th><th>&lt; 0.07</th><th>&lt; 0.06</th><th>&lt; 0.06</th><th>&lt; 0.07</th><th>&lt; 0.07</th><th>&lt; 0.08</th><th>&lt; 0.07</th><th>&lt; 0.07</th></lor<>                            | < 0.07                 | < 0.07                 | < 0.07                 | < 0.06                 | < 0.06                 | < 0.07                 | < 0.07                 | < 0.08                 | < 0.07                 | < 0.07                 |
| Perylene                                    | -                        |                                |                   |                        |                         |                        | <lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<>                  | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| Prienammrene<br>Pyrene                      | -<br>NI '                | - 1600                         | - 1600'           | 1600                   | - 160'                  | 7.9                    | <lor<br><lor< th=""><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.015</th><th>&lt; 0.013</th><th>&lt; 0.013</th></lor<></lor<br> | < 0.014                | < 0.013                | < 0.013                | < 0.012                | < 0.012                | < 0.013                | < 0.013                | < 0.015                | < 0.013                | < 0.013                |
| ,                                           |                          |                                |                   |                        |                         |                        | 2011                                                                                                                                                                                                                               |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        |

#### Table F2 - Analytical Results

Notes:

All values in mg/kg unless otherwise indicated (i.e. asbestos).

'-' indicates not analysed or no relevant acceptance criteria <LOR = less than laboratory limit of reporting</p>

Grey font indicates values <LOR

'ND or Asbestos NOT detected' = asbestos not identified to be present by the laboratory method. NL = Not limiting (i.e. >10,000 mg/kg)

Red values indicate that the results exceed NES Soil criteria: commercial / industrial criteria

values indicate that the results exceed NES soil criteria: commercial industrial criteria
 values indicate results exceed NES recreational criteria
 Dashed outlined values indicate that the results exceed NES Soil criteria: High density residential criteria
 Grey Shaded values indicate that the results exceed NES Soil criteria: Residential 10% produce criteria
 <u>Underlined</u> values indicates that results exceed NEP Soil criteria

Sold values indicate that results exceed the published background concentrations for non-volcanic soils in the Auckland Region
 values indicate that results exceed typical managed fill criteria

1a - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Commercial/Industrial use (and adopted conservative preliminary screening standard for construction works), unless otherwise 1b - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Recreational use, unless otherwise stated.

1c - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: High density residential use, unless otherwise stated.

1d - MtE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Residential 10% produce, unless otherwise stated. 2 - Auckland Unitary Plan: Operative in Part Version (AUP). Permitted Activity Soil Criteria Table E30.6.1.4.1 (unless otherwise stated).

Auckando Unitary Parative in Part Version (AUP). Permitted Activity Soli Uniteria Lable 23.06.1.4.1 (unitess otherwise stated).
 Background Concentrations of inorganic elements in solis from the Auckland Region: non-volcanic solis
 Assessment of Site Contamination National Environment Protection Measures (ASC NEPM) Toolbox – http://www.nepc.gov.au/nepms/assessment-site-contamination/toolbox.
 USPEA Regional Screening Levels - https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
 ME 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, Revised 2011. Tier 1 Soil acceptance criteria for applicable pathway.
 Ridge Road acceptance criteria based on the published maximum truckload concentrations for deep fill (>2.0m).

| Sample ID                                   |                          |                    |                           |                        |                         |                        |                                                                                                                                                           | PT-BL_HA16_0.20m-0.60m | PT-BL_HA17_0.00m-0.10m | PT-BL_HA18_0.00m-0.10m | PT-BL_HA19_0.00m-0.30m | PT-BL_HA20_0.00m-0.30m | PT-BL_HA21_0.20m-0.60m | Beachlands (NE samples)_HA22_0.00m-0.10m | Beachlands (NE samples)_HA23_0.35m-0.60m |
|---------------------------------------------|--------------------------|--------------------|---------------------------|------------------------|-------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------------------------|------------------------------------------|
| Sample Name / Guideline Values              |                          |                    |                           |                        |                         |                        |                                                                                                                                                           | HA16                   | HA17                   | HA18                   | HA19                   | HA20                   | HA21                   | HA22                                     | HA23                                     |
| Depth                                       | NES Commercial /         | 1b                 | NES High Density          | NES Residential (10 %  | NES Rural Residential / | AUP Permitted Activity | Published Auckland<br>Packground Louols                                                                                                                   | 0.20                   | 0.00                   | 0.00                   | 0.00                   | 0.00                   | 0.20                   | 0.00                                     | 0.35                                     |
| Strata                                      | Industrial <sup>1a</sup> | NES Recreational " | Residential <sup>1c</sup> | produce) <sup>1d</sup> | nreduce) <sup>1e</sup>  | Criteria <sup>2</sup>  | (uploppin) <sup>3b</sup>                                                                                                                                  | Natural                | Topsoil                | Topsoil                | Topsoil                | Topsoil                | Topsoil                | Topsoil                                  | Fill                                     |
| Date                                        |                          |                    |                           |                        | produce)                |                        | (VOICALIIC)                                                                                                                                               | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 09/07/2021                               | 09/07/2021                               |
| Asbestos (Semi-Quantitative)                |                          |                    | •                         | •                      |                         |                        |                                                                                                                                                           |                        |                        |                        |                        |                        |                        |                                          |                                          |
| Asbestos type                               |                          |                    |                           |                        |                         |                        | ND                                                                                                                                                        | Aspestos NOT detected. | Aspestos NOT detected. | Asbestos NOT detected.                   | Aspestos NOT detected.                   |
| Asbestos form                               |                          |                    |                           |                        |                         |                        | ND                                                                                                                                                        |                        |                        |                        |                        |                        |                        | -                                        |                                          |
| Asbestos as ACM (w/w%)                      | 0.05%                    | 0.02%4             | 0.04%4                    | 0.01%4                 | 0.01%                   |                        | ND                                                                                                                                                        |                        |                        |                        |                        |                        |                        |                                          |                                          |
| Asbestos Fibres/Fine (w/w %)                | 0.001%"                  | 0.001%"            | 0.001%"                   | 0.001%"                | 0.001%"                 |                        | ND                                                                                                                                                        |                        |                        |                        |                        |                        |                        | -                                        | -                                        |
| Metals                                      |                          |                    | 1                         | 1                      |                         | II                     |                                                                                                                                                           |                        |                        |                        |                        |                        |                        |                                          | L                                        |
| Arsenic                                     | 70                       | 80                 | 45                        | 20                     | 17                      | 100                    | 12                                                                                                                                                        | < 2                    | 3                      | 3                      | 2                      | <2                     | < 2                    | 5                                        | 2                                        |
| Cadmium                                     | 1300                     | 400                | 230                       | 3                      | 0.8                     | 7.5                    | 0.65                                                                                                                                                      | < 0.10                 | 013                    | 0.16                   | 0.18                   | 0.17                   | 0.15                   | < 0.10                                   | < 0.10                                   |
| Chromium                                    | 6300                     | 2700               | 1500                      | 460                    | 290                     | 400                    | 55                                                                                                                                                        | 10                     | 10                     | 13                     | 10                     | 7                      | 9                      | 9                                        | 11                                       |
| Conner                                      | >10000                   | >10000             | >1000                     | >1000                  | >10000                  | 325                    | 45                                                                                                                                                        | <2                     | 23                     | 5                      | 6                      | 3                      | 3                      | 9                                        | 6                                        |
|                                             | 3300                     | 880                | 500                       | 210                    | 160                     | 250                    | 65                                                                                                                                                        | 5                      | 17.1                   | 11.4                   | 10.3                   | 61                     | 65                     | 74                                       | 68                                       |
| Nickel                                      | 60005                    | 12005              | 1200 <sup>5</sup>         | 4005                   |                         | 105                    | 35                                                                                                                                                        | 3                      | 9                      | 3                      | 3                      | 2                      | 3                      | 6                                        | 8                                        |
| Zinc                                        | 400000                   | 30000              | 60000                     | 7400                   |                         | 400                    | 180                                                                                                                                                       | 6                      | 51                     | 13                     | 17                     | 8                      | 9                      | 32                                       | 24                                       |
| Organochlorine Pesticides                   |                          |                    |                           |                        |                         |                        |                                                                                                                                                           |                        |                        |                        |                        |                        |                        |                                          |                                          |
| 2 4'-DDD                                    |                          |                    |                           |                        |                         |                        | <1 oR                                                                                                                                                     |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          |                                          |
| 2 / DDF                                     |                          |                    |                           |                        |                         |                        | <lor<br><lop< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>-</th></lop<></lor<br>                        |                        |                        |                        |                        | < 0.013                | < 0.012                | -                                        | -                                        |
| 2,4 DDL<br>2 //-DDT                         |                          |                    |                           |                        |                         |                        | <lor<br><lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th></th></lor<></lor<br>                          |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          |                                          |
| 4 4'-DDD                                    |                          |                    |                           |                        |                         |                        | <  oP                                                                                                                                                     |                        |                        |                        |                        | < 0.013                | < 0.012                | -                                        | -                                        |
| 4,4 000                                     |                          |                    |                           |                        |                         |                        | <lur die="" r<="" th=""><th></th><th></th><th></th><th></th><th>&lt; 0.012</th><th>&lt; 0.012</th><th></th><th></th></lur>                                |                        |                        |                        |                        | < 0.012                | < 0.012                |                                          |                                          |
| 4,4 -DDE                                    | -                        |                    |                           |                        | -                       |                        | <lur<br>d oD</lur<br>                                                                                                                                     | -                      |                        |                        | •                      | < 0.013                | < 0.012                |                                          | •                                        |
| 4,4 -DD1                                    | - 140                    | - 70               |                           | -                      | . 11                    |                        | <lur<br>d oD</lur<br>                                                                                                                                     | -                      |                        |                        | •                      | < 0.013                | < 0.012                |                                          | •                                        |
| Aldrin<br>Alaka RUC                         | 100                      | 70                 | 40                        | 2.0                    | 1.1                     |                        | <lur<br>d oD</lur<br>                                                                                                                                     | -                      |                        |                        |                        | < 0.013                | < 0.012                |                                          | •                                        |
| Alpha-BHC                                   |                          |                    |                           |                        |                         |                        | <lok< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>•</th><th>-</th></lok<>                                         |                        |                        |                        |                        | < 0.013                | < 0.012                | •                                        | -                                        |
|                                             |                          |                    |                           |                        | -                       |                        | <lur<br>d oD</lur<br>                                                                                                                                     | -                      |                        |                        |                        | < 0.013                | < 0.012                |                                          |                                          |
| cis-chiordane                               |                          | •                  | •                         | •                      | •                       | -                      | <lok< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>•</th></lok<>                                          |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          | •                                        |
| Delta-BHC                                   | -                        | - 70               | -                         | -                      |                         | -<br>2 7 <sup>10</sup> | <lok< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>•</th><th>•</th></lok<>                                         |                        |                        |                        |                        | < 0.013                | < 0.012                | •                                        | •                                        |
| Dieldrin                                    | 160                      | 70                 | 45                        | 2.0                    | 1.1                     | 2.1                    | <lok< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>•</th></lok<>                                          |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          | •                                        |
| Endosulfan I                                |                          | •                  | •                         |                        | •                       |                        | <lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>-</th></lor<>                                          |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          | -                                        |
| Endosulfan II                               | -                        | •                  | •                         | •                      | -                       |                        | <lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>-</th></lor<>                                         |                        |                        |                        |                        | < 0.013                | < 0.012                | -                                        | -                                        |
| Endosulfan sulphate                         |                          |                    |                           |                        | -                       |                        | <lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th></th></lor<>                                           |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          |                                          |
| Endrin                                      |                          | -                  | -                         | -                      |                         |                        | <lor< th=""><th></th><th></th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>-</th></lor<>                                        |                        |                        | -                      |                        | < 0.013                | < 0.012                | -                                        | -                                        |
| Endrin aldehyde                             | -                        | •                  | •                         | •                      | -                       |                        | <lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>-</th></lor<>                                         |                        |                        |                        |                        | < 0.013                | < 0.012                | -                                        | -                                        |
| Endrin ketone                               | -                        | -                  | -                         | -                      | -                       | -                      | <lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th></th></lor<>                                           |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          |                                          |
| Gamma-BHC (Lindane)                         | 14000                    | 1400               | 700                       | 139                    | 33                      | 140                    | <lor< th=""><th></th><th></th><th>-</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>-</th></lor<>                                        |                        |                        | -                      |                        | < 0.013                | < 0.012                | -                                        | -                                        |
| Heptachlor                                  |                          |                    |                           |                        | -                       |                        | <lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th></th></lor<>                                           |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          |                                          |
| Heptachlor epoxide                          |                          |                    |                           |                        |                         |                        | <lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th></th></lor<>                                           |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          |                                          |
| Hexachlorobenzene                           |                          |                    |                           |                        |                         | -                      | <lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th></th></lor<>                                           |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          |                                          |
| Methoxychlor                                |                          | •                  | •                         |                        | -                       |                        | <lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>-</th></lor<>                                          |                        |                        |                        |                        | < 0.013                | < 0.012                |                                          | -                                        |
| Total DDT Isomers                           | 1000                     | 400                | 240                       | 70                     | 45                      | 12                     | <lor< th=""><th></th><th></th><th></th><th></th><th>&lt; 0.08</th><th>&lt; 0.08</th><th></th><th></th></lor<>                                             |                        |                        |                        |                        | < 0.08                 | < 0.08                 |                                          |                                          |
| trans-Chlordane                             | -                        |                    | -                         | -                      | -                       | -                      | <lor< th=""><th></th><th></th><th></th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>•</th><th>-</th></lor<>                                        |                        |                        |                        | -                      | < 0.013                | < 0.012                | •                                        | -                                        |
| Polycyclic Aromatic Hydrocarbons            | 0                        | 0                  | 0                         | 0                      | 0                       | · · · · · ·            |                                                                                                                                                           | -                      |                        |                        |                        |                        |                        |                                          |                                          |
| 1-Methylnaphthalene                         | -                        | -                  | -                         | -                      | -                       |                        | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>&lt; 0.013</th></lor<>   | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                |                                          | < 0.013                                  |
| 2-Methylnaphthalene                         | -                        | -                  |                           | -                      | -                       | -                      | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<>  | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Acenaphthene                                | -                        |                    | •                         |                        |                         |                        | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<> | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Acenaphthylene                              |                          |                    |                           |                        | -                       |                        | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>&lt; 0.013</th></lor<>   | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                |                                          | < 0.013                                  |
| Anthracene                                  | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>&lt; 0.013</th></lor<>   | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                |                                          | < 0.013                                  |
| BaP equivalent                              | 35                       | 40                 | 24                        | 10                     | 6                       | 20                     | <lor< th=""><th>&lt; 0.03</th><th>&lt; 0.03</th><th>&lt; 0.04</th><th></th><th>&lt; 0.04</th><th>&lt; 0.03</th><th></th><th>&lt; 0.04</th></lor<>         | < 0.03                 | < 0.03                 | < 0.04                 |                        | < 0.04                 | < 0.03                 |                                          | < 0.04                                   |
| Benzo (e ) pyrene                           |                          |                    |                           |                        |                         |                        | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>&lt; 0.013</th></lor<>   | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                |                                          | < 0.013                                  |
| Benzo[a]anthracene                          | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>&lt; 0.013</th></lor<>   | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                |                                          | < 0.013                                  |
| Benzo[a]pyrene (BAP)                        | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<>  | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Benzo[b]fluoranthene + Benzo[j]fluoranthene | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<>  | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Benzo[g,h,i]perylene                        |                          | •                  | -                         |                        |                         | -                      | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<>  | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Benzo[k]fluoranthene                        | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>&lt; 0.013</th></lor<>   | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                |                                          | < 0.013                                  |
| Chrysene                                    | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<>  | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Dibenzo[a,h]anthracene                      | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<>  | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Fluoranthene                                | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<>  | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Fluorene                                    | -                        | -                  |                           |                        | -                       | -                      | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<> | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Indeno(1,2,3-c,d)pyrene                     | refer BAPeq              | refer BAPeq        | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<>  | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Naphthalene                                 | 210'                     | 63'                | 63'                       | 63'                    | 7.2'                    | 0.28                   | <lor< th=""><th>&lt; 0.06</th><th>&lt; 0.06</th><th>&lt; 0.07</th><th>-</th><th>&lt; 0.07</th><th>&lt; 0.06</th><th></th><th>&lt; 0.07</th></lor<>        | < 0.06                 | < 0.06                 | < 0.07                 | -                      | < 0.07                 | < 0.06                 |                                          | < 0.07                                   |
| Perylene                                    | -                        |                    | -                         | -                      | -                       | -                      | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<>  | < 0.012                | < 0.012                | < 0.013                |                        | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Phenanthrene                                | -                        |                    |                           |                        | -                       | -                      | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th>-</th><th>&lt; 0.013</th></lor<> | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                | < 0.012                | -                                        | < 0.013                                  |
| Pyrene                                      | NL.                      | 1600               | 1600                      | 1600                   | 160                     | 7.9                    | <lor< th=""><th>&lt; 0.012</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>&lt; 0.013</th></lor<>  | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                | < 0.012                |                                          | < 0.013                                  |

#### Notes:

All values in mg/kg unless otherwise indicated (i.e. asbestos).

'-' indicates not analysed or no relevant acceptance criteria <LOR = less than laboratory limit of reporting</p>

Grey font indicates values <LOR

'ND or Asbestos NOT detected' = asbestos not identified to be present by the laboratory method.

NL = Not limiting (i.e. >10,000 mg/kg)

Red values indicate that the results exceed NES Soil criteria: commercial / industrial criteria

values indicate that the results exceed NES soil criteria: commercial industrial criteria
 values indicate results exceed NES recreational criteria
 Dashed outlined values indicate that the results exceed NES Soil criteria: High density residential criteria
 Grey Shaded values indicate that the results exceed NES Soil criteria: Residential 10% produce criteria
 <u>Underlined</u> values indicates that results exceed NEP Soil criteria

Bold values indicate that results exceed the published background concentrations for non-volcanic soils in the Auckland Region

values indicate that results exceed typical managed fill criteria

1a - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Commercial/Industrial use (and adopted conservative preliminary screening standard for construction works), unless otherwise 1b - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Recreational use, unless otherwise stated.

1c - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: High density residential use, unless otherwise stated.

1d - MtE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Residential 10% produce, unless otherwise stated. 2 - Auckland Unitary Plan: Operative in Part Version (AUP). Permitted Activity Soil Criteria Table E30.6.1.4.1 (unless otherwise stated).

3b - Auckland Regional Council, Technical Publication 153, October 2001. Background Concentrations of inorganic elements in soils from the Auckland Region: non-volcanic soils

Auxidation Regional Council, Technical Publication 153, October 2001. Background Concentrations on incomparative elements in solis from the Auxidation Region: non-voicanic solis
 Assessment of Site Contamination National Environment Protection Measures (ASC NEPM) Toolbox – http://www.nepc.gov.au/nepms/assessment-site-contamination/toolbox.
 USPEA Regional Screening Levels - https://www.epa.gov/risk/regional-screening-levels-rsis-generic-tables
 MfE 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, Revised 2011. Tier 1 Soil acceptance criteria for applicable pathway.
 Ridge Road acceptance criteria based on the published maximum truckload concentrations for deep fill (>2.0m).

#### Table F2 - Analytical Results

| 5                                           |                      |                                |                   |                        |                         |                        |                                                                                                                                                                                             |                                          |                                          |                        |                        |                        |                        |                        |                        |                        |
|---------------------------------------------|----------------------|--------------------------------|-------------------|------------------------|-------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Sample ID                                   |                      |                                |                   |                        |                         |                        |                                                                                                                                                                                             | Beachlands (NE samples)_HA24_0.35m-0.60m | Beachlands (NE samples)_HA25_0.30m-0.55m | PT-BL_HA26_0.00m-0.30m | PT-BL_SS01_0.00m-0.10m | PT-BL_SS02_0.00m-0.10m | PT-BL_SS03_0.00m-0.10m | PT-BL_SS04_0.00m-0.10m | PT-BL_SS05_0.00m-0.10m | PT-BL_SS06_0.00m-0.10m |
| Sample Name / Guideline Values              |                      |                                |                   |                        | NES Dural Decidential / |                        | Published Auskland                                                                                                                                                                          | HA24                                     | HA25                                     | HA26                   | SS01                   | SS02                   | SS03                   | SS04                   | SS05                   | SS06                   |
| Depth                                       | NES Commercial /     | NES Pocroational <sup>1b</sup> | NES High Density  | NES Residential (10%   | lifestyle block (25%    | AUP Permitted Activity | Background Levels                                                                                                                                                                           | 0.35                                     | 0.30                                     | 0.00                   | 0.00                   | 0.00                   | 0.00                   | 0.00                   | 0.00                   | 0.00                   |
| Strata                                      | Industrial           | NES RECIENTIONAL               | Residential       | produce) <sup>1d</sup> | produce) <sup>1e</sup>  | Criteria <sup>2</sup>  | (volcanic) <sup>3b</sup>                                                                                                                                                                    | Fill                                     | Fill                                     | Topsoil                |
| Date                                        |                      |                                |                   |                        |                         |                        | . ,                                                                                                                                                                                         | 09/07/2021                               | 09/07/2021                               | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             |
| Asbestos (Semi-Quantitative)                | T                    | 1                              | T                 | 1                      | 1                       | 1                      | I                                                                                                                                                                                           |                                          | 1                                        | I                      | -                      |                        |                        |                        | I                      |                        |
| Asbestos type                               |                      |                                |                   | -                      | -                       |                        | ND                                                                                                                                                                                          | Asbestos NOT detected.                   | Asbestos NOT detected.                   |                        |                        |                        |                        |                        |                        |                        |
| Asbestos form                               | -                    | 0.000/4                        | -                 |                        |                         |                        | ND                                                                                                                                                                                          | •                                        |                                          |                        |                        |                        |                        |                        |                        |                        |
| Asbestos as ACM (w/w%)                      | 0.05%                | 0.02%*                         | 0.04%             | 0.01%                  | 0.01%                   |                        | ND                                                                                                                                                                                          |                                          |                                          | -                      |                        |                        |                        |                        |                        |                        |
| Asbestos Fibres/Fine (W/W %)                | 0.001%               | 0.001%                         | 0.001%            | 0.001%                 | 0.001%                  |                        | ND                                                                                                                                                                                          | · ·                                      | •                                        |                        |                        |                        |                        |                        |                        |                        |
| Metals                                      | 70                   |                                |                   |                        | 47                      | 100                    |                                                                                                                                                                                             |                                          | <u>^</u>                                 |                        | <u>^</u>               | <u>^</u>               | <u>^</u>               | <u>^</u>               |                        | â                      |
| Arsenic                                     | 70                   | 80                             | 45                | 20                     | 1/                      | 100                    | 12                                                                                                                                                                                          | 2                                        | <2                                       | 3                      | 3                      | 2                      | 2                      | 3                      | 4                      | 2                      |
| Cadmium                                     | 1300                 | 400                            | 230               | 3                      | 0.8                     | 7.5                    | 0.65                                                                                                                                                                                        | < 0.10                                   | < 0.10                                   | < 0.10                 | 0.21                   | 0.14                   | 0.2                    | < 0.10                 | 0.12                   | 0.15                   |
| Connor                                      | > 10000              | >10000                         | >1000             | 400                    | > 10000                 | 400                    | 33                                                                                                                                                                                          | 12                                       | 12                                       | 14                     | 13                     | 15                     | 13                     | 4                      | 10                     | 5                      |
| Lead                                        | 3300                 | 880                            | 500               | 210                    | 160                     | 250                    | 45                                                                                                                                                                                          | 57                                       | 5                                        | 73                     | 00                     | 9.6                    | 01                     | 10.1                   | 4                      | 85                     |
| Nickel                                      | 6000 <sup>5</sup>    | 1200 <sup>5</sup>              | 12005             | 4005                   | -                       | 105                    | 35                                                                                                                                                                                          | 5                                        | 6                                        | 5                      | 3                      | 5                      | 6                      | 5                      | 4                      | 4                      |
| Zinc                                        | 400000               | 30000                          | 60000             | 7400                   |                         | 400                    | 180                                                                                                                                                                                         | 11                                       | 13                                       | 15                     | 17                     | 20                     | 21                     | 15                     | 15                     | 16                     |
| Organochlorine Pesticides                   |                      | 1                              |                   |                        | 1                       |                        |                                                                                                                                                                                             | •                                        | ł                                        | 1                      |                        |                        |                        |                        |                        |                        |
| 2,4'-DDD                                    |                      |                                |                   |                        |                         |                        | <lor< th=""><th></th><th>-</th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                 |                                          | -                                        | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| 2,4'DDE                                     |                      |                                |                   |                        |                         |                        | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| 2,4'-DDT                                    | -                    | -                              |                   | -                      | -                       | -                      | <lor< th=""><th></th><th>-</th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                 |                                          | -                                        | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| 4,4'-DDD                                    |                      |                                |                   |                        | -                       | -                      | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| 4,4'-DDE                                    |                      | -                              | -                 | -                      | -                       |                        | <lor< th=""><th></th><th>-</th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                 |                                          | -                                        | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| 4,4'-DDT                                    |                      |                                |                   |                        |                         |                        | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Aldrin                                      | 160                  | 70                             | 45                | 2.6                    | 1.1                     |                        | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Alpha-BHC                                   |                      | -                              | -                 |                        |                         |                        | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Beta-BHC                                    |                      | -                              |                   | -                      | -                       |                        | <lor< th=""><th>•</th><th>-</th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                | •                                        | -                                        | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| cis-Chlordane                               |                      |                                | -                 |                        |                         |                        | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Delta-BHC                                   | -                    | - 70                           | -                 | -                      |                         | -<br>2 7 <sup>10</sup> | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Dieldrin                                    | 160                  | /0                             | 45                | 2.6                    | 1.1                     | 2.1                    | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Endosulfan I                                |                      | •                              |                   |                        |                         |                        | <lor< th=""><th></th><th>-</th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                 |                                          | -                                        | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Endosulfan II                               |                      |                                |                   |                        |                         |                        | <lok< th=""><th></th><th>-</th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lok<>                 |                                          | -                                        | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Endosunan sulphate                          |                      |                                |                   |                        |                         |                        | <lur<br><lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<></lur<br> |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Endrin aldehyde                             |                      |                                |                   |                        |                         |                        | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Endrin ketone                               |                      |                                |                   |                        |                         |                        | <lor<br><lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<></lor<br> |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Gamma-BHC (Lindane)                         | 14000 <sup>10</sup>  | 1400 <sup>10</sup>             | 700 <sup>10</sup> | 139 <sup>10</sup>      | 3310                    | 140 <sup>10</sup>      | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Heptachlor                                  |                      |                                |                   |                        |                         |                        | <lor< th=""><th></th><th>-</th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                 |                                          | -                                        | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Heptachlor epoxide                          |                      |                                | -                 |                        |                         |                        | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Hexachlorobenzene                           |                      | -                              | -                 |                        | -                       | -                      | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Methoxychlor                                |                      |                                | -                 |                        |                         |                        | <lor< th=""><th></th><th>-</th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                 |                                          | -                                        | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Total DDT Isomers                           | 1000                 | 400                            | 240               | 70                     | 45                      | 12                     | <lor< th=""><th></th><th>-</th><th>&lt; 0.09</th><th>&lt; 0.08</th><th>&lt; 0.08</th><th>&lt; 0.09</th><th>&lt; 0.08</th><th>&lt; 0.08</th><th>&lt; 0.08</th></lor<>                        |                                          | -                                        | < 0.09                 | < 0.08                 | < 0.08                 | < 0.09                 | < 0.08                 | < 0.08                 | < 0.08                 |
| trans-Chlordane                             |                      |                                |                   |                        | -                       | -                      | <lor< th=""><th></th><th></th><th>&lt; 0.015</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th><th>&lt; 0.014</th><th>&lt; 0.013</th><th>&lt; 0.014</th></lor<>                  |                                          |                                          | < 0.015                | < 0.014                | < 0.013                | < 0.014                | < 0.014                | < 0.013                | < 0.014                |
| Polycyclic Aromatic Hydrocarbons            |                      |                                |                   |                        |                         |                        |                                                                                                                                                                                             |                                          |                                          | •                      | •                      |                        |                        |                        |                        |                        |
| 1-Methylnaphthalene                         | -                    | -                              | -                 | -                      | -                       |                        | <lor< th=""><th>&lt; 0.013</th><th></th><th>&lt; 0.015</th><th></th><th></th><th></th><th></th><th></th><th></th></lor<>                                                                    | < 0.013                                  |                                          | < 0.015                |                        |                        |                        |                        |                        |                        |
| 2-Methylnaphthalene                         | -~                   | -                              | -~                | -~                     | -~                      |                        | <lor< th=""><th>&lt; 0.013</th><th>-</th><th>&lt; 0.015</th><th></th><th></th><th></th><th></th><th></th><th></th></lor<>                                                                   | < 0.013                                  | -                                        | < 0.015                |                        |                        |                        |                        |                        |                        |
| Acenaphthene                                |                      | -                              | -                 | -                      | -                       |                        | <lor< th=""><th>&lt; 0.013</th><th>-</th><th>&lt; 0.015</th><th></th><th></th><th></th><th></th><th></th><th></th></lor<>                                                                   | < 0.013                                  | -                                        | < 0.015                |                        |                        |                        |                        |                        |                        |
| Acenaphthylene                              | -<br>                | -<br>                          | -<br>             | -<br>                  | -<br>                   | -<br>                  | <lor< th=""><th>&lt; 0.013</th><th>-</th><th>&lt; 0.015</th><th></th><th></th><th></th><th></th><th>•</th><th></th></lor<>                                                                  | < 0.013                                  | -                                        | < 0.015                |                        |                        |                        |                        | •                      |                        |
| Anthracene<br>BeD equivalent                | refer BAPeq          | refer BAPeq                    | rerer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lok< th=""><th>&lt; 0.013</th><th>-</th><th>&lt; 0.015</th><th></th><th></th><th>-</th><th></th><th></th><th></th></lok<>                                                                  | < 0.013                                  | -                                        | < 0.015                |                        |                        | -                      |                        |                        |                        |
|                                             | 35                   | 40                             | 24                | 10                     | 0                       | 20                     | <lur<br>d oR</lur<br>                                                                                                                                                                       | < 0.04                                   | *                                        | < 0.04                 |                        | •                      | •                      |                        |                        | •                      |
| Benzo (a) pyrene<br>Benzo (a) anthracene    | rofor BADon          | rofor BAPon                    | refer BADen       | refer BADen            | rofor BADon             | rofor BAPon            | <lor<br><lor< th=""><th>&lt; 0.013</th><th></th><th>&lt; 0.015</th><th></th><th></th><th></th><th></th><th></th><th></th></lor<></lor<br>                                                   | < 0.013                                  |                                          | < 0.015                |                        |                        |                        |                        |                        |                        |
| Renzo(a)nvrene (RAP)                        | refer BAPen          | refer BAPeg                    | refer BAPen       | refer BAPen            | refer BAPeg             | refer BAPen            | <lor< th=""><th>&lt; 0.013</th><th></th><th>&lt; 0.015</th><th></th><th></th><th></th><th></th><th></th><th></th></lor<>                                                                    | < 0.013                                  |                                          | < 0.015                |                        |                        |                        |                        |                        |                        |
| Benzo[b]fluoranthene + Benzo[i]fluoranthene | refer BAPeg          | refer BAPeg                    | refer BAPeg       | refer BAPeg            | refer BAPeg             | refer BAPeg            | <lor< th=""><th>&lt; 0.013</th><th></th><th>&lt; 0.015</th><th></th><th></th><th></th><th></th><th></th><th></th></lor<>                                                                    | < 0.013                                  |                                          | < 0.015                |                        |                        |                        |                        |                        |                        |
| Benzo[q,h,i]perylene                        |                      | -                              |                   |                        | -                       |                        | <lor< th=""><th>&lt; 0.013</th><th>-</th><th>&lt; 0.015</th><th></th><th></th><th></th><th></th><th></th><th></th></lor<>                                                                   | < 0.013                                  | -                                        | < 0.015                |                        |                        |                        |                        |                        |                        |
| Benzo[k]fluoranthene                        | refer BAPeq          | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.013</th><th>-</th><th>&lt; 0.015</th><th>-</th><th></th><th></th><th></th><th></th><th></th></lor<>                                                                  | < 0.013                                  | -                                        | < 0.015                | -                      |                        |                        |                        |                        |                        |
| Chrysene                                    | refer BAPeq          | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.013</th><th>-</th><th>&lt; 0.015</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></lor<>                                                             | < 0.013                                  | -                                        | < 0.015                | -                      | -                      | -                      | -                      | -                      | -                      |
| Dibenzo[a,h]anthracene                      | refer BAPeq          | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.013</th><th>-</th><th>&lt; 0.015</th><th></th><th>-</th><th>-</th><th></th><th></th><th></th></lor<>                                                                 | < 0.013                                  | -                                        | < 0.015                |                        | -                      | -                      |                        |                        |                        |
| Fluoranthene                                | refer BAPeq          | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.013</th><th>-</th><th>&lt; 0.015</th><th></th><th></th><th></th><th></th><th></th><th></th></lor<>                                                                   | < 0.013                                  | -                                        | < 0.015                |                        |                        |                        |                        |                        |                        |
| Fluorene                                    | -                    |                                |                   |                        | -                       | -                      | <lor< th=""><th>&lt; 0.013</th><th></th><th>&lt; 0.015</th><th></th><th>-</th><th>-</th><th></th><th></th><th></th></lor<>                                                                  | < 0.013                                  |                                          | < 0.015                |                        | -                      | -                      |                        |                        |                        |
| Indeno(1,2,3-c,d)pyrene                     | refer BAPeq          | refer BAPeq                    | refer BAPeq       | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.013</th><th></th><th>&lt; 0.015</th><th></th><th>-</th><th></th><th></th><th></th><th></th></lor<>                                                                   | < 0.013                                  |                                          | < 0.015                |                        | -                      |                        |                        |                        |                        |
| Naphthalene                                 | 210'                 | 63'                            | 63'               | 63'                    | 7.2'                    | 0.28°                  | <lor< th=""><th>&lt; 0.07</th><th></th><th>&lt; 0.08</th><th>-</th><th>-</th><th>-</th><th></th><th>•</th><th></th></lor<>                                                                  | < 0.07                                   |                                          | < 0.08                 | -                      | -                      | -                      |                        | •                      |                        |
| Perylene                                    | -                    | -                              | -                 | -                      | -                       | -                      | <lor< th=""><th>&lt; 0.013</th><th></th><th>&lt; 0.015</th><th>-</th><th>-</th><th>-</th><th></th><th>•</th><th></th></lor<>                                                                | < 0.013                                  |                                          | < 0.015                | -                      | -                      | -                      |                        | •                      |                        |
| Phenanthrene                                | -<br>NI <sup>(</sup> | - 1600'                        | - 1600'           | - 1600'                | - 160'                  | -<br>7 0 <sup>0</sup>  | <lor< th=""><th>&lt; 0.013</th><th>-</th><th>&lt; 0.015</th><th></th><th></th><th></th><th></th><th></th><th></th></lor<>                                                                   | < 0.013                                  | -                                        | < 0.015                |                        |                        |                        |                        |                        |                        |
| i yicho                                     | NL                   | 1000                           | 1000              | 1000                   | 100                     | 1.7                    | LUK                                                                                                                                                                                         | × 0.015                                  |                                          | × 0.015                |                        | -                      |                        |                        |                        |                        |

#### Notes:

All values in mg/kg unless otherwise indicated (i.e. asbestos).

Indicates not analysed or no relevant acceptance criteria <LOR = less than laboratory limit of reporting</p>

Grey font indicates values <LOR

'ND or Asbestos NOT detected' = asbestos not identified to be present by the laboratory method. NL = Not limiting (i.e. >10,000 mg/kg)

Red values indicate that the results exceed NES Soil criteria: commercial / industrial criteria

values indicate that the results exceed NES soil criteria: commercial industrial criteria
 values indicate results exceed NES recreational criteria
 Dashed outlined values indicate that the results exceed NES Soil criteria: High density residential criteria
 Grey Shaded values indicate that the results exceed NES Soil criteria: Residential 10% produce criteria
 <u>Underlined</u> values indicates that results exceed NEP Soil criteria

Add values indicate that results exceed the published background concentrations for non-volcanic soils in the Auckland Region
 values indicate that results exceed typical managed fill criteria

1a - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Commercial/Industrial use (and adopted conservative preliminary screening standard for construction works), unless otherwise 1b - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Recreational use, unless otherwise stated.

1c - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: High density residential use, unless otherwise stated.

1d - MtE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Residential 10% produce, unless otherwise stated. 2 - Auckland Unitary Plan: Operative in Part Version (AUP). Permitted Activity Soil Criteria Table E30.6.1.4.1 (unless otherwise stated).

Auckando Unitary Parative in Part Version (AUP). Permitted Activity Soli Uniteria Lable 23.06.1.4.1 (unitess otherwise stated).
 Background Concentrations of inorganic elements in solis from the Auckland Region: non-volcanic solis
 Assessment of Site Contamination National Environment Protection Measures (ASC NEPM) Toolbox – http://www.nepc.gov.au/nepms/assessment-site-contamination/toolbox.
 USPEA Regional Screening Levels - https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
 ME 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, Revised 2011. Tier 1 Soil acceptance criteria for applicable pathway.
 Ridge Road acceptance criteria based on the published maximum truckload concentrations for deep fill (>2.0m).

#### Table F2 - Analytical Results

| Sample ID                                   |                          |                                |                           |                        |                         |                        |                                                                                                                                                                                                     | PT-BL_SS07_0.00m-0.10m | PT-BL_SS08_0.00m-0.10m | PT-BL_SS09_0.00m-0.10m | PT-BL_SS10_0.00m-0.10m | HA103 - 0.5            | HA103A - 0.0           | HA103A - 0.5                          | HA103          |
|---------------------------------------------|--------------------------|--------------------------------|---------------------------|------------------------|-------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|---------------------------------------|----------------|
| Sample Name / Guideline Values              |                          |                                |                           |                        | NES Dural Decidential / |                        | Published Auskland                                                                                                                                                                                  | SS07                   | S08                    | SS09                   | SS10                   | HA103 - 0.5            | HA103A                 | HA103A                                | HA1            |
| Depth                                       | NES Commercial /         | NEC Descentional <sup>1b</sup> | NES High Density          | NES Residential (10 %  | lifestyle block (25%    | AUP Permitted Activity | Background Levels                                                                                                                                                                                   | 0.00                   | 0.00                   | 0.00                   | 0.00                   | 0.5                    | 0.0                    | 0.5                                   | 0              |
| Strata                                      | Industrial <sup>1a</sup> | INES RECIENTIONAL              | Residential <sup>1c</sup> | produce) <sup>1d</sup> | produce) <sup>1e</sup>  | Criteria <sup>2</sup>  | (volcanic) <sup>3b</sup>                                                                                                                                                                            | Topsoil                | Topsoil                | Fill                   | Topsoil                | Clayey SILT            | Clayey SILT            | Clayey SILT                           | Claye          |
| Date                                        |                          |                                |                           |                        | produccy                |                        | (voldanic)                                                                                                                                                                                          | 06/07/2021             | 06/07/2021             | 06/07/2021             | 06/07/2021             | 23-Nov-21              | 23-Nov-21              | 23-Nov-21                             | 23-N           |
| Asbestos (Semi-Quantitative)                |                          |                                |                           |                        |                         |                        |                                                                                                                                                                                                     |                        |                        |                        |                        |                        |                        |                                       |                |
| Asbestos type                               |                          |                                | -                         |                        |                         | -                      | ND                                                                                                                                                                                                  |                        |                        |                        |                        | Asbestos NOT detected. | Asbestos NOT detected. | Asbestos NOT detected                 | d. Asbestos NO |
| Asbestos form                               |                          |                                |                           |                        |                         | -                      | ND                                                                                                                                                                                                  |                        |                        |                        |                        |                        |                        | -                                     |                |
| Asbestos as ACM (w/w%)                      | 0.05%                    | 0.02%4                         | 0.04%                     | 0.01%                  | 0.01%*                  |                        | ND                                                                                                                                                                                                  |                        |                        |                        |                        |                        |                        | -                                     |                |
| Asbestos Fibres/Fine (w/w %)                | 0.001%"                  | 0.001%"                        | 0.001%"                   | 0.001%"                | 0.001%"                 |                        | ND                                                                                                                                                                                                  |                        |                        |                        |                        | -                      | -                      | -                                     |                |
| Metals                                      |                          |                                |                           |                        |                         |                        |                                                                                                                                                                                                     |                        |                        |                        |                        |                        |                        |                                       |                |
| Arsenic                                     | 70                       | 80                             | 45                        | 20                     | 17                      | 100                    | 12                                                                                                                                                                                                  | 4                      | 4                      | 35                     | 3                      | 5                      | -                      | 4                                     |                |
| Cadmium                                     | 1300                     | 400                            | 230                       | 3                      | 0.8                     | 7.5                    | 0.65                                                                                                                                                                                                | < 0.10                 | 0.13                   | 0.13                   | < 0.10                 | < 0.10                 | -                      | < 0.10                                | < 0            |
| Chromium                                    | 6300                     | 2700                           | 1500                      | 460                    | 290                     | 400                    | 55                                                                                                                                                                                                  | 14                     | 11                     | 19                     | 12                     | 13                     | -                      | 20                                    | 1              |
| Copper                                      | >10000                   | >10000                         | >10000                    | >10000                 | >10000                  | 325                    | 45                                                                                                                                                                                                  | 11                     | 9                      | 31                     | 5                      | 9                      | -                      | 12                                    |                |
| Lead                                        | 3300                     | 880                            | 500                       | 210                    | 160                     | 250                    | 65                                                                                                                                                                                                  | 8.3                    | 8.8                    | 11.9                   | 11.4                   | 6.4                    |                        | 6.9                                   | 6              |
| Nickel                                      | 6000 <sup>5</sup>        | 1200 <sup>5</sup>              | 1200 <sup>5</sup>         | 400 <sup>5</sup>       | -                       | 105                    | 35                                                                                                                                                                                                  | 16                     | 8                      | 19                     | 4                      | 10                     | -                      | 17                                    | -              |
| Zinc                                        | 400000                   | 30000                          | 60000                     | 7400                   | -                       | 400                    | 180                                                                                                                                                                                                 | 34                     | 36                     | 77                     | 13                     | 24                     | -                      | 37                                    | 2              |
| Organochlorine Pesticides                   |                          |                                |                           |                        |                         |                        |                                                                                                                                                                                                     |                        |                        |                        |                        |                        |                        |                                       |                |
| 2 4'-DDD                                    |                          |                                |                           |                        |                         |                        | <l or<="" td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td></td><td>&lt; 0</td></l>                                      | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0            |
| 2 4'DDF                                     |                          |                                |                           |                        |                         |                        | <l or<="" td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td></td><td>&lt; 0</td></l>                                      | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0            |
| 2.4'-DDT                                    |                          |                                |                           |                        |                         |                        | <l or<="" td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td></td><td>&lt; 0</td></l>                                      | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0            |
| 4.4'-DDD                                    |                          |                                |                           |                        |                         |                        | <1 oR                                                                                                                                                                                               | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0            |
| 4 4'-DDE                                    |                          |                                |                           |                        |                         |                        | <1 oR                                                                                                                                                                                               | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0            |
| 4 4'-DDT                                    |                          |                                |                           |                        |                         |                        | <lor<br><lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td></td><td>&lt; 0</td></lor<></lor<br>                      | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0            |
| Aldrin                                      | 160                      | 70                             | 45                        | 2.6                    | 11                      |                        | <lor<br><lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td></td><td>&lt; 0</td></lor<></lor<br>                      | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0            |
| Alpha-BHC                                   | 100                      |                                |                           | 2.0                    |                         |                        | <lor<br><lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td></td><td>&lt; 0.</td></lor<></lor<br>                     | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0.           |
| Ripha-BHC                                   |                          |                                |                           |                        |                         |                        | <lor<br><lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td></td><td>&lt; 0.</td></lor<></lor<br>                     | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0.           |
| cis-Chlordana                               |                          |                                |                           |                        |                         |                        | <lor<br><lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td></td><td>&lt; 0.</td></lor<></lor<br>                     | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0.           |
| Dolto RHC                                   | -                        | -                              | -                         |                        | -                       | -                      | <lor<br>d o R</lor<br>                                                                                                                                                                              | < 0.013                | < 0.012                | < 0.011                | < 0.012                | < 0.012                | < 0.012                |                                       | < 0.           |
| Dieldrin                                    | 160                      | 70                             | 45                        | 26                     | 11                      | 2710                   | <lor<br><lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.011</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>&lt; 0.</th></lor<></lor<br>                     | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0.           |
| Endosulfan I                                | 100                      | 70                             | 45                        | 2.0                    | 1.1                     | 2                      | <lor<br>d o R</lor<br>                                                                                                                                                                              | < 0.013                | < 0.012                | < 0.011                | < 0.012                | < 0.012                | < 0.012                |                                       | < 0.           |
| Endosulfan II                               |                          |                                |                           |                        |                         |                        | <lur<br>d.o.D</lur<br>                                                                                                                                                                              | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0.           |
| Endosultan II                               |                          |                                |                           |                        |                         |                        | <lur< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.011</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th></th><th>&lt; 0.</th></lur<>                                      | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0.           |
| Endosuiran suiphate                         |                          |                                |                           |                        |                         |                        | <lok< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>&lt; 0.</td></lok<> | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                | · · · · · · · · · · · · · · · · · · · | < 0.           |
| Eliaitii                                    |                          |                                |                           |                        |                         |                        | <lur< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>&lt; 0.</td></lur<> | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                | · · · · · · · · · · · · · · · · · · · | < 0.           |
| Endrin aldenyde                             |                          |                                |                           |                        |                         |                        | <lok< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; U.UII</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>&lt; 0.</td></lok<> | < 0.013                | < 0.013                | < U.UII                | < 0.012                | < 0.013                | < 0.012                | · · · · · · · · · · · · · · · · · · · | < 0.           |
| Endrin ketone                               | - 14000 <sup>10</sup>    | - 1400 <sup>10</sup>           | - 700 <sup>10</sup>       | -<br>120 <sup>10</sup> | - 2210                  | - 140 <sup>10</sup>    | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td></td><td>&lt; 0.</td></lor<>                                      | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                |                                       | < 0.           |
| Gamma-BHC (Lindane)                         | 14000                    | 1400                           | 700                       | 124                    | 33                      | 140                    | <lok< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>&lt; 0.</td></lok<> | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                | · · · · · · · · · · · · · · · · · · · | < 0.           |
| Heptachlor                                  | •                        | •                              | •                         | •                      | •                       | •                      | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td>· · · ·</td><td>&lt; 0.</td></lor<>                               | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                | · · · ·                               | < 0.           |
| Heptachlor epoxide                          | •                        | •                              | •                         | •                      | •                       | •                      | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td>· · · ·</td><td>&lt; 0.</td></lor<>                               | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                | · · · ·                               | < 0.           |
| Hexachlorobenzene                           | •                        |                                | •                         |                        |                         |                        | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td>· · ·</td><td>&lt; 0.</td></lor<>                                 | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                | · · ·                                 | < 0.           |
| Methoxychlor                                | •                        | •                              | •                         | •                      | •                       | •                      | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td>&lt; 0.012</td><td>&lt; 0.013</td><td>&lt; 0.012</td><td>· · ·</td><td>&lt; 0.</td></lor<>                                 | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                | · · ·                                 | < 0.           |
| Total DDT Isomers                           | 1000                     | 400                            | 240                       | 70                     | 45                      | 12                     | <lor< td=""><td>&lt; 0.08</td><td>&lt; 0.08</td><td>&lt; 0.07</td><td>&lt; 0.08</td><td>&lt; 0.08</td><td>&lt; 0.08</td><td>· · ·</td><td>&lt; (</td></lor<>                                        | < 0.08                 | < 0.08                 | < 0.07                 | < 0.08                 | < 0.08                 | < 0.08                 | · · ·                                 | < (            |
| trans-Chlordane                             |                          |                                |                           |                        |                         | -                      | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.011</th><th>&lt; 0.012</th><th>&lt; 0.013</th><th>&lt; 0.012</th><th><u> </u></th><th>&lt; 0.</th></lor<>                              | < 0.013                | < 0.013                | < 0.011                | < 0.012                | < 0.013                | < 0.012                | <u> </u>                              | < 0.           |
| Polycyclic Aromatic Hydrocarbons            |                          | 0                              | 0                         | 0                      | 0                       |                        |                                                                                                                                                                                                     |                        |                        |                        |                        |                        |                        |                                       |                |
| 1-Methylnaphthalene                         | -                        | -                              | -                         | -                      | -                       |                        | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.011</th><th></th><th>&lt; 0.3</th><th>-</th><th>&lt; 0.3</th><th>&lt;  </th></lor<>                                                    | < 0.013                | < 0.013                | < 0.011                |                        | < 0.3                  | -                      | < 0.3                                 | <              |
| 2-Methylnaphthalene                         | -                        | -                              | -                         | -                      | -                       |                        | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.011</th><th></th><th>&lt; 0.013</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                               | < 0.013                | < 0.013                | < 0.011                |                        | < 0.013                | -                      | < 0.013                               | < 0.           |
| Acenaphthene                                | -                        |                                | -                         |                        | -                       |                        | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.011</th><th></th><th>&lt; 0.013</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                               | < 0.013                | < 0.013                | < 0.011                |                        | < 0.013                | -                      | < 0.013                               | < 0.           |
| Acenaphthylene                              |                          |                                |                           |                        |                         |                        | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.011</th><th></th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                                | < 0.013                | < 0.013                | < 0.011                |                        | < 0.013                |                        | < 0.013                               | < 0.           |
| Anthracene                                  | refer BAPeq              | refer BAPeq                    | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.011</th><th></th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                                | < 0.013                | < 0.013                | < 0.011                |                        | < 0.013                |                        | < 0.013                               | < 0.           |
| BaP equivalent                              | 35                       | 40                             | 24                        | 10                     | 6                       | 20                     | <lor< th=""><th>&lt; 0.04</th><th>&lt; 0.04</th><th>0.03</th><th></th><th></th><th></th><th>L</th><th></th></lor<>                                                                                  | < 0.04                 | < 0.04                 | 0.03                   |                        |                        |                        | L                                     |                |
| Benzo (e ) pyrene                           | -                        |                                |                           |                        | -                       | -                      | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>0.016</th><th></th><th>&lt; 0.013</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                                    | < 0.013                | < 0.013                | 0.016                  |                        | < 0.013                | -                      | < 0.013                               | < 0.           |
| Benzo[a]anthracene                          | refer BAPeq              | refer BAPeq                    | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>0.025</th><th></th><th>&lt; 0.013</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                                    | < 0.013                | < 0.013                | 0.025                  |                        | < 0.013                | -                      | < 0.013                               | < 0.           |
| Benzo[a]pyrene (BAP)                        | refer BAPeq              | refer BAPeq                    | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>0.017</th><th></th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                                     | < 0.013                | < 0.013                | 0.017                  |                        | < 0.013                |                        | < 0.013                               | < 0.           |
| Benzo[b]fluoranthene + Benzo[j]fluoranthene | refer BAPeq              | refer BAPeq                    | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>0.029</th><th></th><th>&lt; 0.013</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                                    | < 0.013                | < 0.013                | 0.029                  |                        | < 0.013                | -                      | < 0.013                               | < 0.           |
| Benzo[g,h,i]perylene                        |                          |                                | -                         |                        |                         | -                      | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>0.012</th><th></th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                                     | < 0.013                | < 0.013                | 0.012                  |                        | < 0.013                |                        | < 0.013                               | < 0.           |
| Benzo[k]fluoranthene                        | refer BAPeq              | refer BAPeq                    | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>0.011</td><td></td><td>&lt; 0.013</td><td></td><td>&lt; 0.013</td><td>&lt; 0.</td></lor<>                                                     | < 0.013                | < 0.013                | 0.011                  |                        | < 0.013                |                        | < 0.013                               | < 0.           |
| Chrysene                                    | refer BAPeq              | refer BAPeq                    | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>0.018</td><td></td><td>&lt; 0.013</td><td>-</td><td>&lt; 0.013</td><td>&lt; 0.</td></lor<>                                                    | < 0.013                | < 0.013                | 0.018                  |                        | < 0.013                | -                      | < 0.013                               | < 0.           |
| Dibenzo[a,h]anthracene                      | refer BAPeq              | refer BAPeq                    | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td></td><td>&lt; 0.013</td><td>-</td><td>&lt; 0.013</td><td>&lt; 0.</td></lor<>                                               | < 0.013                | < 0.013                | < 0.011                |                        | < 0.013                | -                      | < 0.013                               | < 0.           |
| Fluoranthene                                | refer BAPeq              | refer BAPeq                    | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>0.031</td><td></td><td>&lt; 0.013</td><td>-</td><td>&lt; 0.013</td><td>&lt; 0.</td></lor<>                                                    | < 0.013                | < 0.013                | 0.031                  |                        | < 0.013                | -                      | < 0.013                               | < 0.           |
| Fluorene                                    | -                        | -                              | -                         | -                      | -                       | -                      | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>&lt; 0.011</th><th>-</th><th>&lt; 0.013</th><th>-</th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                              | < 0.013                | < 0.013                | < 0.011                | -                      | < 0.013                | -                      | < 0.013                               | < 0.           |
| Indeno(1,2,3-c,d)pyrene                     | refer BAPeq              | refer BAPeq                    | refer BAPeq               | refer BAPeq            | refer BAPeq             | refer BAPeq            | <lor< th=""><th>&lt; 0.013</th><th>&lt; 0.013</th><th>0.012</th><th></th><th>&lt; 0.013</th><th></th><th>&lt; 0.013</th><th>&lt; 0.</th></lor<>                                                     | < 0.013                | < 0.013                | 0.012                  |                        | < 0.013                |                        | < 0.013                               | < 0.           |
| Naphthalene                                 | 210                      | 63                             | 63                        | 63                     | 7.2                     | 0.288                  | <lor< th=""><th>&lt; 0.07</th><th>&lt; 0.07</th><th>&lt; 0.06</th><th>-</th><th>&lt; 0.07</th><th>-</th><th>&lt; 0.07</th><th>&lt; 0</th></lor<>                                                    | < 0.07                 | < 0.07                 | < 0.06                 | -                      | < 0.07                 | -                      | < 0.07                                | < 0            |
| Perylene                                    | -                        |                                | -                         | -                      | -                       | -                      | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td></td><td>&lt; 0.013</td><td>-</td><td>&lt; 0.013</td><td>&lt; 0.</td></lor<>                                               | < 0.013                | < 0.013                | < 0.011                |                        | < 0.013                | -                      | < 0.013                               | < 0.           |
| Phenanthrene                                |                          |                                | -                         |                        | -                       | -                      | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>&lt; 0.011</td><td></td><td>&lt; 0.013</td><td>-</td><td>&lt; 0.013</td><td>&lt; 0.</td></lor<>                                               | < 0.013                | < 0.013                | < 0.011                |                        | < 0.013                | -                      | < 0.013                               | < 0.           |
| Pyrene                                      | NL'                      | 1600'                          | 1600'                     | 1600′                  | 160′                    | 7.9                    | <lor< td=""><td>&lt; 0.013</td><td>&lt; 0.013</td><td>0.027</td><td></td><td>&lt; 0.013</td><td>-</td><td>&lt; 0.013</td><td>&lt; 0.</td></lor<>                                                    | < 0.013                | < 0.013                | 0.027                  |                        | < 0.013                | -                      | < 0.013                               | < 0.           |

#### Notes:

All values in mg/kg unless otherwise indicated (i.e. asbestos).

- indicates not analysed or no relevant acceptance criteria <LOR = less than laboratory limit of reporting

Grey font indicates values <LOR

'ND or Asbestos NOT detected' = asbestos not identified to be present by the laboratory method. NL = Not limiting (i.e. >10,000 mg/kg)

Red values indicate that the results exceed NES Soil criteria: commercial / industrial criteria

values indicate that the results exceed NES soil criteria: commercial industrial criteria
 values indicate results exceed NES recreational criteria
 Dashed outlined values indicate that the results exceed NES Soil criteria: High density residential criteria
 Grey Shaded values indicate that the results exceed NES Soil criteria: Residential 10% produce criteria
 <u>Underlined</u> values indicates that results exceed NEP Soil criteria

Bold values indicate that results exceed the published background concentrations for non-volcanic soils in the Auckland Region • values indicate that results exceed typical managed fill criteria

1a - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Commercial/Industrial use (and adopted conservative preliminary screening standard for construction works), unless otherwise

1b - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Recreational use, unless otherwise stated.

1c - MfE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: High density residential use, unless otherwise stated.

1d - MtE, June 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health: Residential 10% produce, unless otherwise stated. 2 - Auckland Unitary Plan: Operative in Part Version (AUP). Permitted Activity Soil Criteria Table E30.6.1.4.1 (unless otherwise stated).

3b - Auckland Regional Council, Technical Publication 153, October 2001. Background Concentrations of inorganic elements in soils from the Auckland Region: non-volcanic soils au - nowania regiminal countin, returninal roumation 1:5, october 2001. Background concentrations or inorganic elements in solis from the Auckand Kegion: hon-volcanic solis
 5 - Assessment of Site Contamination National Environment Protection Measures (ASC NEPM) Toolbox – http://www.nepc.gov.au/nepms/assessment-site-contamination/toolbox.
 6 - USPEA Regional Screening Levels - https://www.epa.gov/risk/regional-screening-levels-rsis-generic-tables
 7 - MFE 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, Revised 2011. Tier 1 Soil acceptance criteria for applicable pathway.
 \* Ridge Road acceptance criteria based on the published maximum truckload concentrations for deep fill (>2.0m).

#### Table F2 - Analytical Results

| HA103B - 0.5                          | HA103C - 0.0           | HA103C - 0.5            |
|---------------------------------------|------------------------|-------------------------|
| HA103B                                | HA103C                 | HA103C                  |
| 0.5                                   | 0.0                    | 0.5                     |
| Clavey SILT                           | Clavov SII T           | Clavey SILT             |
| 23-Nov-21                             | 23-Nov-21              | 23-Nov-21               |
| 23-100-21                             | 23-1404-21             | 23-1404-21              |
| ALL NOT July and                      | Asherita NOT data at d | Ash satas NOT data at d |
| stos NUI detected.                    | Aspestos NO1 detected. | Aspestos NUI detected.  |
| -                                     |                        |                         |
| -                                     | -                      |                         |
| -                                     |                        |                         |
|                                       |                        |                         |
| 9                                     |                        | 5                       |
| < 0.10                                |                        | < 0.10                  |
| 12                                    |                        | 12                      |
| 7                                     |                        | 8                       |
| 6.5                                   |                        | 6.2                     |
| 8                                     |                        | 10                      |
| 22                                    | -                      | 23                      |
| · · · · · · · · · · · · · · · · · · · |                        |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                | -                       |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                | -                       |
| < 0.013                               | < 0.013                | -                       |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                | -                       |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.012                               | < 0.012                |                         |
| 0.013                                 | 0.013                  |                         |
| 0.013                                 | 0.013                  |                         |
| < 0.013                               | < 0.013                |                         |
| < 0.06                                | < 0.00                 | •                       |
| < 0.013                               | < 0.013                |                         |
|                                       | -                      |                         |
| < 0.3                                 |                        | < 0.3                   |
| < 0.013                               |                        | < 0.013                 |
| < 0.013                               |                        | < 0.013                 |
| < 0.013                               | -                      | < 0.013                 |
| < 0.013                               | -                      | < 0.013                 |
|                                       |                        |                         |
| < 0.013                               | -                      | < 0.013                 |
| < 0.013                               |                        | < 0.013                 |
| < 0.013                               |                        | < 0.013                 |
| < 0.013                               |                        | < 0.013                 |
| < 0.013                               | -                      | < 0.013                 |
| < 0.013                               | -                      | < 0.013                 |
| < 0.013                               |                        | < 0.013                 |
| < 0.013                               |                        | < 0.013                 |
| < 0.013                               | -                      | < 0.013                 |
| < 0.013                               |                        | < 0.013                 |
| < 0.013                               |                        | .0.012                  |
| < 0.013                               |                        | < 0.013                 |
| < U.U/                                |                        | < U.U7                  |
| < 0.013                               |                        | < 0.013                 |
| < 0.013                               |                        | < 0.013                 |
| < 0.013                               | -                      | < 0.013                 |



**Hill Laboratories** Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22) Т

- +64 7 858 2000
- Е mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 11

< 0.015

# **Certificate of Analysis**

| Client:<br>Contact: | Tonkin & Ta<br>Rudolph Kot<br>C/- Tonkin &<br>PO Box 527<br>Auckland 11 | iylor<br>tze<br>& Taylor<br>1<br>I 41 |                                                                   | Lab<br>Dat<br>Dat<br>Que<br>Ord<br>Clie<br>Sub                    | o No:<br>e Received:<br>e Reported:<br>ote No:<br>ler No:<br>ent Reference:<br>omitted By: | 2653061<br>08-Jul-2021<br>15-Jul-2021<br>80842<br>COC1007526<br>1014358.5000<br>Xiao Jin | SPv1                                                              |
|---------------------|-------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Sample Ty           | vpe: Soil                                                               |                                       |                                                                   |                                                                   |                                                                                            |                                                                                          |                                                                   |
|                     |                                                                         | Sample Name:                          | PT-BL_HA10_0.0<br>0m-0.10m<br>06-Jul-2021 1:15<br>pm<br>2653061 1 | PT-BL_HA11_0.0<br>0m-0.10m<br>06-Jul-2021 1:27<br>pm<br>2653061 3 | PT-BL_HA11_0.5<br>0m-0.60m<br>06-Jul-2021 1:31<br>pm<br>2653061 4                          | PT-BL_HA12_0.0<br>0m-0.10m<br>06-Jul-2021 2:06<br>pm<br>2653061 5                        | PT-BL_HA26_0.0<br>0m-0.30m<br>06-Jul-2021 1:41<br>pm<br>2653061 6 |
| Individual Te       | sts                                                                     | Lab Number.                           |                                                                   | 200000.10                                                         | 200000                                                                                     | 200000110                                                                                |                                                                   |
| Dry Matter          |                                                                         | g/100g as rcvd                        | 76                                                                | 79                                                                | 82                                                                                         | 82                                                                                       | 68                                                                |
| Heavy Metals        | s. Screen Level                                                         | 0 0                                   |                                                                   |                                                                   |                                                                                            |                                                                                          |                                                                   |
| Total Recove        | erable Arsenic                                                          | mg/ka dry wt                          | 2                                                                 | 4                                                                 | 2                                                                                          | 2                                                                                        | 3                                                                 |
| Total Recove        | erable Cadmium                                                          | mg/kg dry wt                          | < 0.10                                                            | 0.23                                                              | < 0.10                                                                                     | < 0.10                                                                                   | < 0.10                                                            |
| Total Recove        | arable Chromium                                                         | mg/kg dry wt                          | 13                                                                | 12                                                                | 10                                                                                         | 12                                                                                       | 14                                                                |
| Total Recove        | erable Copper                                                           | mg/kg dry wt                          | 5                                                                 | 5                                                                 | 7                                                                                          | 5                                                                                        | 6                                                                 |
| Total Recove        | erable Lead                                                             | mg/kg dry wt                          | 6.7                                                               | 8.9                                                               | 6.7                                                                                        | 9.1                                                                                      | 7.3                                                               |
| Total Recove        | erable Nickel                                                           | mg/kg dry wt                          | 4                                                                 | 14                                                                | 6                                                                                          | 4                                                                                        | 5                                                                 |
| Total Recove        | erable Zinc                                                             | mg/kg dry wt                          | 8                                                                 | 30                                                                | 14                                                                                         | 13                                                                                       | 15                                                                |
| Organochlori        | ine Pesticides So                                                       | creening in Soil                      |                                                                   |                                                                   |                                                                                            |                                                                                          |                                                                   |
| Aldrin              |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| alpha-BHC           |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| beta-BHC            |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| delta-BHC           |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| gamma-BHC           | (Lindane)                                                               | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| cis-Chlordan        | e                                                                       | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| trans-Chlorda       | ane                                                                     | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| 2,4'-DDD            |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| 4,4'-DDD            |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| 2,4'-DDE            |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| 4,4'-DDE            |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| 2,4'-DDT            |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| 4,4'-DDT            |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| Total DDT Is        | omers                                                                   | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.09                                                            |
| Dieldrin            |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| Endosulfan I        |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| Endosulfan I        | I                                                                       | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| Endosulfan s        | sulphate                                                                | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| Endrin              |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| Endrin aldeh        | yde                                                                     | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| Endrin keton        | e                                                                       | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| Heptachlor          |                                                                         | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| Heptachlor e        | poxide                                                                  | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |
| Hexachlorobe        | enzene                                                                  | mg/kg dry wt                          | -                                                                 | -                                                                 | -                                                                                          | -                                                                                        | < 0.015                                                           |



Methoxychlor

CCREDITED TESTING LABORATO mg/kg dry wt

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked \* or any comments and interpretations, which are not accredited.

| Sample Type: Soil                                       |                   |                              |                              |                              |                              |                              |
|---------------------------------------------------------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Sa                                                      | ample Name:       | PT-BL_HA10_0.0               | PT-BL_HA11_0.0               | PT-BL_HA11_0.5               | PT-BL_HA12_0.0               | PT-BL_HA26_0.0               |
|                                                         | -                 | 0m-0.10m                     | 0m-0.10m                     | 0m-0.60m                     | 0m-0.10m                     | 0m-0.30m                     |
|                                                         |                   | 06-Jul-2021 1:15<br>pm       | 06-Jul-2021 1:27             | 06-JUI-2021 1:31             | 06-JUI-2021 2:06             | 06-Jui-2021 1:41             |
|                                                         | Lab Number:       | 2653061.1                    | 2653061.3                    | 2653061.4                    | 2653061.5                    | 2653061.6                    |
| Polycyclic Aromatic Hydrocarbor                         | ns Screening in S | Soil*                        |                              |                              |                              |                              |
| Total of Reported PAHs in Soil                          | ma/ka drv wt      | < 0.4                        | < 0.4                        | < 0.3                        | < 0.3                        | < 0.4                        |
| 1-Methylnaphthalene                                     | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| 2-Methylnaphthalene                                     | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Acenaphthylene                                          | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Acenaphthene                                            | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Anthracene                                              | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Benzo[a]anthracene                                      | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Benzo[a]pyrene (BAP)                                    | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES* | mg/kg dry wt      | < 0.04                       | < 0.04                       | < 0.03                       | < 0.03                       | < 0.04                       |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*              | mg/kg dry wt      | < 0.04                       | < 0.04                       | < 0.03                       | < 0.03                       | < 0.04                       |
| Benzo[b]fluoranthene + Benzo[j]                         | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Benzo[e]pyrene                                          | ma/ka dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Benzo[g,h,i]pervlene                                    | mg/ka drv wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Benzo[k]fluoranthene                                    | mg/ka drv wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Chrysene                                                | ma/ka dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Dibenzola.hlanthracene                                  | ma/ka drv wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Fluoranthene                                            | ma/ka drv wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Fluorene                                                | ma/ka drv wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Indeno(1.2.3-c.d)pyrene                                 | ma/ka drv wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Naphthalene                                             | ma/ka drv wt      | < 0.07                       | < 0.07                       | < 0.06                       | < 0.06                       | < 0.08                       |
| Pervlene                                                | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Phenanthrene                                            | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
| Pyrene                                                  | mg/kg dry wt      | < 0.013                      | < 0.013                      | < 0.012                      | < 0.012                      | < 0.015                      |
|                                                         |                   |                              |                              |                              |                              |                              |
| 58                                                      | ampie Name:       | 0m-0.10m<br>06-Jul-2021 2:16 | 0m-0.20m<br>06-Jul-2021 2:28 | 0m-0.60m<br>06-Jul-2021 2:31 | 0m-0.05m<br>06-Jul-2021 2:42 | 0m-0.10m<br>06-Jul-2021 2:51 |
|                                                         | ah Number:        | 2653061.9                    | 2653061.11                   | 2653061.12                   | 2653061.13                   | 2653061.15                   |
| Individual Tests                                        |                   | 200000110                    | 200000                       |                              | 2000000                      | 2000000                      |
| Dry Matter                                              | d/100g as rovd    | 75                           | 80                           | 70                           | 81                           | 77                           |
| Heavy Metals Screen Level                               | g/100g d0 101d    | 10                           | 00                           | 10                           | 01                           | ••                           |
| Total Recoverable Arsenic                               | ma/ka drv wt      | 5                            | 3                            | 2                            | 3                            | - 2                          |
| Total Recoverable Codmium                               | mg/kg dry wt      | 0.22                         | 0.10                         | 2<br>< 0.10                  | - 0.10                       | 0.17                         |
|                                                         | mg/kg dry wt      | 0.22                         | 0.19                         | < 0.10                       | < 0.10                       | 0.17                         |
| Total Recoverable Copper                                | mg/kg dry wt      | R R                          | ~~~<br>R                     | 10                           | 7                            | л<br>И                       |
|                                                         | mg/kg dry wt      | 0                            | 6 2<br>U                     | 0.2                          | 03                           | 70                           |
|                                                         | mg/kg dry wt      | 9:0<br>7                     | 0:5                          | 5.5                          | 3.5                          | 7.8                          |
|                                                         | mg/kg dry wt      | 20                           | 16                           | 22                           | 14                           | 10                           |
| Organachloring Pasticidas Scree                         |                   | 20                           | 10                           | LL                           | 17                           | 10                           |
| Aldrin                                                  |                   | - 0.012                      |                              |                              | - 0.012                      |                              |
|                                                         | mg/kg dry wi      | < 0.013                      | -                            | -                            | < 0.013                      | -                            |
|                                                         | mg/kg dry wi      | < 0.013                      | -                            | -                            | < 0.013                      | -                            |
|                                                         | mg/kg dry wt      | < 0.013                      | -                            | -                            | < 0.013                      | -                            |
| aamma-BHC (Lindono)                                     | mg/kg dry wt      | < 0.013                      | -                            | -                            | < 0.013                      | -                            |
| ganina-Diric (Linuane)                                  | mg/kg dry wt      | < 0.013                      | -                            | -                            | < 0.013                      | -                            |
| trans-Chlordono                                         | mg/kg dry wt      | < 0.013                      | -                            | -                            | < 0.013                      | -                            |
|                                                         | mg/kg dry wt      | < 0.013                      | -                            | -                            | < 0.013                      | -                            |
| 4 4'-DDD                                                | mg/kg dry wt      | < 0.013                      | -                            |                              | < 0.013                      |                              |
| 2 4'-DDE                                                | mg/kg dry wt      | < 0.013                      | -                            |                              | < 0.013                      | -                            |
|                                                         | mg/kg dry wt      | < 0.013                      | -                            | -                            | < 0.013                      | -                            |
| 2 4'-DDL                                                | mg/kg dry wt      | < 0.013                      | -                            |                              | < 0.013                      | -                            |
| 4 4'-DDT                                                | mg/kg dry wt      | < 0.013                      | -                            |                              | < 0.013                      |                              |
| רטט־ד,ד                                                 | mg/kg ury wi      | ~ 0.013                      | -                            | -                            | < 0.013                      | -                            |

| Sample Type: Soil                                       |                   |                                                      |                                                      |                                                      |                                                      |                                                      |
|---------------------------------------------------------|-------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Sa                                                      | ample Name:       | PT-BL_HA13_0.0                                       | PT-BL_HA14_0.0                                       | PT-BL_HA14_0.2                                       | PT-BL_HA15_0.0                                       | PT-BL_HA16_0.0                                       |
|                                                         |                   | 0m-0.10m                                             | 0m-0.20m                                             | 0m-0.60m                                             | 0m-0.05m                                             | 0m-0.10m                                             |
|                                                         |                   | pm                                                   | 06-Jui-2021 2:28<br>pm                               | pm                                                   | pm                                                   | pm                                                   |
|                                                         | Lab Number:       | 2653061.9                                            | 2653061.11                                           | 2653061.12                                           | 2653061.13                                           | 2653061.15                                           |
| Organochlorine Pesticides Scree                         | ening in Soil     |                                                      |                                                      | '                                                    |                                                      | l                                                    |
| Total DDT Isomers                                       | mg/kg dry wt      | < 0.08                                               | -                                                    | -                                                    | < 0.08                                               | -                                                    |
| Dieldrin                                                | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Endosulfan I                                            | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Endosulfan II                                           | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Endosulfan sulphate                                     | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Endrin                                                  | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Endrin aldehyde                                         | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Endrin ketone                                           | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Heptachlor                                              | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Heptachlor epoxide                                      | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Hexachlorobenzene                                       | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Methoxychlor                                            | mg/kg dry wt      | < 0.013                                              | -                                                    | -                                                    | < 0.013                                              | -                                                    |
| Polycyclic Aromatic Hydrocarbor                         | ns Screening in S | Soil*                                                |                                                      |                                                      |                                                      |                                                      |
| Total of Reported PAHs in Soil                          | mg/kg dry wt      | < 0.4                                                | < 0.3                                                | < 0.4                                                | < 0.3                                                | < 0.4                                                |
| 1-Methylnaphthalene                                     | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| 2-Methylnaphthalene                                     | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Acenaphthylene                                          | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Acenaphthene                                            | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Anthracene                                              | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Benzo[a]anthracene                                      | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Benzo[a]pyrene (BAP)                                    | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES* | mg/kg dry wt      | < 0.04                                               | < 0.03                                               | < 0.04                                               | < 0.03                                               | < 0.04                                               |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*              | mg/kg dry wt      | < 0.04                                               | < 0.03                                               | < 0.04                                               | < 0.03                                               | < 0.04                                               |
| Benzo[b]fluoranthene + Benzo[j]<br>fluoranthene         | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Benzo[e]pyrene                                          | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Benzo[g,h,i]perylene                                    | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Benzo[k]fluoranthene                                    | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Chrysene                                                | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Dibenzo[a,h]anthracene                                  | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Fluoranthene                                            | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Fluorene                                                | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Indeno(1,2,3-c,d)pyrene                                 | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Naphthalene                                             | mg/kg dry wt      | < 0.07                                               | < 0.07                                               | < 0.08                                               | < 0.07                                               | < 0.07                                               |
| Perylene                                                | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Phenanthrene                                            | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Pyrene                                                  | mg/kg dry wt      | < 0.013                                              | < 0.013                                              | < 0.015                                              | < 0.013                                              | < 0.013                                              |
| Sa                                                      | ample Name:       | PT-BL_HA16_0.2<br>0m-0.60m<br>06-Jul-2021 2:54<br>pm | PT-BL_HA17_0.0<br>0m-0.10m<br>06-Jul-2021 3:08<br>pm | PT-BL_HA18_0.0<br>0m-0.10m<br>06-Jul-2021 3:29<br>pm | PT-BL_HA19_0.0<br>0m-0.30m<br>06-Jul-2021 3:38<br>pm | PT-BL_HA20_0.0<br>0m-0.30m<br>06-Jul-2021 3:51<br>pm |
| <b>I</b>                                                | Lab Number:       | 2653061.16                                           | 2653061.17                                           | 2653061.18                                           | 2653061.20                                           | 2653061.22                                           |
| Individual Tests                                        |                   |                                                      |                                                      |                                                      |                                                      |                                                      |
| Dry Matter                                              | g/100g as rcvd    | 83                                                   | 85                                                   | 76                                                   | -                                                    | 78                                                   |
| Heavy Metals, Screen Level                              | ,                 |                                                      |                                                      | 1                                                    |                                                      | 1                                                    |
| Total Recoverable Arsenic                               | mg/kg dry wt      | < 2                                                  | 3                                                    | 3                                                    | 2                                                    | < 2                                                  |
| Total Recoverable Cadmium                               | mg/kg dry wt      | < 0.10                                               | 0.13                                                 | 0.16                                                 | 0.18                                                 | 0.17                                                 |
| Total Recoverable Chromium                              | mg/kg dry wt      | 10                                                   | 10                                                   | 13                                                   | 10                                                   | 7                                                    |
| Total Recoverable Copper                                | mg/kg dry wt      | < 2                                                  | 23                                                   | 5                                                    | 6                                                    | 3                                                    |
| Total Recoverable Lead                                  | mg/kg dry wt      | 5.0                                                  | 17.1                                                 | 11.4                                                 | 10.3                                                 | 6.1                                                  |
| Total Recoverable Nickel                                | mg/kg dry wt      | 3                                                    | 9                                                    | 3                                                    | 3                                                    | 2                                                    |
| I otal Recoverable Zinc                                 | mg/kg dry wt      | 6                                                    | 51                                                   | 13                                                   | 17                                                   | 8                                                    |

| Sample Type: Soil                                       |                  |                        |                        |                        |                        |                        |
|---------------------------------------------------------|------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Sar                                                     | mple Name:       | PT-BL_HA16_0.2         | PT-BL_HA17_0.0         | PT-BL_HA18_0.0         | PT-BL_HA19_0.0         | PT-BL_HA20_0.0         |
|                                                         | -                | 0m-0.60m               | 0m-0.10m               | 0m-0.10m               | 0m-0.30m               | 0m-0.30m               |
|                                                         |                  | 06-JUI-2021 2:54<br>pm | 06-JUI-2021 3:08<br>pm | 06-Jui-2021 3:29<br>pm | 06-Jul-2021 3:38<br>pm | 06-Jul-2021 3:51<br>pm |
| L                                                       | ab Number:       | 2653061.16             | 2653061.17             | 2653061.18             | 2653061.20             | 2653061.22             |
| Organochlorine Pesticides Screer                        | ning in Soil     |                        |                        |                        |                        |                        |
| Aldrin                                                  | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| alpha-BHC                                               | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| beta-BHC                                                | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| delta-BHC                                               | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| gamma-BHC (Lindane)                                     | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| cis-Chlordane                                           | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| trans-Chlordane                                         | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| 2,4'-DDD                                                | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| 4,4'-DDD                                                | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| 2,4'-DDE                                                | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| 4,4'-DDE                                                | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| 2,4'-DDT                                                | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| 4,4'-DDT                                                | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Total DDT Isomers                                       | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.08                 |
| Dieldrin                                                | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Endosulfan I                                            | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Endosulfan II                                           | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Endosulfan sulphate                                     | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Endrin                                                  | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Endrin aldehyde                                         | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Endrin ketone                                           | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Heptachlor                                              | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Heptachlor epoxide                                      | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Hexachlorobenzene                                       | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Methoxychlor                                            | mg/kg dry wt     | -                      | -                      | -                      | -                      | < 0.013                |
| Polycyclic Aromatic Hydrocarbons                        | s Screening in S | Soil*                  |                        |                        |                        |                        |
| Total of Reported PAHs in Soil                          | mg/kg dry wt     | < 0.3                  | < 0.3                  | < 0.4                  | -                      | < 0.4                  |
| 1-Methylnaphthalene                                     | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| 2-Methylnaphthalene                                     | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Acenaphthylene                                          | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Acenaphthene                                            | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Anthracene                                              | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Benzo[a]anthracene                                      | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Benzo[a]pyrene (BAP)                                    | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES* | mg/kg dry wt     | < 0.03                 | < 0.03                 | < 0.04                 | -                      | < 0.04                 |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*              | mg/kg dry wt     | < 0.03                 | < 0.03                 | < 0.04                 | -                      | < 0.04                 |
| Benzo[b]fluoranthene + Benzo[j]<br>fluoranthene         | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Benzo[e]pyrene                                          | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Benzo[g,h,i]perylene                                    | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Benzo[k]fluoranthene                                    | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Chrysene                                                | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Dibenzo[a,h]anthracene                                  | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Fluoranthene                                            | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Fluorene                                                | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Indeno(1,2,3-c,d)pyrene                                 | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Naphthalene                                             | mg/kg dry wt     | < 0.06                 | < 0.06                 | < 0.07                 | -                      | < 0.07                 |
| Perylene                                                | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Phenanthrene                                            | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |
| Pyrene                                                  | mg/kg dry wt     | < 0.012                | < 0.012                | < 0.013                | -                      | < 0.013                |

| Sample Type: Soil                                     |                     |                  |                   |                   |                   |                   |
|-------------------------------------------------------|---------------------|------------------|-------------------|-------------------|-------------------|-------------------|
|                                                       | Sample Name:        | PT-BL_HA21_0.2   | PT-BL_HA06_0.0    | PT-BL_HA06_0.5    | PT-BL_HA07_0.0    | PT-BL_HA08_0.5    |
|                                                       | -                   | 0m-0.60m         | 0m-0.10m          | 0m-0.60m          | 0m-0.10m          | 0m-0.60m          |
|                                                       |                     | 06-Jul-2021 4:06 | 06-Jul-2021 12:19 | 06-Jul-2021 12:20 | 06-Jul-2021 12:35 | 06-Jul-2021 12:46 |
|                                                       | Lab Number:         | 2653061.25       | 2653061.36        | 2653061.37        | 2653061.38        | 2653061.40        |
| Individual Tests                                      | Lub Humbon.         |                  |                   |                   |                   |                   |
| Drv Matter                                            | g/100g as rcvd      | 82               | 76                | 80                | 78                | 83                |
| Heavy Metals, Screen Level                            | <u>g</u> g          |                  |                   |                   |                   |                   |
| Total Recoverable Arsenic                             | ma/ka dry wt        | - 2              | _                 | 5                 | 6                 | Δ                 |
| Total Recoverable Cadmium                             | mg/kg dry wt        | 0.15             |                   | - 0 10            | 0.14              | 0.12              |
| Total Recoverable Chromium                            | mg/kg dry wt        | 9                |                   | 15                | 12                | 12                |
| Total Recoverable Copper                              | mg/kg dry wt        | 3                | _                 | 10                | 22                | 12                |
| Total Recoverable Lead                                | mg/kg dry wt        | 6.5              | _                 | 7.1               | 15.4              | 13.9              |
| Total Recoverable Nickel                              | ma/ka drv wt        | 3                |                   | 14                | 14                | 9                 |
| Total Recoverable Zinc                                | ma/ka drv wt        | 9                |                   | 30                | 71                | 76                |
| Organochlorine Pesticides Sc                          | reening in Soil     | •                |                   |                   |                   |                   |
| Aldrin                                                | ma/ka dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | _                 |
| alpha-BHC                                             | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           |                   |
| beta-BHC                                              | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | _                 |
| delta-BHC                                             | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | _                 |
| gamma-BHC (Lindane)                                   | ma/ka dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | _                 |
| cis-Chlordane                                         | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           |                   |
| trans-Chlordane                                       | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | _                 |
|                                                       | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           |                   |
| 4.4'-DDD                                              | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           |                   |
| 2.4'-DDE                                              | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           |                   |
|                                                       | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           |                   |
| 2 4'-DDT                                              | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | _                 |
| 4 4'-DDT                                              | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | _                 |
| Total DDT Isomers                                     | ma/ka dry wt        | < 0.08           | < 0.08            | < 0.08            | < 0.08            | _                 |
| Dieldrin                                              | ma/ka dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | _                 |
| Endosulfan I                                          | ma/ka dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | _                 |
| Endosulfan II                                         | ma/ka drv wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | -                 |
| Endosulfan sulphate                                   | ma/ka drv wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | -                 |
| Endrin                                                | ma/ka drv wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | -                 |
| Endrin aldehvde                                       | ma/ka drv wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | -                 |
| Endrin ketone                                         | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | -                 |
| Heptachlor                                            | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | -                 |
| Heptachlor epoxide                                    | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | -                 |
| Hexachlorobenzene                                     | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | -                 |
| Methoxychlor                                          | mg/kg dry wt        | < 0.012          | < 0.013           | < 0.013           | < 0.013           | -                 |
| Polycyclic Aromatic Hydrocarl                         | bons Screening in S | Soil*            |                   |                   |                   |                   |
| Total of Reported PAHs in So                          | il mg/kg dry wt     | < 0.3            | -                 | < 0.3             | < 0.3             | < 0.3             |
| 1-Methylnaphthalene                                   | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| 2-Methylnaphthalene                                   | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| Acenaphthylene                                        | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| Acenaphthene                                          | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| Anthracene                                            | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| Benzo[a]anthracene                                    | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| Benzo[a]pyrene (BAP)                                  | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NE | mg/kg dry wt<br>S*  | < 0.03           | -                 | < 0.03            | < 0.03            | < 0.03            |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*            | mg/kg dry wt        | < 0.03           | -                 | < 0.03            | < 0.03            | < 0.03            |
| Benzo[b]fluoranthene + Benzo<br>fluoranthene          | o[j] mg/kg dry wt   | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| Benzo[e]pyrene                                        | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| Benzo[g,h,i]perylene                                  | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| Benzo[k]fluoranthene                                  | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |
| Chrysene                                              | mg/kg dry wt        | < 0.012          | -                 | < 0.013           | < 0.013           | < 0.012           |

| Sample Type: Soil            |                      |                              |                               |                                    |                                    |                                    |
|------------------------------|----------------------|------------------------------|-------------------------------|------------------------------------|------------------------------------|------------------------------------|
|                              | Sample Name:         | PT-BL_HA21_0.2               | PT-BL_HA06_0.0                | PT-BL_HA06_0.5                     | PT-BL_HA07_0.0                     | PT-BL_HA08_0.5                     |
|                              | -                    | 0m-0.60m                     | 0m-0.10m                      | 0m-0.60m                           | 0m-0.10m                           | 0m-0.60m                           |
|                              |                      | 06-Jul-2021 4:06             | 06-Jul-2021 12:19             | 06-JUI-2021 12:20                  | 06-JUI-2021 12:35<br>pm            | 06-JUI-2021 12:46                  |
|                              | Lab Number:          | 2653061.25                   | 2653061.36                    | 2653061.37                         | 2653061.38                         | 2653061.40                         |
| Polycyclic Aromatic Hydroca  | rbons Screening in S | Soil*                        |                               |                                    |                                    |                                    |
| Dibenzo[a,h]anthracene       | mg/kg dry wt         | < 0.012                      | -                             | < 0.013                            | < 0.013                            | < 0.012                            |
| Fluoranthene                 | mg/kg dry wt         | < 0.012                      | -                             | < 0.013                            | < 0.013                            | < 0.012                            |
| Fluorene                     | mg/kg dry wt         | < 0.012                      | -                             | < 0.013                            | < 0.013                            | < 0.012                            |
| Indeno(1,2,3-c,d)pyrene      | mg/kg dry wt         | < 0.012                      | -                             | < 0.013                            | < 0.013                            | < 0.012                            |
| Naphthalene                  | mg/kg dry wt         | < 0.06                       | -                             | < 0.07                             | < 0.07                             | < 0.06                             |
| Perylene                     | mg/kg dry wt         | < 0.012                      | -                             | 0.017                              | < 0.013                            | < 0.012                            |
| Phenanthrene                 | mg/kg dry wt         | < 0.012                      | -                             | < 0.013                            | < 0.013                            | < 0.012                            |
| Pyrene                       | mg/kg dry wt         | < 0.012                      | -                             | < 0.013                            | < 0.013                            | < 0.012                            |
|                              | Comunic Norma        |                              |                               |                                    |                                    |                                    |
|                              | Sample Name:         | 0m-0.10m<br>06-Jul-2021 1:03 | 0m-0.10m<br>06-Jul-2021 12:13 | 0m-0.10m<br>06-Jul-2021 8:34<br>am | 0m-0.10m<br>06-Jul-2021 9:29<br>am | 0m-0.10m<br>06-Jul-2021 9:40<br>am |
|                              | Lab Number:          | 2653061.41                   | 2653061.43                    | 2653061.44                         | 2653061.45                         | 2653061.46                         |
| Individual Tests             |                      |                              |                               |                                    |                                    |                                    |
| Dry Matter                   | g/100g as rcvd       | 74                           | 81                            | 75                                 | 74                                 | 73                                 |
| Heavy Metals, Screen Level   |                      |                              |                               |                                    |                                    |                                    |
| Total Recoverable Arsenic    | ma/ka dry wt         | < 2                          | 3                             | 3                                  | 2                                  | 2                                  |
| Total Recoverable Cadmium    | mg/kg dry wt         | 0.11                         | < 0.10                        | 0.21                               | 0.14                               | 0.20                               |
| Total Recoverable Chromium   | mg/kg dry wt         | 9                            | 12                            | 13                                 | 13                                 | 13                                 |
| Total Recoverable Copper     | mg/kg dry wt         | 4                            | 5                             | 6                                  | 6                                  | 6                                  |
| Total Recoverable Lead       | mg/kg dry wt         | 6.4                          | 11.4                          | 9.9                                | 9.6                                | 9.1                                |
| Total Recoverable Nickel     | mg/kg dry wt         | 3                            | 4                             | 3                                  | 5                                  | 6                                  |
| Total Recoverable Zinc       | mg/kg dry wt         | 11                           | 13                            | 17                                 | 20                                 | 21                                 |
| Organochlorine Pesticides S  | creening in Soil     |                              |                               |                                    |                                    |                                    |
| Aldrin                       | ma/ka drv wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| alpha-BHC                    | ma/ka drv wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| beta-BHC                     | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| delta-BHC                    | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| gamma-BHC (Lindane)          | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| cis-Chlordane                | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| trans-Chlordane              | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| 2,4'-DDD                     | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| 4,4'-DDD                     | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| 2,4'-DDE                     | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| 4,4'-DDE                     | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| 2,4'-DDT                     | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| 4,4'-DDT                     | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Total DDT Isomers            | mg/kg dry wt         | -                            | < 0.08                        | < 0.08                             | < 0.08                             | < 0.09                             |
| Dieldrin                     | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Endosulfan I                 | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Endosulfan II                | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Endosulfan sulphate          | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Endrin                       | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Endrin aldehyde              | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Endrin ketone                | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Heptachlor                   | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Heptachlor epoxide           | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Hexachlorobenzene            | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Methoxychlor                 | mg/kg dry wt         | -                            | < 0.012                       | < 0.014                            | < 0.013                            | < 0.014                            |
| Polycyclic Aromatic Hydroca  | rbons Screening in S | Soil*                        |                               |                                    |                                    |                                    |
| Total of Reported PAHs in So | oil mg/kg dry wt     | < 0.4                        | -                             | -                                  | -                                  | -                                  |
| 1-Methylnaphthalene          | mg/kg dry wt         | < 0.014                      | -                             | -                                  | _                                  | -                                  |
| 2-Methylnaphthalene          | mg/kg dry wt         | < 0.014                      | -                             | -                                  | -                                  | -                                  |
| Acenaphthylene               | mg/kg dry wt         | < 0.014                      | -                             | -                                  | -                                  | -                                  |

| Sample Type: Soil                                     |                   |                            |                            |                            |                            |                            |
|-------------------------------------------------------|-------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Si                                                    | ample Name:       | PT-BL_HA09_0.0<br>0m-0.10m | PT-BL_SS10_0.0<br>0m-0.10m | PT-BL_SS01_0.0<br>0m-0.10m | PT-BL_SS02_0.0<br>0m-0.10m | PT-BL_SS03_0.0<br>0m-0.10m |
|                                                       |                   | 06-Jul-2021 1:03           | 06-Jul-2021 12:13          | 06-JUI-2021 8:34           | 06-JUI-2021 9:29           | 06-JUI-2021 9:40           |
|                                                       | l ab Number:      | 2653061.41                 | 2653061.43                 | 2653061.44                 | 2653061.45                 | 2653061.46                 |
| Polvcvclic Aromatic Hvdrocarbo                        | ns Screening in S | Soil*                      |                            |                            |                            |                            |
| Acenaphthene                                          | ma/ka dry wt      | < 0.014                    | _                          | -                          | -                          | -                          |
| Anthracene                                            | ma/ka drv wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Benzolalanthracene                                    | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Benzo[a]ovrene (BAP)                                  | mg/kg dry wt      | < 0.014                    |                            | -                          | -                          | -                          |
| Benzo[a]pyrene Potency                                | mg/kg dry wt      | < 0.04                     | _                          |                            | _                          | -                          |
| Equivalency Factor (PEF) NES*<br>Benzo[a]pyrene Toxic | mg/kg dry wt      | < 0.04                     | _                          | -                          | -                          | -                          |
| Equivalence (TEF)*<br>Benzolblfluoranthene + Benzolil | mg/kg dry wt      | < 0.014                    |                            |                            | -                          |                            |
| fluoranthene                                          | 3-3-7             |                            |                            |                            |                            |                            |
| Benzo[e]pyrene                                        | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Benzo[g,h,i]perylene                                  | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Benzo[k]fluoranthene                                  | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Chrysene                                              | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Dibenzo[a,h]anthracene                                | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Fluoranthene                                          | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Fluorene                                              | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Indeno(1,2,3-c,d)pyrene                               | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Naphthalene                                           | mg/kg dry wt      | < 0.07                     | -                          | -                          | -                          | -                          |
| Perylene                                              | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Phenanthrene                                          | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| Pyrene                                                | mg/kg dry wt      | < 0.014                    | -                          | -                          | -                          | -                          |
| e                                                     | ample Name:       | PT-BI SS04 0.0             | PT-BL \$\$05.0.0           | PT-BL SS06.0.0             | PT-BL \$\$07.0.0           | PT-BI \$\$08.0.0           |
| 5                                                     | ampie Name:       | 06-Jul-2021 10:05<br>am    | 06-Jul-2021 10:27<br>am    | 06-Jul-2021 10:36          | 06-Jul-2021 11:13<br>am    | 06-Jul-2021 11:29<br>am    |
|                                                       | Lab Number:       | 2653061.47                 | 2653061.48                 | 2653061.49                 | 2653061.50                 | 2653061.51                 |
| Individual Tests                                      |                   |                            |                            |                            |                            |                            |
| Dry Matter                                            | g/100g as rcvd    | 75                         | 79                         | 76                         | 79                         | 79                         |
| Heavy Metals, Screen Level                            |                   |                            |                            |                            |                            |                            |
| Total Recoverable Arsenic                             | ma/ka drv wt      | 3                          | 4                          | 2                          | 4                          | 4                          |
| Total Recoverable Cadmium                             | ma/ka dry wt      | < 0.10                     | 0.12                       | 0.15                       | < 0.10                     | 0.13                       |
| Total Recoverable Chromium                            | mg/kg dry wt      | 14                         | 10                         | 11                         | 14                         | 11                         |
| Total Recoverable Copper                              | mg/kg dry wt      | 6                          | 4                          | 5                          | 11                         | 9                          |
| Total Recoverable Lead                                | mg/kg dry wt      | 10.1                       | 84                         | 85                         | 83                         | 88                         |
| Total Recoverable Nickel                              | mg/kg dry wt      | 5                          | 4                          | 4                          | 16                         | 8                          |
|                                                       | mg/kg dry wt      | 15                         | 15                         | 16                         | 34                         | 36                         |
| Organochloring Pasticidae Sara                        |                   |                            | 10                         | 10                         | <b>U</b> T                 | 50                         |
| Organochionne Pesticides Scre                         |                   | 0.014                      | 0.010                      | 0.014                      | 0.010                      | 0.010                      |
|                                                       | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| aipria-BHC                                            | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
|                                                       | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
|                                                       | mg/кg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| garnma-BHC (Lindane)                                  | mg/кg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| cis-Chiordane                                         | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| trans-Chiordane                                       | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| 2,4-000                                               | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| 4,4'-DDD                                              | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| 2,4'-DDE                                              | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| 4,4'-DDE                                              | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| 2,4'-DDT                                              | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| 4,4'-DDT                                              | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| Total DDT Isomers                                     | mg/kg dry wt      | < 0.08                     | < 0.08                     | < 0.08                     | < 0.08                     | < 0.08                     |
| Dieldrin                                              | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
| Endosulfan I                                          | mg/kg dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |
|                                                       | ma/ka dry wt      | < 0.014                    | < 0.013                    | < 0.014                    | < 0.013                    | < 0.013                    |

| Sample Type: Soil                                       |                   |                                                       |                                                 |                                                 |                                                 |                                                 |
|---------------------------------------------------------|-------------------|-------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Sa                                                      | ample Name:       | PT-BL_SS04_0.0<br>0m-0.10m<br>06-Jul-2021 10:05       | PT-BL_SS05_0.0<br>0m-0.10m<br>06-Jul-2021 10:27 | PT-BL_SS06_0.0<br>0m-0.10m<br>06-Jul-2021 10:36 | PT-BL_SS07_0.0<br>0m-0.10m<br>06-Jul-2021 11:13 | PT-BL_SS08_0.0<br>0m-0.10m<br>06-Jul-2021 11:29 |
|                                                         | l ab Number:      | 2653061.47                                            | 2653061.48                                      | 2653061.49                                      | 2653061.50                                      | 2653061.51                                      |
| Organochlorine Pesticides Scre                          | ening in Soil     |                                                       |                                                 |                                                 |                                                 |                                                 |
| Endosulfan sulphate                                     | mg/kg dry wt      | < 0.014                                               | < 0.013                                         | < 0.014                                         | < 0.013                                         | < 0.013                                         |
| Endrin                                                  | mg/kg dry wt      | < 0.014                                               | < 0.013                                         | < 0.014                                         | < 0.013                                         | < 0.013                                         |
| Endrin aldehyde                                         | mg/kg dry wt      | < 0.014                                               | < 0.013                                         | < 0.014                                         | < 0.013                                         | < 0.013                                         |
| Endrin ketone                                           | mg/kg dry wt      | < 0.014                                               | < 0.013                                         | < 0.014                                         | < 0.013                                         | < 0.013                                         |
| Heptachlor                                              | mg/kg dry wt      | < 0.014                                               | < 0.013                                         | < 0.014                                         | < 0.013                                         | < 0.013                                         |
| Heptachlor epoxide                                      | mg/kg dry wt      | < 0.014                                               | < 0.013                                         | < 0.014                                         | < 0.013                                         | < 0.013                                         |
| Hexachlorobenzene                                       | mg/kg dry wt      | < 0.014                                               | < 0.013                                         | < 0.014                                         | < 0.013                                         | < 0.013                                         |
| Methoxychlor                                            | mg/kg dry wt      | < 0.014                                               | < 0.013                                         | < 0.014                                         | < 0.013                                         | < 0.013                                         |
| Polycyclic Aromatic Hydrocarbo                          | ns Screening in S | Soil*                                                 |                                                 |                                                 |                                                 |                                                 |
| Total of Reported PAHs in Soil                          | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.4                                           | < 0.3                                           |
| 1-Methylnaphthalene                                     | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| 2-Methylnaphthalene                                     | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Acenaphthylene                                          | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Acenaphthene                                            | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Anthracene                                              | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Benzo[a]anthracene                                      | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Benzo[a]pyrene (BAP)                                    | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES* | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.04                                          | < 0.04                                          |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*              | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.04                                          | < 0.04                                          |
| Benzo[b]fluoranthene + Benzo[j]<br>fluoranthene         | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Benzo[e]pyrene                                          | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Benzo[g,h,i]perylene                                    | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Benzo[k]fluoranthene                                    | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Chrysene                                                | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Dibenzo[a,h]anthracene                                  | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Fluoranthene                                            | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
|                                                         | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Indeno(1,2,3-c,d)pyrene                                 | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| Naphthalene                                             | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.07                                          | < 0.07                                          |
| Phenanthrope                                            | mg/kg dry wt      | -                                                     | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
|                                                         | mg/kg dry wt      |                                                       |                                                 |                                                 | < 0.013                                         | < 0.013                                         |
|                                                         | ing/kg dry wr     | _                                                     | _                                               |                                                 | < 0.013                                         | < 0.013                                         |
| Sa                                                      | ample Name:       | PT-BL_SS09_0.0<br>0m-0.10m<br>06-Jul-2021 11:53<br>am | PT-BL_Duplicate<br>3                            | PT-BL_Duplicate<br>2                            | PT-BL_Duplicate<br>1                            | PT-BL_Duplicate<br>4                            |
| <del></del>                                             | Lab Number:       | 2653061.52                                            | 2653061.54                                      | 2653061.57                                      | 2653061.58                                      | 2653061.59                                      |
| Individual Tests                                        | 11.05             |                                                       |                                                 |                                                 |                                                 |                                                 |
| Dry Matter                                              | g/100g as rcvd    | 91                                                    | 81                                              | 79                                              | 75                                              | 79                                              |
| Heavy Metals, Screen Level                              |                   |                                                       |                                                 | _                                               |                                                 | _                                               |
| Total Recoverable Arsenic                               | mg/kg dry wt      | 35                                                    | 3                                               | 5                                               | 5                                               | 5                                               |
| Total Recoverable Cadmium                               | mg/kg dry wt      | 0.13                                                  | 0.10                                            | 0.21                                            | < 0.10                                          | < 0.10                                          |
| I otal Recoverable Chromium                             | mg/kg dry wt      | 19                                                    | 10                                              | 13                                              | 14                                              | 14                                              |
| I otal Recoverable Copper                               | mg/kg dry wt      | 31                                                    | 16                                              | 5                                               | 9                                               | 9                                               |
| I otal Recoverable Lead                                 | mg/kg dry wt      | 11.9                                                  | 15.1                                            | 8.9                                             | 6.7                                             | 6.7                                             |
| I otal Recoverable Nickel                               | mg/kg dry wt      | 19                                                    | 6                                               | 13                                              | 9                                               | 12                                              |
| I otal Recoverable Zinc                                 | mg/kg dry wt      | 77                                                    | 40                                              | 32                                              | 28                                              | 27                                              |
| Organochlorine Pesticides Scre                          | ening in Soil     | 1                                                     |                                                 | 1                                               |                                                 | 1                                               |
| Aldrin                                                  | mg/kg dry wt      | < 0.011                                               | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| alpha-BHC                                               | mg/kg dry wt      | < 0.011                                               | -                                               | -                                               | < 0.013                                         | < 0.013                                         |
| beta-BHC                                                | mg/kg dry wt      | < 0.011                                               | -                                               | -                                               | < 0.013                                         | < 0.013                                         |

| Sample Type: Soil                                      |                    |                         |                          |                          |                           |                 |
|--------------------------------------------------------|--------------------|-------------------------|--------------------------|--------------------------|---------------------------|-----------------|
| S                                                      | ample Name:        | PT-BL_SS09_0.0          | PT-BL_Duplicate          | PT-BL_Duplicate          | PT-BL_Duplicate           | PT-BL_Duplicate |
|                                                        |                    | 0m-0.10m                | 3                        | 2                        | 1                         | 4               |
|                                                        |                    | am                      |                          |                          |                           |                 |
|                                                        | Lab Number:        | 2653061.52              | 2653061.54               | 2653061.57               | 2653061.58                | 2653061.59      |
| Organochlorine Pesticides Scre                         | eening in Soil     |                         |                          |                          |                           |                 |
| delta-BHC                                              | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| gamma-BHC (Lindane)                                    | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| cis-Chlordane                                          | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| trans-Chlordane                                        | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| 2,4'-DDD                                               | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| 4,4'-DDD                                               | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| 2,4'-DDE                                               | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| 4,4'-DDE                                               | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| 2,4'-DDT                                               | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| 4,4'-DDT                                               | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Total DDT Isomers                                      | mg/kg dry wt       | < 0.07                  | -                        | -                        | < 0.08                    | < 0.08          |
| Dieldrin                                               | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Endosulfan I                                           | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Endosulfan II                                          | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Endosulfan sulphate                                    | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Endrin                                                 | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Endrin aldehyde                                        | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Endrin ketone                                          | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Heptachlor                                             | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Heptachlor epoxide                                     | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Hexachlorobenzene                                      | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Methoxychlor                                           | mg/kg dry wt       | < 0.011                 | -                        | -                        | < 0.013                   | < 0.013         |
| Polycyclic Aromatic Hydrocarbo                         | ons Screening in S | Soil*                   |                          |                          |                           |                 |
| Total of Reported PAHs in Soil                         | mg/kg dry wt       | < 0.3                   | < 0.3                    | < 0.3                    | -                         | < 0.3           |
| 1-Methylnaphthalene                                    | mg/kg dry wt       | < 0.011                 | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| 2-Methylnaphthalene                                    | mg/kg dry wt       | < 0.011                 | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Acenaphthylene                                         | mg/kg dry wt       | < 0.011                 | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Acenaphthene                                           | mg/kg dry wt       | < 0.011                 | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Anthracene                                             | mg/kg dry wt       | < 0.011                 | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Benzo[a]anthracene                                     | mg/kg dry wt       | 0.025                   | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Benzo[a]pyrene (BAP)                                   | mg/kg dry wt       | 0.017                   | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES | mg/kg dry wt       | 0.03                    | < 0.03                   | < 0.03                   | -                         | < 0.03          |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*             | mg/kg dry wt       | 0.03                    | < 0.03                   | < 0.03                   | -                         | < 0.03          |
| Benzo[b]fluoranthene + Benzo[j<br>fluoranthene         | ] mg/kg dry wt     | 0.029                   | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Benzo[e]pyrene                                         | mg/kg dry wt       | 0.016                   | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Benzo[g,h,i]perylene                                   | mg/kg dry wt       | 0.012                   | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Benzo[k]fluoranthene                                   | mg/kg dry wt       | 0.011                   | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Chrysene                                               | mg/kg dry wt       | 0.018                   | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Dibenzo[a,h]anthracene                                 | mg/kg dry wt       | < 0.011                 | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Fluoranthene                                           | mg/kg dry wt       | 0.031                   | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Fluorene                                               | mg/kg dry wt       | < 0.011                 | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Indeno(1,2,3-c,d)pyrene                                | mg/kg dry wt       | 0.012                   | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Naphthalene                                            | mg/kg dry wt       | < 0.06                  | < 0.06                   | < 0.07                   | -                         | < 0.07          |
| Perylene                                               | mg/kg dry wt       | < 0.011                 | < 0.012                  | < 0.013                  | -                         | 0.022           |
| Phenanthrene                                           | mg/kg dry wt       | < 0.011                 | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| Pyrene                                                 | mg/kg dry wt       | 0.027                   | < 0.012                  | < 0.013                  | -                         | < 0.013         |
| s                                                      | ample Name:        | PT-BL_HA22_0.0<br>-0.1m | PT-BL_HA23_0.3<br>5-0.6m | PT-BL_HA24_0.3<br>5-0.6m | PT-BL_HA25_0.3<br>0-0.55m |                 |
|                                                        | Lab Number:        | 2653061.60              | 2653061.62               | 2653061.64               | 2653061.66                |                 |

| Sample Type: Soil                                      |                    |                |                |                |                |   |
|--------------------------------------------------------|--------------------|----------------|----------------|----------------|----------------|---|
|                                                        | Sample Name:       | PT-BL_HA22_0.0 | PT-BL_HA23_0.3 | PT-BL_HA24_0.3 | PT-BL_HA25_0.3 |   |
|                                                        | -                  | -0.1m          | 5-0.6m         | 5-0.6m         | 0-0.55m        |   |
| ·                                                      | Lab Number:        | 2653061.60     | 2653061.62     | 2653061.64     | 2653061.66     |   |
| Individual Tests                                       |                    | 1              | Í              | 1              |                |   |
| Dry Matter                                             | g/100g as rcvd     | -              | 77             | 76             | -              | - |
| Heavy Metals, Screen Level                             |                    |                |                |                |                |   |
| Total Recoverable Arsenic                              | mg/kg dry wt       | 5              | 2              | 2              | < 2            | - |
| Total Recoverable Cadmium                              | mg/kg dry wt       | < 0.10         | < 0.10         | < 0.10         | < 0.10         | - |
| Total Recoverable Chromium                             | mg/kg dry wt       | 9              | 11             | 12             | 12             | - |
| Total Recoverable Copper                               | mg/kg dry wt       | 9              | 6              | 5              | 5              | - |
| Total Recoverable Lead                                 | mg/kg dry wt       | 7.4            | 6.8            | 5.7            | 5.0            | - |
| Total Recoverable Nickel                               | mg/kg dry wt       | 6              | 8              | 5              | 6              | - |
| Total Recoverable Zinc                                 | mg/kg dry wt       | 32             | 24             | 11             | 13             | - |
| Polycyclic Aromatic Hydrocarb                          | ons Screening in S | Soil*          |                |                |                |   |
| Total of Reported PAHs in Soil                         | mg/kg dry wt       | -              | < 0.4          | < 0.4          | -              | - |
| 1-Methylnaphthalene                                    | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| 2-Methylnaphthalene                                    | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Acenaphthylene                                         | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Acenaphthene                                           | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Anthracene                                             | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Benzo[a]anthracene                                     | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Benzo[a]pyrene (BAP)                                   | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES | mg/kg dry wt       | -              | < 0.04         | < 0.04         | -              | - |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*             | mg/kg dry wt       | -              | < 0.04         | < 0.04         | -              | - |
| Benzo[b]fluoranthene + Benzo<br>fluoranthene           | j] mg/kg dry wt    | -              | < 0.013        | < 0.013        | -              | - |
| Benzo[e]pyrene                                         | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Benzo[g,h,i]perylene                                   | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Benzo[k]fluoranthene                                   | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Chrysene                                               | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Dibenzo[a,h]anthracene                                 | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Fluoranthene                                           | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Fluorene                                               | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Indeno(1,2,3-c,d)pyrene                                | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Naphthalene                                            | mg/kg dry wt       | -              | < 0.07         | < 0.07         | -              | - |
| Perylene                                               | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Phenanthrene                                           | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |
| Pyrene                                                 | mg/kg dry wt       | -              | < 0.013        | < 0.013        | -              | - |

# **Summary of Methods**

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

| Sample Type: Soil                   |                                                                                                       |                         |                                                                                                         |
|-------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------|
| Test                                | Method Description                                                                                    | Default Detection Limit | Sample No                                                                                               |
| Environmental Solids Sample Drying* | Air dried at 35°C<br>Used for sample preparation.<br>May contain a residual moisture content of 2-5%. | -                       | 1, 3-6, 9,<br>11-13,<br>15-18, 20,<br>22, 25,<br>37-38,<br>40-41,<br>43-52, 54,<br>57-60, 62,<br>64, 66 |
| Total of Reported PAHs in Soil      | Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.                                 | 0.03 mg/kg dry wt       | 1, 3-6, 9,<br>11-13,<br>15-18, 22,<br>25, 37-38,<br>40-41,<br>50-52, 54,<br>57, 59, 62,<br>64           |

| Sample Type: Soil                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                                                                                         |  |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Test                                                    | Method Description                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default Detection Limit   | Sample No                                                                                               |  |  |  |
| Heavy Metals, Screen Level                              | Dried sample, < 2mm fraction. Nitric/Hydrochloric acid<br>digestion US EPA 200.2. Complies with NES Regulations. ICP-<br>MS screen level, interference removal by Kinetic Energy<br>Discrimination if required.                                                                                                                                                                                                                                            | 0.10 - 4 mg/kg dry wt     | 1, 3-6, 9,<br>11-13,<br>15-18, 20,<br>22, 25,<br>37-38,<br>40-41,<br>43-52, 54,<br>57-60, 62,<br>64, 66 |  |  |  |
| Organochlorine Pesticides Screening in Soil             | Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.                                                                                                                                                                                                                                                                                                                                                       | 0.010 - 0.06 mg/kg dry wt | 6, 9, 13, 22,<br>25, 36-38,<br>43-52,<br>58-59                                                          |  |  |  |
| Polycyclic Aromatic Hydrocarbons<br>Screening in Soil*  | Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.                                                                                                                                                                                                                                                                                                                                                        | 0.002 - 0.05 mg/kg dry wt | 1, 3-6, 9,<br>11-13,<br>15-18, 22,<br>25, 37-38,<br>40-41,<br>50-52, 54,<br>57, 59, 62,<br>64           |  |  |  |
| Dry Matter (Env)                                        | Dried at 103°C for 4-22hr (removes 3-5% more water than air<br>dry), gravimetry. (Free water removed before analysis, non-soil<br>objects such as sticks, leaves, grass and stones also removed).<br>US EPA 3550.                                                                                                                                                                                                                                          | 0.10 g/100g as rcvd       | 1, 3-6, 9,<br>11-13,<br>15-18, 22,<br>25, 36-38,<br>40-41,<br>43-52, 54,<br>57-59, 62,<br>64            |  |  |  |
| Benzo[a]pyrene Potency Equivalency<br>Factor (PEF) NES* | BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment. | 0.002 mg/kg dry wt        | 1, 3-6, 9,<br>11-13,<br>15-18, 22,<br>25, 37-38,<br>40-41,<br>50-52, 54,<br>57, 59, 62,<br>64           |  |  |  |
| Benzo[a]pyrene Toxic Equivalence<br>(TEF)*              | Benzo[a]pyrene Toxic Equivalence (TEF) calculated from;<br>Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b)<br>fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x<br>0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene<br>x 0.1. Guidelines for assessing and managing contaminated<br>gasworks sites in New Zealand (GMG) (MfE, 1997).                                                                                    | 0.002 mg/kg dry wt        | 1, 3-6, 9,<br>11-13,<br>15-18, 22,<br>25, 37-38,<br>40-41,<br>50-52, 54,<br>57, 59, 62,<br>64           |  |  |  |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 14-Jul-2021 and 15-Jul-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Human

Kim Harrison MSc Client Services Manager - Environmental



**Hill Laboratories** Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22) Т

+64 7 858 2000

E mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 13

# **Certificate of Analysis**

| Client:  | Tonkin & Taylor     | Lab No:           | 2653061      | SUPv1 |
|----------|---------------------|-------------------|--------------|-------|
| Contact: | Rudolph Kotze       | Date Received:    | 08-Jul-2021  |       |
|          | C/- Tonkin & Taylor | Date Reported:    | 15-Jul-2021  |       |
|          | PO Box 5271         | Quote No:         | 80842        |       |
|          | Auckland 1141       | Order No:         | COC1007526   |       |
|          |                     | Client Reference: | 1014358.5000 |       |
|          |                     | Submitted By:     | Xiao Jin     |       |

#### Sample Type: Soil

|                                                        | Sample Name:        | PT-BL_HA10_0.00m-0    | PT-BL_HA11_0.00m-0    | PT-BL_HA11_0.50m-0    | PT-BL_HA12_0.00m-0    |
|--------------------------------------------------------|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                                        | •                   | .10m 06-Jul-2021 1:15 | .10m 06-Jul-2021 1:27 | .60m 06-Jul-2021 1:31 | .10m 06-Jul-2021 2:06 |
|                                                        |                     | pm                    | pm                    | pm                    | pm                    |
|                                                        | Lab Number:         | 2653061.1             | 2653061.3             | 2653061.4             | 2653061.5             |
| Individual Tests                                       |                     |                       |                       |                       |                       |
| Dry Matter                                             | g/100g as rcvd      | 75.7 ± 5.0            | 78.5 ± 5.0            | 81.8 ± 5.0            | 81.7 ± 5.0            |
| Heavy Metals, Screen Level                             |                     |                       |                       |                       |                       |
| Total Recoverable Arsenic                              | mg/kg dry wt        | 2.3 ± 1.4             | 4.2 ± 1.5             | 2.2 ± 1.4             | $2.4 \pm 1.4$         |
| Total Recoverable Cadmium                              | mg/kg dry wt        | < 0.10 ± 0.067        | $0.232 \pm 0.073$     | $< 0.10 \pm 0.067$    | $< 0.10 \pm 0.067$    |
| Total Recoverable Chromium                             | mg/kg dry wt        | 12.6 ± 2.4            | 12.1 ± 2.3            | 10.0 ± 2.1            | 11.6 ± 2.3            |
| Total Recoverable Copper                               | mg/kg dry wt        | 5.0 ± 1.5             | 4.9 ± 1.5             | 7.2 ± 1.7             | 5.1 ± 1.5             |
| Total Recoverable Lead                                 | mg/kg dry wt        | 6.7 ± 1.1             | 8.9 ± 1.4             | 6.7 ± 1.1             | 9.1 ± 1.4             |
| Total Recoverable Nickel                               | mg/kg dry wt        | 3.5 ± 1.4             | 13.6 ± 2.2            | 5.9 ± 1.6             | 3.9 ± 1.5             |
| Total Recoverable Zinc                                 | mg/kg dry wt        | 8.0 ± 2.8             | $29.9 \pm 3.4$        | 13.7 ± 2.9            | 12.5 ± 2.8            |
| Polycyclic Aromatic Hydrocarb                          | oons Screening in S | Soil*                 |                       |                       |                       |
| Total of Reported PAHs in Soi                          | I mg/kg dry wt      | < 0.4                 | < 0.4                 | < 0.3                 | < 0.3                 |
| 1-Methylnaphthalene                                    | mg/kg dry wt        | < 0.013 ± 0.032       | $< 0.013 \pm 0.032$   | $< 0.012 \pm 0.032$   | < 0.012 ± 0.032       |
| 2-Methylnaphthalene                                    | mg/kg dry wt        | < 0.013 ± 0.032       | $< 0.013 \pm 0.032$   | $< 0.012 \pm 0.032$   | < 0.012 ± 0.032       |
| Acenaphthylene                                         | mg/kg dry wt        | < 0.013 ± 0.0067      | < 0.013 ± 0.0067      | $< 0.012 \pm 0.0067$  | < 0.012 ± 0.0067      |
| Acenaphthene                                           | mg/kg dry wt        | < 0.013 ± 0.0071      | < 0.013 ± 0.0071      | $< 0.012 \pm 0.0069$  | < 0.012 ± 0.0069      |
| Anthracene                                             | mg/kg dry wt        | < 0.013 ± 0.0072      | < 0.013 ± 0.0072      | $< 0.012 \pm 0.0070$  | < 0.012 ± 0.0070      |
| Benzo[a]anthracene                                     | mg/kg dry wt        | < 0.013 ± 0.0071      | < 0.013 ± 0.0071      | $< 0.012 \pm 0.0070$  | < 0.012 ± 0.0070      |
| Benzo[a]pyrene (BAP)                                   | mg/kg dry wt        | < 0.013 ± 0.0067      | < 0.013 ± 0.0067      | $< 0.012 \pm 0.0067$  | < 0.012 ± 0.0067      |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES | mg/kg dry wt<br>S*  | < 0.04 ± 0.0097       | < 0.04 ± 0.0097       | $< 0.03 \pm 0.0096$   | < 0.03 ± 0.0096       |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*             | mg/kg dry wt        | < 0.04 ± 0.0097       | < 0.04 ± 0.0097       | $< 0.03 \pm 0.0096$   | < 0.03 ± 0.0096       |
| Benzo[b]fluoranthene + Benzo<br>fluoranthene           | [j] mg/kg dry wt    | < 0.013 ± 0.0070      | < 0.013 ± 0.0070      | $< 0.012 \pm 0.0069$  | < 0.012 ± 0.0069      |
| Benzo[e]pyrene                                         | mg/kg dry wt        | < 0.013 ± 0.0067      | < 0.013 ± 0.0067      | $< 0.012 \pm 0.0067$  | < 0.012 ± 0.0067      |
| Benzo[g,h,i]perylene                                   | mg/kg dry wt        | < 0.013 ± 0.0068      | < 0.013 ± 0.0068      | $< 0.012 \pm 0.0068$  | < 0.012 ± 0.0068      |
| Benzo[k]fluoranthene                                   | mg/kg dry wt        | < 0.013 ± 0.0068      | < 0.013 ± 0.0068      | $< 0.012 \pm 0.0068$  | < 0.012 ± 0.0068      |
| Chrysene                                               | mg/kg dry wt        | < 0.013 ± 0.0069      | < 0.013 ± 0.0069      | $< 0.012 \pm 0.0069$  | < 0.012 ± 0.0069      |
| Dibenzo[a,h]anthracene                                 | mg/kg dry wt        | < 0.013 ± 0.0068      | < 0.013 ± 0.0068      | $< 0.012 \pm 0.0068$  | < 0.012 ± 0.0068      |
| Fluoranthene                                           | mg/kg dry wt        | < 0.013 ± 0.0068      | < 0.013 ± 0.0068      | $< 0.012 \pm 0.0068$  | < 0.012 ± 0.0068      |
| Fluorene                                               | mg/kg dry wt        | < 0.013 ± 0.0068      | $< 0.013 \pm 0.0068$  | $< 0.012 \pm 0.0068$  | < 0.012 ± 0.0068      |
| Indeno(1,2,3-c,d)pyrene                                | mg/kg dry wt        | < 0.013 ± 0.0068      | < 0.013 ± 0.0068      | $< 0.012 \pm 0.0067$  | < 0.012 ± 0.0067      |
| Naphthalene                                            | mg/kg dry wt        | < 0.07 ± 0.035        | $< 0.07 \pm 0.035$    | $< 0.06 \pm 0.035$    | $< 0.06 \pm 0.035$    |
| Perylene                                               | mg/kg dry wt        | < 0.013 ± 0.0067      | < 0.013 ± 0.0067      | < 0.012 ± 0.0067      | < 0.012 ± 0.0067      |
| Phenanthrene                                           | mg/kg dry wt        | < 0.013 ± 0.0069      | < 0.013 ± 0.0069      | $< 0.012 \pm 0.0069$  | < 0.012 ± 0.0069      |
| Pyrene                                                 | mg/kg dry wt        | < 0.013 ± 0.0068      | < 0.013 ± 0.0068      | $< 0.012 \pm 0.0068$  | < 0.012 ± 0.0068      |





This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked \* or any comments and interpretations, which are not accredited.

| Sample Type: Soil                             |                    |                       |                       |                       |                       |
|-----------------------------------------------|--------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Ş                                             | Sample Name:       | PT-BL_HA26_0.00m-0    | PT-BL_HA13_0.00m-0    | PT-BL_HA14_0.00m-0    | PT-BL_HA14_0.20m-0    |
|                                               |                    | .30m 06-Jul-2021 1:41 | .10m 06-Jul-2021 2:16 | .20m 06-Jul-2021 2:28 | .60m 06-Jul-2021 2:31 |
|                                               | l ab Number:       | 2653061.6             | 2653061.9             | 2653061.11            | 2653061.12            |
| Individual Tests                              |                    |                       |                       |                       |                       |
| Dry Matter                                    | g/100g as rovd     | 678+50                | 754+50                | 804+50                | 697+50                |
| Heavy Metals Screen Level                     | g, roog do rova    | 01.0 2 0.0            | 10.120.0              | 00.120.0              | 00.1 2 0.0            |
| Total Recoverable Arsenic                     | ma/ka day wt       | 33+14                 | 18+15                 | 30+14                 | 22+14                 |
| Total Recoverable Cadmium                     | mg/kg dry wt       | $3.3 \pm 1.4$         | $4.0 \pm 1.3$         | $0.191 \pm 0.071$     | $2.2 \pm 1.4$         |
| Total Recoverable Chromium                    | mg/kg dry wt       | 138+25                | 16.2 ± 2.9            | 225 + 38              | 345+55                |
| Total Recoverable Copper                      | mg/kg dry wt       | 57+16                 | 76+17                 | 63+16                 | 97+19                 |
| Total Recoverable Lead                        | mg/kg dry wt       | 7.3 + 1.2             | 98+15                 | 83+13                 | 93+15                 |
| Total Recoverable Nickel                      | mg/kg dry wt       | 47+15                 | 67+16                 | 38+14                 | 46+15                 |
| Total Recoverable Zinc                        | mg/kg dry wt       | 145+29                | 20.3 + 3.1            | 157+29                | 221+31                |
| Organochlorine Pesticides Scr                 | eening in Soil     | 11.0 1 2.0            | 20.0 2 0.1            | 1011 1 2.0            | 22.1 2 0.1            |
| Aldrin                                        | ma/ka day wt       | < 0.015 ± 0.0052      | $< 0.013 \pm 0.0049$  | _                     |                       |
|                                               | mg/kg dry wt       | < 0.015 ± 0.0052      | < 0.013 ± 0.0049      |                       |                       |
| apria-BHC                                     | mg/kg dry wt       | $< 0.015 \pm 0.0052$  | $< 0.013 \pm 0.0049$  | -                     | -                     |
| delta-BHC                                     | mg/kg dry wt       | < 0.015 ± 0.0001      | < 0.013 ± 0.0050      |                       |                       |
| aamma-BHC (Lindane)                           | mg/kg dry wt       | < 0.015 ± 0.0050      | < 0.013 ± 0.0032      |                       |                       |
| cis-Chlordane                                 | mg/kg dry wt       | < 0.015 ± 0.0050      | < 0.013 ± 0.0047      |                       |                       |
| trans-Chlordane                               | mg/kg dry wt       | < 0.015 ± 0.0054      | < 0.013 ± 0.0031      |                       |                       |
|                                               | mg/kg dry wt       | < 0.015 ± 0.0052      | < 0.013 ± 0.0049      |                       |                       |
| 2,4-DDD                                       | mg/kg dry wt       | < 0.015 ± 0.0039      | < 0.013 ± 0.0054      |                       |                       |
| 2 4'-DDE                                      | mg/kg dry wt       | < 0.015 ± 0.0072      | < 0.013 ± 0.0051      |                       |                       |
| 2,4-DDE                                       | mg/kg dry wt       | < 0.015 ± 0.0034      | < 0.013 ± 0.0051      |                       |                       |
| 4,4-DDL<br>2.4'-DDT                           | mg/kg dry wt       | < 0.015 ± 0.0075      | < 0.013 ± 0.0000      |                       |                       |
| 2,4 -DDT                                      | mg/kg dry wt       | < 0.015 ± 0.0077      | < 0.013 ± 0.0076      |                       |                       |
| Total DDT Isomers                             | mg/kg dry wt       | $< 0.019 \pm 0.0004$  | < 0.08 ± 0.016        |                       |                       |
| Dieldrin                                      | mg/kg dry wt       | < 0.015 ± 0.0168      | < 0.013 ± 0.0062      |                       |                       |
| Endosulfan I                                  | mg/kg dry wt       | < 0.015 ± 0.0000      | < 0.013 ± 0.0002      |                       |                       |
| Endosulfan II                                 | mg/kg dry wt       | < 0.015 ± 0.0059      | < 0.013 ± 0.0054      |                       |                       |
| Endosulfan sulphate                           | mg/kg dry wt       | $< 0.015 \pm 0.0089$  | < 0.013 ± 0.0080      |                       |                       |
| Endrin                                        | mg/kg dry wt       | < 0.015 ± 0.0094      | < 0.013 ± 0.0084      |                       |                       |
| Endrin aldehvde                               | mg/kg dry wt       | < 0.015 ± 0.0082      | $< 0.013 \pm 0.0074$  | _                     | -                     |
| Endrin ketone                                 | mg/kg dry wt       | < 0.015 + 0.0072      | < 0.013 + 0.0066      | -                     | -                     |
| Heptachlor                                    | ma/ka dry wt       | $< 0.015 \pm 0.0057$  | $< 0.013 \pm 0.0052$  |                       | -                     |
| Heptachlor epoxide                            | ma/ka dry wt       | $< 0.015 \pm 0.0050$  | $< 0.013 \pm 0.0047$  |                       | -                     |
| Hexachlorobenzene                             | ma/ka dry wt       | $< 0.015 \pm 0.0057$  | $< 0.013 \pm 0.0052$  | -                     | -                     |
| Methoxychlor                                  | ma/ka dry wt       | $< 0.015 \pm 0.0094$  | $< 0.013 \pm 0.0084$  | -                     | -                     |
| Polycyclic Aromatic Hydrocarb                 | ons Screening in S | Soil*                 |                       |                       |                       |
| Total of Reported PAHs in Soil                | ma/ka dry wt       | < 0.4                 | < 0.4                 | < 0.3                 | < 0.4                 |
| 1-Methylnaphthalene                           | mg/kg dry wt       | < 0.015 + 0.032       | < 0.013 + 0.032       | < 0.013 + 0.032       | < 0.015 + 0.032       |
| 2-Methylnaphthalene                           | mg/kg dry wt       | < 0.015 ± 0.032       | < 0.013 ± 0.032       | < 0.013 ± 0.032       | < 0.015 ± 0.032       |
| Acenaphthylene                                | mg/kg dry wt       | < 0.015 + 0.0068      | < 0.013 + 0.0067      | < 0.013 + 0.0067      | < 0.015 + 0.0068      |
| Acenaphthene                                  | mg/kg dry wt       | < 0.015 + 0.0073      | < 0.013 + 0.0070      | < 0.013 + 0.0070      | < 0.015 + 0.0073      |
| Anthracene                                    | mg/kg dry wt       | < 0.015 + 0.0074      | < 0.013 + 0.0072      | < 0.013 + 0.0071      | < 0.015 + 0.0074      |
| Benzolalanthracene                            | mg/kg dry wt       | < 0.015 + 0.0073      | < 0.013 + 0.0071      | < 0.013 + 0.0070      | < 0.015 + 0.0073      |
| Benzo[a]ovrene (BAP)                          | mg/kg dry wt       | < 0.015 + 0.0067      | < 0.013 + 0.0067      | < 0.013 + 0.0067      | < 0.015 + 0.0067      |
| Benzo[a]pyrene Potency                        | ma/ka drv wt       | < 0.04 ± 0.0097       | < 0.04 ± 0.0097       | < 0.03 ± 0.0097       | < 0.04 ± 0.0097       |
| Equivalency Factor (PEF) NES                  | b* ma/ka day wt    | < 0.04 ± 0.0007       | < 0.04 ± 0.0007       | < 0.02 ± 0.0007       | < 0.04 ± 0.0007       |
| Equivalence (TEF)*                            | mg/kg dry Wt       | < 0.04 ± 0.0097       | < 0.04 ± 0.0097       | < 0.03 ± 0.0097       | < 0.04 ± 0.0097       |
| Benzo[b]fluoranthene + Benzo[<br>fluoranthene | jj mg/kg dry wt    | < 0.015 ± 0.0071      | < 0.013 ± 0.0070      | < 0.013 ± 0.0069      | < 0.015 ± 0.0071      |
| Benzo[e]pyrene                                | mg/kg dry wt       | < 0.015 ± 0.0067      | < 0.013 ± 0.0067      | < 0.013 ± 0.0067      | < 0.015 ± 0.0067      |
| Benzo[g,h,i]perylene                          | mg/kg dry wt       | < 0.015 ± 0.0069      | < 0.013 ± 0.0068      | < 0.013 ± 0.0068      | < 0.015 ± 0.0069      |
| Benzo[k]fluoranthene                          | mg/kg dry wt       | < 0.015 ± 0.0069      | < 0.013 ± 0.0068      | < 0.013 ± 0.0068      | < 0.015 ± 0.0069      |
| Chrysene                                      | mg/kg dry wt       | < 0.015 ± 0.0070      | < 0.013 ± 0.0069      | < 0.013 ± 0.0069      | < 0.015 ± 0.0070      |
| Dibenzo[a,h]anthracene                        | mg/kg dry wt       | $< 0.015 \pm 0.0069$  | $< 0.013 \pm 0.0068$  | $< 0.013 \pm 0.0068$  | $< 0.015 \pm 0.0069$  |

| Sample Type: Soil                                   |                     |                                                   |                                                   |                                                   |                                                   |  |
|-----------------------------------------------------|---------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|
|                                                     | Sample Name:        | PT-BL_HA26_0.00m-0                                | PT-BL_HA13_0.00m-0                                | PT-BL_HA14_0.00m-0                                | PT-BL_HA14_0.20m-0                                |  |
|                                                     | -                   | .30m 06-Jul-2021 1:41                             | .10m 06-Jul-2021 2:16                             | .20m 06-Jul-2021 2:28                             | .60m 06-Jul-2021 2:31                             |  |
|                                                     | Lob Number          | pm                                                | pm                                                | pm                                                | pm                                                |  |
|                                                     | Lab Number:         | 200001.0                                          | 2055001.9                                         | 2003001.11                                        | 200001.12                                         |  |
| Polycyclic Aromatic Hydrocar                        | bons Screening in S | Soil*                                             |                                                   |                                                   |                                                   |  |
| Fluoranthene                                        | mg/kg dry wt        | < 0.015 ± 0.0068                                  | < 0.013 ± 0.0068                                  | < 0.013 ± 0.0068                                  | < 0.015 ± 0.0068                                  |  |
| Fluorene                                            | mg/kg dry wt        | < 0.015 ± 0.0069                                  | < 0.013 ± 0.0068                                  | $< 0.013 \pm 0.0068$                              | < 0.015 ± 0.0069                                  |  |
| Indeno(1,2,3-c,d)pyrene                             | mg/kg dry wt        | < 0.015 ± 0.0068                                  | < 0.013 ± 0.0068                                  | < 0.013 ± 0.0067                                  | < 0.015 ± 0.0068                                  |  |
| Naphthalene                                         | mg/kg dry wt        | < 0.08 ± 0.036                                    | < 0.07 ± 0.035                                    | < 0.07 ± 0.035                                    | < 0.08 ± 0.036                                    |  |
| Perylene                                            | mg/kg dry wt        | < 0.015 ± 0.0067                                  | < 0.013 ± 0.0067                                  | < 0.013 ± 0.0067                                  | < 0.015 ± 0.0067                                  |  |
| Phenanthrene                                        | mg/kg dry wt        | < 0.015 ± 0.0069                                  | < 0.013 ± 0.0069                                  | < 0.013 ± 0.0069                                  | < 0.015 ± 0.0069                                  |  |
| Pyrene                                              | mg/kg dry wt        | < 0.015 ± 0.0069                                  | < 0.013 ± 0.0068                                  | < 0.013 ± 0.0068                                  | < 0.015 ± 0.0069                                  |  |
|                                                     | Sample Name:        | PT-BL_HA15_0.00m-0<br>.05m 06-Jul-2021 2:42<br>pm | PT-BL_HA16_0.00m-0<br>.10m 06-Jul-2021 2:51<br>pm | PT-BL_HA16_0.20m-0<br>.60m 06-Jul-2021 2:54<br>pm | PT-BL_HA17_0.00m-0<br>.10m 06-Jul-2021 3:08<br>pm |  |
|                                                     | Lab Number:         | 2653061.13                                        | 2653061.15                                        | 2653061.16                                        | 2653061.17                                        |  |
| Individual Tests                                    |                     | I                                                 |                                                   |                                                   |                                                   |  |
| Dry Matter                                          | g/100g as rcvd      | 80.7 ± 5.0                                        | 77.4 ± 5.0                                        | 82.6 ± 5.0                                        | 85.0 ± 5.0                                        |  |
| Heavy Metals. Screen Level                          | 0 0                 |                                                   |                                                   |                                                   |                                                   |  |
| Total Recoverable Arsenic                           | ma/ka drv wt        | 27+14                                             | < 2 + 1 4                                         | < 2 + 1 4                                         | 32+14                                             |  |
| Total Recoverable Cadmium                           | mg/kg dry wt        | < 0.10 + 0.067                                    | 0 171 + 0 070                                     | < 0.10 + 0.067                                    | $0.2 \pm 1.4$<br>0.128 ± 0.068                    |  |
| Total Recoverable Chromium                          | mg/kg dry wt        | 296+48                                            | 106+21                                            | 10.0 + 2.1                                        | 102+21                                            |  |
| Total Recoverable Copper                            | mg/kg dry wt        | 70+17                                             | 36+14                                             | < 2 + 1 4                                         | 231+35                                            |  |
| Total Recoverable Lead                              | mg/kg dry wt        | 93+15                                             | 79+13                                             | 4 98 + 0 79                                       | 17.1 + 2.6                                        |  |
| Total Recoverable Nickel                            | mg/kg dry wt        | 3.5 ± 1.5                                         | 7.9±1.3                                           | $4.30 \pm 0.19$                                   | 03+18                                             |  |
| Total Recoverable Tricker                           | mg/kg dry wt        | 111+20                                            | 100±29                                            | 2.7 ± 1.4                                         | $5.5 \pm 1.0$                                     |  |
|                                                     |                     | 14.4 ± 2.9                                        | 10.0 ± 2.8                                        | 5.5 ± 2.7                                         | 51.2 ± 4.5                                        |  |
|                                                     |                     | 0.040 0.0040                                      |                                                   |                                                   |                                                   |  |
|                                                     | mg/kg dry wt        | < 0.013 ± 0.0048                                  | -                                                 | -                                                 | -                                                 |  |
| alpha-BHC                                           | mg/kg dry wt        | < 0.013 ± 0.0048                                  | -                                                 | -                                                 | -                                                 |  |
| beta-BHC                                            | mg/kg dry wt        | < 0.013 ± 0.0055                                  | -                                                 | -                                                 | -                                                 |  |
| delta-BHC                                           | mg/kg dry wt        | < 0.013 ± 0.0051                                  | -                                                 | -                                                 | -                                                 |  |
| gamma-BHC (Lindane)                                 | mg/kg dry wt        | < 0.013 ± 0.0046                                  | -                                                 | -                                                 | -                                                 |  |
| cis-Chiordane                                       | mg/kg dry wt        | < 0.013 ± 0.0050                                  | -                                                 | -                                                 | -                                                 |  |
| trans-Chlordane                                     | mg/kg dry wt        | < 0.013 ± 0.0048                                  | -                                                 | -                                                 | -                                                 |  |
| 2,4'-DDD                                            | mg/kg dry wt        | < 0.013 ± 0.0053                                  | -                                                 | -                                                 | -                                                 |  |
| 4,4'-DDD                                            | mg/kg dry wt        | < 0.013 ± 0.0064                                  | -                                                 | -                                                 | -                                                 |  |
| 2,4'-DDE                                            | mg/kg dry wt        | < 0.013 ± 0.0050                                  | -                                                 | -                                                 | -                                                 |  |
| 4,4'-DDE                                            | mg/kg dry wt        | < 0.013 ± 0.0066                                  | -                                                 | -                                                 | -                                                 |  |
| 2,4'-DDT                                            | mg/kg dry wt        | < 0.013 ± 0.0068                                  | -                                                 | -                                                 | -                                                 |  |
| 4,4'-DDT                                            | mg/kg dry wt        | < 0.013 ± 0.0074                                  | -                                                 | -                                                 | -                                                 |  |
| Total DDT Isomers                                   | mg/kg dry wt        | < 0.08 ± 0.016                                    | -                                                 | -                                                 | -                                                 |  |
| Dieldrin                                            | mg/kg dry wt        | < 0.013 ± 0.0060                                  | -                                                 | -                                                 | -                                                 |  |
| Endosulfan I                                        | mg/kg dry wt        | < 0.013 ± 0.0053                                  | -                                                 | -                                                 | -                                                 |  |
| Endosulfan II                                       | mg/kg dry wt        | < 0.013 ± 0.0060                                  | -                                                 | -                                                 | -                                                 |  |
| Endosulfan sulphate                                 | mg/kg dry wt        | < 0.013 ± 0.0078                                  | -                                                 | -                                                 | -                                                 |  |
| Endrin                                              | mg/kg dry wt        | < 0.013 ± 0.0082                                  | -                                                 | -                                                 | -                                                 |  |
| Endrin aldehyde                                     | mg/kg dry wt        | < 0.013 ± 0.0072                                  | -                                                 | -                                                 | -                                                 |  |
| Endrin ketone                                       | mg/kg dry wt        | < 0.013 ± 0.0064                                  | -                                                 | -                                                 | -                                                 |  |
| Heptachlor                                          | mg/kg dry wt        | < 0.013 ± 0.0051                                  | -                                                 | -                                                 | -                                                 |  |
| Heptachlor epoxide                                  | mg/kg dry wt        | < 0.013 ± 0.0046                                  | -                                                 | -                                                 | -                                                 |  |
| Hexachlorobenzene                                   | mg/kg dry wt        | < 0.013 ± 0.0051                                  | -                                                 | -                                                 | -                                                 |  |
| Methoxychlor                                        | mg/kg dry wt        | < 0.013 ± 0.0082                                  | -                                                 | -                                                 | -                                                 |  |
| Polycyclic Aromatic Hydrocarbons Screening in Soil* |                     |                                                   |                                                   |                                                   |                                                   |  |
| Total of Reported PAHs in Sc                        | bil mg/kg dry wt    | < 0.3                                             | < 0.4                                             | < 0.3                                             | < 0.3                                             |  |
| 1-Methylnaphthalene                                 | mg/kg dry wt        | < 0.013 ± 0.032                                   | < 0.013 ± 0.032                                   | $< 0.012 \pm 0.032$                               | $< 0.012 \pm 0.032$                               |  |
| 2-Methylnaphthalene                                 | mg/kg dry wt        | < 0.013 ± 0.032                                   | $< 0.013 \pm 0.032$                               | $< 0.012 \pm 0.032$                               | $< 0.012 \pm 0.032$                               |  |
| Acenaphthylene                                      | mg/kg dry wt        | < 0.013 ± 0.0067                                  | < 0.013 ± 0.0067                                  | $< 0.012 \pm 0.0067$                              | < 0.012 ± 0.0067                                  |  |
| Acenaphthene                                        | mg/kg dry wt        | < 0.013 ± 0.0070                                  | < 0.013 ± 0.0071                                  | $< 0.012 \pm 0.0069$                              | < 0.012 ± 0.0069                                  |  |
| Anthracene                                          | mg/kg dry wt        | < 0.013 ± 0.0071                                  | < 0.013 ± 0.0072                                  | < 0.012 ± 0.0070                                  | < 0.012 ± 0.0070                                  |  |

| Sample Type: Soil                               |                  |                             |                             |                             |                             |  |  |
|-------------------------------------------------|------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--|--|
| Sa                                              | mple Name:       | PT-BL_HA15_0.00m-0          | PT-BL_HA16_0.00m-0          | PT-BL_HA16_0.20m-0          | PT-BL_HA17_0.00m-0          |  |  |
|                                                 |                  | .05m 06-Jul-2021 2:42       | .10m 06-Jul-2021 2:51       | .60m 06-Jul-2021 2:54       | .10m 06-Jul-2021 3:08       |  |  |
| I                                               | ah Number:       | 2653061.13                  | 2653061.15                  | 2653061.16                  | 2653061.17                  |  |  |
| Polycyclic Aromatic Hydrocarbon                 | s Screening in S | Soil*                       |                             |                             |                             |  |  |
| Benzolalanthracene                              | ma/ka drv wt     | < 0.013 ± 0.0070            | < 0.013 ± 0.0071            | < 0.012 ± 0.0070            | < 0.012 ± 0.0069            |  |  |
| Benzo[a]pyrene (BAP)                            | mg/kg dry wt     | < 0.013 ± 0.0067            | < 0.013 ± 0.0067            | < 0.012 ± 0.0067            | < 0.012 ± 0.0067            |  |  |
| Benzo[a]pyrene Potency                          | mg/kg dry wt     | < 0.03 ± 0.0097             | < 0.04 ± 0.0097             | < 0.03 ± 0.0096             | < 0.03 ± 0.0096             |  |  |
| Equivalency Factor (PEF) NES*                   |                  |                             |                             |                             |                             |  |  |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*      | mg/kg dry wt     | < 0.03 ± 0.0097             | < 0.04 ± 0.0097             | < 0.03 ± 0.0096             | < 0.03 ± 0.0096             |  |  |
| Benzo[b]fluoranthene + Benzo[j]<br>fluoranthene | mg/kg dry wt     | < 0.013 ± 0.0069            | < 0.013 ± 0.0070            | $< 0.012 \pm 0.0069$        | < 0.012 ± 0.0069            |  |  |
| Benzo[e]pyrene                                  | mg/kg dry wt     | < 0.013 ± 0.0067            | < 0.013 ± 0.0067            | $< 0.012 \pm 0.0067$        | < 0.012 ± 0.0067            |  |  |
| Benzo[g,h,i]perylene                            | mg/kg dry wt     | < 0.013 ± 0.0068            | $< 0.013 \pm 0.0068$        | $< 0.012 \pm 0.0068$        | < 0.012 ± 0.0067            |  |  |
| Benzo[k]fluoranthene                            | mg/kg dry wt     | < 0.013 ± 0.0068            | < 0.013 ± 0.0068            | $< 0.012 \pm 0.0068$        | < 0.012 ± 0.0068            |  |  |
| Chrysene                                        | mg/kg dry wt     | < 0.013 ± 0.0069            | $< 0.013 \pm 0.0069$        | $< 0.012 \pm 0.0069$        | < 0.012 ± 0.0069            |  |  |
| Dibenzo[a,h]anthracene                          | mg/kg dry wt     | < 0.013 ± 0.0068            | < 0.013 ± 0.0068            | < 0.012 ± 0.0068            | < 0.012 ± 0.0068            |  |  |
| Fluoranthene                                    | mg/kg dry wt     | < 0.013 ± 0.0068            | < 0.013 ± 0.0068            | < 0.012 ± 0.0068            | < 0.012 ± 0.0067            |  |  |
| Fluorene                                        | mg/kg dry wt     | < 0.013 ± 0.0068            | < 0.013 ± 0.0068            | $< 0.012 \pm 0.0068$        | < 0.012 ± 0.0068            |  |  |
| Indeno(1,2,3-c,d)pyrene                         | mg/kg dry wt     | < 0.013 ± 0.0067            | < 0.013 ± 0.0068            | < 0.012 ± 0.0067            | < 0.012 ± 0.0067            |  |  |
| Naphthalene                                     | mg/kg dry wt     | < 0.07 ± 0.035              | < 0.07 ± 0.035              | < 0.06 ± 0.035              | < 0.06 ± 0.034              |  |  |
| Perylene                                        | mg/kg dry wt     | < 0.013 ± 0.0067            | < 0.013 ± 0.0067            | < 0.012 ± 0.0067            | < 0.012 ± 0.0067            |  |  |
| Phenanthrene                                    | mg/kg dry wt     | < 0.013 ± 0.0069            | < 0.013 ± 0.0069            | < 0.012 ± 0.0069            | < 0.012 ± 0.0068            |  |  |
| Pyrene                                          | mg/kg dry wt     | < 0.013 ± 0.0068            | < 0.013 ± 0.0068            | $< 0.012 \pm 0.0068$        | < 0.012 ± 0.0068            |  |  |
| Sa                                              | mole Name:       | PT-BL HA18 0.00m-0          | PT-BL HA19 0.00m-0          | PT-BL HA20 0.00m-0          | PT-BL HA21 0 20m-0          |  |  |
| <u> </u>                                        |                  | .10m 06-Jul-2021 3:29<br>pm | .30m 06-Jul-2021 3:38<br>pm | .30m 06-Jul-2021 3:51<br>pm | .60m 06-Jul-2021 4:06<br>pm |  |  |
| L                                               | ab Number:       | 2653061.18                  | 2653061.20                  | 2653061.22                  | 2653061.25                  |  |  |
| Individual Tests                                |                  |                             |                             |                             |                             |  |  |
| Dry Matter                                      | g/100g as rcvd   | 75.8 ± 5.0                  | -                           | 78.1 ± 5.0                  | 81.8 ± 5.0                  |  |  |
| Heavy Metals, Screen Level                      |                  |                             |                             |                             |                             |  |  |
| Total Recoverable Arsenic                       | mg/kg dry wt     | 2.8 ± 1.4                   | 2.0 ± 1.4                   | < 2 ± 1.4                   | < 2 ± 1.4                   |  |  |
| Total Recoverable Cadmium                       | mg/kg dry wt     | 0.158 ± 0.069               | 0.180 ± 0.070               | 0.169 ± 0.070               | 0.148 ± 0.069               |  |  |
| Total Recoverable Chromium                      | mg/kg dry wt     | 13.2 ± 2.5                  | 9.6 ± 2.0                   | 7.0 ± 1.7                   | 8.9 ± 1.9                   |  |  |
| Total Recoverable Copper                        | mg/kg dry wt     | 5.1 ± 1.5                   | 5.8 ± 1.6                   | $3.0 \pm 1.4$               | 3.5 ± 1.4                   |  |  |
| Total Recoverable Lead                          | mg/kg dry wt     | 11.4 ± 1.8                  | 10.3 ± 1.6                  | 6.14 ± 0.96                 | 6.5 ± 1.1                   |  |  |
| Total Recoverable Nickel                        | mg/kg dry wt     | 3.5 ± 1.4                   | 2.7 ± 1.4                   | 2.3 ± 1.4                   | 3.0 ± 1.4                   |  |  |
| Total Recoverable Zinc                          | mg/kg dry wt     | 13.2 ± 2.9                  | 17.3 ± 3.0                  | 8.3 ± 2.8                   | 9.2 ± 2.8                   |  |  |
| Organochlorine Pesticides Scree                 | ning in Soil     |                             |                             |                             |                             |  |  |
| Aldrin                                          | mg/kg dry wt     | -                           | -                           | < 0.013 ± 0.0049            | < 0.012 ± 0.0047            |  |  |
| alpha-BHC                                       | mg/kg dry wt     | -                           | -                           | < 0.013 ± 0.0049            | < 0.012 ± 0.0047            |  |  |
| beta-BHC                                        | mg/kg dry wt     | -                           | -                           | < 0.013 ± 0.0056            | < 0.012 ± 0.0053            |  |  |
| delta-BHC                                       | mg/kg dry wt     | -                           | -                           | < 0.013 ± 0.0052            | < 0.012 ± 0.0050            |  |  |
| gamma-BHC (Lindane)                             | mg/kg dry wt     | -                           | -                           | < 0.013 ± 0.0047            | < 0.012 ± 0.0045            |  |  |
| cis-Chlordane                                   | mg/kg dry wt     | -                           | -                           | < 0.013 ± 0.0050            | < 0.012 ± 0.0048            |  |  |
| trans-Chlordane                                 | ma/ka drv wt     | -                           | -                           | < 0.013 ± 0.0049            | < 0.012 ± 0.0047            |  |  |
| 2,4'-DDD                                        | mg/kg dry wt     | -                           | -                           | < 0.013 ± 0.0054            | < 0.012 ± 0.0051            |  |  |
| 4,4'-DDD                                        | mg/kg dry wt     | -                           | -                           | < 0.013 ± 0.0065            | < 0.012 ± 0.0062            |  |  |
| 2.4'-DDE                                        | ma/ka drv wt     | -                           | -                           | < 0.013 ± 0.0050            | < 0.012 ± 0.0048            |  |  |
| 4.4'-DDE                                        | ma/ka drv wt     | -                           | -                           | < 0.013 ± 0.0067            | < 0.012 ± 0.0063            |  |  |
| 2.4'-DDT                                        | ma/ka drv wt     | -                           | -                           | $< 0.013 \pm 0.0069$        | $< 0.012 \pm 0.0065$        |  |  |
| 4.4'-DDT                                        | ma/ka dry wt     | -                           | -                           | < 0.013 + 0.0075            | < 0.012 + 0.0071            |  |  |
| Total DDT Isomers                               | ma/ka dry wt     | -                           | -                           | < 0.08 + 0.016              | < 0.08 + 0.015              |  |  |
| Dieldrin                                        | ma/ka drv wt     | _                           | -                           | $< 0.013 \pm 0.0061$        | $< 0.012 \pm 0.0058$        |  |  |
| Endosulfan I                                    | mg/ka drv wt     | _                           | -                           | $< 0.013 \pm 0.0054$        | $< 0.012 \pm 0.0051$        |  |  |
| Endosulfan II                                   | ma/ka drv wt     | _                           | -                           | $< 0.013 \pm 0.0061$        | $< 0.012 \pm 0.0058$        |  |  |
| Endosulfan sulphate                             | ma/ka drv wt     | -                           | -                           | < 0.013 + 0.0079            | < 0.012 + 0.0075            |  |  |
| Endrin                                          | ma/ka drv wt     | -                           | -                           | < 0.013 + 0.0084            | < 0.012 + 0.0079            |  |  |
| Endrin aldehvde                                 | mg/ka drv wt     | _                           | -                           | $< 0.013 \pm 0.0073$        | $< 0.012 \pm 0.0069$        |  |  |
|                                                 | inging ury wi    |                             |                             | < 0.010 ± 0.0010            | < 0.012 ± 0.0003            |  |  |

| Sample Type: Soil                              |                |                                                    |                                                    |                                                    |                                                    |  |  |
|------------------------------------------------|----------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--|--|
| s                                              | Sample Name:   | PT-BL_HA18_0.00m-0<br>.10m 06-Jul-2021 3:29        | PT-BL_HA19_0.00m-0<br>.30m 06-Jul-2021 3:38        | PT-BL_HA20_0.00m-0<br>.30m 06-Jul-2021 3:51        | PT-BL_HA21_0.20m-0<br>.60m 06-Jul-2021 4:06        |  |  |
|                                                | Lab Number:    | pm<br>2653061 18                                   | pm<br>2653061-20                                   | pm<br>2653061 22                                   | pm<br>2653061.25                                   |  |  |
| Organachlaring Posticidas Sar                  |                | 2000001.10                                         | 2000001.20                                         | 2000001.22                                         | 2000001.20                                         |  |  |
| Endrin kotono                                  |                |                                                    |                                                    | < 0.012 ± 0.0065                                   | < 0.012 ± 0.0062                                   |  |  |
|                                                | mg/kg dry wt   | -                                                  | -                                                  | < 0.013 ± 0.0005                                   | < 0.012 ± 0.0002                                   |  |  |
| Heptachioi                                     | mg/kg dry wt   | -                                                  | -                                                  | $< 0.013 \pm 0.0032$                               | < 0.012 ± 0.0030                                   |  |  |
|                                                | mg/kg dry wt   | -                                                  | -                                                  | < 0.013 ± 0.0047                                   | < 0.012 ± 0.0045                                   |  |  |
| Methoxychlor                                   | mg/kg dry wi   |                                                    |                                                    | $< 0.013 \pm 0.0032$                               | $< 0.012 \pm 0.0030$                               |  |  |
| Polycyclic Aromatic Hydrocarbo                 | ng/kg dry wi   | Soil*                                              |                                                    | < 0.013 ± 0.0004                                   | < 0.012 ± 0.0013                                   |  |  |
| Total of Reported RAHs in Soil                 | ma/ka day wt   |                                                    |                                                    | - 0.4                                              | < 0.2                                              |  |  |
| 1 Methylpaphthalono                            | mg/kg dry wt   | < 0.4                                              | -                                                  | < 0.4                                              | < 0.012 ± 0.022                                    |  |  |
|                                                | mg/kg dry wt   | $< 0.013 \pm 0.032$                                |                                                    | $< 0.013 \pm 0.032$                                | $< 0.012 \pm 0.032$                                |  |  |
|                                                | mg/kg dry wt   | $< 0.013 \pm 0.002$                                |                                                    | < 0.013 ± 0.002                                    | $< 0.012 \pm 0.002$                                |  |  |
|                                                | mg/kg dry wt   | < 0.013 ± 0.0000                                   |                                                    | < 0.013 ± 0.0007                                   | < 0.012 ± 0.0007                                   |  |  |
| Anthracene                                     | mg/kg dry wt   | < 0.013 ± 0.0071                                   |                                                    | < 0.013 ± 0.0070                                   | < 0.012 ± 0.0000                                   |  |  |
| Benzolalanthracene                             | mg/kg dry wt   | < 0.013 ± 0.0072                                   |                                                    | $< 0.013 \pm 0.0072$                               | $< 0.012 \pm 0.0070$                               |  |  |
| Benzo[a]ovrene (BAP)                           | mg/kg dry wt   | < 0.013 ± 0.0067                                   |                                                    | < 0.013 ± 0.0067                                   | < 0.012 ± 0.0017                                   |  |  |
| Benzo[a]pyrene Potency                         | mg/kg dry wt   | < 0.04 + 0.0097                                    |                                                    | < 0.04 + 0.0097                                    | < 0.012 ± 0.0007                                   |  |  |
| Equivalency Factor (PEF) NES                   | *              | < 0.04 ± 0.0097                                    |                                                    | < 0.04 ± 0.0097                                    | < 0.03 ± 0.0090                                    |  |  |
| Equivalence (TEF)*                             | ing/kg dry wt  | < 0.04 ± 0.0037                                    | -                                                  | < 0.04 ± 0.0097                                    | < 0.03 ± 0.0090                                    |  |  |
| Benzolbjfluoranthene + Benzolj<br>fluoranthene | j mg/kg dry wt | < 0.013 ± 0.0070                                   | -                                                  | < 0.013 ± 0.0069                                   | < 0.012 ± 0.0069                                   |  |  |
| Benzo[e]pyrene                                 | mg/kg dry wt   | < 0.013 ± 0.0067                                   | -                                                  | < 0.013 ± 0.0067                                   | < 0.012 ± 0.0067                                   |  |  |
| Benzo[g,h,i]perylene                           | mg/kg dry wt   | < 0.013 ± 0.0068                                   | -                                                  | < 0.013 ± 0.0068                                   | < 0.012 ± 0.0068                                   |  |  |
| Benzo[k]fluoranthene                           | mg/kg dry wt   | < 0.013 ± 0.0068                                   | -                                                  | < 0.013 ± 0.0068                                   | < 0.012 ± 0.0068                                   |  |  |
| Chrysene                                       | mg/kg dry wt   | < 0.013 ± 0.0069                                   | -                                                  | < 0.013 ± 0.0069                                   | < 0.012 ± 0.0069                                   |  |  |
| Dibenzo[a,h]anthracene                         | mg/kg dry wt   | < 0.013 ± 0.0069                                   | -                                                  | < 0.013 ± 0.0068                                   | < 0.012 ± 0.0068                                   |  |  |
| Fluoranthene                                   | mg/kg dry wt   | < 0.013 ± 0.0068                                   | -                                                  | < 0.013 ± 0.0068                                   | < 0.012 ± 0.0068                                   |  |  |
| Fluorene                                       | mg/kg dry wt   | < 0.013 ± 0.0068                                   | -                                                  | < 0.013 ± 0.0068                                   | < 0.012 ± 0.0068                                   |  |  |
| Indeno(1,2,3-c,d)pyrene                        | mg/kg dry wt   | < 0.013 ± 0.0068                                   | -                                                  | < 0.013 ± 0.0068                                   | < 0.012 ± 0.0067                                   |  |  |
| Naphthalene                                    | mg/kg dry wt   | < 0.07 ± 0.035                                     | -                                                  | < 0.07 ± 0.035                                     | < 0.06 ± 0.035                                     |  |  |
| Perylene                                       | mg/kg dry wt   | < 0.013 ± 0.0067                                   | -                                                  | < 0.013 ± 0.0067                                   | < 0.012 ± 0.0067                                   |  |  |
| Phenanthrene                                   | mg/kg dry wt   | < 0.013 ± 0.0069                                   | -                                                  | < 0.013 ± 0.0069                                   | < 0.012 ± 0.0069                                   |  |  |
| Pyrene                                         | mg/kg dry wt   | < 0.013 ± 0.0069                                   | -                                                  | < 0.013 ± 0.0068                                   | < 0.012 ± 0.0068                                   |  |  |
| S                                              | Sample Name:   | PT-BL_HA06_0.00m-0<br>.10m 06-Jul-2021<br>12:19 pm | PT-BL_HA06_0.50m-0<br>.60m 06-Jul-2021<br>12:20 pm | PT-BL_HA07_0.00m-0<br>.10m 06-Jul-2021<br>12:35 pm | PT-BL_HA08_0.50m-0<br>.60m 06-Jul-2021<br>12:46 pm |  |  |
|                                                | Lab Number:    | 2653061.36                                         | 2653061.37                                         | 2653061.38                                         | 2653061.40                                         |  |  |
| Individual Tests                               |                |                                                    |                                                    |                                                    |                                                    |  |  |
| Dry Matter                                     | g/100g as rcvd | 76.5 ± 5.0                                         | 80.1 ± 5.0                                         | 78.0 ± 5.0                                         | 83.4 ± 5.0                                         |  |  |
| Heavy Metals, Screen Level                     |                |                                                    |                                                    |                                                    |                                                    |  |  |
| Total Recoverable Arsenic                      | mg/kg dry wt   | -                                                  | 5.0 ± 1.5                                          | 5.6 ± 1.6                                          | 4.5 ± 1.5                                          |  |  |
| Total Recoverable Cadmium                      | mg/kg dry wt   | -                                                  | < 0.10 ± 0.067                                     | $0.135 \pm 0.068$                                  | 0.121 ± 0.068                                      |  |  |
| Total Recoverable Chromium                     | mg/kg dry wt   | -                                                  | 14.6 ± 2.7                                         | 12.1 ± 2.3                                         | 12.3 ± 2.4                                         |  |  |
| Total Recoverable Copper                       | mg/kg dry wt   | -                                                  | 9.7 ± 1.9                                          | $22.2 \pm 3.3$                                     | 15.3 ± 2.5                                         |  |  |
| Total Recoverable Lead                         | mg/kg dry wt   | -                                                  | 7.1 ± 1.1                                          | 15.4 ± 2.4                                         | 13.9 ± 2.1                                         |  |  |
| Total Recoverable Nickel                       | mg/kg dry wt   | -                                                  | 13.6 ± 2.2                                         | 14.1 ± 2.3                                         | 9.0 ± 1.8                                          |  |  |
| Total Recoverable Zinc                         | mg/kg dry wt   | -                                                  | $29.7 \pm 3.4$                                     | 70.9 ± 5.7                                         | 75.6 ± 6.0                                         |  |  |
| Organochlorine Pesticides Screening in Soil    |                |                                                    |                                                    |                                                    |                                                    |  |  |
| Aldrin                                         | mg/kg dry wt   | < 0.013 ± 0.0048                                   | < 0.013 ± 0.0048                                   | < 0.013 ± 0.0048                                   | -                                                  |  |  |
| alpha-BHC                                      | mg/kg dry wt   | < 0.013 ± 0.0048                                   | < 0.013 ± 0.0048                                   | < 0.013 ± 0.0048                                   | -                                                  |  |  |
| beta-BHC                                       | mg/kg dry wt   | < 0.013 ± 0.0055                                   | $< 0.013 \pm 0.0054$                               | < 0.013 ± 0.0055                                   | -                                                  |  |  |
| delta-BHC                                      | mg/kg dry wt   | $< 0.013 \pm 0.0052$                               | < 0.013 ± 0.0051                                   | < 0.013 ± 0.0051                                   | -                                                  |  |  |
| gamma-BHC (Lindane)                            | mg/kg dry wt   | < 0.013 ± 0.0047                                   | < 0.013 ± 0.0046                                   | $< 0.013 \pm 0.0046$                               | -                                                  |  |  |
| cis-Chlordane                                  | mg/kg dry wt   | < 0.013 ± 0.0050                                   | < 0.013 ± 0.0049                                   | $< 0.013 \pm 0.0050$                               | -                                                  |  |  |
| trans-Chlordane                                | mg/kg dry wt   | < 0.013 ± 0.0048                                   | < 0.013 ± 0.0048                                   | < 0.013 ± 0.0048                                   | -                                                  |  |  |
| 2,4'-DDD                                       | mg/kg dry wt   | $< 0.013 \pm 0.0054$                               | $< 0.013 \pm 0.0052$                               | $< 0.013 \pm 0.0053$                               | -                                                  |  |  |

| Sample Type: Soil                               |                   |                                             |                                                    |                                             |                                             |
|-------------------------------------------------|-------------------|---------------------------------------------|----------------------------------------------------|---------------------------------------------|---------------------------------------------|
| S                                               | ample Name:       | PT-BL_HA06_0.00m-0                          | PT-BL_HA06_0.50m-0                                 | PT-BL_HA07_0.00m-0                          | PT-BL_HA08_0.50m-0                          |
|                                                 |                   | .10m 06-Jul-2021                            | .60m 06-Jul-2021                                   | .10m 06-Jul-2021                            | .60m 06-Jul-2021                            |
|                                                 | l ab Number:      | 2653061.36                                  | 2653061.37                                         | 2653061.38                                  | 2653061.40                                  |
| Organochloring Pesticides Scre                  |                   |                                             | 200000.001                                         | 2000001100                                  |                                             |
|                                                 | ma/ka dry wt      | < 0.013 ± 0.0065                            | $< 0.013 \pm 0.0063$                               | < 0.013 ± 0.0064                            | _                                           |
| 4,4-DDD                                         | mg/kg dry wt      | < 0.013 ± 0.0005                            | $< 0.013 \pm 0.0003$                               | < 0.013 ± 0.0004                            | -                                           |
| 2,4-DDE                                         | mg/kg dry wt      | < 0.013 ± 0.0050                            | < 0.013 ± 0.0049                                   | < 0.013 ± 0.0050                            | -                                           |
| 4,4-DDE                                         | mg/kg dry wt      | < 0.013 ± 0.0069                            | $< 0.013 \pm 0.0003$                               | < 0.013 ± 0.0000                            |                                             |
| 2,4-DDT                                         | mg/kg dry wt      | < 0.013 ± 0.0009                            | $< 0.013 \pm 0.0007$                               | < 0.013 ± 0.0008                            | -                                           |
| Total DDT Isomers                               | mg/kg dry wt      | $< 0.013 \pm 0.0073$                        | $< 0.013 \pm 0.0073$                               | $< 0.013 \pm 0.0074$                        | -                                           |
| Dieldrin                                        | mg/kg dry wt      | < 0.013 ± 0.0061                            | < 0.013 ± 0.0060                                   | < 0.013 ± 0.0060                            |                                             |
| Endosulfan I                                    | mg/kg dry wt      | $< 0.013 \pm 0.0054$                        | $< 0.013 \pm 0.0052$                               | < 0.013 ± 0.0053                            | _                                           |
| Endosulfan II                                   | mg/kg dry wt      | < 0.013 ± 0.0004                            | < 0.013 ± 0.0052                                   | < 0.013 ± 0.0000                            | _                                           |
| Endosulfan sulphate                             | mg/kg dry wt      | < 0.013 ± 0.0001                            | < 0.013 ± 0.0000                                   | < 0.013 ± 0.0000                            | _                                           |
| Endrin                                          | mg/kg dry wt      | < 0.013 ± 0.0073                            | < 0.013 ± 0.0077                                   | < 0.013 ± 0.0070                            | _                                           |
| Endrin aldehyde                                 | mg/kg dry wt      | $< 0.013 \pm 0.0003$                        | $< 0.013 \pm 0.0071$                               | $< 0.013 \pm 0.0002$                        | _                                           |
| Endrin ketone                                   | mg/kg dry wt      | < 0.013 ± 0.0075                            | < 0.013 ± 0.0063                                   | < 0.013 ± 0.0072                            | _                                           |
|                                                 | mg/kg dry wt      | $< 0.013 \pm 0.0052$                        | $< 0.013 \pm 0.0051$                               | $< 0.013 \pm 0.0051$                        | _                                           |
| Hentachlor enoxide                              | mg/kg dry wt      | $< 0.013 \pm 0.0002$                        | $< 0.013 \pm 0.0046$                               | $< 0.013 \pm 0.0046$                        | -                                           |
|                                                 | mg/kg dry wt      | $< 0.013 \pm 0.0052$                        | $< 0.013 \pm 0.0051$                               | < 0.013 ± 0.0051                            | _                                           |
| Methoxychlor                                    | mg/kg dry wt      | $< 0.013 \pm 0.0002$                        | $< 0.013 \pm 0.0081$                               | $< 0.013 \pm 0.0082$                        | _                                           |
| Polycyclic Aromatic Hydrocarbo                  | ns Screening in S | < 0.010 ± 0.0000                            | 0.010 ± 0.0001                                     | < 0.010 ± 0.0002                            |                                             |
| Total of Reported PAHs in Soil                  | ma/ka dry wt      | _                                           | < 0.3                                              | < 0.3                                       | < 0.3                                       |
| 1 Mothulaanhthalana                             | mg/kg dry wt      | -                                           | < 0.012 ± 0.022                                    | < 0.012 ± 0.022                             | < 0.012 ± 0.022                             |
|                                                 | mg/kg dry wi      | -                                           | $< 0.013 \pm 0.032$                                | $< 0.013 \pm 0.032$                         | $< 0.012 \pm 0.032$                         |
|                                                 | mg/kg dry wt      |                                             | $< 0.013 \pm 0.002$                                | < 0.013 ± 0.0067                            | $< 0.012 \pm 0.002$                         |
| Acenaphthana                                    | mg/kg dry wt      | -                                           | < 0.013 ± 0.0007                                   | $< 0.013 \pm 0.0007$                        | < 0.012 ± 0.0007                            |
| Acteriapininene                                 | mg/kg dry wt      | -                                           | $< 0.013 \pm 0.0070$                               | < 0.013 ± 0.0070                            | < 0.012 ± 0.0009                            |
| Benzolalanthracene                              | mg/kg dry wt      |                                             | $< 0.013 \pm 0.0071$                               | $< 0.013 \pm 0.0071$                        | $< 0.012 \pm 0.0070$                        |
|                                                 | mg/kg dry wt      | -                                           | < 0.013 ± 0.0070                                   | < 0.013 ± 0.0070                            | < 0.012 ± 0.0070                            |
|                                                 | mg/kg dry wt      | -                                           | $< 0.013 \pm 0.0007$                               | $< 0.013 \pm 0.0007$                        | < 0.012 ± 0.0007                            |
| Equivalency Factor (PEF) NES*                   | ing/kg dry wi     | -                                           | < 0.03 ± 0.0097                                    | < 0.03 ± 0.0097                             | < 0.03 ± 0.0090                             |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*      | mg/kg dry wt      | -                                           | < 0.03 ± 0.0097                                    | < 0.03 ± 0.0097                             | < 0.03 ± 0.0096                             |
| Benzo[b]fluoranthene + Benzo[j]<br>fluoranthene | mg/kg dry wt      | -                                           | < 0.013 ± 0.0069                                   | $< 0.013 \pm 0.0069$                        | < 0.012 ± 0.0069                            |
| Benzo[e]pyrene                                  | mg/kg dry wt      | -                                           | $< 0.013 \pm 0.0067$                               | $< 0.013 \pm 0.0067$                        | < 0.012 ± 0.0067                            |
| Benzo[g,h,i]perylene                            | mg/kg dry wt      | -                                           | < 0.013 ± 0.0068                                   | < 0.013 ± 0.0068                            | < 0.012 ± 0.0068                            |
| Benzo[k]fluoranthene                            | mg/kg dry wt      | -                                           | < 0.013 ± 0.0068                                   | $< 0.013 \pm 0.0068$                        | < 0.012 ± 0.0068                            |
| Chrysene                                        | mg/kg dry wt      | -                                           | $< 0.013 \pm 0.0069$                               | $< 0.013 \pm 0.0069$                        | < 0.012 ± 0.0069                            |
| Dibenzo[a,h]anthracene                          | mg/kg dry wt      | -                                           | < 0.013 ± 0.0068                                   | $< 0.013 \pm 0.0068$                        | < 0.012 ± 0.0068                            |
| Fluoranthene                                    | mg/kg dry wt      | -                                           | $< 0.013 \pm 0.0068$                               | $< 0.013 \pm 0.0068$                        | $< 0.012 \pm 0.0068$                        |
| Fluorene                                        | mg/kg dry wt      | -                                           | $< 0.013 \pm 0.0068$                               | $< 0.013 \pm 0.0068$                        | $< 0.012 \pm 0.0068$                        |
| Indeno(1,2,3-c,d)pyrene                         | mg/kg dry wt      | -                                           | $< 0.013 \pm 0.0067$                               | $< 0.013 \pm 0.0067$                        | < 0.012 ± 0.0067                            |
| Naphthalene                                     | mg/kg dry wt      | -                                           | $< 0.07 \pm 0.035$                                 | $< 0.07 \pm 0.035$                          | $< 0.06 \pm 0.035$                          |
| Perylene                                        | mg/kg dry wt      | -                                           | $0.0167 \pm 0.0068$                                | $< 0.013 \pm 0.0067$                        | $< 0.012 \pm 0.0067$                        |
| Phenanthrene                                    | mg/kg dry wt      | -                                           | $< 0.013 \pm 0.0069$                               | $< 0.013 \pm 0.0069$                        | < 0.012 ± 0.0069                            |
| Pyrene                                          | mg/kg dry wt      | -                                           | $< 0.013 \pm 0.0068$                               | $< 0.013 \pm 0.0068$                        | < 0.012 ± 0.0068                            |
| S                                               | ample Name:       | PT-BL_HA09_0.00m-0<br>.10m 06-Jul-2021 1:03 | PT-BL_SS10_0.00m-0<br>.10m 06-Jul-2021<br>12:13 pm | PT-BL_SS01_0.00m-0<br>.10m 06-Jul-2021 8:34 | PT-BL_SS02_0.00m-0<br>.10m 06-Jul-2021 9:29 |
|                                                 | Lab Number        | 2653061.41                                  | 2653061.43                                         | 2653061.44                                  | 2653061.45                                  |
| Individual Tests                                |                   | l                                           |                                                    |                                             |                                             |
| Dry Matter                                      | a/100a as rovd    | 743+50                                      | 80.8 + 5.0                                         | 753+50                                      | 74 0 + 5 0                                  |
| Heavy Metals Screen Lovel                       | 9,1009 03 1040    | 1 T.O ± 0.0                                 | 00.0 ± 0.0                                         | , 0.0 ± 0.0                                 | 1-T.U ± 0.U                                 |
| Total Recoverable Areania                       | ma/ka davut       | 20±11                                       | 25 ± 1 4                                           | 20+14                                       | 21+11                                       |
| Total Recoverable Codmium                       | mg/kg dry wt      | $52 \pm 1.4$                                | $2.3 \pm 1.4$                                      | $2.3 \pm 1.4$                               | $2.4 \pm 1.4$                               |
| Total Recoverable Chromium                      | mg/kg dry wt      | 0.110±0.00/                                 | $< 0.10 \pm 0.007$                                 | $0.211 \pm 0.072$                           | $0.143 \pm 0.009$                           |
|                                                 | mg/kg dry wt      | 30 ± 15                                     | 12.2 ± 2.0                                         | 12.0 ± 2.4                                  | 10.0 ± 2.0<br>6 2 ± 1 6                     |
| i otal i tecoverable copper                     | mg/kg ary wi      | J.9 I 1.0                                   | J.J I I.J                                          | J.0 ± 1.0                                   | 0.3 ± 1.0                                   |

| Sample Type: Soil                                       |                   |                                             |                                                    |                                                   |                                                   |
|---------------------------------------------------------|-------------------|---------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Sa                                                      | ample Name:       | PT-BL_HA09_0.00m-0<br>.10m 06-Jul-2021 1:03 | PT-BL_SS10_0.00m-0<br>.10m 06-Jul-2021<br>12:13 pm | PT-BL_SS01_0.00m-0<br>.10m 06-Jul-2021 8:34<br>am | PT-BL_SS02_0.00m-0<br>.10m 06-Jul-2021 9:29<br>am |
|                                                         | Lab Number:       | 2653061.41                                  | 2653061.43                                         | 2653061.44                                        | 2653061.45                                        |
| Heavy Metals, Screen Level                              |                   |                                             |                                                    |                                                   |                                                   |
| Total Recoverable Lead                                  | mg/kg dry wt      | 6.4 ± 1.0                                   | 11.4 ± 1.8                                         | 9.9 ± 1.6                                         | 9.6 ± 1.5                                         |
| Total Recoverable Nickel                                | mg/kg dry wt      | 3.1 ± 1.4                                   | 3.6 ± 1.4                                          | 3.0 ± 1.4                                         | 5.5 ± 1.5                                         |
| Total Recoverable Zinc                                  | mg/kg dry wt      | 10.6 ± 2.8                                  | 13.5 ± 2.9                                         | 17.2 ± 3.0                                        | 19.6 ± 3.0                                        |
| Organochlorine Pesticides Scree                         | ening in Soil     |                                             |                                                    |                                                   |                                                   |
| Aldrin                                                  | mg/kg dry wt      | -                                           | < 0.012 ± 0.0047                                   | < 0.014 ± 0.0050                                  | < 0.013 ± 0.0049                                  |
| alpha-BHC                                               | mg/kg dry wt      | -                                           | < 0.012 ± 0.0047                                   | < 0.014 ± 0.0050                                  | < 0.013 ± 0.0049                                  |
| beta-BHC                                                | mg/kg dry wt      | -                                           | < 0.012 ± 0.0053                                   | < 0.014 ± 0.0058                                  | < 0.013 ± 0.0057                                  |
| delta-BHC                                               | mg/kg dry wt      | -                                           | < 0.012 ± 0.0050                                   | < 0.014 ± 0.0054                                  | < 0.013 ± 0.0053                                  |
| gamma-BHC (Lindane)                                     | mg/kg dry wt      | -                                           | < 0.012 ± 0.0045                                   | < 0.014 ± 0.0048                                  | < 0.013 ± 0.0048                                  |
| cis-Chlordane                                           | mg/kg dry wt      | -                                           | < 0.012 ± 0.0048                                   | < 0.014 ± 0.0052                                  | < 0.013 ± 0.0051                                  |
| trans-Chlordane                                         | mg/kg dry wt      | -                                           | < 0.012 ± 0.0047                                   | < 0.014 ± 0.0050                                  | < 0.013 ± 0.0049                                  |
| 2,4'-DDD                                                | mg/kg dry wt      | -                                           | < 0.012 ± 0.0051                                   | < 0.014 ± 0.0056                                  | < 0.013 ± 0.0055                                  |
| 4,4'-DDD                                                | mg/kg dry wt      | -                                           | < 0.012 ± 0.0062                                   | < 0.014 ± 0.0068                                  | < 0.013 ± 0.0067                                  |
| 2,4'-DDE                                                | mg/kg dry wt      | -                                           | < 0.012 ± 0.0048                                   | < 0.014 ± 0.0052                                  | < 0.013 ± 0.0051                                  |
| 4,4'-DDE                                                | mg/kg dry wt      | -                                           | < 0.012 ± 0.0063                                   | < 0.014 ± 0.0070                                  | < 0.013 ± 0.0069                                  |
| 2,4'-DDT                                                | mg/kg dry wt      | -                                           | < 0.012 ± 0.0065                                   | $< 0.014 \pm 0.0072$                              | < 0.013 ± 0.0071                                  |
| 4,4'-DDT                                                | mg/kg dry wt      | -                                           | < 0.012 ± 0.0071                                   | $< 0.014 \pm 0.0079$                              | < 0.013 ± 0.0077                                  |
| Total DDT Isomers                                       | mg/kg dry wt      | -                                           | < 0.08 ± 0.015                                     | < 0.08 ± 0.017                                    | < 0.08 ± 0.016                                    |
| Dieldrin                                                | mg/kg dry wt      | -                                           | $< 0.012 \pm 0.0058$                               | $< 0.014 \pm 0.0064$                              | < 0.013 ± 0.0063                                  |
| Endosulfan I                                            | mg/kg dry wt      | -                                           | < 0.012 ± 0.0051                                   | $< 0.014 \pm 0.0056$                              | < 0.013 ± 0.0055                                  |
| Endosulfan II                                           | mg/kg dry wt      | -                                           | $< 0.012 \pm 0.0058$                               | $< 0.014 \pm 0.0064$                              | < 0.013 ± 0.0063                                  |
| Endosulfan sulphate                                     | mg/kg dry wt      | -                                           | < 0.012 ± 0.0075                                   | $< 0.014 \pm 0.0083$                              | < 0.013 ± 0.0082                                  |
| Endrin                                                  | mg/kg dry wt      | -                                           | < 0.012 ± 0.0078                                   | $< 0.014 \pm 0.0088$                              | < 0.013 ± 0.0086                                  |
| Endrin aldehyde                                         | mg/kg dry wt      | -                                           | $< 0.012 \pm 0.0069$                               | $< 0.014 \pm 0.0076$                              | < 0.013 ± 0.0075                                  |
| Endrin ketone                                           | mg/kg dry wt      | -                                           | < 0.012 ± 0.0062                                   | $< 0.014 \pm 0.0068$                              | < 0.013 ± 0.0067                                  |
| Heptachlor                                              | mg/kg dry wt      | -                                           | $< 0.012 \pm 0.0050$                               | $< 0.014 \pm 0.0054$                              | < 0.013 ± 0.0053                                  |
| Heptachlor epoxide                                      | mg/kg dry wt      | -                                           | $< 0.012 \pm 0.0045$                               | $< 0.014 \pm 0.0048$                              | < 0.013 ± 0.0048                                  |
| Hexachlorobenzene                                       | mg/kg dry wt      | -                                           | $< 0.012 \pm 0.0050$                               | $< 0.014 \pm 0.0054$                              | < 0.013 ± 0.0053                                  |
| Methoxychlor                                            | mg/kg dry wt      | -                                           | $< 0.012 \pm 0.0078$                               | $< 0.014 \pm 0.0088$                              | < 0.013 ± 0.0086                                  |
| Polycyclic Aromatic Hydrocarbor                         | ns Screening in S | Soil*                                       |                                                    |                                                   |                                                   |
| Total of Reported PAHs in Soil                          | mg/kg dry wt      | < 0.4                                       | -                                                  | -                                                 | -                                                 |
| 1-Methylnaphthalene                                     | mg/kg dry wt      | $< 0.014 \pm 0.032$                         | -                                                  | -                                                 | -                                                 |
| 2-Methylnaphthalene                                     | mg/kg dry wt      | $< 0.014 \pm 0.032$                         | -                                                  | -                                                 | -                                                 |
| Acenaphthylene                                          | mg/kg dry wt      | $< 0.014 \pm 0.0068$                        | -                                                  | -                                                 | -                                                 |
| Acenaphthene                                            | mg/kg dry wt      | < 0.014 ± 0.0071                            | -                                                  | -                                                 | -                                                 |
| Anthracene                                              | mg/kg dry wt      | $< 0.014 \pm 0.0072$                        | -                                                  | -                                                 | -                                                 |
| Benzo[a]anthracene                                      | mg/kg dry wt      | $< 0.014 \pm 0.0071$                        | -                                                  | -                                                 | -                                                 |
| Benzo[a]pyrene (BAP)                                    | mg/kg dry wt      | $< 0.014 \pm 0.0067$                        | -                                                  | -                                                 | -                                                 |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES* | mg/kg dry wt      | < 0.04 ± 0.0097                             | -                                                  | -                                                 | -                                                 |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*              | mg/kg dry wt      | < 0.04 ± 0.0097                             | -                                                  | -                                                 | -                                                 |
| Benzo[b]fluoranthene + Benzo[j]<br>fluoranthene         | mg/kg dry wt      | < 0.014 ± 0.0070                            | -                                                  | -                                                 | -                                                 |
| Benzo[e]pyrene                                          | mg/kg dry wt      | < 0.014 ± 0.0067                            | -                                                  | -                                                 | -                                                 |
| Benzo[g,h,i]perylene                                    | mg/kg dry wt      | < 0.014 ± 0.0068                            | -                                                  | -                                                 | -                                                 |
| Benzo[k]fluoranthene                                    | mg/kg dry wt      | $< 0.014 \pm 0.0069$                        | -                                                  | -                                                 | -                                                 |
| Chrysene                                                | mg/kg dry wt      | $< 0.014 \pm 0.0069$                        | -                                                  | -                                                 | -                                                 |
| Dibenzo[a,h]anthracene                                  | mg/kg dry wt      | $< 0.014 \pm 0.0069$                        | -                                                  | -                                                 | -                                                 |
| Fluoranthene                                            | mg/kg dry wt      | $< 0.014 \pm 0.0068$                        | -                                                  | -                                                 | -                                                 |
| Fluorene                                                | mg/kg dry wt      | < 0.014 ± 0.0068                            | -                                                  | -                                                 | -                                                 |
| Indeno(1,2,3-c,d)pyrene                                 | mg/kg dry wt      | < 0.014 ± 0.0068                            | -                                                  | -                                                 | -                                                 |
| Naphthalene                                             | mg/kg dry wt      | $< 0.07 \pm 0.035$                          | -                                                  | -                                                 | -                                                 |
| Perylene                                                | mg/kg dry wt      | < 0.014 ± 0.0067                            | -                                                  | -                                                 | -                                                 |
| Phenanthrene                                            | mg/kg dry wt      | $< 0.014 \pm 0.0069$                        | -                                                  | -                                                 | -                                                 |
| Sample Type: Soil            |                     |                       |                      |                       |                       |
|------------------------------|---------------------|-----------------------|----------------------|-----------------------|-----------------------|
|                              | Sample Name:        | PT-BL_HA09_0.00m-0    | PT-BL_SS10_0.00m-0   | PT-BL_SS01_0.00m-0    | PT-BL_SS02_0.00m-0    |
|                              | oumpio numoi        | .10m 06-Jul-2021 1:03 | .10m 06-Jul-2021     | .10m 06-Jul-2021 8:34 | .10m 06-Jul-2021 9:29 |
|                              |                     | pm                    | 12:13 pm             | am                    | am                    |
|                              | Lab Number:         | 2653061.41            | 2653061.43           | 2653061.44            | 2653061.45            |
| Polycyclic Aromatic Hydrocar | bons Screening in S | Soil*                 |                      |                       |                       |
| Pyrene                       | mg/kg dry wt        | < 0.014 ± 0.0069      | -                    | -                     | -                     |
|                              | Sample Name         | PT-BL SS03 0.00m-0    | PT-BL SS04 0.00m-0   | PT-BL SS05 0.00m-0    | PT-BL SS06 0.00m-0    |
|                              | Campie Name.        | .10m 06-Jul-2021 9:40 | .10m 06-Jul-2021     | .10m 06-Jul-2021      | .10m 06-Jul-2021      |
|                              |                     | am                    | 10:05 am             | 10:27 am              | 10:36 am              |
|                              | Lab Number:         | 2653061.46            | 2653061.47           | 2653061.48            | 2653061.49            |
| Individual Tests             |                     |                       |                      |                       |                       |
| Dry Matter                   | g/100g as rcvd      | 72.9 ± 5.0            | 75.0 ± 5.0           | 78.6 ± 5.0            | 75.6 ± 5.0            |
| Heavy Metals, Screen Level   |                     |                       |                      |                       |                       |
| Total Recoverable Arsenic    | mg/kg dry wt        | 2.4 ± 1.4             | 3.1 ± 1.4            | 3.6 ± 1.5             | 2.4 ± 1.4             |
| Total Recoverable Cadmium    | mg/kg dry wt        | 0.196 ± 0.071         | < 0.10 ± 0.067       | $0.125 \pm 0.068$     | 0.152 ± 0.069         |
| Total Recoverable Chromium   | mg/kg dry wt        | 13.5 ± 2.5            | 14.0 ± 2.6           | 9.6 ± 2.0             | 10.8 ± 2.2            |
| Total Recoverable Copper     | mg/kg dry wt        | 6.4 ± 1.6             | 6.0 ± 1.6            | 4.3 ± 1.5             | 4.6 ± 1.5             |
| Total Recoverable Lead       | mg/kg dry wt        | 9.1 ± 1.4             | 10.1 ± 1.6           | 8.4 ± 1.3             | 8.5 ± 1.3             |
| Total Recoverable Nickel     | mg/kg dry wt        | 5.8 ± 1.6             | 5.2 ± 1.5            | 3.9 ± 1.5             | 4.3 ± 1.5             |
| Total Recoverable Zinc       | mg/kg drv wt        | 20.9 ± 3.1            | 15.0 ± 2.9           | 15.0 ± 2.9            | 15.6 ± 2.9            |
| Organochlorine Pesticides So | creening in Soil    | 1                     | -                    | -                     | -                     |
| Aldrin                       | ma/ka drv wt        | < 0.014 ± 0.0051      | < 0.014 ± 0.0050     | < 0.013 ± 0.0048      | < 0.014 ± 0.0050      |
| alpha-BHC                    | ma/ka dry wt        | < 0.014 + 0.0051      | < 0.014 + 0.0050     | < 0.013 + 0.0048      | < 0.014 + 0.0050      |
| beta-BHC                     | mg/kg dry wt        | $< 0.014 \pm 0.0059$  | < 0.014 + 0.0057     | < 0.013 + 0.0054      | < 0.014 + 0.0057      |
| delta-BHC                    | mg/kg dry wt        | < 0.014 + 0.0055      | < 0.014 + 0.0053     | < 0.013 + 0.0051      | < 0.014 + 0.0054      |
| gamma-BHC (Lindane)          | ma/ka dry wt        | < 0.014 + 0.0049      | < 0.014 + 0.0048     | < 0.013 + 0.0046      | < 0.014 + 0.0048      |
| cis-Chlordane                | ma/ka dry wt        | < 0.014 + 0.0053      | < 0.014 + 0.0051     | < 0.013 + 0.0049      | $< 0.014 \pm 0.0052$  |
| trans-Chlordane              | mg/kg dry wt        | < 0.014 + 0.0051      | $< 0.014 \pm 0.0050$ | $< 0.013 \pm 0.0048$  | < 0.014 ± 0.0050      |
|                              | mg/kg dry wt        | $< 0.014 \pm 0.0057$  | $< 0.014 \pm 0.0055$ | $< 0.013 \pm 0.0052$  | $< 0.014 \pm 0.0056$  |
| 4 4'-DDD                     | mg/kg dry wt        | < 0.014 ± 0.0069      | < 0.014 ± 0.0067     | < 0.013 ± 0.0063      | < 0.014 ± 0.0068      |
| 2 4'-DDF                     | mg/kg dry wt        | $< 0.014 \pm 0.0053$  | < 0.014 + 0.0051     | < 0.013 + 0.0049      | < 0.014 + 0.0052      |
| 4.4'-DDF                     | ma/ka dry wt        | < 0.014 + 0.0072      | < 0.014 + 0.0069     | < 0.013 + 0.0065      | < 0.014 + 0.0070      |
| 2.4'-DDT                     | ma/ka drv wt        | $< 0.014 \pm 0.0074$  | $< 0.014 \pm 0.0071$ | $< 0.013 \pm 0.0067$  | $< 0.014 \pm 0.0072$  |
| 4.4'-DDT                     | ma/ka dry wt        | < 0.014 + 0.0081      | < 0.014 + 0.0078     | < 0.013 + 0.0073      | < 0.014 + 0.0079      |
| Total DDT Isomers            | ma/ka drv wt        | $< 0.09 \pm 0.017$    | $< 0.08 \pm 0.017$   | $< 0.08 \pm 0.016$    | $< 0.08 \pm 0.017$    |
| Dieldrin                     | ma/ka drv wt        | < 0.014 ± 0.0065      | < 0.014 ± 0.0063     | < 0.013 ± 0.0060      | < 0.014 ± 0.0064      |
| Endosulfan I                 | ma/ka drv wt        | < 0.014 ± 0.0057      | $< 0.014 \pm 0.0055$ | $< 0.013 \pm 0.0052$  | $< 0.014 \pm 0.0056$  |
| Endosulfan II                | ma/ka drv wt        | $< 0.014 \pm 0.0065$  | $< 0.014 \pm 0.0063$ | $< 0.013 \pm 0.0060$  | $< 0.014 \pm 0.0064$  |
| Endosulfan sulphate          | ma/ka drv wt        | $< 0.014 \pm 0.0085$  | $< 0.014 \pm 0.0082$ | $< 0.013 \pm 0.0077$  | $< 0.014 \pm 0.0083$  |
| Endrin                       | ma/ka drv wt        | $< 0.014 \pm 0.0090$  | $< 0.014 \pm 0.0087$ | $< 0.013 \pm 0.0081$  | $< 0.014 \pm 0.0087$  |
| Endrin aldehvde              | ma/ka drv wt        | < 0.014 ± 0.0078      | < 0.014 ± 0.0076     | < 0.013 ± 0.0071      | < 0.014 ± 0.0076      |
| Endrin ketone                | ma/ka drv wt        | < 0.014 ± 0.0069      | < 0.014 ± 0.0067     | < 0.013 ± 0.0063      | < 0.014 ± 0.0068      |
| Heptachlor                   | ma/ka drv wt        | $< 0.014 \pm 0.0055$  | $< 0.014 \pm 0.0053$ | $< 0.013 \pm 0.0051$  | $< 0.014 \pm 0.0054$  |
| Heptachlor epoxide           | ma/ka drv wt        | $< 0.014 \pm 0.0049$  | $< 0.014 \pm 0.0048$ | $< 0.013 \pm 0.0046$  | $< 0.014 \pm 0.0048$  |
| Hexachlorobenzene            | ma/ka drv wt        | $< 0.014 \pm 0.0055$  | $< 0.014 \pm 0.0053$ | $< 0.013 \pm 0.0051$  | $< 0.014 \pm 0.0054$  |
| Methoxychlor                 | ma/ka drv wt        | < 0.014 ± 0.0090      | < 0.014 ± 0.0087     | < 0.013 ± 0.0081      | < 0.014 ± 0.0087      |
|                              |                     |                       |                      |                       |                       |
|                              | Sample Name:        | 10m 06-1ul-2021       | P1-BL_SS08_0.00m-0   | PT-BL_SS09_0.00m-0    | PI-BL_Duplicate 3     |
|                              |                     | 11:13 am              | 11:29 am             | 11:53 am              |                       |
|                              | Lab Number:         | 2653061.50            | 2653061.51           | 2653061.52            | 2653061.54            |
| Individual Tests             |                     | 1                     |                      |                       |                       |
| Dry Matter                   | g/100g as rcvd      | 78.6 ± 5.0            | 79.4 ± 5.0           | 91.5 ± 5.0            | 80.9 ± 5.0            |
| Heavy Metals, Screen Level   |                     | 1                     | 1                    |                       |                       |
| Total Recoverable Arsenic    | ma/ka drv wt        | 3.6 ± 1.5             | 3.9 ± 1.5            | 35.1 ± 5.4            | 2.7 ± 1.4             |
| Total Recoverable Cadmium    | mg/kg dry wt        | < 0.10 ± 0.067        | 0.129 ± 0.068        | 0.129 ± 0.068         | 0.105 ± 0.067         |
| Total Recoverable Chromium   | mg/kg dry wt        | 14.3 ± 2.6            | 11.2 ± 2.2           | 19.2 ± 3.3            | 10.0 ± 2.1            |
| Total Recoverable Copper     | mg/kg dry wt        | 11.2 ± 2.1            | 8.8 ± 1.8            | 31.1 ± 4.5            | 16.0 ± 2.6            |
| Total Recoverable Lead       | mg/kg dry wt        | 8.3 ± 1.3             | 8.8 ± 1.4            | 11.9 ± 1.9            | 15.1 ± 2.3            |
| Total Recoverable Nickel     | mg/kg dry wt        | 16.1 ± 2.5            | 7.7 ± 1.7            | 19.4 ± 2.9            | 5.7 ± 1.6             |

| Sample Type: Soil                                       |                   |                                                    |                                                    |                                                    |                      |
|---------------------------------------------------------|-------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------|
| S                                                       | ample Name:       | PT-BL_SS07_0.00m-0<br>.10m 06-Jul-2021<br>11:13 am | PT-BL_SS08_0.00m-0<br>.10m 06-Jul-2021<br>11:29 am | PT-BL_SS09_0.00m-0<br>.10m 06-Jul-2021<br>11:53 am | PT-BL_Duplicate 3    |
|                                                         | Lab Number:       | 2653061.50                                         | 2653061.51                                         | 2653061.52                                         | 2653061.54           |
| Heavy Metals, Screen Level                              |                   |                                                    |                                                    |                                                    |                      |
| Total Recoverable Zinc                                  | ma/ka drv wt      | $34.4 \pm 3.6$                                     | $36.5 \pm 3.7$                                     | 77.1 ± 6.1                                         | 39.6 ± 3.9           |
| Organochlorine Pesticides Scre                          | ening in Soil     |                                                    |                                                    |                                                    |                      |
| Aldrin                                                  | ma/ka dry wt      | < 0.013 + 0.0048                                   | $< 0.013 \pm 0.0048$                               | < 0.011 + 0.0044                                   |                      |
| alpha-BHC                                               | ma/ka dry wt      | < 0.013 + 0.0048                                   | < 0.013 + 0.0048                                   | < 0.011 + 0.0044                                   |                      |
| beta-BHC                                                | ma/ka drv wt      | $< 0.013 \pm 0.0055$                               | $< 0.013 \pm 0.0055$                               | < 0.011 ± 0.0049                                   | -                    |
| delta-BHC                                               | ma/ka drv wt      | $< 0.013 \pm 0.0052$                               | $< 0.013 \pm 0.0052$                               | < 0.011 ± 0.0047                                   | -                    |
| gamma-BHC (Lindane)                                     | ma/ka drv wt      | < 0.013 ± 0.0047                                   | < 0.013 ± 0.0047                                   | < 0.011 ± 0.0043                                   | -                    |
| cis-Chlordane                                           | mg/kg dry wt      | < 0.013 ± 0.0050                                   | < 0.013 ± 0.0050                                   | < 0.011 ± 0.0045                                   |                      |
| trans-Chlordane                                         | mg/kg dry wt      | < 0.013 ± 0.0048                                   | < 0.013 ± 0.0048                                   | < 0.011 ± 0.0044                                   |                      |
| 2.4'-DDD                                                | ma/ka drv wt      | < 0.013 ± 0.0054                                   | < 0.013 ± 0.0053                                   | < 0.011 ± 0.0048                                   | -                    |
| 4.4'-DDD                                                | ma/ka drv wt      | < 0.013 ± 0.0065                                   | < 0.013 ± 0.0065                                   | < 0.011 ± 0.0057                                   | -                    |
| 2,4'-DDE                                                | mg/kg dry wt      | < 0.013 ± 0.0050                                   | < 0.013 ± 0.0050                                   | < 0.011 ± 0.0045                                   | -                    |
| 4,4'-DDE                                                | mg/kg dry wt      | < 0.013 ± 0.0067                                   | < 0.013 ± 0.0067                                   | < 0.011 ± 0.0058                                   | -                    |
| 2,4'-DDT                                                | mg/kg dry wt      | < 0.013 ± 0.0069                                   | < 0.013 ± 0.0069                                   | < 0.011 ± 0.0060                                   | -                    |
| 4,4'-DDT                                                | mg/kg dry wt      | < 0.013 ± 0.0075                                   | < 0.013 ± 0.0075                                   | < 0.011 ± 0.0065                                   |                      |
| Total DDT Isomers                                       | mg/kg dry wt      | < 0.08 ± 0.016                                     | < 0.08 ± 0.016                                     | < 0.07 ± 0.014                                     | -                    |
| Dieldrin                                                | mg/kg dry wt      | < 0.013 ± 0.0061                                   | < 0.013 ± 0.0061                                   | < 0.011 ± 0.0054                                   | -                    |
| Endosulfan I                                            | mg/kg dry wt      | < 0.013 ± 0.0054                                   | < 0.013 ± 0.0053                                   | < 0.011 ± 0.0048                                   | -                    |
| Endosulfan II                                           | mg/kg dry wt      | < 0.013 ± 0.0061                                   | < 0.013 ± 0.0061                                   | < 0.011 ± 0.0054                                   | -                    |
| Endosulfan sulphate                                     | mg/kg dry wt      | < 0.013 ± 0.0079                                   | < 0.013 ± 0.0079                                   | < 0.011 ± 0.0068                                   | -                    |
| Endrin                                                  | mg/kg dry wt      | < 0.013 ± 0.0083                                   | < 0.013 ± 0.0083                                   | < 0.011 ± 0.0071                                   | -                    |
| Endrin aldehyde                                         | mg/kg dry wt      | < 0.013 ± 0.0073                                   | < 0.013 ± 0.0073                                   | < 0.011 ± 0.0063                                   | -                    |
| Endrin ketone                                           | mg/kg dry wt      | < 0.013 ± 0.0065                                   | < 0.013 ± 0.0065                                   | < 0.011 ± 0.0057                                   | -                    |
| Heptachlor                                              | mg/kg dry wt      | < 0.013 ± 0.0052                                   | < 0.013 ± 0.0052                                   | < 0.011 ± 0.0047                                   | -                    |
| Heptachlor epoxide                                      | mg/kg dry wt      | < 0.013 ± 0.0047                                   | < 0.013 ± 0.0047                                   | < 0.011 ± 0.0043                                   | -                    |
| Hexachlorobenzene                                       | mg/kg dry wt      | < 0.013 ± 0.0052                                   | < 0.013 ± 0.0052                                   | < 0.011 ± 0.0047                                   | -                    |
| Methoxychlor                                            | mg/kg dry wt      | < 0.013 ± 0.0083                                   | < 0.013 ± 0.0083                                   | < 0.011 ± 0.0071                                   | -                    |
| Polycyclic Aromatic Hydrocarbo                          | ns Screening in S | Soil*                                              |                                                    |                                                    |                      |
| Total of Reported PAHs in Soil                          | mg/kg dry wt      | < 0.4                                              | < 0.3                                              | < 0.3                                              | < 0.3                |
| 1-Methylnaphthalene                                     | mg/kg dry wt      | < 0.013 ± 0.032                                    | < 0.013 ± 0.032                                    | < 0.011 ± 0.032                                    | < 0.012 ± 0.032      |
| 2-Methylnaphthalene                                     | mg/kg dry wt      | < 0.013 ± 0.032                                    | < 0.013 ± 0.032                                    | < 0.011 ± 0.032                                    | < 0.012 ± 0.032      |
| Acenaphthylene                                          | mg/kg dry wt      | < 0.013 ± 0.0067                                   | < 0.013 ± 0.0067                                   | < 0.011 ± 0.0067                                   | < 0.012 ± 0.0067     |
| Acenaphthene                                            | mg/kg dry wt      | < 0.013 ± 0.0070                                   | < 0.013 ± 0.0070                                   | < 0.011 ± 0.0068                                   | < 0.012 ± 0.0069     |
| Anthracene                                              | mg/kg dry wt      | < 0.013 ± 0.0071                                   | < 0.013 ± 0.0071                                   | < 0.011 ± 0.0069                                   | < 0.012 ± 0.0071     |
| Benzo[a]anthracene                                      | mg/kg dry wt      | < 0.013 ± 0.0071                                   | < 0.013 ± 0.0070                                   | 0.0249 ± 0.0090                                    | < 0.012 ± 0.0070     |
| Benzo[a]pyrene (BAP)                                    | mg/kg dry wt      | < 0.013 ± 0.0067                                   | < 0.013 ± 0.0067                                   | 0.0174 ± 0.0068                                    | < 0.012 ± 0.0067     |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES* | mg/kg dry wt      | < 0.04 ± 0.0097                                    | < 0.04 ± 0.0097                                    | 0.0287 ± 0.0097                                    | $< 0.03 \pm 0.0096$  |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*              | mg/kg dry wt      | < 0.04 ± 0.0097                                    | $< 0.04 \pm 0.0097$                                | 0.0284 ± 0.0097                                    | $< 0.03 \pm 0.0096$  |
| Benzo[b]fluoranthene + Benzo[j]<br>fluoranthene         | mg/kg dry wt      | < 0.013 ± 0.0069                                   | < 0.013 ± 0.0069                                   | 0.0285 ± 0.0087                                    | $< 0.012 \pm 0.0069$ |
| Benzo[e]pyrene                                          | mg/kg dry wt      | < 0.013 ± 0.0067                                   | < 0.013 ± 0.0067                                   | 0.0163 ± 0.0068                                    | $< 0.012 \pm 0.0067$ |
| Benzo[g,h,i]perylene                                    | mg/kg dry wt      | < 0.013 ± 0.0068                                   | $< 0.013 \pm 0.0068$                               | $0.0125 \pm 0.0068$                                | $< 0.012 \pm 0.0068$ |
| Benzo[k]fluoranthene                                    | mg/kg dry wt      | < 0.013 ± 0.0068                                   | < 0.013 ± 0.0068                                   | 0.0112 ± 0.0068                                    | $< 0.012 \pm 0.0068$ |
| Chrysene                                                | mg/kg dry wt      | < 0.013 ± 0.0069                                   | < 0.013 ± 0.0069                                   | $0.0178 \pm 0.0072$                                | $< 0.012 \pm 0.0069$ |
| Dibenzo[a,h]anthracene                                  | mg/kg dry wt      | < 0.013 ± 0.0068                                   | < 0.013 ± 0.0068                                   | < 0.011 ± 0.0068                                   | $< 0.012 \pm 0.0068$ |
| Fluoranthene                                            | mg/kg dry wt      | < 0.013 ± 0.0068                                   | < 0.013 ± 0.0068                                   | 0.0310 ± 0.0073                                    | $< 0.012 \pm 0.0068$ |
| Fluorene                                                | mg/kg dry wt      | < 0.013 ± 0.0068                                   | < 0.013 ± 0.0068                                   | < 0.011 ± 0.0068                                   | $< 0.012 \pm 0.0068$ |
| Indeno(1,2,3-c,d)pyrene                                 | mg/kg dry wt      | < 0.013 ± 0.0067                                   | < 0.013 ± 0.0067                                   | $0.0122 \pm 0.0067$                                | $< 0.012 \pm 0.0067$ |
| Naphthalene                                             | mg/kg dry wt      | < 0.07 ± 0.035                                     | $< 0.07 \pm 0.035$                                 | $< 0.06 \pm 0.034$                                 | $< 0.06 \pm 0.035$   |
| Perylene                                                | mg/kg dry wt      | < 0.013 ± 0.0067                                   | < 0.013 ± 0.0067                                   | < 0.011 ± 0.0067                                   | $< 0.012 \pm 0.0067$ |
| Phenanthrene                                            | mg/kg dry wt      | < 0.013 ± 0.0069                                   | < 0.013 ± 0.0069                                   | < 0.011 ± 0.0068                                   | $< 0.012 \pm 0.0069$ |
| Pyrene                                                  | mg/kg dry wt      | < 0.013 ± 0.0068                                   | < 0.013 ± 0.0068                                   | $0.0268 \pm 0.0075$                                | $< 0.012 \pm 0.0068$ |

| Sample Type: Soil                                      |                     |                      |                   |                      |                         |
|--------------------------------------------------------|---------------------|----------------------|-------------------|----------------------|-------------------------|
|                                                        | Sample Name:        | PT-BL_Duplicate 2    | PT-BL_Duplicate 1 | PT-BL_Duplicate 4    | PT-BL_HA22_0.0-0.1<br>m |
|                                                        | Lab Number:         | 2653061.57           | 2653061.58        | 2653061.59           | 2653061.60              |
| Individual Tests                                       |                     |                      |                   |                      |                         |
| Dry Matter                                             | g/100g as rcvd      | 78.6 ± 5.0           | 75.4 ± 5.0        | 79.3 ± 5.0           | -                       |
| Heavy Metals, Screen Level                             |                     |                      |                   |                      |                         |
| Total Recoverable Arsenic                              | mg/kg dry wt        | 5.1 ± 1.6            | 5.2 ± 1.6         | 5.0 ± 1.5            | 5.0 ± 1.5               |
| Total Recoverable Cadmium                              | mg/kg dry wt        | 0.208 ± 0.072        | < 0.10 ± 0.067    | < 0.10 ± 0.067       | < 0.10 ± 0.067          |
| Total Recoverable Chromium                             | mg/kg dry wt        | 13.4 ± 2.5           | 13.6 ± 2.5        | 13.7 ± 2.5           | 8.7 ± 1.9               |
| Total Recoverable Copper                               | mg/kg dry wt        | 5.4 ± 1.5            | 9.3 ± 1.9         | 8.7 ± 1.8            | 8.6 ± 1.8               |
| Total Recoverable Lead                                 | mg/kg dry wt        | 8.9 ± 1.4            | 6.7 ± 1.1         | 6.7 ± 1.1            | 7.4 ± 1.2               |
| Total Recoverable Nickel                               | mg/kg dry wt        | 13.1 ± 2.2           | 9.3 ± 1.8         | 11.7 ± 2.0           | 5.7 ± 1.5               |
| Total Recoverable Zinc                                 | mg/kg dry wt        | 31.7 ± 3.5           | 27.9 ± 3.3        | 26.8 ± 3.3           | 32.5 ± 3.5              |
| Organochlorine Pesticides Sci                          | reening in Soil     |                      |                   |                      |                         |
| Aldrin                                                 | mg/kg dry wt        | -                    | < 0.013 ± 0.0049  | < 0.013 ± 0.0048     | -                       |
| alpha-BHC                                              | mg/kg dry wt        | -                    | < 0.013 ± 0.0049  | < 0.013 ± 0.0048     | -                       |
| beta-BHC                                               | mg/kg dry wt        | -                    | < 0.013 ± 0.0056  | < 0.013 ± 0.0054     | -                       |
| delta-BHC                                              | mg/kg dry wt        | -                    | < 0.013 ± 0.0052  | < 0.013 ± 0.0051     | -                       |
| gamma-BHC (Lindane)                                    | mg/kg dry wt        | -                    | < 0.013 ± 0.0047  | < 0.013 ± 0.0046     | -                       |
| cis-Chlordane                                          | mg/kg dry wt        | -                    | < 0.013 ± 0.0051  | < 0.013 ± 0.0049     | -                       |
| trans-Chlordane                                        | mg/kg dry wt        | -                    | < 0.013 ± 0.0049  | < 0.013 ± 0.0048     | -                       |
| 2,4'-DDD                                               | mg/kg dry wt        | -                    | < 0.013 ± 0.0054  | < 0.013 ± 0.0053     | -                       |
| 4,4'-DDD                                               | mg/kg dry wt        | -                    | < 0.013 ± 0.0066  | < 0.013 ± 0.0064     | -                       |
| 2,4'-DDE                                               | mg/kg dry wt        | -                    | < 0.013 ± 0.0051  | < 0.013 ± 0.0049     | -                       |
| 4,4'-DDE                                               | mg/kg dry wt        | -                    | < 0.013 ± 0.0068  | < 0.013 ± 0.0065     | -                       |
| 2,4'-DDT                                               | mg/kg dry wt        | -                    | < 0.013 ± 0.0070  | < 0.013 ± 0.0067     | -                       |
| 4,4'-DDT                                               | mg/kg dry wt        | -                    | < 0.013 ± 0.0076  | < 0.013 ± 0.0073     | -                       |
| Total DDT Isomers                                      | mg/kg dry wt        | -                    | < 0.08 ± 0.016    | < 0.08 ± 0.016       | -                       |
| Dieldrin                                               | mg/kg dry wt        | -                    | < 0.013 ± 0.0062  | < 0.013 ± 0.0060     | -                       |
| Endosulfan I                                           | mg/kg dry wt        | -                    | < 0.013 ± 0.0054  | < 0.013 ± 0.0053     | -                       |
| Endosulfan II                                          | mg/kg dry wt        | -                    | < 0.013 ± 0.0062  | < 0.013 ± 0.0060     | -                       |
| Endosulfan sulphate                                    | mg/kg dry wt        | -                    | < 0.013 ± 0.0080  | < 0.013 ± 0.0077     | -                       |
| Endrin                                                 | mg/kg dry wt        | -                    | < 0.013 ± 0.0085  | < 0.013 ± 0.0081     | -                       |
| Endrin aldehyde                                        | mg/kg dry wt        | -                    | < 0.013 ± 0.0074  | < 0.013 ± 0.0071     | -                       |
| Endrin ketone                                          | mg/kg dry wt        | -                    | < 0.013 ± 0.0066  | < 0.013 ± 0.0064     | -                       |
| Heptachlor                                             | mg/kg dry wt        | -                    | < 0.013 ± 0.0052  | < 0.013 ± 0.0051     | -                       |
| Heptachlor epoxide                                     | mg/kg dry wt        | -                    | < 0.013 ± 0.0047  | < 0.013 ± 0.0046     | -                       |
| Hexachlorobenzene                                      | mg/kg dry wt        | -                    | < 0.013 ± 0.0052  | < 0.013 ± 0.0051     | -                       |
| Methoxychlor                                           | mg/kg dry wt        | -                    | < 0.013 ± 0.0085  | < 0.013 ± 0.0081     | -                       |
| Polycyclic Aromatic Hydrocarb                          | oons Screening in S | oil*                 |                   |                      |                         |
| Total of Reported PAHs in Soil                         | I mg/kg dry wt      | < 0.3                | -                 | < 0.3                | -                       |
| 1-Methylnaphthalene                                    | mg/kg dry wt        | < 0.013 ± 0.032      | -                 | < 0.013 ± 0.032      | -                       |
| 2-Methylnaphthalene                                    | mg/kg dry wt        | < 0.013 ± 0.032      | -                 | < 0.013 ± 0.032      | -                       |
| Acenaphthylene                                         | mg/kg dry wt        | $< 0.013 \pm 0.0067$ | -                 | < 0.013 ± 0.0067     | -                       |
| Acenaphthene                                           | mg/kg dry wt        | < 0.013 ± 0.0070     | -                 | < 0.013 ± 0.0070     | -                       |
| Anthracene                                             | mg/kg dry wt        | < 0.013 ± 0.0071     | -                 | < 0.013 ± 0.0071     | -                       |
| Benzo[a]anthracene                                     | mg/kg dry wt        | < 0.013 ± 0.0070     | -                 | < 0.013 ± 0.0070     | -                       |
| Benzo[a]pyrene (BAP)                                   | mg/kg dry wt        | < 0.013 ± 0.0067     | -                 | < 0.013 ± 0.0067     | -                       |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES | mg/kg dry wt<br>S*  | $< 0.03 \pm 0.0097$  | -                 | < 0.03 ± 0.0097      | -                       |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*             | mg/kg dry wt        | < 0.03 ± 0.0097      | -                 | < 0.03 ± 0.0097      | -                       |
| Benzo[b]fluoranthene + Benzo<br>fluoranthene           | [j] mg/kg dry wt    | < 0.013 ± 0.0069     | -                 | < 0.013 ± 0.0069     | -                       |
| Benzo[e]pyrene                                         | mg/kg dry wt        | < 0.013 ± 0.0067     | -                 | < 0.013 ± 0.0067     | -                       |
| Benzo[g,h,i]perylene                                   | mg/kg dry wt        | < 0.013 ± 0.0068     | -                 | < 0.013 ± 0.0068     | -                       |
| Benzo[k]fluoranthene                                   | mg/kg dry wt        | < 0.013 ± 0.0068     | -                 | < 0.013 ± 0.0068     | -                       |
| Chrysene                                               | mg/kg dry wt        | $< 0.013 \pm 0.0069$ | -                 | $< 0.013 \pm 0.0069$ | -                       |
| Dibenzo[a,h]anthracene                                 | mg/kg dry wt        | $< 0.013 \pm 0.0068$ | -                 | < 0.013 ± 0.0068     | -                       |

| Sample Type: Soil                                      |                     |                     |                      |                     |                         |  |  |
|--------------------------------------------------------|---------------------|---------------------|----------------------|---------------------|-------------------------|--|--|
|                                                        | Sample Name:        | PT-BL_Duplicate 2   | PT-BL_Duplicate 1    | PT-BL_Duplicate 4   | PT-BL_HA22_0.0-0.1<br>m |  |  |
|                                                        | Lab Number:         | 2653061.57          | 2653061.58           | 2653061.59          | 2653061.60              |  |  |
| Polycyclic Aromatic Hydrocarb                          | ons Screening in S  | Soil*               |                      |                     |                         |  |  |
| Fluoranthene                                           | mg/kg dry wt        | < 0.013 ± 0.0068    | -                    | < 0.013 ± 0.0068    | -                       |  |  |
| Fluorene                                               | mg/kg dry wt        | < 0.013 ± 0.0068    | -                    | < 0.013 ± 0.0068    | -                       |  |  |
| Indeno(1,2,3-c,d)pyrene                                | mg/kg dry wt        | < 0.013 ± 0.0067    | -                    | < 0.013 ± 0.0067    | -                       |  |  |
| Naphthalene                                            | mg/kg dry wt        | < 0.07 ± 0.035      | -                    | < 0.07 ± 0.035      | -                       |  |  |
| Perylene                                               | mg/kg dry wt        | < 0.013 ± 0.0067    | -                    | 0.0218 ± 0.0069     | -                       |  |  |
| Phenanthrene                                           | mg/kg dry wt        | < 0.013 ± 0.0069    | -                    | < 0.013 ± 0.0069    | -                       |  |  |
| Pyrene                                                 | mg/kg dry wt        | < 0.013 ± 0.0068    | -                    | < 0.013 ± 0.0068    | -                       |  |  |
|                                                        | Sample Name:        | PT-BL_HA23_0.35-0.6 | PT-BL_HA24_0.35-0.6  | PT-BL_HA25_0.30-0.5 |                         |  |  |
|                                                        |                     | m                   | m                    | 5m                  |                         |  |  |
|                                                        | Lab Number:         | 2653061.62          | 2653061.64           | 2653061.66          |                         |  |  |
| Individual Tests                                       |                     |                     |                      | 1                   |                         |  |  |
| Dry Matter                                             | g/100g as rcvd      | 77.1 ± 5.0          | 76.4 ± 5.0           | -                   | -                       |  |  |
| Heavy Metals, Screen Level                             |                     |                     |                      |                     |                         |  |  |
| Total Recoverable Arsenic                              | mg/kg dry wt        | 2.3 ± 1.4           | 2.4 ± 1.4            | < 2 ± 1.4           | -                       |  |  |
| Total Recoverable Cadmium                              | mg/kg dry wt        | < 0.10 ± 0.067      | < 0.10 ± 0.067       | < 0.10 ± 0.067      | -                       |  |  |
| Total Recoverable Chromium                             | mg/kg dry wt        | 11.3 ± 2.2          | $12.3 \pm 2.4$       | 12.1 ± 2.3          | -                       |  |  |
| Total Recoverable Copper                               | mg/kg dry wt        | 5.7 ± 1.6           | 5.0 ± 1.5            | 5.0 ± 1.5           | -                       |  |  |
| Total Recoverable Lead                                 | mg/kg dry wt        | 6.8 ± 1.1           | $5.67 \pm 0.89$      | $4.97 \pm 0.79$     | -                       |  |  |
| Total Recoverable Nickel                               | mg/kg dry wt        | 7.8 ± 1.7           | 4.9 ± 1.5            | 6.5 ± 1.6           | -                       |  |  |
| Total Recoverable Zinc                                 | mg/kg dry wt        | 23.7 ± 3.2          | 10.5 ± 2.8           | 13.2 ± 2.9          | -                       |  |  |
| Polycyclic Aromatic Hydrocarb                          | oons Screening in S | Soil*               |                      |                     |                         |  |  |
| Total of Reported PAHs in Soil                         | l mg/kg dry wt      | < 0.4               | < 0.4                | -                   | -                       |  |  |
| 1-Methylnaphthalene                                    | mg/kg dry wt        | < 0.013 ± 0.032     | $< 0.013 \pm 0.032$  | -                   | -                       |  |  |
| 2-Methylnaphthalene                                    | mg/kg dry wt        | < 0.013 ± 0.032     | $< 0.013 \pm 0.032$  | -                   | -                       |  |  |
| Acenaphthylene                                         | mg/kg dry wt        | < 0.013 ± 0.0068    | < 0.013 ± 0.0067     | -                   | -                       |  |  |
| Acenaphthene                                           | mg/kg dry wt        | < 0.013 ± 0.0071    | < 0.013 ± 0.0071     | -                   | -                       |  |  |
| Anthracene                                             | mg/kg dry wt        | < 0.013 ± 0.0072    | < 0.013 ± 0.0072     | -                   | -                       |  |  |
| Benzo[a]anthracene                                     | mg/kg dry wt        | < 0.013 ± 0.0071    | < 0.013 ± 0.0071     | -                   | -                       |  |  |
| Benzo[a]pyrene (BAP)                                   | mg/kg dry wt        | < 0.013 ± 0.0067    | < 0.013 ± 0.0067     | -                   | -                       |  |  |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES | mg/kg dry wt        | < 0.04 ± 0.0097     | < 0.04 ± 0.0097      | -                   | -                       |  |  |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*             | mg/kg dry wt        | < 0.04 ± 0.0097     | < 0.04 ± 0.0097      | -                   | -                       |  |  |
| Benzo[b]fluoranthene + Benzo<br>fluoranthene           | [j] mg/kg dry wt    | < 0.013 ± 0.0070    | < 0.013 ± 0.0070     | -                   | -                       |  |  |
| Benzo[e]pyrene                                         | mg/kg dry wt        | < 0.013 ± 0.0067    | < 0.013 ± 0.0067     | -                   | -                       |  |  |
| Benzo[g,h,i]perylene                                   | mg/kg dry wt        | < 0.013 ± 0.0068    | < 0.013 ± 0.0068     | -                   | -                       |  |  |
| Benzo[k]fluoranthene                                   | mg/kg dry wt        | < 0.013 ± 0.0068    | < 0.013 ± 0.0068     | -                   | -                       |  |  |
| Chrysene                                               | mg/kg dry wt        | < 0.013 ± 0.0069    | < 0.013 ± 0.0069     | -                   | -                       |  |  |
| Dibenzo[a,h]anthracene                                 | mg/kg dry wt        | < 0.013 ± 0.0069    | < 0.013 ± 0.0068     | -                   | -                       |  |  |
| Fluoranthene                                           | mg/kg dry wt        | < 0.013 ± 0.0068    | < 0.013 ± 0.0068     | -                   | -                       |  |  |
| Fluorene                                               | mg/kg dry wt        | < 0.013 ± 0.0068    | < 0.013 ± 0.0068     | -                   | -                       |  |  |
| Indeno(1,2,3-c,d)pyrene                                | mg/kg dry wt        | < 0.013 ± 0.0068    | $< 0.013 \pm 0.0068$ | -                   | -                       |  |  |
| Naphthalene                                            | mg/kg dry wt        | $< 0.07 \pm 0.035$  | $< 0.07 \pm 0.035$   | -                   | -                       |  |  |
| Perylene                                               | mg/kg dry wt        | < 0.013 ± 0.0067    | $< 0.013 \pm 0.0067$ | -                   | -                       |  |  |
| Phenanthrene                                           | mg/kg dry wt        | < 0.013 ± 0.0069    | $< 0.013 \pm 0.0069$ | -                   | -                       |  |  |
| Pyrene                                                 | mg/kg dry wt        | < 0.013 ± 0.0069    | < 0.013 ± 0.0068     | -                   | -                       |  |  |

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro\_To\_UOM.pdf, or contact the laboratory.

## **Summary of Methods**

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

| Sample Type: Soil                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                                                                                         |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|
| Test                                                    | Method Description                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default Detection Limit   | Sample No                                                                                               |
| Environmental Solids Sample Drying*                     | Air dried at 35°C<br>Used for sample preparation.<br>May contain a residual moisture content of 2-5%.                                                                                                                                                                                                                                                                                                                                                      | -                         | 1, 3-6, 9,<br>11-13,<br>15-18, 20,<br>22, 25,<br>37-38,<br>40-41,<br>43-52, 54,<br>57-60, 62,<br>64, 66 |
| Total of Reported PAHs in Soil                          | Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.                                                                                                                                                                                                                                                                                                                                                                                      | 0.03 mg/kg dry wt         | 1, 3-6, 9,<br>11-13,<br>15-18, 22,<br>25, 37-38,<br>40-41,<br>50-52, 54,<br>57, 59, 62,<br>64           |
| Heavy Metals, Screen Level                              | Dried sample, < 2mm fraction. Nitric/Hydrochloric acid<br>digestion US EPA 200.2. Complies with NES Regulations. ICP-<br>MS screen level, interference removal by Kinetic Energy<br>Discrimination if required.                                                                                                                                                                                                                                            | 0.10 - 4 mg/kg dry wt     | 1, 3-6, 9,<br>11-13,<br>15-18, 20,<br>22, 25,<br>37-38,<br>40-41,<br>43-52, 54,<br>57-60, 62,<br>64, 66 |
| Organochlorine Pesticides Screening in Soil             | Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.                                                                                                                                                                                                                                                                                                                                                       | 0.010 - 0.06 mg/kg dry wt | 6, 9, 13, 22,<br>25, 36-38,<br>43-52,<br>58-59                                                          |
| Polycyclic Aromatic Hydrocarbons<br>Screening in Soil*  | Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.                                                                                                                                                                                                                                                                                                                                                        | 0.002 - 0.05 mg/kg dry wt | 1, 3-6, 9,<br>11-13,<br>15-18, 22,<br>25, 37-38,<br>40-41,<br>50-52, 54,<br>57, 59, 62,<br>64           |
| Dry Matter (Env)                                        | Dried at 103°C for 4-22hr (removes 3-5% more water than air<br>dry), gravimetry. (Free water removed before analysis, non-soil<br>objects such as sticks, leaves, grass and stones also removed).<br>US EPA 3550.                                                                                                                                                                                                                                          | 0.10 g/100g as rcvd       | 1, 3-6, 9,<br>11-13,<br>15-18, 22,<br>25, 36-38,<br>40-41,<br>43-52, 54,<br>57-59, 62,<br>64            |
| Benzo[a]pyrene Potency Equivalency<br>Factor (PEF) NES* | BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment. | 0.002 mg/kg dry wt        | 1, 3-6, 9,<br>11-13,<br>15-18, 22,<br>25, 37-38,<br>40-41,<br>50-52, 54,<br>57, 59, 62,<br>64           |
| Benzo[a]pyrene Toxic Equivalence<br>(TEF)*              | Benzo[a]pyrene Toxic Equivalence (TEF) calculated from;<br>Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b)<br>fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x<br>0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene<br>x 0.1. Guidelines for assessing and managing contaminated<br>gasworks sites in New Zealand (GMG) (MfE, 1997).                                                                                    | 0.002 mg/kg dry wt        | 1, 3-6, 9,<br>11-13,<br>15-18, 22,<br>25, 37-38,<br>40-41,<br>50-52, 54,<br>57, 59, 62,<br>64           |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 14-Jul-2021 and 15-Jul-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

unins

Kim Harrison MSc Client Services Manager - Environmental



Hill Laboratories R J Hill Laboratories Limited 101C Waterloo Road TRIED, TESTED AND TRUSTED

Hornby

T 0508 HILL LAB (44 555 22)

Page 1 of 6

Т +64 7 858 2000 E mail@hill-labs.co.nz

Christchurch 8042 New Zealand W www.hill-laboratories.com

| ( artiticata          | OT A | nan |      |
|-----------------------|------|-----|------|
| <b>U</b> GI III U AIG |      |     | 1010 |
|                       |      |     |      |

| Client:      | Tonkin & Taylor     |                  | Lab              | No:              | 2653178          | A2Pv2            |
|--------------|---------------------|------------------|------------------|------------------|------------------|------------------|
| Contact:     | Rudolph Kotze       |                  | Dat              | e Received:      | 08-Jul-2021      |                  |
|              | C/- Tonkin & Taylor |                  | Dat              | e Reported:      | 16-Jul-2021      |                  |
|              | PO Box 5271         |                  | Que              | ote No:          | 80842            |                  |
|              | Auckland 1141       |                  | Ord              | ler No:          | 1014358.5000     |                  |
|              |                     |                  | Clie             | ent Reference:   | 1014358.5000     |                  |
|              |                     |                  | Add              | d. Client Ref:   | COC1007526       |                  |
|              |                     |                  | Sub              | omitted By:      | Xiao Jin         |                  |
| Sample Ty    | rpe: Soil           |                  |                  |                  |                  |                  |
|              | Sample Name:        | PT-BL_HA10_0.0   | PT-BL_HA11_0.0   | PT-BL_HA12_0.0   | PT-BL_HA14_0.0   | PT-BL_HA15_0.0   |
|              |                     | 0m-0.10m         | 0m-0.10m         | 0m-0.10m         | 0m-0.20m         | 0m-0.05m         |
|              |                     | 06-Jul-2021 1:15 | 06-Jul-2021 1:27 | 06-Jul-2021 2:06 | 06-Jul-2021 2:28 | 06-Jul-2021 2:42 |
|              |                     | pm               | pm               | pm               | pm               | pm               |
|              | Lab Number:         | 2653178.1        | 2653178.3        | 2653178.5        | 2653178.11       | 2653178.13       |
| Asbestos Pre | esence / Absence    | Asbestos NOT     |

|                                                                     | uniber.  |                            |                            | 20000.0                    |                            |                            |
|---------------------------------------------------------------------|----------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Asbestos Presence / Absence                                         |          | Asbestos NOT detected.     |
| Description of Asbestos Form                                        |          | -                          | -                          | -                          | -                          | -                          |
| Asbestos in ACM as % of Total<br>Sample*                            | % w/w    | < 0.001                    | < 0.001                    | < 0.001                    | < 0.001                    | < 0.001                    |
| Combined Fibrous Asbestos +<br>Asbestos Fines as % of Total Sample* | % w/w    | < 0.001                    | < 0.001                    | < 0.001                    | < 0.001                    | < 0.001                    |
| Asbestos as Fibrous Asbestos as % of Total Sample*                  | % w/w    | < 0.001                    | < 0.001                    | < 0.001                    | < 0.001                    | < 0.001                    |
| Asbestos as Asbestos Fines as % of<br>Total Sample*                 | % w/w    | < 0.001                    | < 0.001                    | < 0.001                    | < 0.001                    | < 0.001                    |
| As Received Weight                                                  | g        | 770.9                      | 813.0                      | 766.5                      | 770.1                      | 870.2                      |
| Dry Weight                                                          | g        | 595.4                      | 644.8                      | 621.5                      | 620.2                      | 705.8                      |
| Moisture                                                            | %        | 23                         | 21                         | 19                         | 19                         | 19                         |
|                                                                     |          |                            |                            |                            |                            |                            |
| Sample Fraction >10mm                                               | g dry wt | < 0.1                      | < 0.1                      | < 0.1                      | < 0.1                      | < 0.1                      |
| Sample Fraction <10mm to >2mm                                       | g dry wt | 86.7                       | 37.9                       | 50.4                       | 59.4                       | 199.2                      |
| Sample Fraction <2mm                                                | g dry wt | 507.0                      | 606.2                      | 570.0                      | 559.6                      | 504.6                      |
| <2mm Subsample Weight                                               | g dry wt | 59.2                       | 56.8                       | 55.9                       | 55.3                       | 52.6                       |
| Weight of Asbestos in ACM (Non-<br>Friable)                         | g dry wt | < 0.00001                  | < 0.00001                  | < 0.00001                  | < 0.00001                  | < 0.00001                  |
| Weight of Asbestos as Fibrous<br>Asbestos (Friable)                 | g dry wt | < 0.00001                  | < 0.00001                  | < 0.00001                  | < 0.00001                  | < 0.00001                  |
| Weight of Asbestos as Asbestos<br>Fines (Friable)*                  | g dry wt | < 0.00001                  | < 0.00001                  | < 0.00001                  | < 0.00001                  | < 0.00001                  |
| Sample                                                              | Name:    | PT-BL_HA16_0.0<br>0m-0.10m | PT-BL_HA17_0.0<br>0m-0.10m | PT-BL_HA18_0.0<br>0m-0.10m | PT-BL_HA19_0.0<br>0m-0.30m | PT-BL_HA20_0.0<br>0m-0.30m |
|                                                                     |          | 06-Jul-2021 2:51           | 06-Jul-2021 3:08           | 06-Jul-2021 3:29           | 06-Jul-2021 3:38           | 06-Jul-2021 3:51           |

|                                                                     |        | 0111 0.10111           | 0111 0.10111           | 0111 0.10111           | 0111 0.00111           | 0111 0.00111           |
|---------------------------------------------------------------------|--------|------------------------|------------------------|------------------------|------------------------|------------------------|
|                                                                     |        | 06-Jul-2021 2:51       | 06-Jul-2021 3:08       | 06-Jul-2021 3:29       | 06-Jul-2021 3:38       | 06-Jul-2021 3:51       |
|                                                                     |        | pm                     | pm                     | pm                     | pm                     | pm                     |
| Lab Nu                                                              | umber: | 2653178.15             | 2653178.17             | 2653178.18             | 2653178.20             | 2653178.22             |
| Asbestos Presence / Absence                                         |        | Asbestos NOT detected. |
| Description of Asbestos Form                                        |        | -                      | -                      | -                      | -                      | -                      |
| Asbestos in ACM as % of Total<br>Sample*                            | % w/w  | < 0.001                | < 0.001                | < 0.001                | < 0.001                | < 0.001                |
| Combined Fibrous Asbestos +<br>Asbestos Fines as % of Total Sample* | % w/w  | < 0.001                | < 0.001                | < 0.001                | < 0.001                | < 0.001                |
| Asbestos as Fibrous Asbestos as % of Total Sample*                  | % w/w  | < 0.001                | < 0.001                | < 0.001                | < 0.001                | < 0.001                |
| Asbestos as Asbestos Fines as % of<br>Total Sample*                 | % w/w  | < 0.001                | < 0.001                | < 0.001                | < 0.001                | < 0.001                |



This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked \* or any comments and interpretations, which are not accredited.

| Sample Type: Soil                                                   |          |                              |                               |                               |                                                      |                                                      |
|---------------------------------------------------------------------|----------|------------------------------|-------------------------------|-------------------------------|------------------------------------------------------|------------------------------------------------------|
| Sample                                                              | Name:    | PT-BL_HA16_0.0               | PT-BL_HA17_0.0                | PT-BL_HA18_0.0                | PT-BL_HA19_0.0                                       | PT-BL_HA20_0.0                                       |
| -                                                                   |          | 0m-0.10m                     | 0m-0.10m                      | 0m-0.10m                      | 0m-0.30m                                             | 0m-0.30m                                             |
|                                                                     |          | 06-Jul-2021 2:51             | 06-Jul-2021 3:08              | 06-Jul-2021 3:29              | 06-Jul-2021 3:38                                     | 06-Jul-2021 3:51                                     |
| Lab N                                                               | lumber:  | 2653178.15                   | 2653178.17                    | 2653178.18                    | 2653178.20                                           | 2653178.22                                           |
| As Received Weight                                                  | g        | 695.4                        | 891.8                         | 667.1                         | 577.2                                                | 738.9                                                |
| Dry Weight                                                          | q        | 542.4                        | 792.4                         | 495.0                         | 379.9                                                | 572.3                                                |
| Moisture                                                            | %        | 22                           | 11                            | 26                            | 34                                                   | 23                                                   |
|                                                                     |          |                              |                               |                               |                                                      |                                                      |
| Sample Fraction >10mm                                               | g dry wt | < 0.1                        | 338.0                         | < 0.1                         | < 0.1                                                | < 0.1                                                |
| Sample Fraction <10mm to >2mm                                       | g dry wt | 40.4                         | 249.5                         | 2.5                           | < 0.1                                                | 20.2                                                 |
| Sample Fraction <2mm                                                | g dry wt | 500.4                        | 204.3                         | 491.9                         | 379.8                                                | 551.5                                                |
| <2mm Subsample Weight                                               | g dry wt | 51.6                         | 52.3                          | 55.8                          | 52.1                                                 | 57.2                                                 |
| Weight of Asbestos in ACM (Non-<br>Friable)                         | g dry wt | < 0.00001                    | < 0.00001                     | < 0.00001                     | < 0.00001                                            | < 0.00001                                            |
| Weight of Asbestos as Fibrous<br>Asbestos (Friable)                 | g dry wt | < 0.00001                    | < 0.00001                     | < 0.00001                     | < 0.00001                                            | < 0.00001                                            |
| Weight of Asbestos as Asbestos<br>Fines (Friable)*                  | g dry wt | < 0.00001                    | < 0.00001                     | < 0.00001                     | < 0.00001                                            | < 0.00001                                            |
| Sample                                                              | Name     | PT-BL HA21 02                | PT-BL HA07 0.0                | PT-BL HA08 0.5                | PT-BL HA09 0.0                                       | PT-BL HA22 0.0                                       |
| Gample                                                              | iname.   | 0m-0.60m<br>06-Jul-2021 4:06 | 0m-0.10m<br>06-Jul-2021 12:35 | 0m-0.60m<br>06-Jul-2021 12:46 | 0m-0.10m<br>06-Jul-2021 1:03                         | -0.10m                                               |
| Lab N                                                               | lumber:  | 2653178.25                   | 2653178.26                    | 2653178.28                    | 2653178.29                                           | 2653178.41                                           |
| Asbestos Presence / Absence                                         |          | Asbestos NOT                 | Asbestos NOT                  | Asbestos NOT                  | Asbestos NOT                                         | Asbestos NOT                                         |
| Description of Asbestos Form                                        |          | detected.                    | detected.                     | detected.                     | detected.                                            | detected.                                            |
| Asbestos in ACM as % of Total<br>Sample*                            | % w/w    | < 0.001                      | < 0.001                       | < 0.001                       | < 0.001                                              | < 0.001                                              |
| Combined Fibrous Asbestos +<br>Asbestos Fines as % of Total Sample* | % w/w    | < 0.001                      | < 0.001                       | < 0.001                       | < 0.001                                              | < 0.001                                              |
| Asbestos as Fibrous Asbestos as % of<br>Total Sample*               | % w/w    | < 0.001                      | < 0.001                       | < 0.001                       | < 0.001                                              | < 0.001                                              |
| Asbestos as Asbestos Fines as % of<br>Total Sample*                 | % w/w    | < 0.001                      | < 0.001                       | < 0.001                       | < 0.001                                              | < 0.001                                              |
| As Received Weight                                                  | g        | 747.1                        | 709.2                         | 734.8                         | 718.0                                                | 743.4                                                |
| Dry Weight                                                          | g        | 609.8                        | 589.9                         | 613.3                         | 543.5                                                | 628.0                                                |
| Moisture                                                            | %        | 18                           | 17                            | 17                            | 24                                                   | 16                                                   |
|                                                                     |          |                              |                               |                               |                                                      |                                                      |
| Sample Fraction >10mm                                               | g dry wt | < 0.1                        | 172.8                         | 114.6                         | 9.8                                                  | 101.6                                                |
| Sample Fraction <10mm to >2mm                                       | g dry wt | 40.4                         | 212.4                         | 223.2                         | 32.3                                                 | 308.7                                                |
| Sample Fraction <2mm                                                | g dry wt | 568.5                        | 204.4                         | 273.7                         | 500.6                                                | 216.2                                                |
| <2mm Subsample Weight                                               | g dry wt | 58.7                         | 54.3                          | 52.5                          | 56.5                                                 | 52.1                                                 |
| Weight of Asbestos in ACM (Non-<br>Friable)                         | g dry wt | < 0.00001                    | < 0.00001                     | < 0.00001                     | < 0.00001                                            | < 0.00001                                            |
| Weight of Asbestos as Fibrous<br>Asbestos (Friable)                 | g dry wt | < 0.00001                    | < 0.00001                     | < 0.00001                     | < 0.00001                                            | < 0.00001                                            |
| Weight of Asbestos as Asbestos<br>Fines (Friable)*                  | g dry wt | < 0.00001                    | < 0.00001                     | < 0.00001                     | < 0.00001                                            | < 0.00001                                            |
| Sample                                                              | Name:    | PT-BL_HA23_0.3<br>5-0.60m    | PT-BL_HA24_0.3<br>5-0.60m     | PT-BL_HA25_0.3<br>0-0.55m     | PT-BL_HA01_0.0<br>0m-0.10m<br>06-Jul-2021 9:34<br>am | PT-BL_HA02_0.0<br>0m-0.10m<br>06-Jul-2021 9:56<br>am |
| Lab N                                                               | lumber:  | 2653178.43                   | 2653178.45                    | 2653178.47                    | 2653178.48                                           | 2653178.50                                           |
| Asbestos Presence / Absence                                         |          | Asbestos NOT detected.       | Asbestos NOT detected.        | Asbestos NOT detected.        | Asbestos NOT detected.                               | Asbestos NOT detected.                               |
| Description of Asbestos Form                                        |          | -                            | -                             | -                             | -                                                    | -                                                    |
| Asbestos in ACM as % of Total<br>Sample*                            | % w/w    | < 0.001                      | < 0.001                       | < 0.001                       | < 0.001                                              | < 0.001                                              |
| Combined Fibrous Asbestos +<br>Asbestos Fines as % of Total Sample* | % w/w    | < 0.001                      | < 0.001                       | < 0.001                       | < 0.001                                              | < 0.001                                              |
| Asbestos as Fibrous Asbestos as % of Total Sample*                  | % w/w    | < 0.001                      | < 0.001                       | < 0.001                       | < 0.001                                              | < 0.001                                              |
| Asbestos as Asbestos Fines as % of<br>Total Sample*                 | % w/w    | < 0.001                      | < 0.001                       | < 0.001                       | < 0.001                                              | < 0.001                                              |

| Sample Type: Soil                                                   |          |                                                       |                                                       |                                                       |                                                       |                                                      |  |
|---------------------------------------------------------------------|----------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|--|
| Sample                                                              | Name:    | PT-BL_HA23_0.3<br>5-0.60m                             | PT-BL_HA24_0.3<br>5-0.60m                             | PT-BL_HA25_0.3<br>0-0.55m                             | PT-BL_HA01_0.0<br>0m-0.10m<br>06-Jul-2021 9:34<br>am  | PT-BL_HA02_0.0<br>0m-0.10m<br>06-Jul-2021 9:56<br>am |  |
| Lab N                                                               | lumber:  | 2653178.43                                            | 2653178.45                                            | 2653178.47                                            | 2653178.48                                            | 2653178.50                                           |  |
| As Received Weight                                                  | g        | 727.6                                                 | 572.6                                                 | 640.6                                                 | 640.3                                                 | 724.1                                                |  |
| Dry Weight                                                          | g        | 588.4                                                 | 453.2                                                 | 509.3                                                 | 475.2                                                 | 523.8                                                |  |
| Moisture                                                            | %        | 19                                                    | 21                                                    | 20                                                    | 26                                                    | 28                                                   |  |
|                                                                     |          |                                                       |                                                       |                                                       |                                                       |                                                      |  |
| Sample Fraction >10mm                                               | g dry wt | < 0.1                                                 | < 0.1                                                 | < 0.1                                                 | < 0.1                                                 | 18.6                                                 |  |
| Sample Fraction <10mm to >2mm                                       | g dry wt | 143.0                                                 | 129.0                                                 | 99.6                                                  | 94.9                                                  | 72.7                                                 |  |
| Sample Fraction <2mm                                                | g dry wt | 443.6                                                 | 322.7                                                 | 408.0                                                 | 379.4                                                 | 430.8                                                |  |
| <2mm Subsample Weight                                               | g dry wt | 57.7                                                  | 54.8                                                  | 58.7                                                  | 50.6                                                  | 55.6                                                 |  |
| Weight of Asbestos in ACM (Non-<br>Friable)                         | g dry wt | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | < 0.00001                                            |  |
| Weight of Asbestos as Fibrous<br>Asbestos (Friable)                 | g dry wt | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | < 0.00001                                            |  |
| Weight of Asbestos as Asbestos<br>Fines (Friable)*                  | g dry wt | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | < 0.00001                                            |  |
| Sample                                                              | Name:    | PT-BL_HA03_0.4<br>0m-0.65m<br>06-Jul-2021 10:18<br>am | PT-BL_HA04_0.0<br>0m-0.10m<br>06-Jul-2021 10:43<br>am | PT-BL_HA05_0.0<br>0m-0.15m<br>06-Jul-2021 10:45<br>am | PT-BL_HA06_0.5<br>0m-0.60m<br>06-Jul-2021 12:20<br>pm |                                                      |  |
| Lab N                                                               | lumber:  | 2653178.53                                            | 2653178.54                                            | 2653178.56                                            | 2653178.59                                            |                                                      |  |
| Asbestos Presence / Absence                                         |          | Asbestos NOT<br>detected.                             | Asbestos NOT<br>detected.                             | Asbestos NOT<br>detected.                             | Asbestos NOT<br>detected.                             | -                                                    |  |
| Description of Asbestos Form                                        |          | -                                                     | -                                                     | -                                                     | -                                                     | -                                                    |  |
| Asbestos in ACM as % of Total<br>Sample*                            | % w/w    | < 0.001                                               | < 0.001                                               | < 0.001                                               | < 0.001                                               | -                                                    |  |
| Combined Fibrous Asbestos +<br>Asbestos Fines as % of Total Sample* | % w/w    | < 0.001                                               | < 0.001                                               | < 0.001                                               | < 0.001                                               | -                                                    |  |
| Asbestos as Fibrous Asbestos as % of<br>Total Sample*               | % w/w    | < 0.001                                               | < 0.001                                               | < 0.001                                               | < 0.001                                               | -                                                    |  |
| Asbestos as Asbestos Fines as % of<br>Total Sample*                 | % w/w    | < 0.001                                               | < 0.001                                               | < 0.001                                               | < 0.001                                               | -                                                    |  |
| As Received Weight                                                  | g        | 669.5                                                 | 657.7                                                 | 684.6                                                 | 499.2                                                 | -                                                    |  |
| Dry Weight                                                          | g        | 518.0                                                 | 459.6                                                 | 484.9                                                 | 400.9                                                 | -                                                    |  |
| Moisture                                                            | %        | 23                                                    | 30                                                    | 29                                                    | 20                                                    | -                                                    |  |
| Sample Fraction >10mm                                               | a dry wt | 95.8                                                  | < 0.1                                                 | < 0.1                                                 | 28.1                                                  |                                                      |  |
| Sample Fraction $< 10$ mm to $>2$ mm                                | a dry wt | 249.9                                                 | 24                                                    | < 0.1                                                 | 130.1                                                 |                                                      |  |
| Sample Fraction < 2mm                                               | a dry wt | 171.0                                                 | 457.0                                                 | 483.8                                                 | 242.7                                                 |                                                      |  |
| <2mm Subsample Weight                                               | a dry wt | 55.6                                                  | 53.2                                                  | 59.6                                                  | 53.1                                                  | _                                                    |  |
| Weight of Asbestos in ACM (Non-<br>Friable)                         | g dry wt | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | -                                                    |  |
| Weight of Asbestos as Fibrous<br>Asbestos (Friable)                 | g dry wt | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | -                                                    |  |
| Weight of Asbestos as Asbestos<br>Fines (Friable)*                  | g dry wt | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | < 0.00001                                             | -                                                    |  |

#### Glossary of Terms

• Loose fibres (Minor) - One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.

• Loose fibres (Major) - Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.

ACM Debris (Minor) - One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.</li>
ACM Debris (Major) - Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis</li>

by stereo microscope/PLM.

Unknown Mineral Fibres - Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
 Trace - Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

#### Please refer to the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos in Soil. https://www.branz.co.nz/asbestos

The following assumptions have been made:

1. Asbestos Fines in the <2mm fraction, after homogenisation, is evenly distributed throughout the fraction

2. The weight of asbestos in the sample is unaffected by the ashing process.

Results are representative of the sample provided to Hill Laboratories only.

### **Summary of Methods**

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

| Sample Type: Soil                                         |                                                                                                                                                                |                         |                                                                                                                |  |  |  |  |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test                                                      | Method Description                                                                                                                                             | Default Detection Limit | Sample No                                                                                                      |  |  |  |  |  |
| Individual Tests                                          |                                                                                                                                                                |                         |                                                                                                                |  |  |  |  |  |
| Wgt of Asbestos as Asbestos Fines in <10mm >2mm Fraction* | Measurement on analytical balance, from the <10mm >2mm<br>Fraction. Analysed at Hill Laboratories - Asbestos; 101c<br>Waterloo Road, Christchurch.             | 0.00001 g dry wt        | 1, 3, 5, 11,<br>13, 15,<br>17-18, 20,<br>22, 25-26,<br>28-29, 41,<br>43, 45,<br>47-48, 50,<br>53-54, 56,<br>59 |  |  |  |  |  |
| New Zealand Guidelines Semi Quantitati                    | ve Asbestos in Soil                                                                                                                                            |                         |                                                                                                                |  |  |  |  |  |
| As Received Weight                                        | Measurement on analytical balance. Analysed at Hill<br>Laboratories - Asbestos; 101c Waterloo Road, Christchurch.                                              | 0.1 g                   | 1, 3, 5, 11,<br>13, 15,<br>17-18, 20,<br>22, 25-26,<br>28-29, 41,<br>43, 45,<br>47-48, 50,<br>53-54, 56,<br>59 |  |  |  |  |  |
| Dry Weight                                                | Sample dried at 100 to 105°C, measurement on balance.<br>Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road,<br>Christchurch.                        | 0.1 g                   |                                                                                                                |  |  |  |  |  |
| Moisture                                                  | Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100.                                                      | 1 %                     | 1, 3, 5, 11,<br>13, 15,<br>17-18, 20,<br>22, 25-26,<br>28-29, 41,<br>43, 45,<br>47-48, 50,<br>53-54, 56,<br>59 |  |  |  |  |  |
| Sample Fraction >10mm                                     | Sample dried at 100 to 105°C, 10mm sieve, measurement on<br>analytical balance. Analysed at Hill Laboratories - Asbestos;<br>101c Waterloo Road, Christchurch. | 0.1 g dry wt            |                                                                                                                |  |  |  |  |  |

| Sample Type: Soil                                     |                                                                                                                                                                                                                                                                                                                     |                         |                                                                                                                                               |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Test                                                  | Method Description                                                                                                                                                                                                                                                                                                  | Default Detection Limit | Sample No                                                                                                                                     |
| Sample Fraction <10mm to >2mm                         | Sample dried at 100 to 105°C, 10mm and 2mm sieve,<br>measurement on analytical balance. Analysed at Hill<br>Laboratories - Asbestos; 101c Waterloo Road, Christchurch.                                                                                                                                              | 0.1 g dry wt            |                                                                                                                                               |
| Sample Fraction <2mm                                  | Sample dried at 100 to 105°C, 2mm sieve, measurement on<br>analytical balance. Analysed at Hill Laboratories - Asbestos;<br>101c Waterloo Road, Christchurch.                                                                                                                                                       | 0.1 g dry wt            | 1, 3, 5, 11,<br>13, 15,<br>17-18, 20,<br>22, 25-26,<br>28-29, 41,<br>43, 45,<br>47-48, 50,<br>53-54, 56,<br>59                                |
| Asbestos Presence / Absence                           | Examination using Low Powered Stereomicroscopy followed by<br>'Polarised Light Microscopy' including 'Dispersion Staining<br>Techniques'. Analysed at Hill Laboratories - Asbestos; 101c<br>Waterloo Road, Christchurch. AS 4964 (2004) - Method for the<br>Qualitative Identification of Asbestos in Bulk Samples. | 0.01%                   | $\begin{array}{c} 1, 3, 5, 11, \\ 13, 15, \\ 17-18, 20, \\ 22, 25-26, \\ 28-29, 41, \\ 43, 45, \\ 47-48, 50, \\ 53-54, 56, \\ 59 \end{array}$ |
| Description of Asbestos Form                          | Description of asbestos form and/or shape if present.                                                                                                                                                                                                                                                               | -                       |                                                                                                                                               |
| Weight of Asbestos in ACM (Non-<br>Friable)           | Measurement on analytical balance, from the >10mm Fraction.<br>Weight of asbestos based on assessment of ACM form.<br>Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road,<br>Christchurch. New Zealand Guidelines for Assessing and<br>Managing Asbestos in Soil, November 2017.                          | 0.00001 g dry wt        |                                                                                                                                               |
| Asbestos in ACM as % of Total<br>Sample*              | Calculated from weight of asbestos in ACM and sample dry<br>weight. New Zealand Guidelines for Assessing and Managing<br>Asbestos in Soil, November 2017.                                                                                                                                                           | 0.001 % w/w             | 1, 3, 5, 11,<br>13, 15,<br>17-18, 20,<br>22, 25-26,<br>28-29, 41,<br>43, 45,<br>47-48, 50,<br>53-54, 56,<br>59                                |
| Weight of Asbestos as Fibrous<br>Asbestos (Friable)   | Measurement on analytical balance, from the >10mm Fraction.<br>Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road,<br>Christchurch. New Zealand Guidelines for Assessing and<br>Managing Asbestos in Soil, November 2017.                                                                                 | 0.00001 g dry wt        |                                                                                                                                               |
| Asbestos as Fibrous Asbestos as % of<br>Total Sample* | Calculated from weight of fibrous asbestos and sample dry<br>weight. New Zealand Guidelines for Assessing and Managing<br>Asbestos in Soil, November 2017.                                                                                                                                                          | 0.001 % w/w             |                                                                                                                                               |

| Sample Type: Soil                                                   |                                                                                                                                                                                                                                      |                         |                                                                                                                            |  |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test                                                                | Method Description                                                                                                                                                                                                                   | Default Detection Limit | Sample No                                                                                                                  |  |  |  |  |
| Weight of Asbestos as Asbestos Fines<br>(Friable)*                  | Measurement on analytical balance, from the <10mm Fractions.<br>Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road,<br>Christchurch. New Zealand Guidelines for Assessing and<br>Managing Asbestos in Soil, November 2017. | 0.00001 g dry wt        | $\begin{matrix} 1,3,5,11,\\ 13,15,\\ 17-18,20,\\ 22,25-26,\\ 28-29,41,\\ 43,45,\\ 47-48,50,\\ 53-54,56,\\ 59 \end{matrix}$ |  |  |  |  |
| Asbestos as Asbestos Fines as % of<br>Total Sample*                 | Calculated from weight of asbestos fines and sample dry weight.<br>New Zealand Guidelines for Assessing and Managing Asbestos<br>in Soil, November 2017.                                                                             | 0.001 % w/w             |                                                                                                                            |  |  |  |  |
| Combined Fibrous Asbestos +<br>Asbestos Fines as % of Total Sample* | Calculated from weight of fibrous asbestos plus asbestos fines<br>and sample dry weight. New Zealand Guidelines for Assessing<br>and Managing Asbestos in Soil, November 2017.                                                       | 0.001 % w/w             |                                                                                                                            |  |  |  |  |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 13-Jul-2021 and 16-Jul-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Dexter Paguirigan Dip Chem Engineering Tech Laboratory Technician - Asbestos



Hill Laboratories TRIED, TESTED AND TRUSTED Private Bag 3205 Hamilton 3240 New Zealand

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205

T 0508 HILL LAB (44 555 22) Т

+64 7 858 2000

E mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 4

| Contiticato | nalv |  |
|-------------|------|--|
|             |      |  |
|             |      |  |

| Client:  | Tonkin & Taylor     | Lab No:           | 2779567       | SPv1 |
|----------|---------------------|-------------------|---------------|------|
| Contact: | Rudolph Kotze       | Date Received:    | 25-Nov-2021   |      |
|          | C/- Tonkin & Taylor | Date Reported:    | 06-Dec-2021   |      |
|          | PO Box 5271         | Quote No:         | 80842         |      |
|          | Auckland 1141       | Order No:         | 1014358.5000  |      |
|          |                     | Client Reference: | 1014358.5000  |      |
|          |                     | Submitted By:     | Rudolph Kotze |      |

### Sample Type: Soil

| oampie Type. Oon             |                  |                            |                           |                             |                             |                           |
|------------------------------|------------------|----------------------------|---------------------------|-----------------------------|-----------------------------|---------------------------|
|                              | Sample Name:     | HA103 - 0.5<br>23-Nov-2021 | Dup1 - 0.5<br>23-Nov-2021 | HA103A - 0.0<br>23-Nov-2021 | HA103A - 0.5<br>23-Nov-2021 | Dup2 - 0.5<br>23-Nov-2021 |
|                              | Lab Number:      | 2779567.2                  | 2779567.3                 | 2779567.4                   | 2779567.5                   | 2779567.6                 |
| Individual Tests             |                  |                            |                           |                             |                             |                           |
| Dry Matter                   | g/100g as rcvd   | 80                         | 79                        | 80                          | 81                          | 81                        |
| Heavy Metals, Screen Level   |                  |                            |                           |                             |                             |                           |
| Total Recoverable Arsenic    | mg/kg dry wt     | 5                          | 5                         | -                           | 4                           | 3                         |
| Total Recoverable Cadmium    | mg/kg dry wt     | < 0.10                     | < 0.10                    | -                           | < 0.10                      | < 0.10                    |
| Total Recoverable Chromium   | mg/kg dry wt     | 13                         | 15                        | -                           | 20                          | 14                        |
| Total Recoverable Copper     | mg/kg dry wt     | 9                          | 10                        | -                           | 12                          | 10                        |
| Total Recoverable Lead       | mg/kg dry wt     | 6.4                        | 7.4                       | -                           | 6.9                         | 6.7                       |
| Total Recoverable Nickel     | mg/kg dry wt     | 10                         | 13                        | -                           | 17                          | 11                        |
| Total Recoverable Zinc       | mg/kg dry wt     | 24                         | 32                        | -                           | 37                          | 28                        |
| Organochlorine Pesticides So | creening in Soil |                            |                           |                             |                             |                           |
| Aldrin                       | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| alpha-BHC                    | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| beta-BHC                     | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| delta-BHC                    | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| gamma-BHC (Lindane)          | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| cis-Chlordane                | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| trans-Chlordane              | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| 2,4'-DDD                     | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| 4,4'-DDD                     | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| 2,4'-DDE                     | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| 4,4'-DDE                     | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| 2,4'-DDT                     | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| 4,4'-DDT                     | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Total DDT Isomers            | mg/kg dry wt     | < 0.08                     | -                         | < 0.08                      | -                           | -                         |
| Dieldrin                     | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Endosulfan I                 | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Endosulfan II                | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Endosulfan sulphate          | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Endrin                       | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Endrin aldehyde              | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Endrin ketone                | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Heptachlor                   | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Heptachlor epoxide           | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Hexachlorobenzene            | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |
| Methoxychlor                 | mg/kg dry wt     | < 0.013                    | -                         | < 0.012                     | -                           | -                         |



CCREDITED

TING LABORATO

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked \* or any comments and interpretations, which are not accredited.

| Sample Type: Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |                                                                                                                                |                                                               |                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ample Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HA103 - 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dup1 - 0.5                                                                       | HA103A - 0.0                                                                                                                   | HA103A - 0.5                                                  | Dup2 - 0.5                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23-Nov-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23-Nov-2021                                                                      | 23-Nov-2021                                                                                                                    | 23-Nov-2021                                                   | 23-Nov-2021                                                                                 |
| Polycyclic Aromatic Hydrocarbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lab Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2779507.2<br>oil*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2119501.3                                                                        | 2779567.4                                                                                                                      | 2779507.5                                                     | 2779507.0                                                                                   |
| Total of Reported PAHs in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ma/ka day wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.3                                                                            | _                                                                                                                              | < 0.3                                                         | < 0.3                                                                                       |
| 1-Methylnanhthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          |                                                                                                                                | < 0.013                                                       | < 0.012                                                                                     |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          |                                                                                                                                | < 0.013                                                       | < 0.012                                                                                     |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          |                                                                                                                                | < 0.013                                                       | < 0.012                                                                                     |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | _                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | _                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Benzolalanthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          |                                                                                                                                | < 0.013                                                       | < 0.012                                                                                     |
| Benzo[a]ovrene (BAP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          |                                                                                                                                | < 0.013                                                       | < 0.012                                                                                     |
| Benzo[a]pyrene (b/tr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.03                                                                           |                                                                                                                                | < 0.03                                                        | < 0.03                                                                                      |
| Equivalency Factor (PEF) NES*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ma/ka dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.03                                                                           |                                                                                                                                | < 0.03                                                        | < 0.03                                                                                      |
| Equivalence (TEF)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.03                                                                           |                                                                                                                                | < 0.03                                                        | < 0.03                                                                                      |
| fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg dry wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Benzolejpyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Benzo[g,h,ı]perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Benzo[k]fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Dibenzola, hjanthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Indeno(1,2,3-c,d)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.07                                                                           | -                                                                                                                              | < 0.07                                                        | < 0.06                                                                                      |
| Perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.013                                                                          | -                                                                                                                              | < 0.013                                                       | < 0.012                                                                                     |
| Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ample Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HA103B - 0.5<br>23-Nov-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HA103C - 0.0<br>23-Nov-2021                                                      | HA103C - 0.5<br>23-Nov-2021                                                                                                    |                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |                                                                                                                                |                                                               |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lab Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2779567.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2779567.9                                                                        | 2779567.10                                                                                                                     |                                                               |                                                                                             |
| Individual Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lab Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2779567.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2779567.9                                                                        | 2779567.10                                                                                                                     |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g/100g as rcvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2779567.8<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2779567.9<br>81                                                                  | 2779567.10<br>80                                                                                                               | -                                                             | -                                                                                           |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lab Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2779567.8<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2779567.9<br>81                                                                  | 2779567.10<br>80                                                                                                               | -                                                             | -                                                                                           |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.8<br>81<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2779567.9<br>81<br>-                                                             | 2779567.10<br>80<br>5                                                                                                          | -                                                             | -                                                                                           |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2779567.9<br>81<br>-<br>-                                                        | 2779567.10<br>80<br>5<br>< 0.10                                                                                                | -<br>-<br>-                                                   | -<br>-<br>-                                                                                 |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium                                                                                                                                                                                                                                                                                                                                                                                                               | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2779567.9<br>81<br>-<br>-<br>-                                                   | 2779567.10<br>80<br>5<br>< 0.10<br>12                                                                                          | -<br>-<br>-<br>-                                              | -<br>-<br>-<br>-<br>-                                                                       |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium<br>Total Recoverable Copper                                                                                                                                                                                                                                                                                                                                                                                   | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-                                         | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8                                                                                     | -<br>-<br>-<br>-<br>-                                         | -<br>-<br>-<br>-<br>-                                                                       |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium<br>Total Recoverable Copper<br>Total Recoverable Lead                                                                                                                                                                                                                                                                                                                                                         | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-                                    | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2                                                                              | -<br>-<br>-<br>-<br>-<br>-<br>-                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                        |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Nickel                                                                                                                                                                                                                                                                                                                             | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10                                                                        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                         |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc                                                                                                                                                                                                                                                                                                   | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scree                                                                                                                                                                                                                                      | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>ening in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                    |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scre<br>Aldrin                                                                                                                                                                                                                             | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>ening in Soil<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-                                                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                    |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scree<br>Aldrin<br>alpha-BHC                                                                                                                                                                                                               | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>ening in Soil<br>mg/kg dry wt<br>ening kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-                                                        |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scree<br>Aldrin<br>alpha-BHC<br>beta-BHC                                                                                                                                                                                                   | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>ening in Soil<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-                                              |                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scree<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC                                                                                                                                                                                      | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>ening in Soil<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Chromium<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scree<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)                                                                                                                                                                 | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>ening in Soil<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Copper<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scree<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>cis-Chlordane                                                                                                                                                | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>ening in Soil<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Copper<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scre<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>cis-Chlordane<br>trans-Chlordane                                                                                                                              | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>ening in Soil<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Copper<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scre<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>cis-Chlordane<br>trans-Chlordane<br>2,4'-DDD                                                                                                                  | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br><0.013<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Copper<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scree<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>cis-Chlordane<br>trans-Chlordane<br>2,4'-DDD<br>4,4'-DDD                                                                                        | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Copper<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Screen<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>cis-Chlordane<br>trans-Chlordane<br>2,4'-DDD<br>2,4'-DDD<br>2,4'-DDE                                                                                                                                 | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Copper<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scre<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>cis-Chlordane<br>trans-Chlordane<br>2,4'-DDD<br>4,4'-DDD<br>2,4'-DDE                                                                             | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Copper<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scre<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>cis-Chlordane<br>trans-Chlordane<br>2,4'-DDD<br>2,4'-DDE<br>2,4'-DDE<br>2,4'-DDE<br>2,4'-DDT                         | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Copper<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scree<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>cis-Chlordane<br>trans-Chlordane<br>2,4'-DDD<br>4,4'-DDD<br>2,4'-DDE<br>2,4'-DDT<br>4,4'-DDT                        | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Copper<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scree<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>cis-Chlordane<br>trans-Chlordane<br>trans-Chlordane<br>2,4'-DDD<br>2,4'-DDE<br>4,4'-DDE<br>2,4'-DDT<br>4,4'-DDT<br>Total DDT Isomers                         | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt                                 | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0.013                                         | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                               |                                                                                             |
| Individual Tests<br>Dry Matter<br>Heavy Metals, Screen Level<br>Total Recoverable Arsenic<br>Total Recoverable Cadmium<br>Total Recoverable Copper<br>Total Recoverable Copper<br>Total Recoverable Lead<br>Total Recoverable Lead<br>Total Recoverable Nickel<br>Total Recoverable Zinc<br>Organochlorine Pesticides Scre<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>cis-Chlordane<br>trans-Chlordane<br>trans-Chlordane<br>2,4'-DDD<br>4,4'-DDD<br>2,4'-DDE<br>2,4'-DDT<br>4,4'-DDT<br>Total DDT Isomers<br>Dieldrin | Lab Number:<br>g/100g as rcvd<br>mg/kg dry wt<br>mg/kg dry wt | 2779567.8<br>81<br>9<br>< 0.10<br>12<br>7<br>6.5<br>8<br>22<br>< 0.013<br>< 0 | 2779567.9<br>81<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2779567.10<br>80<br>5<br>< 0.10<br>12<br>8<br>6.2<br>10<br>23<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                               |                                                                                             |

| Sample Type: Soil                                       |                  |              |              |              |   |   |
|---------------------------------------------------------|------------------|--------------|--------------|--------------|---|---|
| Sa                                                      | mple Name:       | HA103B - 0.5 | HA103C - 0.0 | HA103C - 0.5 |   |   |
|                                                         |                  | 23-Nov-2021  | 23-Nov-2021  | 23-Nov-2021  |   |   |
| L                                                       | ab Number:       | 2779567.8    | 2779567.9    | 2779567.10   |   |   |
| Organochlorine Pesticides Scree                         | ning in Soil     |              |              |              |   |   |
| Endosulfan II                                           | mg/kg dry wt     | < 0.013      | < 0.013      | -            | - | - |
| Endosulfan sulphate                                     | mg/kg dry wt     | < 0.013      | < 0.013      | -            | - | - |
| Endrin                                                  | mg/kg dry wt     | < 0.013      | < 0.013      | -            | - | - |
| Endrin aldehyde                                         | mg/kg dry wt     | < 0.013      | < 0.013      | -            | - | - |
| Endrin ketone                                           | mg/kg dry wt     | < 0.013      | < 0.013      | -            | - | - |
| Heptachlor                                              | mg/kg dry wt     | < 0.013      | < 0.013      | -            | - | - |
| Heptachlor epoxide                                      | mg/kg dry wt     | < 0.013      | < 0.013      | -            | - | - |
| Hexachlorobenzene                                       | mg/kg dry wt     | < 0.013      | < 0.013      | -            | - | - |
| Methoxychlor                                            | mg/kg dry wt     | < 0.013      | < 0.013      | -            | - | - |
| Polycyclic Aromatic Hydrocarbon                         | s Screening in S | oil*         |              |              |   |   |
| Total of Reported PAHs in Soil                          | mg/kg dry wt     | < 0.3        | -            | < 0.3        | - | - |
| 1-Methylnaphthalene                                     | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| 2-Methylnaphthalene                                     | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Acenaphthylene                                          | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Acenaphthene                                            | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Anthracene                                              | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Benzo[a]anthracene                                      | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Benzo[a]pyrene (BAP)                                    | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Benzo[a]pyrene Potency<br>Equivalency Factor (PEF) NES* | mg/kg dry wt     | < 0.03       | -            | < 0.03       | - | - |
| Benzo[a]pyrene Toxic<br>Equivalence (TEF)*              | mg/kg dry wt     | < 0.03       | -            | < 0.03       | - | - |
| Benzo[b]fluoranthene + Benzo[j]<br>fluoranthene         | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Benzo[e]pyrene                                          | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Benzo[g,h,i]perylene                                    | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Benzo[k]fluoranthene                                    | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Chrysene                                                | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Dibenzo[a,h]anthracene                                  | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Fluoranthene                                            | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Fluorene                                                | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Indeno(1,2,3-c,d)pyrene                                 | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Naphthalene                                             | mg/kg dry wt     | < 0.07       | -            | < 0.07       | - | - |
| Perylene                                                | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Phenanthrene                                            | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |
| Pyrene                                                  | mg/kg dry wt     | < 0.013      | -            | < 0.013      | - | - |

# **Summary of Methods**

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

| Sample Type: Soil                                      |                                                                                                                                                                                                                 |                           |                    |  |  |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|--|--|--|--|--|
| Test                                                   | Method Description                                                                                                                                                                                              | Default Detection Limit   | Sample No          |  |  |  |  |  |
| Environmental Solids Sample Drying*                    | Air dried at 35°C<br>Used for sample preparation.<br>May contain a residual moisture content of 2-5%.                                                                                                           | -                         | 2-3, 5-6, 8,<br>10 |  |  |  |  |  |
| Total of Reported PAHs in Soil                         | Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.                                                                                                                                           | 0.03 mg/kg dry wt         | 2-3, 5-6, 8,<br>10 |  |  |  |  |  |
| Heavy Metals, Screen Level                             | Dried sample, < 2mm fraction. Nitric/Hydrochloric acid<br>digestion US EPA 200.2. Complies with NES Regulations. ICP-<br>MS screen level, interference removal by Kinetic Energy<br>Discrimination if required. | 0.10 - 4 mg/kg dry wt     | 2-3, 5-6, 8,<br>10 |  |  |  |  |  |
| Organochlorine Pesticides Screening in Soil            | Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.                                                                                                            | 0.010 - 0.06 mg/kg dry wt | 2, 4, 8-9          |  |  |  |  |  |
| Polycyclic Aromatic Hydrocarbons<br>Screening in Soil* | Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.                                                                                                             | 0.002 - 0.05 mg/kg dry wt | 2-3, 5-6, 8,<br>10 |  |  |  |  |  |

| Sample Type: Soil                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                    |  |  |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|--|--|--|--|
| Test                                                    | Method Description                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Default Detection Limit | Sample No          |  |  |  |  |
| Dry Matter (Env)                                        | Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.                                                                                                                                                                                                                                                                        | 0.10 g/100g as rcvd     | 2-6, 8-10          |  |  |  |  |
| Benzo[a]pyrene Potency Equivalency<br>Factor (PEF) NES* | BaP Potency Equivalence calculated from; Benzo(a)anthracene<br>x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1<br>+ Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 +<br>Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene<br>x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the<br>Environment. 2011. Methodology for Deriving Standards for<br>Contaminants in Soil to Protect Human Health. Wellington:<br>Ministry for the Environment. | 0.002 mg/kg dry wt      | 2-3, 5-6, 8,<br>10 |  |  |  |  |
| Benzo[a]pyrene Toxic Equivalence<br>(TEF)*              | Benzo[a]pyrene Toxic Equivalence (TEF) calculated from;<br>Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b)<br>fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x<br>0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene<br>x 0.1. Guidelines for assessing and managing contaminated<br>gasworks sites in New Zealand (GMG) (MfE, 1997).                                                                                                         | 0.002 mg/kg dry wt      | 2-3, 5-6, 8,<br>10 |  |  |  |  |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 03-Dec-2021 and 06-Dec-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental



**Hill Laboratories** Limited Ground FI, 28 Heather Street Parnell Auckland 1052 New Zealand

Т 0508 HILL LAB (44 555 22) Т

Page 1 of 2

+64 7 858 2000

Е mail@hill-labs.co.nz

W www.hill-laboratories.com

# **Certificate of Analysis**

| Client:  | Tonkin & Taylor     | Lab No:           | 2779595        | A2Pv1 |
|----------|---------------------|-------------------|----------------|-------|
| Contact: | Rudolph Kotze       | Date Received:    | 25-Nov-2021    |       |
|          | C/- Tonkin & Taylor | Date Reported:    | 06-Dec-2021    |       |
|          | PO Box 5271         | Quote No:         | 80842          |       |
|          | Auckland 1141       | Order No:         | 1014358.5000   |       |
|          |                     | Client Reference: | 1014358.5000   |       |
|          |                     | Add. Client Ref:  | Sampled: 23/11 |       |
|          |                     | Submitted By:     | Rudolph Kotze  |       |

| Sample Type: Soil                                                   |          |                        |                        |                        |                        |   |
|---------------------------------------------------------------------|----------|------------------------|------------------------|------------------------|------------------------|---|
| Sample                                                              | Name:    | HA103 - 0.5            | HA103A - 0.5           | HA103B - 0.5           | HA103C - 0.5           |   |
| Lab N                                                               | lumber:  | 2779595.2              | 2779595.4              | 2779595.6              | 2779595.8              |   |
| Asbestos Presence / Absence                                         |          | Asbestos NOT detected. | Asbestos NOT detected. | Asbestos NOT detected. | Asbestos NOT detected. | - |
| Description of Asbestos Form                                        |          | -                      | -                      | -                      | -                      | - |
| Asbestos in ACM as % of Total<br>Sample*                            | % w/w    | < 0.001                | < 0.001                | < 0.001                | < 0.001                | - |
| Combined Fibrous Asbestos +<br>Asbestos Fines as % of Total Sample* | % w/w    | < 0.001                | < 0.001                | < 0.001                | < 0.001                | - |
| Asbestos as Fibrous Asbestos as % of<br>Total Sample*               | % w/w    | < 0.001                | < 0.001                | < 0.001                | < 0.001                | - |
| Asbestos as Asbestos Fines as % of<br>Total Sample*                 | % w/w    | < 0.001                | < 0.001                | < 0.001                | < 0.001                | - |
| As Received Weight                                                  | g        | 640.6                  | 715.1                  | 691.4                  | 681.5                  | - |
| Dry Weight                                                          | g        | 510.1                  | 575.4                  | 601.0                  | 550.2                  | - |
| Moisture                                                            | %        | 20                     | 20                     | 13                     | 19                     | - |
|                                                                     |          |                        |                        |                        |                        |   |
| Sample Fraction >10mm*                                              | g dry wt | < 0.1                  | 7.6                    | 10.5                   | < 0.1                  | - |
| Sample Fraction <10mm to >2mm*                                      | g dry wt | 190.6                  | 219.9                  | 205.9                  | 213.0                  | - |
| Sample Fraction <2mm*                                               | g dry wt | 318.6                  | 347.4                  | 384.3                  | 336.9                  | - |
| <2mm Subsample Weight*                                              | g dry wt | 52.3                   | 50.2                   | 51.4                   | 53.3                   | - |
| Weight of Asbestos in ACM (Non-<br>Friable)                         | g dry wt | < 0.00001              | < 0.00001              | < 0.00001              | < 0.00001              | - |
| Weight of Asbestos as Fibrous<br>Asbestos (Friable)*                | g dry wt | < 0.00001              | < 0.00001              | < 0.00001              | < 0.00001              | - |
| Weight of Asbestos as Asbestos<br>Fines (Friable)*                  | g dry wt | < 0.00001              | < 0.00001              | < 0.00001              | < 0.00001              | - |

### **Glossary of Terms**

• Loose fibres (Minor) - One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.

• Loose fibres (Major) - Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.

• ACM Debris (Minor) - One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.

• ACM Debris (Major) - Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.

• Unknown Mineral Fibres - Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required. • Trace - Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

### Please refer to the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos in Soil. https://www.branz.co.nz/asbestos

The following assumptions have been made:

1. Asbestos Fines in the <2mm fraction, after homogenisation, is evenly distributed throughout the fraction

2. The weight of asbestos in the sample is unaffected by the ashing process.

Results are representative of the sample provided to Hill Laboratories only.



This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked \* or any comments and interpretations, which are not accredited.

## **Summary of Methods**

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

| Sample Type: Soil                                                   |                                                                                                                                                                                                                                                                                                                |                         |            |  |  |  |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|--|--|--|--|
| Test                                                                | Method Description                                                                                                                                                                                                                                                                                             | Default Detection Limit | Sample No  |  |  |  |  |
| New Zealand Guidelines Semi Quantitati                              | ve Asbestos in Soil                                                                                                                                                                                                                                                                                            |                         |            |  |  |  |  |
| As Received Weight                                                  | Measurement on analytical balance. Analysed at Hill<br>Laboratories - Asbestos; 28 Heather Street, Auckland.                                                                                                                                                                                                   | 0.1 g                   | 2, 4, 6, 8 |  |  |  |  |
| Dry Weight                                                          | Sample dried at 100 to 105°C, measurement on balance.<br>Analysed at Hill Laboratories - Asbestos; 28 Heather Street,<br>Auckland.                                                                                                                                                                             | 0.1 g                   | 2, 4, 6, 8 |  |  |  |  |
| Moisture                                                            | Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100.                                                                                                                                                                                                      | 1 %                     | 2, 4, 6, 8 |  |  |  |  |
| Sample Fraction >10mm*                                              | Sample dried at 100 to 105°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland.                                                                                                                                                            | 0.1 g dry wt            | 2, 4, 6, 8 |  |  |  |  |
| Sample Fraction <10mm to >2mm*                                      | Sample dried at 100 to 105°C, 10mm and 2mm sieve,<br>measurement on analytical balance. Analysed at Hill<br>Laboratories - Asbestos; 28 Heather Street, Auckland.                                                                                                                                              | 0.1 g dry wt            | 2, 4, 6, 8 |  |  |  |  |
| Sample Fraction <2mm*                                               | Sample dried at 100 to 105°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland.                                                                                                                                                             | 0.1 g dry wt            | 2, 4, 6, 8 |  |  |  |  |
| Asbestos Presence / Absence                                         | Examination using Low Powered Stereomicroscopy followed by<br>'Polarised Light Microscopy' including 'Dispersion Staining<br>Techniques'. Analysed at Hill Laboratories - Asbestos; 28<br>Heather Street, Auckland. AS 4964 (2004) - Method for the<br>Qualitative Identification of Asbestos in Bulk Samples. | 0.01%                   | 2, 4, 6, 8 |  |  |  |  |
| Description of Asbestos Form                                        | Description of asbestos form and/or shape if present. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland.                                                                                                                                                                                   | -                       | 2, 4, 6, 8 |  |  |  |  |
| Weight of Asbestos in ACM (Non-<br>Friable)                         | Measurement on analytical balance, from the >10mm Fraction.<br>Weight of asbestos based on assessment of ACM form.<br>Analysed at Hill Laboratories - Asbestos; 28 Heather Street,<br>Auckland. New Zealand Guidelines for Assessing and Managing<br>Asbestos in Soil, November 2017.                          | 0.00001 g dry wt        | 2, 4, 6, 8 |  |  |  |  |
| Asbestos in ACM as % of Total<br>Sample*                            | Calculated from weight of asbestos in ACM and sample dry<br>weight. New Zealand Guidelines for Assessing and Managing<br>Asbestos in Soil, November 2017.                                                                                                                                                      | 0.001 % w/w             | 2, 4, 6, 8 |  |  |  |  |
| Weight of Asbestos as Fibrous<br>Asbestos (Friable)*                | Measurement on analytical balance, from the >10mm Fraction.<br>Analysed at Hill Laboratories - Asbestos; 28 Heather Street,<br>Auckland. New Zealand Guidelines for Assessing and Managing<br>Asbestos in Soil, November 2017.                                                                                 | 0.00001 g dry wt        | 2, 4, 6, 8 |  |  |  |  |
| Asbestos as Fibrous Asbestos as % of<br>Total Sample*               | Calculated from weight of fibrous asbestos and sample dry<br>weight. New Zealand Guidelines for Assessing and Managing<br>Asbestos in Soil, November 2017.                                                                                                                                                     | 0.001 % w/w             | 2, 4, 6, 8 |  |  |  |  |
| Weight of Asbestos as Asbestos Fines<br>(Friable)*                  | Measurement on analytical balance, from the <10mm Fractions.<br>Analysed at Hill Laboratories - Asbestos; 28 Heather Street,<br>Auckland. New Zealand Guidelines for Assessing and Managing<br>Asbestos in Soil, November 2017.                                                                                | 0.00001 g dry wt        | 2, 4, 6, 8 |  |  |  |  |
| Asbestos as Asbestos Fines as % of<br>Total Sample*                 | Calculated from weight of asbestos fines and sample dry weight.<br>New Zealand Guidelines for Assessing and Managing Asbestos<br>in Soil, November 2017.                                                                                                                                                       | 0.001 % w/w             | 2, 4, 6, 8 |  |  |  |  |
| Combined Fibrous Asbestos +<br>Asbestos Fines as % of Total Sample* | Calculated from weight of fibrous asbestos plus asbestos fines<br>and sample dry weight. New Zealand Guidelines for Assessing<br>and Managing Asbestos in Soil, November 2017.                                                                                                                                 | 0.001 % w/w             | 2, 4, 6, 8 |  |  |  |  |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed on 06-Dec-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

enso

Keith Benson HNC Chem Laboratory Technician - Asbestos

|                        | + +        | + +        | - + | +        | +      | +        |   |
|------------------------|------------|------------|-----|----------|--------|----------|---|
|                        |            |            |     |          |        |          |   |
|                        | + +        | - +        | - + | +        | +      | +        |   |
|                        | + +        | н н        | ÷ + | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | F +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | T 1        |            |     | -        | - T    | - T      |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        |            |            |     | +        | -      | +        |   |
|                        | 1.1        |            | 1.1 | 1        | 1      | 1        |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | T 1        |            |     | Ŧ        | -      | Ŧ        |   |
|                        | + +        | н н        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        | + +        |            |     | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | н н        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        | <u>н</u> 4 |            |     | +        | +      | +        |   |
|                        |            |            | · • | Ŧ        | -      | т        |   |
|                        | + +        | + +        | + + | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        | + -        | ь .        |     | 1        | +      | +        |   |
|                        | 1          |            | т   | - C      | 1      | 1        |   |
|                        | + +        | н н        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        | + -        |            |     |          |        | 1        |   |
|                        |            | . +        | +   | +        | +      | +        |   |
|                        | + +        | н н        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | F +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | - +        | - + | +        | +      | +        |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | н н        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        |            |            |     | +        | +      | +        |   |
|                        | T 1        |            | · • | Ŧ        | -      | Ŧ        |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        |            |            |     |          |        | 1.1      |   |
|                        |            |            |     | -        | -      | -        |   |
|                        | + +        | + +        | ÷ + | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        | + +        |            |     | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | F +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | - +        | - + | +        | +      | +        |   |
|                        | + +        | н н        | ÷ + | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        | 1.1      |   |
|                        | + +        | - +        | - + | +        | +      | +        |   |
|                        | + +        | н н        | - + | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        | ÷ .        |            |     |          | 5      | <b>_</b> |   |
|                        | 1          |            | Ŧ   | Ŧ        | Ŧ      | Ψ.       |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        | + +        |            |     | +        | +      | +        |   |
|                        | 1.1        | . 1        | т   | Ŧ        | r      | 1        |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        | + -        | ь .        |     | 1        | +      | +        |   |
|                        | 1.1        | . +        | +   | +        | +      | Ŧ        |   |
|                        | + +        | н н        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        | + -        | ь .        |     | +        | +      | +        |   |
|                        |            | . *        | Ŧ   | Ŧ        | Ŧ      | Ψ.       |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        | ÷ .        |            |     | <u>д</u> |        | 1        |   |
|                        | - 1        | . +        | +   | +        | +      | Ŧ        |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          |   |
|                        | + +        | + +        | - + | +        | +      | +        |   |
|                        | + +        | ь <u>т</u> |     | +        | +      | +        |   |
| www.tonkintaylor.co.nz |            |            |     |          |        | 1        |   |
|                        | + +        | н н        | +   | +        | +      | +        |   |
|                        |            |            |     |          |        |          | 1 |
|                        | ÷ .        |            |     | 1.1      | 1.1    |          |   |
|                        | + +        | + +        | +   | +        | +      | +        |   |
|                        | + +        | + +<br>+ + | • + | +<br>+   | ++     | +<br>+   |   |
|                        | + +        | + +        | · + | +<br>+   | +<br>+ | +<br>+   |   |

+ + +

+ +