

PROPOSED STORMWATER MANAGEMENT PLAN FOR BEACH HAVEN ROAD APARTMENTS LTD. AT 96 BEACH HAVEN ROAD/13 CRESTA AVE BEACH HAVEN

Job No: 200626/01

Issue Date: 03 November 2023

Airey Consultants Ltd | Botany Office PO Box 259 339, Botany, 2163 | Level 1, Fountain Lane North, Botany Town Centre T: +64 9 534 6523 E: botany@aireys.co.nz Engineering Ingenuity

Document Control Record

Document Prepared By:

Airey Consultants Limited Level 1, Fountain Lane North, Botany Town Centre PO Box 259 339, Botany, Auckland 2163

Client:

Beach Haven Road Apartments Ltd. 96 Beach Haven Road/13 Cresta Ave

- T: +64 9 534 6523
- E: <u>natalien@aireys.co.nz</u>
- W: <u>aireys.co.nz</u>

This report has been prepared solely for the benefit of the Beach Haven Road Apartments Ltd. . No liability is accepted by this company or any employee or sub-consultant of this company with respect to its use by any other person.

This disclaimer shall apply notwithstanding that the report may be made available to other persons for an application for permission or approval or to fulfil a legal requirement.

Revision	Description	Issue Date	Prepared by	Reviewed by
А	Plan Change Issue	3/11/2023	NNN	MTW

Executive Summary

This Stormwater Management Plan addresses the stormwater management and treatment considerations for the proposed development at 96 Beach Haven Road and 13 Cresta Avenue, Beach Haven. The proposed development will involve the development of 75-100 Residential units in four separate apartment blocks. As the development has over 20 lots on a Brownfields development, this Stormwater Management Plan has been prepared to accompany the Stormwater Network Discharge Consent application.

This plan is intended to provide a framework for the design of new stormwater reticulation and treatment associated with the development of the site. Stormwater flows from the development will be attenuated in accordance with the requirements of GD01 to limit stormwater runoff from the 10% AEP 10-minute storm event to no more than the stormwater flows existing pre-development. This will remove any increased demand on the existing downstream stormwater infrastructure.

Contents

1	IN	ITRODUCTION	6
2	EX	(ISTING SITE APPRAISAL	6
	2.1	Summary of Data sources and dates	6
	2.2	Location	7
	2.3	Topography	7
	2.4	Geotechnical	9
	2.5	Existing Drainage Features and Stormwater Infrastructure	9
	2.6	Receiving Environment	10
	2.7	Existing Hydrological Features	11
	2.8	Flooding and Flowpaths	11
		8.1 Flood plain and Flood Sensitive Areas8.2 Overland Flow Paths	11 11
	2.9	Coastal Inundation	11
	2.10	Biodiversity	12
	2.11	Cultural and Heritage Sites	12
	2.12	Contaminated Land	12
	2.13	Mana Whenua Consultation and Engagement	12
3	ST	ORMWATER MANAGEMENT	13
	3.1	General	13
	3.2	Water Quality	14
	3.3 3.3	 3.1 10 Percent AEP event (Network Capacity) 3.2 1 Percent AEP event 3.3 Overland Flowpath and Floodplain Management 3.4 Development staging 	14 15 15 17
	3.4	Assets	17

3.5 Ongoing Maintenance Requirements	18
4 CONCLUSION	18
Appendix A	Α
Existing Site Features	А
Appendix B	В
Proposed Zoning Plans	В
Appendix C	С
Engineering Calculations	C
Appendix D	D
Lander Geotechnical – Geotechnical Report	D
Appendix E	E
Easdale Surveyors – Topographical Survey Plans	E

1 INTRODUCTION

This Stormwater Management Plan describes the stormwater management approach to the proposed development at 96 Beach Haven Road/13 Cresta Avenue.

The Stormwater Assessment has been undertaken in accordance with the Auckland Council Unitary Plan requirements, along with the requirements of the Network Discharge Consent (NDC), Auckland Design Manual, and GD01.

2 EXISTING SITE APPRAISAL

2.1 Summary of Data sources and dates

Source and date of data used
 Third-party topographic survey, Easdale Surveyors Ltd, 2021
 Third-party geotechnical report, Lander Geotechnical, 2021
Auckland Council GeoMaps data, 2020
 Third-party topographic survey, Easdale Surveyors Ltd, 2021
 Auckland Council GeoMaps Overland Flow Paths and Stream Layers, 2021
 Auckland Land Surveys, 2019 Auckland Council Unitary Plan Viewer, significant ecological area layer, 2021
 Auckland Council GeoMaps Overland Flow Paths Layer, 2021
 Auckland Council GeoMaps Flood Plain Layer, 2021
 Auckland Council GeoMaps Emergency Management Layer, 2021
 Auckland Council GeoMaps Unitary Plan Viewer, Significant Ecological Area Layer, 2021
 Auckland Council GeoMaps Unitary Plan Viewer, Significant Vegetation Layer, 2021
• Auckland Council GeoMaps Cultural Heritage Site Layer, 2021

2.2 Location

The subject site comprises of the following two parcels of land totalling 7,147.00m².

Existing site elements		
Site address	٠	96 Beach Haven Road and 13 Cresta Avenue
Legal description	•	Lot 1 and Lot 2 DP 157383
Current Land Use	٠	Residential – Single Housing Zone
Current building coverage	٠	305.17m² (4.27%)
Historical Land Use	٠	Residential

Figure 1. Aerial view of Subject Site – Council Geomaps

2.3 Topography

The subject site slopes in a Northerly direction towards 29 Cresta Avenue, with gradients ranging from 4% in the central portion of the site, to approximately 6% towards the Northern section of the site. A 100-year overland Flowpath is present within the site currently flowing along a depression on the Western side of the site and thereafter existing into the property at 15 Cresta Avenue.

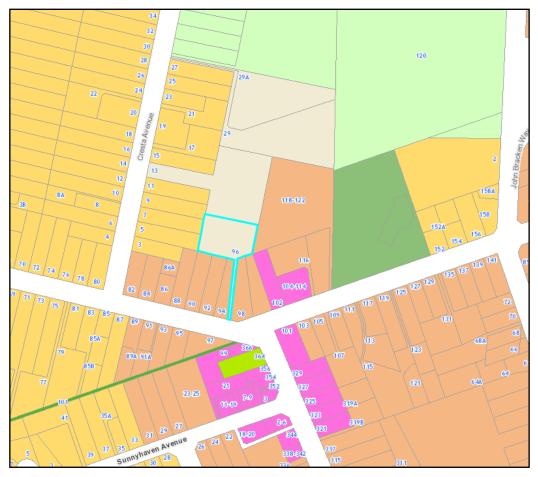
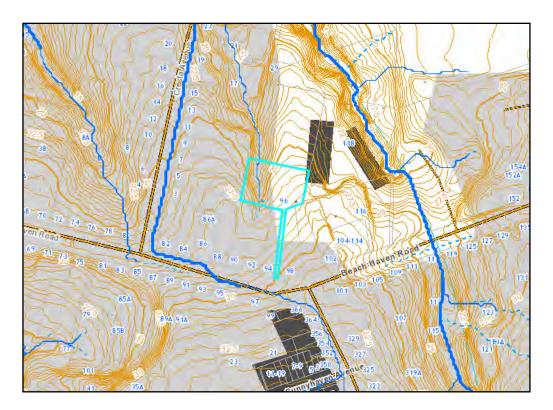



Figure 2. Auckland Unitary Plan, Operative in Part: Zoning Map

2.4 Geotechnical

Below is an extract from the Geotechnical Report as prepared by Lander Geotechnical, dated 2 March 2021:

A review of GNS digital Q Maps indicated that the site is located within the East Coast Bays Formation (ECBF) of the Waitemata Group flysch deposits which consist of alternation beds of sandstones and mudstones. These deposits generally weather to a dark grey, partially weathered 'transitional' soils before weathering completely to orange, light grey and brown silts, clays and sands. Please refer to Appendix F for Lander Geotechnical, Geotechnical Report, 2 March 2021.

2.5 Existing Drainage Features and Stormwater Infrastructure

According to a topographical survey prepared by Easdale Surveyors and Auckland Council Geomaps, there is an existing 300mmØ public stormwater line running along the southern boundary and the Western boundary of the site. This line connects to an existing 750mmØ public stormwater line running in a North-westerly direction through 13 Cresta Avenue. Please refer to Appendix A, Existing Site Features.

Asset Type	Legacy Asset ID	Size
Stormwater Line	Null	300mmØ
Stormwater Manhole	Null	1050mmØ
Stormwater Line	Null	300mmØ
Stormwater Manhole	Null	1500mmØ
Stormwater Line	NSC_483772	750mmØ
Stormwater Manhole	Null	-
Stormwater Line	NSC_483770	750mmØ

Figure 4. Existing Public Stormwater Network (Auckland Council Geomaps)

2.6 Receiving Environment

From the subject sites, the public stormwater network collects stormwater from a number of other upstream properties forming what was formerly known as the Tramway Catchment. This catchment discharges through a stream/watercourse, approximately 497m from the subject site into the Waitemata Harbour

The Tramway catchment was one of the lower priority catchments in the North Shore, with the last CMP published in February 2000. No recent stormwater models for this catchment have been undertaken.

Nirey



Figure 5. Existing Public Stormwater Network (Auckland Council Geomaps)

2.7 Existing Hydrological Features

There are no natural streams, wetlands or ponds in the development area.

2.8 Flooding and Flowpaths

2.8.1 Flood plain and Flood Sensitive Areas

The site is not situated within the 100-year flood plain, nor flood sensitive area.

2.8.2 Overland Flow Paths

Council GIS Indicates that there is an overland flow path traversing the site, along the western boundary of 96 Beach Haven Road. Following a site visit and a desktop Flood Assessment, it is apparent the overland flow path is a local feature originating in 92 Beach Haven Road, immediately upstream of the subject site. It is concluded that the overland flow path can easily be accommodated down the western boundary within the proposed development.

2.9 Coastal Inundation

Auckland Council GeoMaps indicates that the sites are not subject to coastal inundation.

2.10 Biodiversity

Auckland Council GeoMaps indicates that there is no Significant Ecological Area (SEA) located within the subject sites. The downstream discharge point of the public network is located within a SEA.

2.11 Cultural and Heritage Sites

No cultural or heritage site have been identified within the development area.

2.12 Contaminated Land

All contamination matters have been addressed as part of the approved Bulk Earthworks Consent. Refer LUC60384512-A.

2.13 Mana Whenua Consultation and Engagement

An email was sent on the 21 December 2020 to the following mana whenua groups requesting feedback on the proposed private plan change:

- Ngāi Tai ki Tāmaki Ngāi Tai ki Tāmaki Tribal Trust
- Ngāti Maru Ngāti Maru Rūnanga Trust
- Ngāti Pāoa Ngāti Paoa Iwi Trust
- Ngāti Pāoa Ngāti Paoa Trust Board
- Ngāti Tamaterā Ngāti Tamaterā Settlement Trust
- Ngāti Te Ata Te Ara Rangatu o Te Iwi o Ngāti Te Ata Waiohua
- Ngāti Whanaunga Ngāti Whanaunga Incorporated
- Ngāti Whātua o Kaipara Ngā Maunga Whakahii o Kaipara Development Trust
- Ngāti Whātua Ōrākei Ngāti Whātua Ōrākei Trust
- Te Ākitai Waiohua Te Ākitai Waiohua Iwi Authority
- Te Kawerau ā Maki Te Kawerau Iwi Settlement Trust
- Te Rūnanga o Ngāti Whātua Te Rūnanga o Ngāti Whātua

A response was received from Ngā Maunga Whakahii o Kaipara Development Trust, Ngāti Whātua Ōrākei Trust and Ngāi Tai ki Tāmaki Tribal Trust confirming that no further action was required.

Nirey

3 STORMWATER MANAGEMENT

The stormwater management strategy for the development has been developed in accordance with the objectives of the Auckland Regionwide Stormwater Network Discharge Consent.

3.1 General

As per the Auckland Unitary Plan, the subject site is not situated within the areas of Stormwater Management Areas, SMAF 1 or SMAF 2.

Discharge of Stormwater from the Proposed Development will not require resource consent as this is considered a permitted activity per the AUP: OP, Section E8.4.1 Item A1 – *Diversion of stormwater runoff from lawfully established impervious areas directed into an authorised stormwater network or a combined sewer network that complies with Standard E8.6.2.1.*

The proposed future development of the site will increase the impervious area on site from its current situation. Per AUP: OP, Section H4.6.8 Item 1 - the maximum impervious area must not exceed 60 percent of the site area.

Stormwater attenuation will be provided by installing Detention tanks with a throttle discharge to attenuate the Stormwater discharge from the post development flows back to the pre-development flows. The Stormwater design will be undertaken to comply with the Auckland Unitary Plan stormwater mitigation requirements, providing attenuation for the 10% AEP storm event (including 2.1°C climate change). A throttle system will be proposed to attenuate the discharge to predeveloped conditions in accordance with GD01Both roofed and paved areas will be drained by means of catch pits and downpipes respectively and discharge directly into the piped network.

A table of site catchment areas as follows:

Description	Catchment Areas (m ²)
Total Impervious Area	4,083
Total Pervious Area	3,064
Total Gross Area	7,147

The existing connection currently servicing No. 13 Cresta Avenue will be upgraded to form a new public connection for the proposed development. The existing connection currently servicing No. 96 Beach Haven Road will be abandoned. The existing Public Stormwater Lines currently located on site

including all neighbouring Stormwater connections will be retained. During Earthworks, if sufficient cover is not achieved over the existing Public Stormwater Lines, then these lines will be protected or upgraded as required.

3.2 Water Quality

The stormwater will be discharged into an existing public system which, in turn, discharges to the Waitemata Harbour through a river/watercourse located to the North of the subject sites.

The downstream receiving environment is located within a Significant Ecological Area (SEA) under the Auckland Unitary Plan, Section D9. Stormwater treatment will be provided to runoff from all impervious surfaces (roof and paved) by an Auckland Council Approved stormwater treatment device designed in accordance with Auckland Council Guideline Document GD01 2017/001 (GD01) along with the requirements of Schedule 4 of the Networks Discharge Consent for Large Brownfield Areas.

Although inert Building Materials are proposed for the new dwellings, stormwater treatment has still been provided for the roofed areas also. All roof stormwater runoff will be treated by means of a Hynds Upflo System or similar approved.

3.3 Flooding

3.3.1 10 Percent AEP event (Network Capacity)

The downstream pipe capacity of the existing network has been assessed up to the Stormwater Manhole located within 21 Cresta Avenue (Council ID NSC_1507244).

Figure 6. Existing Public Stormwater Network (Auckland Council Geomaps)

The existing 400 diameter line running into this Manhole has sufficient capacity to convey the 10% AEP stormwater event from the full catchment including the proposed development.

We note that it is proposed to provide Stormwater detention to limit post developed Stormwater flows to those existing in the pre-developed condition which will throttle the stormwater flows from the 10% AEP 10 minutes storm event. This will ensure there is no additional demand on the downstream network.

3.3.2 1 Percent AEP event

The proposal will lead to a small increase in peak runoff flow rates during the 1% AEP storm. Our calculations show that the 1% storm event can easily be catered for within the proposed development. Currently, overland flow from the 1% AEP storm event exits the site at the lowest point in the northwest corner, and follows the topography in a Northward Direction through 15 Cresta Avenue. From there the overland flow continues in a Northerly direction on through a number of properties on Cresta Avenue.

3.3.3 Overland Flowpath and Floodplain Management

An overland Flowpath has been identified on Auckland Council GIS entering the site at the Southern Boundary, traversing along the Western Boundary, and exiting the site at the Northwest Boundary.

Following a site visit and a review of the topography of the area, it has been established that the overland Flowpath does behave in the manner as presented on GIS. The following table is a summary of the pre-development and post development flows:

Cross Section	Q100 Pre- development m3/s	Q100 Post Development m3/s	Flood Depth Pre- Development (mm)	Flood Depth Post Development (mm)	Velocity Pre- Development (m/s)	Velocity Post- Development (m/s)
A-A	0.444	0.457	130	150	2.166	1.738
B-B	0.444	0.457	130	150	2.257	1.785
C-C	0.444	0.457	130	100	2.201	3.027
No. 15 Cresta Avenue	0.525	0.532	360	370	1.021	1.031
No. 17 Cresta Avenue	0.619	0.650	470	480	0.734	0.749

We have assessed the catchment from the Auckland Council GIS records. We note as per our attached catchment plan, there is a small area of the site that currently discharges to the Northeast that has not been included in our calculations. This is a very minor catchment and will have very little effect on the calculations completed to date.

Several cross sections of the overland flowpath were developed along the western boundary of the proposed development and within the properties of No.15 and No. 17 Cresta Avenue. This was to determine the flood levels post development. We have adopted a hypothetical channel based loosely on Auckland Council GIS levels to create the cross sections at the location shown in the attached Section Plan. In reality the channel will be much wider than assessed and will result in a lower flood depth.

The overland flow path is through generally well-maintained grassed areas through the site and traverses through the properties of No. 15 and No. 17 Cresta Avenue. The design has been based on a Manning's co-efficient of 0.03 for the well-maintained grass areas, and a co-efficient of 0.1 for the downstream properties based on the Auckland Council Stormwater Code of Practice.

Based on the 100yr Overland Flow, all cross sections indicate a minimal increase in the water levels along the overland flow path in the post development scenario. The maximum flood depth increase is circa 10mm. These changes in the overland flow behaviour will not cause any adverse effect to downstream properties.

A grassed conveyance channel is proposed within the site of the proposed development to accommodate for the 100yr Overland Flow. Due to the low flows, this will be more of a localised small depression in the grass surface. The channel will discharge into a scruffy dome manhole located at the low point of the site. The scruffy dome will outlet into the existing public network. This is primarily to remove the overland flow from discharging over the proposed retaining wall at the intersection of 15 Cresta Avenue. There is sufficient capacity in the 750mm diameter stormwater line at this location. The 750mm SW line decreases to a 400mm diameter line at the boundary with 17 Cresta Avenue and a cesspit is located there which will allow the flood flows to bubble up to the surface again should the pipe capacity be exceeded. This is considered to be the same philosophy adopted previously given the current configuration of the change in SW lines through the development, so it matched with what is currently happening in the area.

Based on the above assessment, we conclude that the flood depths will have no measurable impact on the downstream properties at No. 15 and No. 17 Cresta Avenue, and further down the catchment.

3.3.4 Development staging

The construction works will not be undertaken in a Staged approach.

3.4 Assets

With the exception of the existing 300mm diameter and 750mm diameter Public Stormwater Line, all other assets within the development will be private. A pipe network will service the units collecting roof runoff into attenuation tanks from downpipes and catch pits will collect driveway runoff and discharge into a communal attenuation tank. All this collected stormwater will discharge to the public system via a proprietary Auckland Council approved stormwater treatment device, designed in accordance with the requirements of Auckland Council GD01/TP10. The private infrastructure will be constructed in accordance with the NZ Building Code and Stormwater Bylaw 2015. Unless otherwise approved, the private stormwater system connecting to the public system will be designed and built-in compliance with the design processes and standards per the Auckland Council Stormwater Code of Practice. This will be further designed under the Building Consent for the development.

The public infrastructure will be constructed in accordance with the Auckland Council Stormwater Code of Practice and will be vested in the Auckland Council. The private infrastructure will be jointly

owned by the residents of the development (by way of an owner's corporation or similar mechanism). Responsibility for maintenance of the system will, therefore, be held by the owner's corporation. An operations and maintenance manual for the private stormwater system will be prepared and will be provided at the Building Consent stage for the private drainage.

3.5 Ongoing Maintenance Requirements

There will be ongoing maintenance requirements for the Stormwater Treatment System which will fall on the Body Corporate. These will be detailed in the Building Consent documentation.

4 CONCLUSION

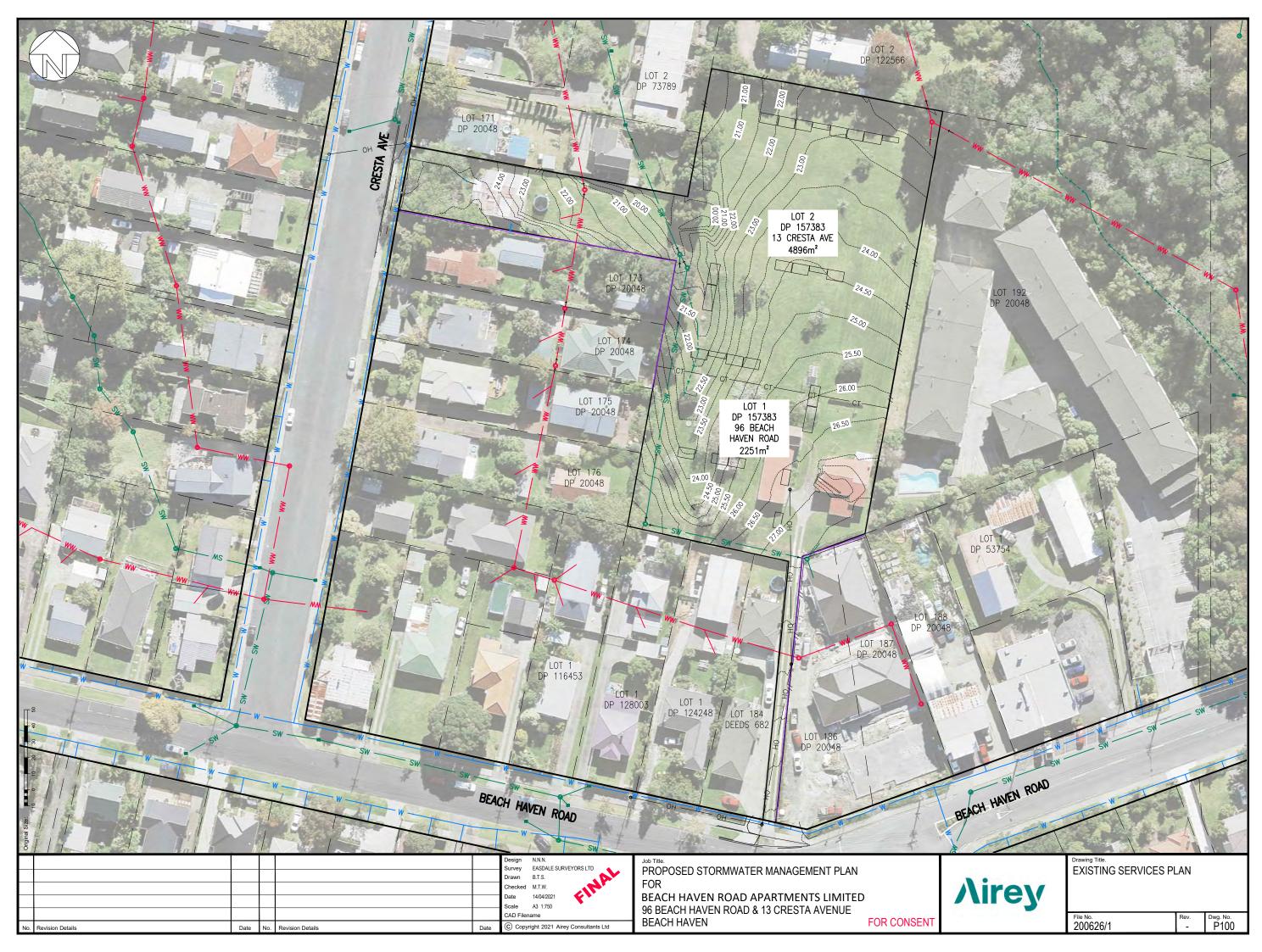
We consider that the stormwater management proposed for the development at 96 Beach Haven Road and 13 Cresta Avenue is in accordance with the objectives and policies of the Auckland Unitary Plan, the Regionwide Stormwater Network Discharge Consent, Auckland Design Manual and GD01. The proposed development will have minimal effects on the downstream receiving environment.

Report prepared by

ficais.

Natalie Naidoo Senior Civil Engineer MEngNZ Airey Consultants Ltd

Reviewed and approved by


A

Michael Williams Director CPEng(NZ), CMEngNZ, IntPE(NZ), BE(Civil) Airey Consultants Ltd

Appendix A Existing Site Features

AIREY CONSULTANTS LTD Consulting Civil & Structural Engineers

Appendix B Proposed Zoning Plans

REZONING PROPOSAL

96 Beach Haven Road & 13 Cresta Road Beach Haven NOVEMBER 2020

Prepared by: Nick Mitchell Reviewed: Rachel Morgan B&A Job Ref: 18230

WIDER CONTEXT

LOCAL CONTEXT

SURROUNDING AREA

Site entry to Beach Haven Road

Looking east along Beach Haven Road from site entry - towards Local Centre

Looking west down Beach Haven Road from site entry - towards Ferry. Note: Bus stops in each direction outside of site

Looking east along Beach Haven Road from corner of Cresta Avenue

PUBLIC TRANSPORT

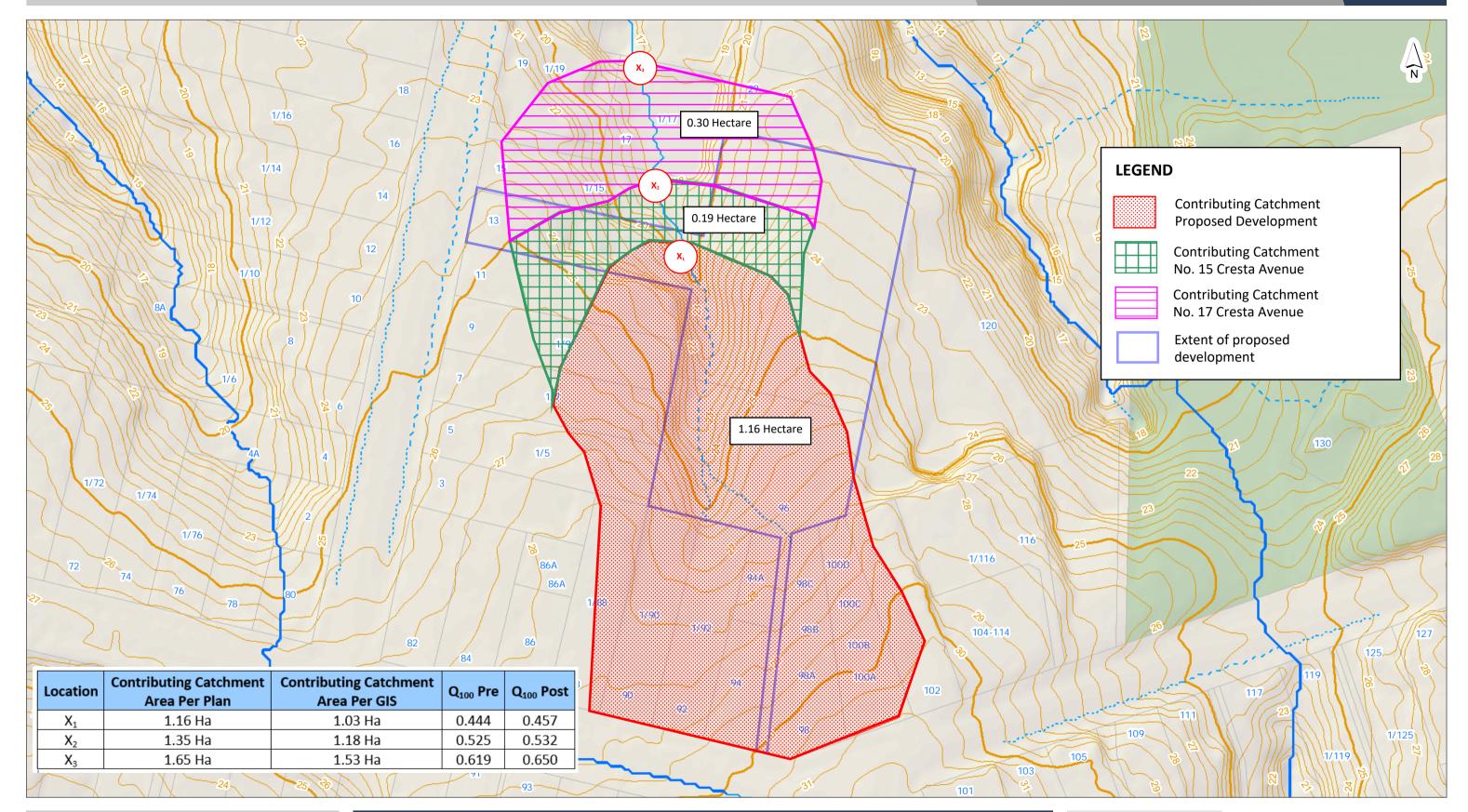
.....

FERRY TIMETABLE

TO: AUCKLAND CITY TO: BEACH HAVEN

MON - FRI	MON - FRI
6:25 AM	7:05 AM
7:40 AM	8:25 AM
9:00 AM	2:40 PM
3:15 PM	3:55 PM
4:30 PM	5:10 PM
5:45 PM	6:25 PM
7:00 PM	7:40 PM

PROPOSED ZONING



Appendix C

Engineering Calculations

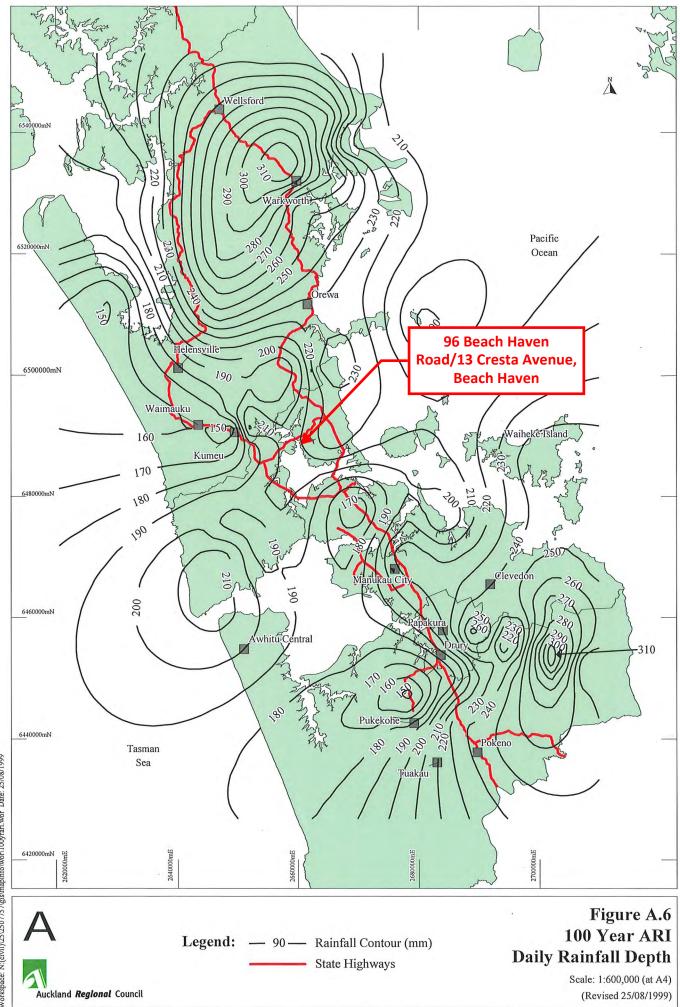
Auckland Council

DISCLAIMER:

This map/plan is illustrative only and all information should be independently verified on site before taking any action. Copyright Auckland Council. Land Parcel Boundary information from LINZ (Crown Copyright Reserved). Whilst due care has been taken, Auckland Council gives no warranty as to the accuracy and plan completeness of any information on this map/plan and accepts no liability for any error, omission or use of the information. Height datum: Auckland 1946.

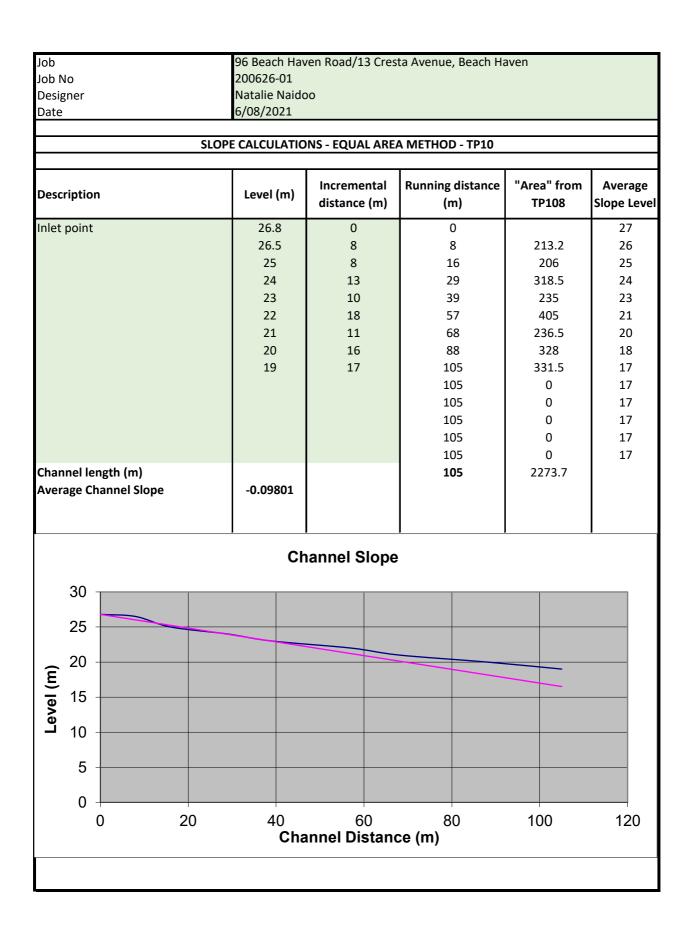
Overland Flowpath Catchment Plan

S


Мар

Scale @ A3 = 1:1,000

Date Printed: 4/08/2021



Workspace: N:(civil)\25\2507757\gis\mapinfo\wor\100yrari.wor Date: 25/08/1999

TP108 Rainfall - Overland Flowpath

Job location: 96 Beach Haven Road/13 Cresta Avenue, Beach Haven

Rainfall Depth	-	mm	
ARI	100	years	
Duration	Duration	Depth	Intensity
hr	mins	mm	mm/hr (Q ₁₀)
0.166	10.0	28.26	170.22
0.333	20.0	43.45	130.49
0.5	30	53.59	107.19
1	60	75.55	75.55
2	120	102.04	51.02
6	360	156.00	26.00
12	720	200.15	16.68
24	1440	245.28	10.30
48	2880	494.48	10.30
72	4320	741.73	10.30

DISCLAIMER:

This map/plan is illustrative only and all information should be independently verified on site before taking any action. Copyright Auckland Council. Land Parcel Boundary information from LINZ (Crown Copyright Reserved). Whilst due care has been taken, Auckland Council gives no warranty as to the accuracy and plan completeness of any information on this map/plan and accepts no liability for any error, omission or use of the information. Height datum: Auckland 1946.

Overland Flowpath Cross Sections

Мар

Scale @ A3 = 1:1,000

Date Printed: 16/07/2021

Hydrographs- SCS Method - Predevelopment flow from Proposed Development

Project Description	96 Beach Haven Road/1	3 Cresta Avenue	
	Beach Haven		
Rainfall Depth (mm)	245.28	100 YEAR ARI	Notes: 1. Inputs
Catchment Data	Pervious Area	Impervious Area	2. Typical inputs for CN, Ia, CF
Area (ha)	0.6264	0.5336	are in 'Typical Inputs' Sheet.
Runoff No (CN)	74	98	3. Method based on ARC TP108.
Initial Loss (Ia-mm)	5	0	
Channel Length (L-m)	101	101	
Channel Slope (Sc-m/m)	0.1	0.1	
Channel Factor (CF-0.6 to 1.0)	0.8	0.6	
Time of Concentration (tc-min)	10.0	10.0	
Soil storage (S-mm)	89.2	5.2	
Soli stolage (S-mm)	03.2	5.2	
Outputs			Total
Runoff (mm)	175.2	240.2	205.1
Peak Flow (m ³ /s)	0.216	0.228	0.444
Time (hr) at Peak Flow	12.20	12.20	12.20
Rainfall (mm/h) over tc	165.26	165.26	165.26
Runoff Coefficient - Peak	0.75	0.93	0.83
Runoff Coefficient - Volume	0.71	0.98	0.84
Intensity (mm/hr) 100 100 100 100 100 100 100 100 100 10			
	4 6	8 10 1	2 14 16
0 2		ie (hr)	2 14 16
	Hydro	ographs	
0.5			
0.5 Pervious			
Imperv.			
0.4			
0.4			
(a) 0.3			
ິຍັ 0.3			
>			8
ିଳ୍ 0.2			
0.2			
0.1			

10

12

14

16

0.1 0.0

0

2

4

6

8

Time (hr)

Hydrographs- SCS Method:

Project Description	96 Beach Haven Road/13 Cresta Avenue
	Beach Haven

Total Hydrograph in tabular form: (based on simualtion from above)

olumetric erro	r in scaling	1.70)%						Time (hr)	Flow (m ³ /s)
									11.001	0.000
									11.347	0.058
									11.491	0.060
									11.601	0.076
				Hydrographs					11.694	0.098
									11.776	0.115
0.5									11.850	0.130
0.5									11.918	0.161
0.0	Imperv.								11.981	0.210
0.4	Total					<mark>/</mark>			12.040	0.246
0.4									12.096	0.320
0.4									12.150	0.403
0.3						<mark>_</mark>			12.201	0.444
3/s]									12.230	0.430
(s), 0.3 Mol J 0.2									12.259	0.387
· 0.2						<mark>4</mark>			12.290	0.330
									12.320	0.278
0.2						 			12.352	0.240
0.1						/			12.384	0.214
0.1									12.417	0.191
0.1							<u> </u>		12.451	0.170
0.0						P			12.486	0.154
0.0 +	2	4	6	8	10	12	14	16	12.522	0.143
-	_	-	-	Time (hr)					12.559	0.133
									12.597	0.121
									12.637	0.108
									12.678	0.099
									12.721	0.094
									12.767	0.092
									12.814	0.090
									12.864	0.090
									12.917	0.089

12.975

13.037

13.106 13.184

13.277 13.398

13.690

-1.000

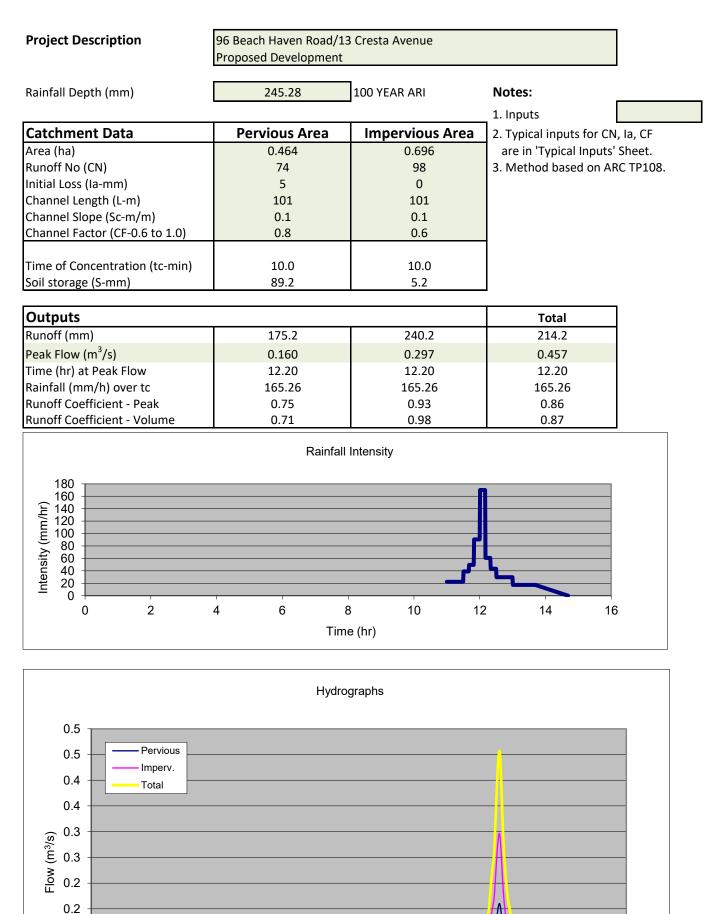
0.089

0.088 0.075

0.060 0.054

0.053

0.027


0.000

Лirey	CHANNEL CAPACITY SECTION PRE-DEVELOPMENT A-A	PROJECT NO: PROJECT NAME: DATE: BY: REF:	200626-01 96 Beach Haven Road/ 13 Cresta Avenue 6.08.2021 Natalie Naidoo Overland Flowpath Cross Sections
INPUTSCase (A or B)BCase AFlow (m³/s)0.444Case BSlope (S _o)10%Water level (m)23.53MFFL23.68Channel GeometryMannings "n" value023.70.030.52.523.50.032.52.523.500.0332.523.500.0332.523.70.03-11011 <th>l. i.e. channel</th> <th>Normal Flow Condition Flow (m³/s) Velocity (m/s) So or Sf Energy (m) Froude No Bed Stress (Pa) Equivalent "n" Equivalent ks(mm) Geometry for wetted Depth (d-m) Area (A-m²) Width (B-m) Perimeter (P-m) Critical Flow Condition Flow (m³/s) Velocity (m/s) Energy (m) Typical "n" values Concrete Gunite Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)</th> <th>DUTPUTS ns 0.445 0K 2.173 0.1000 23.767 2.239 92.885 0.030 N/A conditions 23.527 0.205 2.132 2.163</th>	l. i.e. channel	Normal Flow Condition Flow (m³/s) Velocity (m/s) So or Sf Energy (m) Froude No Bed Stress (Pa) Equivalent "n" Equivalent ks(mm) Geometry for wetted Depth (d-m) Area (A-m²) Width (B-m) Perimeter (P-m) Critical Flow Condition Flow (m³/s) Velocity (m/s) Energy (m) Typical "n" values Concrete Gunite Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)	DUTPUTS ns 0.445 0K 2.173 0.1000 23.767 2.239 92.885 0.030 N/A conditions 23.527 0.205 2.132 2.163
23.8 23.75 23.75 23.65 23.65 23.65 23.65 23.55 23.45 23.45 23.45 23.45 23.45 23.45 23.45 23.3 0 0.5	1 1.5 2 x(m)	2.57	Channel WL

INPUTS Case (A or B) B Case A Flow (m ³ /s) 0.444	CHANNEL CAPACITY SECTION PRE-DEVELOPMENT B-B	PROJECT NO: PROJECT NAME: DATE: BY: REF: C Normal Flow Conditio Flow (m ³ /s) Velocity (m/s) S _o or S _f Energy (m) Froude No	200626-01 96 Beach Haven Road/ 13 Cresta Avenue 6.08.2021 Natalie Naidoo Overland Flowpath Cross Sections DUTPUTS ns 0.445 2.201 0.1000 21.773 2.240
Case B		Bed Stress (Pa)	94.730
Slope (S _o) 10%		Equivalent "n"	0.030
Water level (m) 21.53 MFFL 21.68	0.13	Equivalent k _s (mm)	N/A
MFFL 21.68 Channel Geometry Mannings	Sinuosity	Geometry for wetted	conditions
x (m) y (m) "n" value	Sindosity	Depth (d-m)	21.526
0 22 0.03	Short Grass	Area (A-m ²)	0.202
0.5 21.5 0.03	Short Grass	Width (B-m)	2.051
1 21.4 0.03	Short Grass	Perimeter (P-m)	2.092
2 21.4 0.03 2.5 21.50 0.03	Short Grass Short Grass	Critical Flow Condition	x
3 22 0.03	Short Grass	Flow (m ³ /s)	0.199 INCREASE CH/
-1	Short Grass	Velocity (m/s)	0.983
		Energy (m)	21.575
		Typical "n" values	0.010
The table can input 10 (x,y) co-ordinates.		Concrete Gunite	0.013 0.017
The (x,y) pairs should be in order Terminate list by making x = -1.0 Flow distribution is based on velocity and e gradient common to all parts of the channe $n=(\Sigma(P_1n_1^{1.5}+)/P)^{0.67}$		Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)	0.02 0.03 0.035-0.065 0.05-0.15 0.2-0.5
Sinuosity is the relative length of that flow element compared to other elements and Default value is 1.0.			
	Channel Geometry		
22.2			
22			
21.8		2.53	-ChannelWL
(E) 21.6		2.55	
21.4			
21.2			
21			
0 0.5	1 1.5 2 x(m)	2.5	3

Airey	CHANNEL CAPACITY SECTION PRE-DEVELOPMENT C-C	PROJECT NO: PROJECT NAME: DATE: BY: REF:	200626-01 96 Beach Haven Road/ 13 Cresta Avenue 6.08.2021 Natalie Naidoo Overland Flowpath Cross Sections
INPUTSCase (A or B)BCase A Flow (m³/s)0.444Case B Slope (S_o)0.444Case B Slope (S_o)10%Water level (m)20.03MFFL20.18Channel GeometryMannings "n" valueChannel GeometryMannings "n" value020.50.030.520.000.03119.90.03219.90.032.520.000.03320.50.03-100.03119.90.032.520.000.03320.50.03-100.03119.90.03219.90.03219.90.03219.90.03219.90.03320.50.03-100.03320.50.03-100.03119.90.03219.90.03219.90.03320.50.03-100.03119.90.03219.90.03219.90.03320.50.03-100.03-100.03-100.03-100-100-100-100 <th>el. i.e. channel</th> <th>Normal Flow Condition Flow (m³/s) Velocity (m/s) So or Sf Energy (m) Froude No Bed Stress (Pa) Equivalent "n" Equivalent ks(mm) Geometry for wetted Depth (d-m) Area (A-m²) Width (B-m) Perimeter (P-m) Critical Flow Condition Flow (m³/s) Velocity (m/s) Energy (m) Typical "n" values Concrete Gunite Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)</th> <th>DUTPUTS</th>	el. i.e. channel	Normal Flow Condition Flow (m ³ /s) Velocity (m/s) So or Sf Energy (m) Froude No Bed Stress (Pa) Equivalent "n" Equivalent ks(mm) Geometry for wetted Depth (d-m) Area (A-m ²) Width (B-m) Perimeter (P-m) Critical Flow Condition Flow (m ³ /s) Velocity (m/s) Energy (m) Typical "n" values Concrete Gunite Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)	DUTPUTS
	Channel Geometry		
$ \begin{array}{c} 20.7 \\ 20.6 \\ 20.5 \\ 20.4 \\ 20.3 \\ 20.2 \\ 20.1 \\ 20.1 \\ 19.9 \\ 19.8 \\ 0 \\ 0.5 \end{array} $	1 1.5 2 x(m)	2.53	Channel WL

Hydrographs- SCS Method - Post Development Flow from the Proposed Development

10

12

14

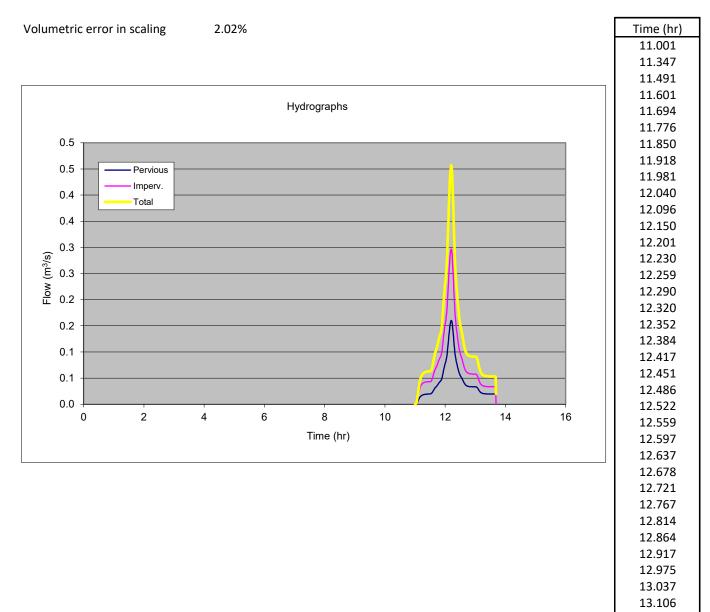
16

0.1 0.1 0.0

0

2

4

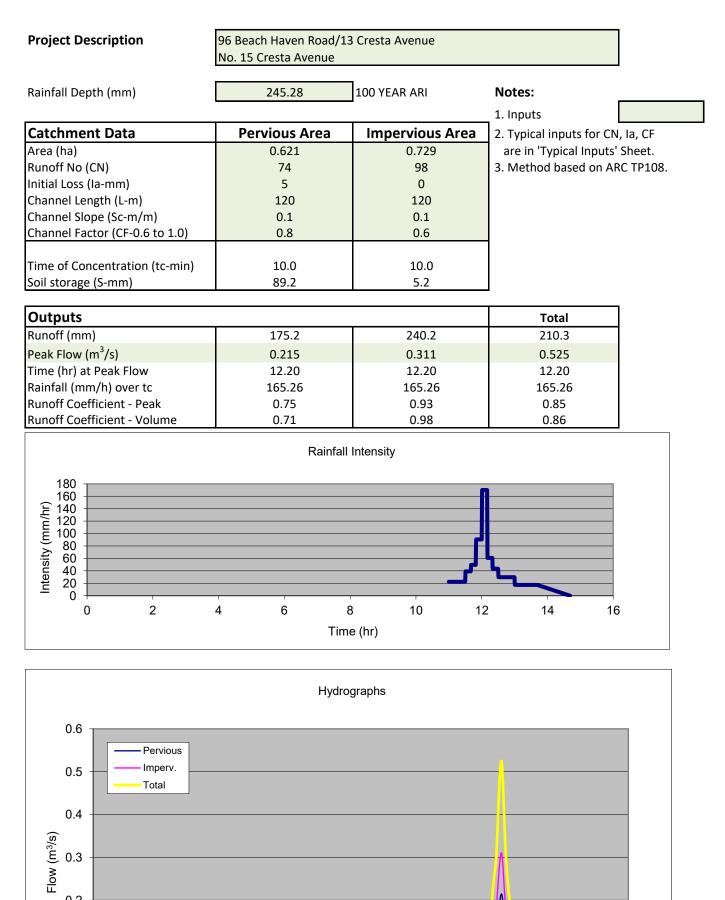

6

8

Time (hr)

Project Description	96 Beach Haven Road/13 Cresta Avenue
	Proposed Development

Total Hydrograph in tabular form: (based on simualtion from above)


13.184 13.277 13.398 13.690 -1.000

OUTPUTS Case (A or B) B Case A Flow (m ³ /s) OUTPUTS Case A Commetion of the Colspan="2">Commetion of the Colspan= 2">Commetion of the Colspan= 2">Commetion of the Colspan="2">Commetion of the Colspan="2">Commetion of the Colspan="2">Commetion of the Colspan= 2">Commetion of the Colspan= 2" Commetion of the Colspan= 2" Commetion of the Colspan="2"	Airey	CHANNEL CAPACITY SECTION POST DEVELOPMENT A-A	PROJECT NO: PROJECT NAME: DATE: BY: REF:	200626-01 96 Beach Haven Road/ 13 Cresta Avenue 5.08.2021 Natalie Naidoo Overland Flowpath Cross Sections	
Flow (m ³ /s)0.457Flow (m ³ /s)0.455Case BSlope (S _x)SMChannel GeometryN/AChannel GeometryN/AChannel GeometryShort GrassShort GrassSh					
Case A Flow (m ³ /s)Velocity (m/s)1.738Flow (m ³ /s)0.457Case B Slope (S ₀)Slope (S ₀)MFELCannel GeometryManningsSinuosity a 2Slope (S ₀)Slope (S ₁)MERLCancer to gradient common to gradient common to all parts of the channel. i.e. $n = (\Sigma(P_1n_1^{-14}, \dots)/P)^{6/D}$ Channel GeometryThe table can input 10 (x,y) co-ordinates. The (x,y) pairs should be in order Terminate list by making x = -1.0The table can input 10 (x,y) co-ordinates. The (x,y) pairs should be in order Terminate list by making x = -1.0Typical "n" values Gounce 0.013 Gound 10 (xgrass)Concrete 0.013 Smooth earth 0.020 Clean channel 0.035-0.065 Floodplain 0.035-0.055Channel GeometryChannel Geometry2.3.70.37Concrete 0.0370.37Concret 0.372.3.65Concrete 0.370.3.72.65Concret 0.370.372.3.65Concret 0.370.37 <td c<="" td=""><td>Lase (A or B)</td><td></td><td></td><td></td></td>	<td>Lase (A or B)</td> <td></td> <td></td> <td></td>	Lase (A or B)			
Case B Stope (S ₀) MFFL 23.50 Channel Geometry Mannings Sinuosity $\frac{x (m)}{0} = \frac{23.75}{23.70}$ Channel Geometry Mannings Sinuosity $\frac{x (m)}{0} = \frac{23.75}{23.70}$ Channel Geometry Mannings Sinuosity $\frac{x (m)}{0} = \frac{23.75}{23.70}$ Short Grass Short Grass Shot Grass Short Grass Short Grass Short Grass Sh	Case A				
Case B Stope (S ₀) MFFL 23.50 Channel Geometry Mannings Sinuosity $\frac{x (m)}{0} = \frac{23.75}{23.70}$ Channel Geometry Mannings Sinuosity $\frac{x (m)}{0} = \frac{23.75}{23.70}$ Channel Geometry Mannings Sinuosity $\frac{x (m)}{0} = \frac{23.75}{23.70}$ Short Grass Short Grass Shot Grass Short Grass Short Grass Short Grass Sh	low (m ³ /s) 0.457			0.0500	
Case BSlope (S_a)5%M4Ter level (m)23.550.15Equivalent T_n ^m $\frac{V(m)}{V(m)}$ $\frac{V(m)}{n^n}$ value $\frac{V(m)}{V(m)}$ $\frac{V(m)}{N}$ $\frac{V(m)}{V(m)}$			-	23.705	
Slope (S_0) 5% Water level (m) 23.35 Channel Geometry Mannings Sinuosity x (m) y (m) 'n'' value 0,5 23.5 0.03 1,23.4 0.03 2,23.4 0.03 2,2,5 23.49 0.03 Short Grass 2,5 23.49 0.03 Short Grass Short Gra					
Water level (m) 23.55 0.15 Equivalent k,(mm) N/A MFFL 2.3.70 Channel Geometry Mannings Sinuosity n'''n'' value Sinuosity n''''''''''''''''''''''''''''''''''''			· ,		
$\frac{MFFL}{x(m)} \frac{y(m)}{y(m)} \frac{y(m)}{m^* n^* value} \frac{Sinuosity}{n^* n^* value} \frac{Sinuosity}{short Grass} \frac{Geometry}{Short Grass} \frac{Geometry}{short Grass} \frac{Geometry}{n^* value} \frac{n^* value}{n^* value} \frac{n^* value}{n^* onod} \frac{n^* value}{n^* onod} \frac{n^* value}{n^* onod} \frac{n^* value}{n^* onod} \frac{n^* n^* value}{n^* onod} \frac{n^* n^* value}{n^* onod} \frac{n^* n^* value}{n^* onod} \frac{n^* n^* value}{n^* onod} n^* n^$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.15	Equivalent k _s (mm)	N/A	
$\frac{x (m)}{23.7} = 0.03$ Short Grass 0.5 23.5 0.03 2 23.4 0.03 Short Grass 2 23.4 0.03 Short Grass 2 23.4 0.03 Short Grass 2 23.7 0.03 Short Grass Short Grass Short Grass Short Grass Short Grass Critical Flow Conditions Flow (m ³ /s) 0.281 Velocity (m/s) 1.066 Dergy (m) 23.610 Typical "n" values Concrete 0.013 Gunite 0.017 Smooth earth 0.022 Clean channel 0.035 Short Grass Short Grass Critical Flow Conditions Flow (m ³ /s) 0.281 NCRE/ Velocity (m/s) 1.066 Dergy (m) 23.610 Typical "n" values Concrete 0.013 Short Grass Short Grass Short Grass Short Grass Short Grass Short Grass Short Grass Short Grass Short Grass Concrete 0.013 Short Grass Short Grass Short Grass Short Grass Short Grass Short Grass Short Grass Concrete 0.013 Short Grass Short Grass Sh					
$\frac{1}{23.7} = 0.03$ Short Grass Critical Flow Conditions Flow (m ⁷ /s) 2.316 Critical Flow Conditions Flow (m ⁷ /s) 2.316 The table can input 10 (x,y) co-ordinates. The table can input 1		Sinuosity			
$\frac{0.5}{1} \frac{23.5}{23.4} \frac{0.03}{0.03}$ Short Grass Short Grass The table can input 10 (x,y) co-ordinates. The table can input 10 (x,y) co-ordinates. The table can input 10 (x,y) co-ordinates. The (xy) pairs should be in order Terminate list by making x = -1.0 Flow distribution is based on velocity and energy gradient common to all parts of the channel i.e. $n=(\Sigma[P_1n_1^{-1}+)/P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. Channel Geometry 23.75 23.65					
$\frac{1}{2} \frac{23.4}{23.4} \frac{0.03}{0.03}$ Short Grass $\frac{1}{2} \frac{23.4}{2} \frac{0.03}{23.7} \frac{1}{0.03}$ Short Grass Short Grass $\frac{1}{2} \frac{23.49}{23.7} \frac{0.03}{0.03}$ Short Grass $\frac{1}{2} \frac{1}{2} \frac$					
$\frac{2}{23.4} = \frac{23.4}{23.49} = \frac{0.03}{0.03}$ Short Grass Short Grass Short Grass $\frac{Critical Flow Conditions}{Flow (m^2/s)} = \frac{1000}{23.610}$ The table can input 10 (x,y) co-ordinates. The (x,y) pairs should be in order Terminate list by making x = -1.0 Flow distribution is based on velocity and energy gradient common to all parts of the channel. i.e. $n = (\sum (P_1 n_1^{-1.5} +)/P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. $\frac{Channel Geometry}{23.75}$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				2.310	
$\frac{3}{-1} = \frac{23.7}{0.03}$ Short Grass Flow (m ³ /s) 0.281 (NCRE/ Velocity (m/s) 1.066 Energy (m) 23.610 Typical "n" values Concrete 0.013 Gunite 0.017 Smooth earth 0.02 Clean channel 0.03 Natural Channel 0.035-0.065 Floodplain 0.05-0.15 Overland flow (grass) 0.2-0.5 Channel Geometry $\frac{23.75}{23.7}$ $\frac{2.65}{23.6}$ Channel Geometry $\frac{23.75}{23.7}$ $\frac{2.65}{23.6}$ Channel Geometry			Critical Flow Condition	IS	
$\frac{1}{ } \qquad \qquad$				0.281 INCREASE CI	
The table can input 10 (x,y) co-ordinates. The (x,y) pairs should be in order Terminate list by making x = -1.0 Flow distribution is based on velocity and energy gradient common to all parts of the channel. i.e. $n=(\Sigma[P_1n_1^{-1^5}+)/P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. Channel Geometry 23.75 23.6 23.6 23.6 23.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2					
The table can input 10 (x,y) co-ordinates. The (x,y) pairs should be in order Terminate list by making x = -1.0 Flow distribution is based on velocity and energy gradient common to all parts of the channel. i.e. $n=(\sum (P_1n_1^{-1.5}+)/P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. Channel Geometry 23.75 23.65 24.5 25.5				23.610	
The table can input 10 (x,y) co-ordinates. The (x,y) pairs should be in order Terminate list by making x = -1.0 Flow distribution is based on velocity and energy gradient common to all parts of the channel. i.e. $n=(\sum (P_1n_1^{-1.5}+)/P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. Channel Geometry 23.75 23.65 24.5 25.5					
The table can input 10 (x,y) co-ordinates. The (x,y) pairs should be in order Terminate list by making x = -1.0 Flow distribution is based on velocity and energy gradient common to all parts of the channel. i.e. $n=(\sum (P_1n_1^{-1.5}+)/P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. Channel Geometry 23.75 23.65 23.65 23.65 23.65 23.65 23.65 23.65 23.65 23.55 25.5				-	
The (x,y) pairs should be in order Terminate list by making x = -1.0 Flow distribution is based on velocity and energy gradient common to all parts of the channel. i.e. $n=(\Sigma(P_1n_1^{-1.5}+)/P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. Channel Geometry 23.75 23.65 23.65 23.65 23.65 23.65 23.65 23.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55					
Terminate list by making x = -1.0 Flow distribution is based on velocity and energy gradient common to all parts of the channel. i.e. $n=(\sum(P_1n_1^{-1.5}+)/P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S _o . Default value is 1.0. Channel Geometry 23.75 23.65 23.65 23.65 23.65 23.65 23.65 23.55 Channel Geometry UL					
Flow distribution is based on velocity and energy gradient common to all parts of the channel. i.e. $n = (\Sigma (P_1 n_1^{-1.5} +) / P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. Channel Geometry 23.75 23.6 23.6 23.6 23.6 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5					
Flow distribution is based on velocity and energy gradient common to all parts of the channel. i.e. $n=(\Sigma(P_1n_1^{-1.5}+)/P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. Channel Geometry 23.75 23.65 23.6 23.6 23.6 23.5 23.5 23.5 23.5 23.5 23.5 23.5	erminate list by making x = -1.0				
gradient common to all parts of the channel. i.e. Derived flow (grass) = 0.2-0.5 Overland flow (grass) = 0.2-0.5 $0.2-0.5$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. $Channel Geometry$ 23.75 23.65 23.65 23.65 0.37 2.65 $Channel = WL$	low distribution is based on velocity and ϵ	nergy			
n= $(\Sigma(P_1n_1^{1.5}+)/P)^{0.67}$ Sinuosity is the relative length of that flow channel element compared to other elements and input S ₀ . Default value is 1.0. Channel Geometry 23.75 23.65 23.6 23.65 23.6 0.37 $\Sigma_{23.55}$ $\Sigma_{23.55}$ $\Sigma_{23.55}$ $\Sigma_{23.55}$ $\Sigma_{23.55}$			-		
Sinuosity is the relative length of that flow channel element compared to other elements and input S _o . Default value is 1.0. Channel Geometry 23.75 23.65 23.65 23.65 23.65 23.65 23.55 23.					
$\begin{array}{c} 23.75 \\ 23.7 \\ 23.65 \\ 23.65 \\ 23.6 \\ \end{array}$	element compared to other elements and				
$\begin{array}{c} 23.7 \\ 23.65 \\ 23.6 \\ 23.6 \\ 23.5 \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		Channel Geometry			
$\begin{array}{c} 23.65 \\ 23.6 \\ 23.6 \\ \hline \\ 23.55 \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	23.75			1	
23.6 23.55 $g_{23.55}$ 23.55 $g_{23.5}$ 23.55 $g_{23.5}$ $g_{23.5}$	23.7				
23.6 23.55 $g_{23.55}$ 23.55 $g_{23.5}$ 23.55 $g_{23.5}$ $g_{23.5}$	22.65				
23.6 (23.55 (23.55)	23.00		0.05		
23.55 E 23.5	23.6 0.37		2.05		
	0.01				
	23.55 F				
	₹ _{23.5}				
23.45					
	23.45			1	
23.4	23.4				
23.35	23.35				
23.3	23.3				
		1 1.5 2	2.5	3	
x(m)		x(m)			

Airey	CHANNEL CAPACITY SECTION POST DEVELOPMENT B-B	PROJECT NO: PROJECT NAME: DATE: BY: REF:	200626-01 96 Beach Haven Road/ 13 Cresta Avenue 5.08.2021 Natalie Naidoo Overland Flowpath Cross Sections
INPUTS			OUTPUTS
Case (A or B) B		Normal Flow Condition Flow (m ³ /s)	0.458 OK
Case A		Velocity (m/s)	1.785
Flow (m ³ /s) 0.457		S _o or S _f	0.0500
		Energy (m)	21.714
		Froude No	1.632
Case B		Bed Stress (Pa)	58.108
Slope (S_0) 5%		Equivalent "n"	0.030
Water level (m) 21.55 MFFL 21.70		Equivalent k _s (mm)	N/A
Channel Geometry Mannings	Sinuosity	Geometry for wetted	conditions
x (m) y (m) "n" value		Depth (d-m)	21.552
0 22 0.03	Short Grass	Area (A-m ²)	0.257
0.5 21.5 0.03	Short Grass	Width (B-m)	2.104
1 21.4 0.03		Perimeter (P-m)	2.167
2 21.4 0.03 2.5 21.50 0.03		Critical Flow Condition	
2.5 21.50 0.03 3 22 0.03		Flow (m ³ /s)	0.281 INCREASE CH/
-1		Velocity (m/s)	1.094
		Energy (m)	21.613
		Typical "n" values	
The table can input 10 (v, v) as ardinates		Concrete Gunite	0.013 0.017
The table can input 10 (x,y) co-ordinates. The (x,y) pairs should be in order		Smooth earth	0.017
Terminate list by making $x = -1.0$		Clean channel	0.02
		Natural Channel	0.035-0.065
Flow distribution is based on velocity and		Floodplain	0.05-0.15
gradient common to all parts of the chanr	nel. i.e.	Overland flow (grass)	0.2-0.5
$n=(\Sigma(P_1n_1^{1.5}+)/P)^{0.67}$			
Sinuosity is the relative length of that flow element compared to other elements and Default value is 1.0.			
	Channel Geometry		
23.75			1
23.7			
23.65			
23.6		2.65	
0.37			
Ê23.55 ►			
23.5			
23.45			
23.4			
23.35 0 0.5	1 1.5 2	2.5	3
	x(m)		-

INPUTS Case (A or B) Case A Flow (m ³ /s) 0.457		PROJECT NO: PROJECT NAME: DATE: BY: REF: CONTROMINICATION Flow (m ³ /s) Velocity (m/s) S _o or S _f Energy (m) Froude No	200626-01 96 Beach Haven Road/ 13 Cresta Avenue 16.06.2022 Natalie Naidoo Overland Flowpath Cross Sections DUTPUTS 0.458 3.027 0.0500 20.468 3.516
Case B		Bed Stress (Pa)	36.687
Slope (S _o) 5%		Equivalent "n"	0.013
Water level (m) 20.00		Equivalent k _s (mm)	1.75
MFFL 20.15 Channel Geometry Mannings	Sinuosity	Geometry for wetted o	conditions
x (m) y (m) "n" value		Depth (d-m)	20.001
0 20.5 0.013		Area (A-m ²)	0.151
0.5 20.00 0.013		Width (B-m)	2.001
1 19.9 0.013 2 19.9 0.013		Perimeter (P-m)	2.022
2.5 20.00 0.013		Critical Flow Condition	s
3 20.5 0.013		Flow (m ³ /s)	0.130 INCREASE CH/
-1		Velocity (m/s)	0.861
		Energy (m)	20.038
		Typical "n" values	
		Concrete	0.013
The (x,y) pairs should be in order Terminate list by making $x = -1.0$ Flow distribution is based on velocity and gradient common to all parts of the chanr $n=(\sum (P_1n_1^{1.5}+)/P)^{0.67}$ Sinuosity is the relative length of that flow element compared to other elements and Default value is 1.0.	rel. i.e. v channel	Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)	0.02 0.03 0.035-0.065 0.05-0.15 0.2-0.5
	Channel Geometry		
23.75			
23.7			
23.65			
		0.05	Channel WL
23.6 0.37		2.65	
Ê 23.55			
23.5			
23.45			
23.4			
23.35 0 0.5	1 1.5 2	2.5	3
	x(m)		

Hydrographs- SCS Method - Predevelopment Flow from No. 15 Cresta Avenue

0.2

0.1

0.0 0

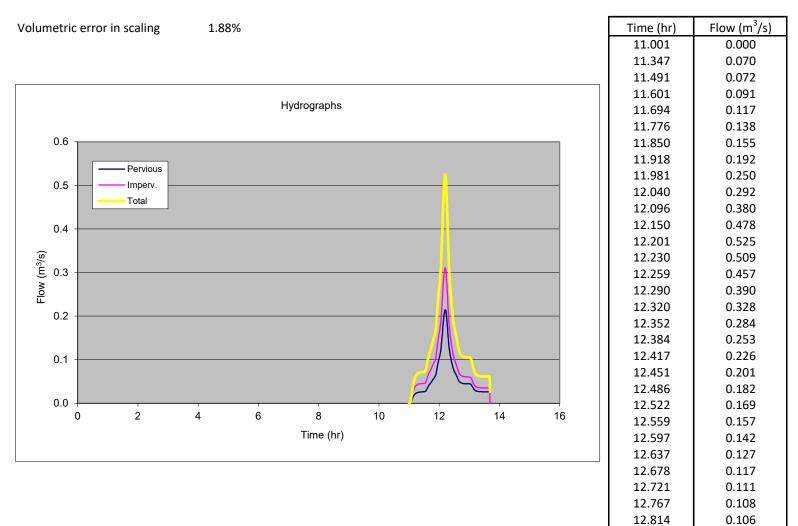
2

4

6

8

Time (hr)


10

12

14

Project Description	96 Beach Haven Road/13 Cresta Avenue
	No. 15 Cresta Avenue

Total Hydrograph in tabular form: (based on simualtion from above)

12.864

12.917

12.975

13.037

13.106

13.184

13.277 13.398

13.690

-1.000

0.106

0.105

0.105

0.104

0.089

0.071 0.064

0.062

0.026

INPUTS Case (A or B) B Case A Flow (m ³ /s) 0.525	CHANNEL CAPACITY SECTION PRE-DEVELOPMENT NO. 15 CRESTA AVE.	PROJECT NO: PROJECT NAME: DATE: BY: REF: CONTRACTION Flow (m ³ /s) Velocity (m/s) S _o or S _f Energy (m) Froude No	200626-01 96 Beach Haven Road/ 13 Cresta Avenue 6.08.2021 Natalie Naidoo Overland Flowpath Cross Sections DUTPUTS 1.021 0.0700 17.711 0.623
Case B		Bed Stress (Pa)	165.808
Slope (S _o) 7%		Equivalent "n"	0.100
Water level (m) 17.66	0.36	Equivalent k _s (mm)	N/A
MFFL 17.81			
Channel GeometryManningsx (m)y (m)"n" value	Sinuosity	Geometry for wetted of Depth (d-m)	17.658
0 18 0.1	Property/Parcels	Area (A-m ²)	0.518
0.5 17.7 0.1	Property/Parcels	Width (B-m)	1.895
1 17.3 0.1	Property/Parcels	Perimeter (P-m)	2.146
2 17.3 0.1	Property/Parcels		
2.5 17.70 0.1 3 18 0.1	Property/Parcels Property/Parcels	Critical Flow Condition Flow (m ³ /s)	s 0.849 ОК
3 18 0.1 -1	Property/Parcels	Velocity (m/s)	1.638
-		Energy (m)	17.795
		Typical "n" values Concrete	0.013
The (x,y) pairs should be in order Terminate list by making x = -1.0 Flow distribution is based on velocity and e gradient common to all parts of the channe $n=(\sum(P_1n_1^{1.5}+)/P)^{0.67}$ Sinuosity is the relative length of that flow element compared to other elements and i Default value is 1.0.	el. i.e. channel	Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)	0.02 0.03 0.035-0.065 0.05-0.15 0.2-0.5
	Channel Geometry		
18.2			
17.8 0.55		2.45	- Channel WL
(پ 17.6		—	
17.4			
17.2			
17 0 0.5	1 1.5 2 x(m)	2.5 3	3

Hydrographs- SCS Method - Post Development Flow from No. 15 Cresta Avenue

Rainfall Depth (mm) 245.28 1.00 YEAR ARI Notes: Catchment Data Pervious Area Impervious Area 1. Inputs Area (h) 0.54 0.81 2. Typical inputs for CN, Ia, CF are in "Typical inputs" Sheet. Notes: 1. Inputs 2. Typical inputs for CN, Ia, CF are in "Typical inputs" Sheet. 3. Method based on ARC TP108 Channel Ispect (CF-0.6 to 1.0) 0.8 0.6 0.6 Time of Concentration (tc-min) 89.2 5.2 Outputs 7.04 10.0 Runoff Loegflicient - Peak 0.75 0.345 Runoff Coefficient - Volume 0.75 0.93 Runoff Coefficient - Volume 0.75 0.93 Notefficient - Volume 0.71 0.98 Vigraphs 0.71 0.98 Mundf Coefficient - Volume 0.71 0.98 Vigraphs 1. Inputs 1. Inputs	Project Descrip	otion	96 Beach Haven Road/1 No. 15 Cresta	3 Cresta Avenue	
Catchment Data Pervious Area Impervious Area 2. Typical inputs for CN, Ia, CF Area (In) 0.54 0.81 whoff No (CN) 74 98 initial Loss (Ia-mm) 5 0 Channel Stop (Sc-m/m) 0.1 0.1 Channel Factor (CF-0.6 to 1.0) 0.8 0.6 Time of Concentration (tc-min) 10.0 10.0 Sol storage (S-mm) 25.2 240.2 214.2 Pack Flow (m ³ /s) 0.187 0.345 0.532 Time (hr) at Peak Flow 12.20 12.20 12.20 Rainfall (mm/h) over tc 165.26 165.26 165.26 Runoff Coefficient - Volume 0.71 0.98 0.87 Rainfall Intensity Another Stop (Sc-Market Coefficient - Volume 0.71 0.98 0.87 Rainfall Intensity Another Stop (Sc-Market Coefficient - Volume 0.71 0.98 0.87 Rainfall Intensity Another Stop (Sc-Market Coefficient - Volume 0.71 0.98 0.87 Rainfall Intensity	Rainfall Depth (n	nm)		100 YEAR ARI	
Runoff No (CN) 1111 Loss (1a-mm) Channel Length (1-m) Channel Slope (Sc-m/m) Channel Factor (CF-0.6 to 1.0) Channel Factor (CF-0.6 to 1.0) 0.8 0.6 1111 dos (1a-mm) 10.0 1	Catchment Da	ata	Pervious Area	Impervious Area	
Initial Loss (la-mm) 5 0 Channel Length (L-m) 120 120 Channel Factor (CF-0.6 to 1.0) 0.8 0.6 Time of Concentration (tc-min) 10.0 10.0 Soil storage (S-mm) 29.2 5.2 Dutputs Total Runoff (mm) 175.2 240.2 214.2 Peak Flow (m ³ /s) 0.187 0.345 0.352 Time (hr) at Peak Flow 112.20 12.20 Rainfall (mm/h) over tc 165.26 165	Area (ha)		0.54	0.81	are in 'Typical Inputs' Sheet.
Channel Length (L-m) Channel Slope (Sc-m/m) Channel Factor (CF-0.6 to 1.0) Outputs Soil storage (S-mm) 10.0 Soil storage (S-mm) 10.0 10	Runoff No (CN)		74	98	3. Method based on ARC TP108.
Channel Slope (Sc-m/m) Channel Factor (CF-0.6 to 1.0) 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Initial Loss (Ia-mi	m)	5	0	
Channel Factor (CF-0.6 to 1.0) 0.8 0.6 Time of Concentration (tc-min) 89.2 5.2 Dutputs Total 10.0 10.0 Soil storage (S-mm) 75.2 240.2 214.2 Peak Flow (m ³ /s) 0.187 0.345 0.532 Time (hr) at Peak Flow 12.20 12.20 12.20 Rainfall (mm) over tc 155.26 165.26 1	Channel Length ((L-m)	120	120	
Time of Concentration (tc-min)10.010.0Soil storage (S-mm)10.05.2OutputsrotalRunoff (mm)175.2240.2Pack Flow (m ³ /s)0.1870.34512.2012.2012.20Rainfall (mm/h) over tc165.26Runoff Coefficient - Peak0.710.930.87	Channel Slope (S	c-m/m)	0.1	0.1	
Soil storage (5-mm) 89.2 5.2 Outputs Total Runoff (nm) 175.2 240.2 214.2 Peak Flow (m ³ /s) 0.187 0.345 0.532 Time (hr) at Peak Flow 12.20 12.20 12.20 Runoff Coefficient - Peak 0.75 0.93 0.86 Runoff Coefficient - Volume 0.71 0.98 0.87 Rainfall Intensity Rainfall Intensity Hydrographs Hydrographs	Channel Factor (CF-0.6 to 1.0)	0.8	0.6	
Soil storage (5-mm) 89.2 5.2 Outputs Total Runoff (nm) 175.2 240.2 214.2 Peak Flow (m ³ /s) 0.187 0.345 0.532 Time (hr) at Peak Flow 12.20 12.20 12.20 Runoff Coefficient - Peak 0.75 0.93 0.86 Runoff Coefficient - Volume 0.71 0.98 0.87 Rainfall Intensity Rainfall Intensity Hydrographs Hydrographs					1
OutputsTotalRunoff (mm)175.2240.2214.2Peak Flow (m ³ /s)0.1870.3450.532Time (hr) at Peak Flow12.2012.2012.20Rainfall (mm/h) over tc105.26105.26105.26Runoff Coefficient - Peak0.750.930.87Rainfall IntensityHydrographsHydrographs	Time of Concent	ration (tc-min)	10.0	10.0	
Runoff (mm) Peak Flow (n^3/s) Difference (hr) at Peak Flow Rainfall (mm/h) over tc Runoff Coefficient - Peak Runoff Coefficient - Volume	Soil storage (S-m	ım)	89.2	5.2	
Runoff (mm) Peak Flow (n^3/s) Difference (hr) at Peak Flow Rainfall (mm/h) over tc Runoff Coefficient - Peak Runoff Coefficient - Volume					
Runoff (mm) Peak Flow (n^3/s) Difference (hr) at Peak Flow Rainfall (mm/h) over tc Runoff Coefficient - Peak Runoff Coefficient - Volume	Outputs				Total
Peak Flow (m ³ /s) 0.187 0.345 0.532 Time (hr) at Peak Flow Rainfall (mm/h) over tc Runoff Coefficient - Volume 0.71 0.98 0.87 Rainfall Intensity Rainfall Intensity 12.20 12.20 155.26 165.26 0.86 0.75 0.93 0.86 0.87 Rainfall Intensity Hydrographs Hydrographs	Runoff (mm)		175.2	240.2	214.2
Time (hr) at Peak Flow Rainfall (mm/h) over tc Runoff Coefficient - Peak Runoff Coefficient - Volume12.20 165.26 0.7512.20 165.26 0.9312.20 165.26 0.93Rainfall IntensityImage: Coefficient - VolumeTraining to the transmit of tran	. ,)			
Rainfall (mm/h) over tc Runoff Coefficient - Peak Runoff Coefficient - Volume 165.26 0.75 0.93 0.86 0.87 Rainfall Intensity					
Runoff Coefficient - Peak Runoff Coefficient - Volume 0.75 0.93 0.86 0.87 Rainfall Intensity					
Runoff Coefficient - Volume 0.71 0.98 0.87 Rainfall Intensity $100 \\ 100 \\ 100 \\ 100 \\ 00 \\ 00 \\ 00 \\ $					
Rainfall Intensity I = I = I = I = I = I = I = I = I = I =					
$\begin{array}{c} 0 \\ 0 \\ 2 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	aliantic de la construction de l				
0.6 0.5 Imperv. Total 0.4 () () () () () () () () () ()	0 +	2			2 14 16
0.5 Pervious Imperv. Total 0.4 0.4 0.4 0.3 0.3			Hydro	ographs	
0.5 Imperv. 	0.6	Pervious			
0.3 (v) NO NO	0.5	Imperv.			
0.3 (v) NO NO	0.4				
الله الله الله الله الله الله الله الله					
	3/S,				Δ
	E 0.3				
	NO				
	تَّــــــــــــــــــــــــــــــــــــ				

0.1

0.0 0

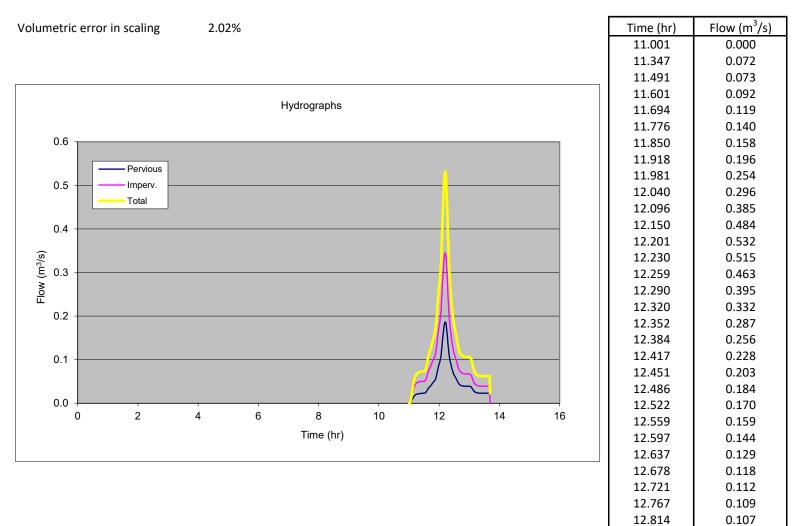
2

4

6

8

Time (hr)


10

12

14

Project Description	96 Beach Haven Road/13 Cresta Avenue
	No. 15 Cresta

Total Hydrograph in tabular form: (based on simualtion from above)

12.864

12.917

12.975

13.037

13.106

13.184

13.277 13.398

13.690

-1.000

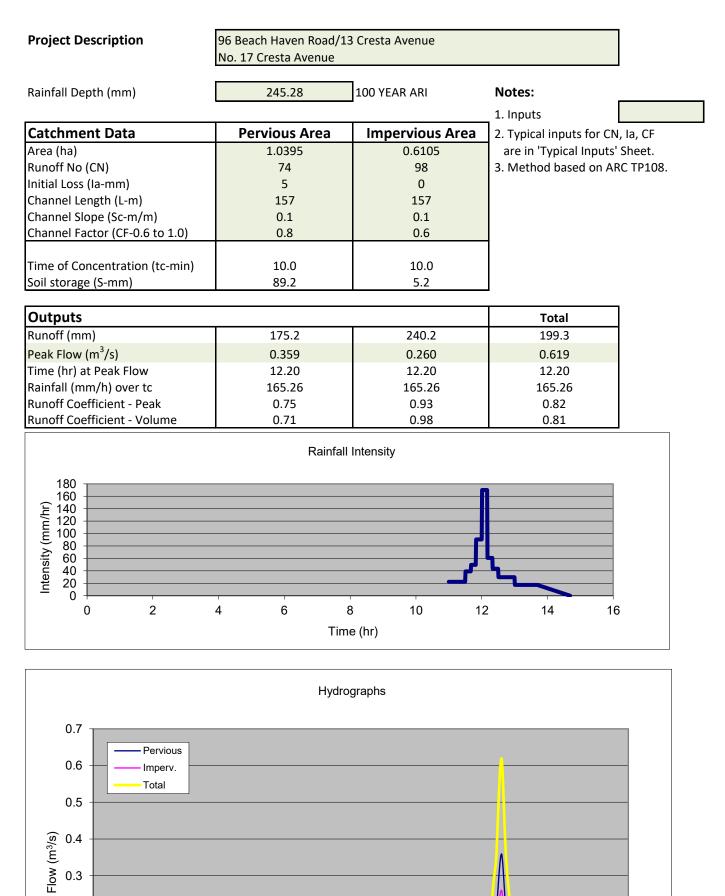
0.107

0.106

0.106

0.105

0.089


0.071 0.064

0.062

0.023

INPUTS Case (A or B) B Case A Flow (m³/s) 0.532 Case B 7%		Normal Flow Condition Flow (m ³ /s) Velocity (m/s) S _o or S _f Energy (m) Froude No Bed Stress (Pa) Equivalent "n"	0.548 1.031 0.0700 17.719 0.625 168.315 0.100
Water level (m)17.67MFFL17.82Channel GeometryManningsx (m)y (m)"n" value0180.10.517.70.1117.30.1217.30.12.517.700.13180.1-111111111217.30.1217.700.13180.1-111111111111111211211311 <td< td=""><td>el. i.e. channel</td><td>Equivalent k_s(mm) Geometry for wetted of Depth (d-m) Area (A-m²) Width (B-m) Perimeter (P-m) Critical Flow Condition Flow (m³/s) Velocity (m/s) Energy (m) Typical "n" values Concrete Gunite Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)</td><td>17.665 0.532 1.913 2.169</td></td<>	el. i.e. channel	Equivalent k _s (mm) Geometry for wetted of Depth (d-m) Area (A-m ²) Width (B-m) Perimeter (P-m) Critical Flow Condition Flow (m ³ /s) Velocity (m/s) Energy (m) Typical "n" values Concrete Gunite Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)	17.665 0.532 1.913 2.169
$ \begin{array}{c} 18.2\\ 18.1\\ 18\\ 17.9\\ 17.8\\ 0.54\\ \hline 17.6\\ 17.6\\ 17.5\\ 17.4\\ 17.3\\ 17.2\\ 0\\ 0.5\\ \end{array} $	Channel Geometry	2.46	Channel WL

Hydrographs- SCS Method - Predevelopment Flow from No. 17 Cresta Avenue

0.2

0.1

0.0 + 0

2

4

6

8

Time (hr)

10

12

14

Project Description	96 Beach Haven Road/13 Cresta Avenue
	No. 17 Cresta Avenue

Total Hydrograph in tabular form: (based on simualtion from above)

/olumetric error in scaling 1.48%	Time (hr)	Flow (m ³ /s)
	11.001	0.000
	11.347	0.080
	11.491	0.082
	11.601	0.104
Hydrographs	11.694	0.135
	11.776	0.159
0.7	11.850	0.180
Destinue	11.918	0.223
0.6 Pervious	11.981	0.291
Total	12.040	0.341
	12.096	0.445
	12.150	0.562
	12.201	0.619
	12.230	0.601
(s) 0.4 E 0.3	12.259	0.541
	12.290	0.462
	12.320	0.389
0.2	12.352	0.336
	12.384	0.300
0.1	12.417	0.268
	12.451	0.239
	12.486	0.216
	12.522	0.201
	12.559	0.187
Time (hr)	12.597	0.169
	12.637	0.152
	12.678	0.139
	12.721	0.132
	12.767	0.129
	12.814	0.127

12.864

12.917

12.975

13.037

13.106

13.184

13.277 13.398

13.690

-1.000

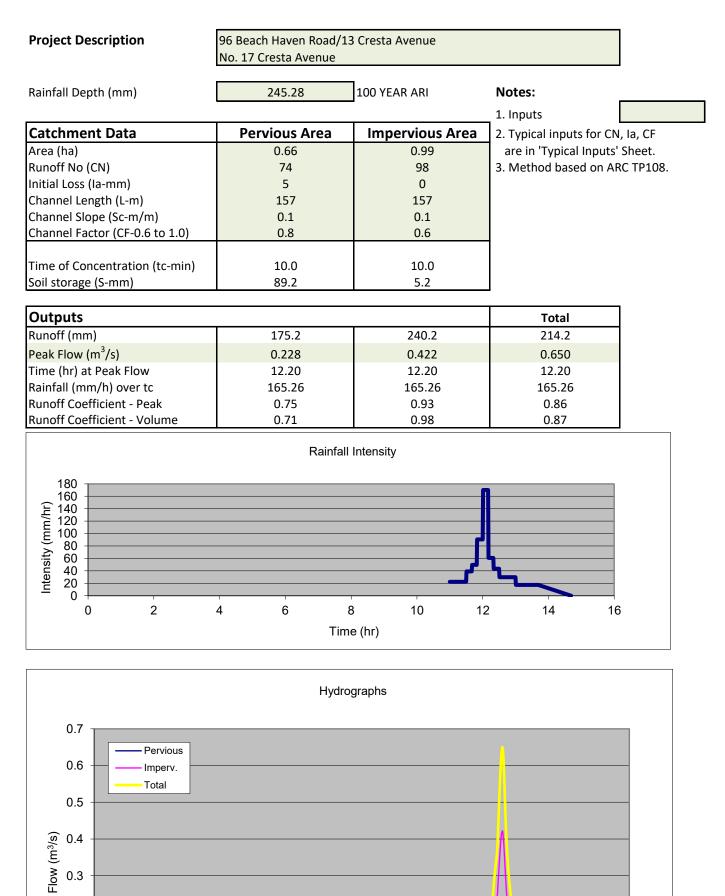
0.126

0.126

0.126

0.124

0.106


0.084 0.076

0.074

0.044

INPUTS Case (A or B) B Case A	CHANNEL CAPACITY SECTION PRE-DEVELOPMENT NO. 17 CRESTA AVE.	PROJECT NO: PROJECT NAME: DATE: BY: REF: CO Normal Flow Condition Flow (m ³ /s) Velocity (m/s)	200626-01 96 Beach Haven Road/ 13 Cresta Avenue 6.08.2021 Natalie Naidoo Overland Flowpath Cross Sections DUTPUTS 0.622 0.734
Flow (m^3/s) 0.619Case BSlope (S_o) 3%Water level (m) 17.47MFFL17.62Channel GeometryMannings "n" value017.50.10.517.30.10.517.30.11170.12170.12.517.300.1317.50.1-1111170.12170.12.517.300.1317.50.1-1111112170.12.517.300.1317.50.1-1112170.1317.50.1-1111112170.1317.50.1-1111111111112171317.50.1-111211-111111-1111111111111111111111 <th>el. i.e.</th> <th>S_o or S_f Energy (m) Froude No Bed Stress (Pa) Equivalent "n" Equivalent k₅(mm) Geometry for wetted of Depth (d-m) Area (A-m²) Width (B-m) Perimeter (P-m) Critical Flow Condition Flow (m³/s) Velocity (m/s) Energy (m) Typical "n" values Concrete Gunite Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)</br></th> <th>0.0300 17.492 0.428 81.704 0.100 N/A conditions 17.465 0.848 2.825 3.055</th>	el. i.e.	S _o or S _f Energy (m) Froude No 	0.0300 17.492 0.428 81.704 0.100 N/A conditions 17.465 0.848 2.825 3.055
	Channel Geometry		
$ \begin{array}{c} 17.6 \\ 0.09 \\ 17.5 \\ 17.4 \\ 17.3 \\ (f) \\$	1 1.5 2 x(m)	2.91	Channel WL

Hydrographs- SCS Method - Post Development Flow from No. 17 Cresta Avenue

0.2

0.1

0.0 + 0

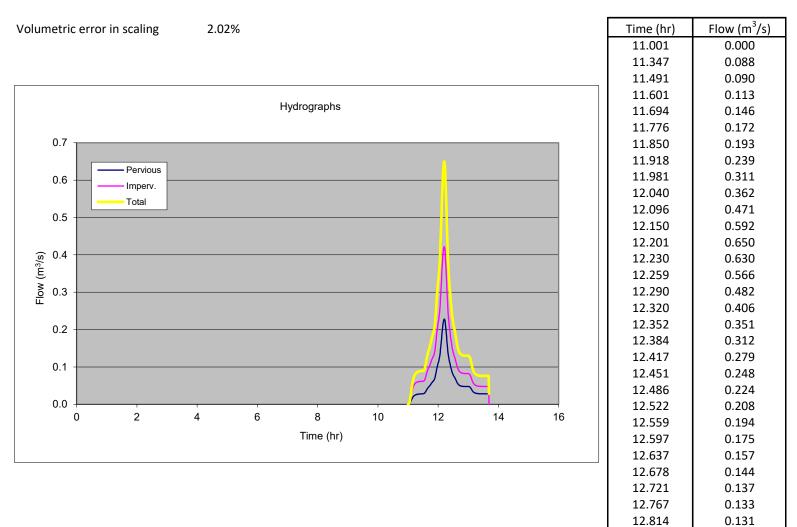
2

4

6

8

Time (hr)


10

12

14

Project Description	96 Beach Haven Road/13 Cresta Avenue
	No. 17 Cresta Avenue

Total Hydrograph in tabular form: (based on simualtion from above)

12.864

12.917

12.975

13.037

13.106

13.184

13.277 13.398

13.690

-1.000

0.130

0.130

0.130

0.128

0.109

0.087 0.079

0.076

0.028

Nirey	CHANNEL CAPACITY SECTION POST DEVELOPMENT NO. 17 CRESTA AVE.		200626-01 96 Beach Haven Road/ 13 Cresta Avenue 5.08.2021 Natalie Naidoo Overland Flowpath Cross Sections
Case (A or B)BCase AFlow (m³/s)0.650Case BSlope (S _o)3%Water level (m)17.48MFFL17.63Channel GeometryManningsx (m)y (m)"n" value017.50.10.51170.517.30.112170.12.517.300.1317.50.1-11101170.13117.50.1-1111171102170.1311.51111112171121711<	channel	Normal Flow Condition Flow (m^3/s) Velocity (m/s) S_o or S_f Energy (m) Froude No Bed Stress (Pa) Equivalent "n" Equivalent $k_s(mm)$ Geometry for wetted of Depth (d-m) Area $(A-m^2)$ Width (B-m) Perimeter (P-m) Critical Flow Condition Flow (m^3/s) Velocity (m/s) Energy (m) Typical "n" values Concrete Gunite Smooth earth Clean channel Natural Channel Floodplain Overland flow (grass)	0.676 0.749 0.0300 17.513 0.430 84.144 0.100 N/A conditions 17.484 0.903 2.920 3.157
	Channel Geometry		
$ \begin{array}{c} 17.7 \\ 17.6 \\ 0.04 \\ 17.5 \\ 17.4 \\ ()) \\$	1 1.5 2 x(m)	2.5	- Channel WL

Appendix D

Lander Geotechnical – Geotechnical Report

14 April 2021

Ref No: J01675 (Rev1)

Bentley Studios Limited

Attention: Mr L Da-Silva

Dear Leon

RE: Geotechnical Investigation Report for Private Plan Change at 96 Beach Haven Road & 13 Cresta Avenue, Beach Haven

1 PROJECT BRIEF

This report has been prepared for Bentley Studios Limited in support of an application to the Auckland Council for a Private Plan Change (PPC).

1.1 I have undertaken a review of the private plan change, on behalf of Auckland Council in relation to the geotechnical effects.

I hold a NZCE (Civil) and BE (Civil; Hons 1st class, 1st division) and am a Chartered Professional Engineer. My work experience includes significant land subdivisions across South Auckland over the past 20 years on steep and/or compressible ground. I hold the position of Managing Director and Principal Geotechnical Engineer at Lander Geotechnical Consultants Limited based in Manukau.

1.2 In writing this report, the following documents have been reviewed:

• Geotechnical Due Diligence Desktop Study, CMW Geosciences Ltd, Ref No. AKL2020-0310AA Rev.0, dated 30 November 2020.

2 SCOPE AND OBJECTIVES

The scope of this report encompasses the geotechnical suitability and stability of the land associated with the PPC;

- Geotechnical setting and ground conditions for the site, including assessment of natural features and geohazards that may affect future residential development upon the land.
- Geotechnical guidance for future earthworks based on ground conditions likely to be encountered during site stripping and bulk cut operations.
- Broad stability of the site to safely support typical residential structures for likely end use.
- Available historical aerial photographs to infer fills and/or land modification that may have occurred within the watercourse near the north-eastern corner of the site.
- Shallow surface investigations have only been completed within the site boundaries and it is unknown as the characteristics of the soils encountered within the existing watercourse near the north-eastern corner of the site.

• Review groundwater depths and complete a 14 day assessment for reference to the Auckland Unitary Plan (AUP) permanent drawdown effects assessment (E7.) to be completed at a later stage (e.g. during a subdivision Resource Consent stage) if required, once the nature of development concepts (e.g. building and earthworks) are known.

3 SITE DESCRIPTION AND DEVELOPMENT PROPOSALS

Number 96 Beach Haven Road, Beach Haven is legally described as Lot 1 DP 157383, with an area of $2251m^2$. Along the northern boundary of this site sits 13 Cresta Avenue with the legal description of Lot 2 DP 157383 comprising an area of $4896m^2$. Land gradients across the site are generally flat around 1(v) in 6(h), but steepen to 1(v) in 4(h) towards the gully located along the western boundary of the site which appears to contains the overland flow path from south to north.

There are currently two dwellings located on each site with two separate garage structures located at 96 Beach Haven Road. A stormwater line runs along the western and southern boundary of 96 beach Haven Road as well as a sewer line that cuts through 13 Cresta Avenue.

We understand that the site is proposed for a zone change for the development of future residential housing which will likely require minor earthworks i.e. cuts and fills to develop the proposed housing foundation platforms

4 FIELDWORK AND FINDINGS

4.1 Fieldwork Programme

Our fieldwork was conducted on 4 February 2021 which involved drilling of 16 hand auger boreholes with target depths of between 3.0m and 5.0m in the positions indicated on the appended site plan (refer Figure 1). Three piezometer standpipes were also installed in HA05, HA11 and HA16.

Results of all in-situ tests, detailed descriptions and depths of strata encountered during drilling of the boreholes are appended.

4.2 Geology

A review of GNS digital QMaps indicates that the site is located within the East Coast Bays Formation (ECBF) of the Waitemata Group flysch deposits which consist of alternating beds of sandstones and mudstones. These deposits generally weather to a dark grey, partially weathered 'transitional' soils before weathering completely to orange, light grey and brown silts, clays and sands

4.3 Findings

4.3.1 Topsoil

Topsoil was encountered in each of the hand auger boreholes to a depth of between 100m to 800mm (the latter isolated to HA15) but averaged around 300mm.

4.3.2 Residual East Coast Bays Formation

Residual East Coast Bays Formation (ECBF) soils were noted in each hand auger borehole underlying surficial topsoil and alluvial deposits. These deposits consisted of grey, black, orange and

brown clays and silts. Undrained shear strength readings were generally greater than 75 kPa (Stiff) and up to more than 216 kPa (Hard).

4.3.3 Transitional East Coast Bays Formation

The transitional ECBF was encountered within HA12 underlying the residual ECBF at a depth of 3.85m. These soils were described grey silty Clay and undrained shear strengths within this formation were hard as the shear vane was unable to penetrate the soil.

4.3.4 Groundwater

Groundwater was encountered in HA09 and HA15 at depths of 4.0m and 3.0m respectively. Piezometers standpipes were installed in hand auger boreholes, HA05, HA11 and HA16. Results are tabulated below in table 1.

It is worth noting HA05 was tampered with after its installation and was found partially removed from the ground only allowing a monitoring depth of 3.5m BEGL before an obstruction was met. Additionally during the final round of groundwater monitoring HA16 recorded elevated levels of groundwater compared to the other piezometers, this outlying data point has been determined to have been caused due to excess runoff from a period of heaving rainfall just prior to its measurement and is deemed inaccurate (i.e. higher than the actual groundwater level).

Borehole	Groundwater	Standing Ground			
	Depth Encountered During Drilling (m BEGL)	4 February 2021 (Completion of drilling)	9 February 2021 (5 Days)	12 February 2021 (15 Days)	19 February 2021 (22 Days)
HA05	N/A	N/A	N/A	N/A	N/A
HA11	N/A	N/A	4.05	3.85	3.85
HA16	N/A	N/A	4.10	3.70	1.70

Table 1: Groundwater Levels Following Drilling

5 LABORATORY RESULTS

Atterberg limit soils testing of material from HA11 at a depth of 0.5-1.0m returned the following index properties to aid in the determination of an expansive site class for this site.

- Liquid Limit: 103
- Plastic Limit: 40
- Linear Shrinkage: 22%
- Moisture Content 31.4%

6 PROJECT EVALUATIONS AND RECOMMENDATIONS

Based on our site observations and field investigations we are of the opinion the site contains no insurmountable geotechnical hazards that would prevent future residential intensification.

Specific comments and recommendations follow:

6.1 Foundations for Buildings

6.1.1 Bearing Capacity and Settlement Potential

A geotechnical ultimate bearing capacity of 300 kPa should generally be available for all shallow and pad foundations constructed on engineer certified filling and on the natural ground. Anticipated differential settlements are assessed to be within the required building code limits.

Please note, following earthworks, if existing fill is found to underlay any future building platforms then it will need to be undercut and replaced with engineer certified fill (i.e. compacted GAP65 hardfill), subject to engineering direction from the observing geo-professional.

6.1.2 Expansive Site Class

Based on the Atterberg Limit laboratory testing, refer Section 6, visual-tactile assessment of the soils and knowledge of the area, the preliminary assessed expansive site class for this site is H(High); as defined in MBIE Acceptable Solutions and Verification Methods for NZ Building Code Clause B1 Structures, effective 28 November 2019) with characteristic ground movement (Y_s) of up to 78mm.

This site class should be re-assessed during the detailed design (i.e. at Building Consent stage) via Shrink-Swell testing as outlined in MBIE (extract attached)

6.2 Pavement Subgrade

Given the generally very stiff surficial subsoils present across the site, we consider that a design CBR value of 4% maybe adopted for the natural soils if this is a design requirement for driveways. As CBR values are affected by moisture content and trafficking, we recommend that subgrades are only trimmed to final level immediately prior to placing base course and that a programme of Scala Penetrometer testing be carried out during construction to confirm the design value.

6.3 Preliminary Earthworks Comments

Generally speaking, following the removal/ demolition of the existing dwellings and structures located on site, all debris and excavation which is surplus to requirements should be removed from site, in addition if any existing deep topsoil and pre-existing non engineered fill deposits were encountered on site will require undercutting and replacement with engineered fill if located beneath the proposed building platforms, at the discretion of the observing geo-professional.

All vegetation should be removed, and topsoil stripped well clear of the proposed works and stockpiled clear of the building platform also.

This should be re-addressed at a later phase (e.g. a Resource Consent Application).

7 FURTHER WORK

Further geotechnical assessments should be undertaken to support any subsequent Resource Consent or Building Consent applications commensurate with the nature of future development proposals.

8 LIMITATIONS

This report has been prepared solely for the use of our client, Bentley Studios Limited, their professional advisers and the relevant Territorial Authorities in relation to the specific project described herein. No liability is accepted in respect of its use for any other purpose or by any other person or entity. All future owners of this property should seek professional geotechnical advice to satisfy themselves as to its ongoing suitability for their intended use.

The opinions, recommendations and comments given in this report result from the application of normal methods of site investigation. As factual evidence has been obtained solely from boreholes which by their nature only provide information about a relatively small volume of subsoils, there may be special conditions pertaining to this site which have not been disclosed by the investigation and which have not been taken into account in the report.

If variations in the subsoils occur from those described or assumed to exist, then the matter should be referred back to us immediately.

For and on behalf of Lander Geotechnical Consultants Limited

Allal.

S.G. Lander Principal Geotechnical Engineer CMEngNZ, CPEng

Attachments:

Figure 01: Site Investigation Plan Hand Auger Boreholes Records Laboratory Results MBIE Acceptable Solutions and Verifications Methods for NZ Building Code Clause B1 Structure (extract)

BASEMAP: AUCKLAND COUNCIL GEOMAPS DATABASE [RETRIEVED 12.02.21]

	description	drawn	approved	date					drawn	PL		client:
						10.0	20.0	30.0	approved	RP		projec
vision					0	Horizontal S 10.0	cale (metres) 20.0	30.0	date	12.02.21		
rev						Vertical Sc	ale (metres)		scale	1:500	LANDER geotechnical	
									original size	A3	. g e e e e e e e e e e e e e e	projec
Template	e revision: 1:500 (10/12/14)									•	•	

Legend and/or Notes:

BENTLEY STUDIO LIMITED

96 BEACH HAVEN ROAD & 13 CRESTA AVENUE BEACH HAVEN

SITE INVESTIGATION PLAN

^{ect no:} J01675

figure no:

	lient : roiect		n: ⁹⁶	ENTLEY STUDIO			A AVENUE		Aug	er Bo	oreho			HA01 of 16
		mber:	DE	EACH HAVEN 1675				Vane I	Head:	Logge F	d By: RG	Process PL	or: Date	
Во	orehole .	mN		mE	Gro	ound R.L.			1			ity	Sample	
Lo	ocation:	Description:		Refer to site plan				Legend	Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity	Laboratory Tes	st
	PSOIL		SC		ON					~ >	ഗ ജ	S	Deta	uils
		<u> </u>							<u>}</u>					
- ^{[Re} -	ghtly clay ESIDUAL h trace fir	EAST COAS	t grey mo ST BAYS	ottled orange/brown S FORMATION]	. Very	stiff, moist, low pl	asticity		- - - -		193+			
- - - -									- - -		193+			
- bec - - -	coming ha	ard							— 1.5 — —		UTP			
- - -									- 2.0		UTP			
- bec - - -	coming ve	ery stiff, mode	erately s	ensitive					- 2.5		157/72	2.2		
- EO)B at 3.0r	n. Target De	pth.					1222	-3.0		141/50	2.8		
- - - -									- - - 3.5 - -					
- - -									- - - -					
- - -									-4.5 - - -					
- - -									-5.0 - - -					
- - - -									-5.5 - - - - - 6.0					
	~		Comm			Borehole Diameter:	Topsoil	\rightarrow	and		Sandstone		Plutonic	• + + + • * * *
	AND eotech		UTP =	lwater not encounte unable to penetrate end of borehole.		50mm Checked: JM	Fill Clay Silt X		iravel rganic umice	· <u>**</u> * ·***	Limestone		Z No Core	

Client :							Aug	er Bo	oreho			HA02
_	Locatio	BE	EACH HAVEN	ROAD & 13 CREST.	A AVENUE	Vane I	lead:	Logge	d By:	Process		of 16 :
Job Nu	mber:	JO	1675			17	50		M	PL	04	.02.21
Borehole	mN		mE	Ground R.L.			Ê	g vel	a) ^{ual}	y	Compl	and
Location:	Description	:	Refer to site plan			Legend	Depth (m)	indin er Le	Vane ear(kF ªk / resid	ioil sitivit	Sample Laborator	y / Other
		SC	DIL DESCRIPTIO	N		Le(Dep	Standing Water Level	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity	Te Deta	
TOPSOIL												
						$\underline{\mathbb{N}}$	ļ					
_ silty CLAY, medium pla	black, light or sticity [RESI]	oual EA	SWN and red mottled	brown. Hard, dry to m ORMATION]	oist,		┟					
-							- 0.5		216+			
 becoming b 	lack and light	orange/l	brown mottled brown	l i i i i i i i i i i i i i i i i i i i			Ł					
-						-x-x-x	F					
_							ŧ.		2161			
 becoming or 	range/brown	streaked	grey, moist			-x-x-x	- 1.0		216+			
-							ŧ					
-							}					
-							-1.5		216+			
-							╞					
-							F					
 becoming v 	ery stiff, inser	nsitive					- 2.0		151/114	1.3		
 becoming o 	range streake	ed light g	rey, high plasticity				F					
- becoming a	lightly numico		CLAY orange and l	ight grey/white streake	d light grov	-x-x-x	Ł					
 with trace fir 		ous sity	CLAT, orange and i	ight grey/white streake	a light grey,		- 2.5		194/108	1.8		
						-x-x-x	1					
-						-x-x-x	+					
-						-x-x-x	- 3.0		148/117	1.3		
 EOB at 3.0r 	m. Target De	pth.								-		
F							F					
							- 					
-							- 0.0					
-							F					
-							-					
-							- 4.0					
Ĺ							E					
┝							╞					
-							-4.5					
F							F					
-							F					
–							-5.0					
\vdash							F					
F							F					
-							-5.5					
F							F					
L							E					
_							-6.0					
		Comm	ents:	Borehole Diameter:	Topsoil	s	and	<u> </u>	Sandstone		Plutonic	+ + + + + +
			lwater not encountere	ed. 50mm	Fill	G	iravel		Siltstone	2 2 2	No Core	
LAND			unable to penetrate. end of borehole.	Checked:	Clay -		rganic	<u></u>	Limestone		<u> 귀</u>	
3001001				JM	Silt X	X X X X X X PI	umice		Volcanic		\sim	

Client : Proiect	Locatio	n : ⁹⁶	ENTLEY STUDIOS			A AVENUE		Aug	er Bo	oreho		Sheet 3	HA03 of 16
Job Nu		BE	EACH HAVEN 1675				Vane I		Logge	-	Process	sor : Date	:
JOD NU		00	1				21	53		M	PL	04	.02.21
Borehole Location:	mN		mE Defer to eite plan	Gro	ound R.L.		- pu	Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	l ivity	Sample	
Loodion	Description		Refer to site plan				Legend	Depth	Stanc ater	Var hear(ak / re	Soil Sensitivity	Laboratory Tes	st
		SC		DN						೧೯	Ś	Deta	ails
_ TOPSOIL							\mathbb{N}	╞					
	ST BAYS FO		rey. Hard, moist, me N]	dium	to high plasticity	RESIDUAL		- - - - 0.5		216+			
 with trace lin with trace lin 		n						- - - - -		216+			
- becoming me - - -	edium plastic	ity, with ⊧	minor fine sand					- - - - - -		216+			
- - - becoming hig -	gh plasticity,	with trace	e fine sand				-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x-x -x-x-x-x-x -x-x-x-x-x -x	- - - - - -		216+			
– – – becoming ve – with trace ro	-	nsitive						- - - - - -		120/77	1.6		
			ND, orange mottled I	light gi	rey. Hard, wet, lo	w to no		-3.0		216+			
- -	coming light g	rey						- - - 3.5		UTP		Scala Penetrome Test	eter
 becoming gr EOB at 3.9r 		to auger	further. Scala penet	romete	er test commence	ed to 4.9m.		– 4.0		UTP		(blows/100 6 11)mm)
- - - - -								- - - - - - -				- 12 - 12 - 10 - 10 - 10 - 10 - 10 - 11	
- - - -								- 				— 10	
- - - - -								- 					
2.0		Comm	ents:		Borehole Diameter:	Topsoil	N :	and		Sandston		Plutonic	++++
		Ground	lwater not encounter		50mm	Fill	\square	Gravel		Siltstone	2 2 2	No Core	
geotech			unable to penetrate. end of borehole.		Checked: JM	Clay –	\overline{xxx}	rganic umice	. <u>**</u> * .*** }&&&& }&&&&			표 	
						^{om} X	XXX P	unice	<u> </u>	Volcanic	$\mathbf{h}_{\mathcal{A}\mathcal{A}}$	×	

Client : Proiect		n : 96 BEAC	Y STUDIOS L CH HAVEN RC	IMITED DAD & 13 CREST	A AVENUE		Aug	er Bo	oreho			HA04 of 16
Job Nu		BEACH J01675	HAVEN			Vane H	Head: '50	Logge		Process	or : Date	
						17	50		M	PL	04	.02.21
Borehole	mN	mE		Ground R.L.			Depth (m)	ing eve	Vane Shear(kPa) _{peak / residual}	/ity	Sample	
Location:	Description:	Refer	to site plan			Legend	pth	andi er L	Vano ear(h	Soil Sensitivity	Laboratory Tes	
		SOIL DE	ESCRIPTION	l		Le	De	Standing Water Level	She peak	Ser	Deta	
		1	I loud doubte as	· · · · · · · · · · · · · · · · · · ·	1	$\overline{)}$	4					
[RESIDUAL	, grey mottled	T BAYS FORM	. Hard, dry to mo IATION]	pist, medium plastic	ity	-x-x-x	}					
Γ		orange/brown	-				Į –					
-	iey sileakeu (Jiange/biown					- 0.5		216+			
						-x-x-x	}					
 becoming o 	range streake	ed grey				-x-x-x	Į.					
-							╞					
 becoming m 	noist, insensiti	ve					-1.0		201/114	1.8		
-							1					
-							┝					
-							1					
 becoming m 	nedium plastic	sity					-1.5		216+			
-	ieulum piastic	лту					╞					
-						-x-x-x -x-x-x	1					
- bocoming y	ony stiff mode	erately sensitive					Ĺ.		404/74	0.0		
 becoming g becoming g 	rey streaked o	orange/brown, l	, low plasticity, wi	th trace sand		-x-x-x -x-x-x	- 2.0		194/74	2.6		
-		-					1-					
							£					
 becoming h 	ard						- 2.5		216+			
F T							}		2101			
 becoming bit 	rown/orange s	streaked grey				-2-2-2	£					
-							1					
-							-3.0		216+			
_						-x-x-x	ł					
F							F					
-							┝					
-							- 3.5		216+			
-							Į.					
-							╞					
-							1					
-							4.0		216+			
-						-2-2-2	┢					
							t					
_							-4.5		216+			
-						-x-x-x	+ 4.5		2101			
-							t					
_							ſ					
EOB at 5.0r	n. Target Dep	oth.					-5.0		216+			
-	5 -r						F					
Ľ							Ľ					
_							-5.5					
F							F					
Ľ							E					
\vdash							F					
-					, <u> </u>	<u> </u>	-6.0				L	
		Comments:		Borehole Diameter:	Topsoil	s	and	••••	Sandstone	• • •	Plutonic	$\begin{array}{c} + + + + \\ + + + + \end{array}$
			not encountered	. 50mm	Fill		Gravel		Siltstone	ZZZ	No Core	
LANI		UTP = unable		Checked:	Clay		rganic	'YYY 'YYY	Limestone		7	
geotech		EOB = end of	borehole.	JM		xīxī k	umice				*	
					T IX:	XXX P	····· 🖌			Γ - ~	-	

Client : Project			ENTLEY STUDIOS		STA AVENUF		Aug	er B	oreho		• Sheet	HA05
Project	Localio	BE	EACH HAVEN			Vane H	-bood-	Logge	d By:	Process		5 of 16 Date:
Job Nu	imber:	JO	1675				00		RG	PL		04.02.21
Borehole	mN		mE	Ground R.L.			(r	g vel	a) ^{ual}	~		
Location:	Description	:	Refer to site plan			Legend	Depth (m)	indin er Le	'ane ar(kF / resid	sitivit	Labor	mple and atory / Other
		SC	DIL DESCRIPTIO	N		Leç	Dep	Standing Water Level	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity		Test Details
TOPSOIL											Piezon	<u>ieter Details:</u>
						\longrightarrow	ļ	티티			0.0m-0	
COAST BAY	, orange mot YS FORMATI	tied light ON]	grey. Very stiff, mois	t, low plasticity [RE	SIDUAL EAST		-	티티			Benton	ite Seal
_							- 0.5		193+		0.5m-5.0m Screened	- with Filter
- becoming m	nedium plasti	ritv					L				Sock	
-		Sity					\mathbf{F}					
-							-		193+			
 becoming log 	ow plasticity,	with trace	e fine sand				- "		1001			
F						ĮXXX	F	旧目				
- 	a al constitut					ţ <u>Ż</u> ŻŻ			1			
 becoming m 	noderately se	nsitive				<u> </u>	- 1.5		152/66	2.3		
-						<u>t</u> źżż	t					
-							-					
— -							- 2.0		160/52	3.1		
F							-	Ľ₿!				
F												
-						$\begin{bmatrix} \overline{X} \\ \overline{X} $	- 2.5		171/83	2.1		
F						$\begin{bmatrix} \overline{X} \ \overline{X} \ \overline{X} \\ \overline{X} \ \overline{X} \ \overline{X} \end{bmatrix}$	F					
fine sandy \$	SILT with min	or clay, c	prange mottled light g	rey. Loose, moist,	low to no							
 plasticity, w 	ith trace limo	nite					-3.0		193+			
È .							Ľ					
F						XXX	\vdash					
-						XXX	- 3.5		193+			
-						XXX	-	l:E:	1001			
-						XXX	F					
– <i>—</i> becoming m	noderately se	nsitivo				XXX	-		100/50	2.1		
	Sucrately Se	ISIUVE					- 4.0		182/58	3.1		
F							Ę					
F _							\vdash					
 becoming m 	nedium dense	•					- 4.5		UTP			
slightly clay	ey SILT with	trace fine	e sand, light grey mot	tled orange. Hard,	wet, low		t					
plasticity, w	ith trace limo	nite					+					
EOB at 5.0r	m. Target De	pth.				$ \times \times \times$	-5.0	` <u></u> '	UTP			
╞							╞					
F							F					
-							-5.5					
F							F					
t –							È					
-						L	-6.0		ļ			
		Comm	ents:	Borehole Diamete	er: Topsoil	S	and		Sandston	e • •	Pluto	nic + + + +
		1	lwater not encountere unable to penetrate.		Fill		iravel	<u>.</u>	Siltstone	2 2 2	Z No C	ore
geotech	DER		end of borehole.	Checked		<u> ਵੱਡ ਹੈ</u>	rganic	 . <u>ww</u> w 	Limestone	╸ <mark>┝╶┟╶┟</mark>	붜	
1.000000				JM	Silt		umice		Volcanic	4~~	\sim	

Client : BENTLEY STUDIOS LIMITED Project Location : 96 BEACH HAVEN ROAD & 13 CRESTA AVENUE								Auger Borehole No. HA06 Sheet 6 of 16								
-	BEACH HAVEN							Vane Head:		Logged By:		sor : Date:				
Job Nu	imber:	JO	1675				30	7		RZ	RZ	04	.02.21			
Borehole	mN		mE	Gro	ound R.L.		Legend	л Ê		e Pa) idual	ity	Sample	e and			
Location: Description: Refer to site plan								Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity	Laboratory Tes	/ / Other			
SOIL DESCRIPTION								ă	Na	Sh. pea	Sei	Deta	ils			
TOPSOIL							$\overline{\mathbb{N}}$	-								
silty CLAY, orange mottled light brown. Very stiff, moist, medium plasticity, moderately																
_ sensitive [R	ESIDUAL EA	ST COA	ST BAYS FORMATI	ION]				<u>}</u>								
-								— 0.5		173/78	2.2					
 becoming or 	range mottled	l light gre	еу					F								
-								<u>}</u> _								
 becoming hi 	igh plasticity,	insensiti	ve					-1.0		153/101	1.5					
-							-2-2-2	┢								
-							-2-2-2	F								
-								-1.5		121/72	1.8					
F								F								
								È.								
- becoming ha	ard							- 2.0		201+						
-							-x-x-x -x-x-x - x - x - x	t.								
_ clayey SILT	, orange mott	led light	grey. Hard, moist, lo	ow to m	edium plasticity			Ł								
_							ţ <u>Ż</u> ŻŻ	- 2.5		201+						
-							ţŷŷŝ	Ł								
-							ţźźź	ŀ								
-							ŧźźź	- 3.0		201+						
EOB at 3.0n	n. Target Dep	oth.														
F								F								
-								- - 3.5								
-								- 0.0								
								F								
-								E.								
-								-4.0								
								È								
F								F								
-								- 4.5								
t i								E								
╞								F								
— -								-5.0								
ŀ								F								
F								F								
-								-5.5								
F								F								
Ĺ								Ę								
-								-6.0				L,				
		Comm			Borehole Diameter:	Topsoil	<u>s</u>	and		Sandstone	<u> </u>	Plutonic	· + + + • * * *			
			lwater not encounter unable to penetrate.		50mm	Fill		ravel	***	Siltstone	222	2 No Core				
geotech			end of borehole.		Checked:	Clay -		rganic	<u></u> <u></u>	Limestone	· <mark>┣╺┙┙</mark>	∄				
					JM	Silt	XXX XXX ^{Pi}	umice	·****	Volcanic		\sim				

Client : BENTLEY STUDIOS LIMITED							Auger Borehole No. HA07								
Project Location : 96 BEACH HAVEN ROAD & 13 CRESTA AVENUE BEACH HAVEN											7 of 16				
Job Nu	mber:	J01675			Vane 3		Logged By: RZ		Process RZ		ate: 04.02.21				
Borehole	mN	mE	Ground R.L.												
Location:	Description	Refer to site plan			Legend	Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity	Labora	nple and tory / Other				
		SOIL DESCRIPTIO	N		Le	De	Sta Wati	∨ She _{peak}	Sen		Test etails				
TOPSOIL						-									
-	. T a a b a adre			d and fame d		1				- 3					
effective refu	usal (ER) at 0	o auger further. Scala penetroi 0.4m.	neter test commence	a and found		- - 0.5				- 20+ (E	ER)				
-										Scala Penetro	ometer				
-						E				Test (blows/	100mm)				
-						-1.0				·					
-						F									
-						F									
-						- 1.5									
-						Ę									
-						- 2.0									
-						_ 2.0									
-						F									
-						- 2.5									
-						F									
-						Ę									
-						-3.0									
-						F									
-						-									
-						- 3.5									
-						F									
-						-4.0									
-						Ę									
-						-									
-						-4.5									
-						F									
-						F									
-						- 5.0									
-						Ę									
-						- 									
-															
-						E									
-		ſ				-6.0			L	•1	++++++				
		Comments:	Borehole Diameter: d. 50mm	Topsoil	}}}}	Sand		Sandston		Pluton					
LAND	DER	Groundwater not encountere UTP = unable to penetrate.	Checked:	Fill Clay		Gravel	******	Siltstone		No Co	e				
geotech		EOB = end of borehole.	JM	Silt XXX	×××××	Pumice		Volcanic							

Client : BENTLEY STUDIOS LIMITED Project Location : 96 BEACH HAVEN ROAD & 13 CRESTA AVENUE								Auger Borehole No. HA08 Sheet 8 of 16								
Job Nu		BE	EACH HAVEN 1675				Vane I	Vane Head: 1750		Logged By: NM		or: Date				
Borehole	mN		mE	Grou	und R.L.			_ ٦	g vel	a) ^{ual}	y		la and			
Location:	Description	:	Refer to site plan				Legend	Depth (m)	andin er Le	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity	Laborato	le and ry / Other			
		sc	DIL DESCRIPTI	ION			Leç	Del	Standing Water Level	V She: ^{peak}	Sens		est tails			
TOPSOIL							$\overline{\nabla}$	t								
-								╞								
silty CLAY,	silty CLAY, light brown. Hard, dry to moist, medium plasticity [RESIDUAL EAST COAST BAYS FORMATION]															
	 COAST BAYS FORMATION] becoming grey and orange/brown mottled light brown, moist 									216+						
-	-	-	-	,				+								
 becoming g 	rey streaked	orange/t	brown					Г								
 becoming ir 	nsensitive							-1.0		201/111	1.8					
-								+								
-								Ŧ.								
 becoming v 	ery stiff range/brown	otrockod	1 arov					-1.5		182/105	1.7					
 becoming o - 	range/brown	streaked	grey													
-								F								
-								- 2.0		139/108	1.3					
-								÷+								
-								Ł								
-								- 2.5		139/102	1.4					
-								t								
-							-x-x-x	+								
-								1-3.0		170/120	1.4					
_																
F							-×-×-×	F								
-								- 3.5		127/99	1.3					
 becoming h 	igh plasticity						-x-x-x	1		127/99	1.5					
-							-×-×-×	ŧ.								
-							-x-x-x	<u>t</u>		407/400	1.0					
-							-x-x-x	_		167/130	1.3					
-							-x-x-x	it.								
							-x-x-x									
 becoming h 	ard						-×-×-×	-4.5		216+						
-							-x-x-x									
-								i f								
EOB at 5.0r	n. Target Dep	pth.					<u> </u>	- 5.0		201/139	1.4					
F								F								
-								F								
-								-5.5								
F								E								
-								F								
-		1						-6.0	<u> </u>	1		•	<u>}+++</u>			
		Ground	ents: dwater not encounte		Borehole Diameter: 50mm	Topsoil Fill	\rightarrow	Sand Gravel		Sandstone Siltstone		Plutonic No Core	┝┵┵┷			
LAN	DER	UTP =	unable to penetrate		Checked:	Clay		organic	<u>. R.R.R</u>	Limestone	+					
geotech		EOB =	end of borehole.		JM	X	xxx	umice			 4 4	म —–				
		I					$\sim \sim 1$	B	~~~~~	<u>'</u>		1				

Client : BENTLEY STUDIOS LIMITED Project Location : 96 BEACH HAVEN ROAD & 13 CRESTA AVENUE							Auger Borehole No. HA09 Sheet 9 of 16								
BEACH HAVEN							Logge	d By:	Processor : Date:						
Job Numb	ber: ^{J0}	1675			Vane ⊦ 21			M	PL		.02.21				
Borehole mt	N	mE	Ground R.L.		٦ ب		g vel	ba) ual	y	Comple	and				
	escription:		Legend	Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	ioil sitivit	Sample Laboratory	/ Other						
	SOIL DESCRIPTION								Soil Sensitivity	Tes Deta					
TOPSOIL	TOPSOIL														
	-x-x-x-	F													
silty CLAY, oran COAST BAYS F		E													
-	- · · · · · · · · · · · · · · · · · · ·							216+							
					-x-x-x- -x-x-x- -x-x-x-x- -x-x-x-x-	F									
-						╞									
 becoming mode 	vratoly consitivo					- 1.0		213/58	3.7						
-	-					+ "."		210/00	0.7						
 with trace fine sa 	and				- <u>×-×-×</u> -×-	F									
F					-×-×-×- -×-×-×-	╞.									
 becoming very s 	stiff, insensitive					— 1.5		173/89	1.9						
_						Ł									
-						· 🛏									
-						- 2.0		164/99	1.7						
-						-									
 becoming mediu 	um to high plastic	ity, with minor fine sa	nd		-3-3-3-	È									
-						- 2.5		130/83	1.6						
 becoming moist 	to wet				- <u>×-</u> ×-×-×-	F									
-					-x-x-x-x-	╞									
 becoming mode 	vrately sensitive				- <u>×-</u> ×-×-×-	-3.0		178/85	2.1						
-						-									
 becoming wet, w 	with some fine sa	nd			-x-x-x-x-	F									
-						-		400/07	0.4						
-						- 3.5		160/67	2.4						
-						Ł									
			y. Very stiff, wet, low pl	asticity		╞									
 becoming grey, s with moderately 	saturated, with m thin bed of wood	inor woody inclusions				- 4.0		178/45	4.0						
-						F									
-						F									
- becoming grouth	brown, without wo	ody inclusions				-4.5		159/51	3.1						
-	orown, without WC	ooy mousions			[╞									
E .						È									
EOB at 5.0m. Ta	arget Depth					-5.0		190/49	3.9						
	3 - - P					F									
E						F									
_		-5.5													
È		È.													
F						┝									
-															
	Comm	ents:	Borehole Diameter:	Topsoil		and	<u> </u>	Sandstone		Plutonic	+++				
	Ground	dwater encountered a	I 4	Fill	╘╱┾	ravel		Siltstone	2 Z Z :	<u> </u>	┝┵┷┷				
LANDE	R 4.0m. UTP =	unable to penetrate.	Checked:	Clay	Or	ganic	'YYY 'YYY	Limestone							
geotechnic		end of borehole.	JM		< X X < X X PL	ımice		Volcanic		- V					

Client : Proiect		n: 96	NTLEY STUDIOS			A AVENUE		Aug	er Bo	oreho			HA10 of 16
Job Nu		BE	ACH HAVEN				Vane		Logge		Process	sor : Date:	
JOD NU	1	00					30	07		RZ	RZ	04	.02.21
Borehole Location:	mN		mE	Gro	ound R.L.		_ p	(L)	Standing Water Level	Vane Shear(kPa) _{peak / residual}		Sample	and
Eocation.	Description		Refer to site plan				Legend	Depth (m)	Stanc ater I	Van near(_{ak / re}	Soil Sensitivity	Laboratory Tes	st
		SO	IL DESCRIPTIO	ON					° š	IS Ba	ŭ	Deta	ils
_ TOPSOIL							\mathbb{N}	\mathbf{F}					
silty CLAY, o	orange/brown	and ligh	t grey mottled light of FORMATION]	orange	e. Hard, dry, med	ium plasticity	/- <u>×-×-></u>	Ť.					
-	EAST COAS	DAIS	FORMATION					+					
-								- 0.5		UTP			
 becoming m 	noist							t.					
-								+					
 becoming or 	range mottled	l light gre	ey					— 1.0		201+			
E								Ł					
F								F					
 becoming vertex 	ery stiff, insen	sitive						-1.5		170/124	1.4		
-								}					
-								È.					
-										173/132	1.3		
-								F					
_								Ł					
-										147/109	1.3		
 becoming high 	igh plasticity							ŧ.					
-								+					
_								-3.0		112/72	1.6		
-								E					
-								F					
 becoming still 	iff							- 3.5		92/72	1.3		
-								+		52112	1.5		
								ŧ,					
- 								<u> </u>		440/70	4.5		
 becoming vertex becoming m 	ery sun iedium plastic	city, with s	some fine sand					-4.0		118/78	1.5		
							-x-x-x	it.					
- with minor fi								1					
 becoming had 	ard							-4.5		201+			
-								it.					
F								1					
EOB at 5.0m	n. Target Dep	oth.						- 5.0		201+			
ŀ							1	F					
F								F					
-								-5.5					
\mathbf{F}								F					
F								Ę					
-							<u> </u>	-6.0		 			
		Comme			Borehole Diameter:	Topsoil	$\rightarrow +$	Sand		Sandston	<u> </u>	Plutonic	+ + + + + +
	DEP		water not encounter unable to penetrate.		50mm	Fill		Gravel	www	Siltstone	222 	Z No Core	
geotech		1	end of borehole.		Checked: JM	Clay -	ਟੋਟੋ ਸੋ	organic		Limeston	 	┹	
-					5101		XXX P	umice		Volcanic		\sim	

Client :	BENTLEY STUDIOS LIM				Aug	er B	oreho	le No	. н	IA11
Project Location	n: 96 BEACH HAVEN ROAL BEACH HAVEN	D & 13 CRESTA A	VENUE						Sheet 11 o	f 16
Job Number:	J01675			Vane ⊦ 19		Logge	d By: RG	Process PL		2.21
	mE Gro	ound R.L.								
Borehole MN Location: Description:				Legend	Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity	Sample a Laboratory /	nd Other
· · ·	SOIL DESCRIPTION			Leg	Dep	Star Nate	Vá Shea _{peak /}	Sens	Test Details	
TOPSOIL									Piezometer D	
						티티			0.0m-0.5m -	<u>cialis.</u>
	ottled orange/brown. Very stiff, mo		asticity,		Ł	E] E			Bentonite Sea	al
moderately sensitive [RE	SIDUAL EAST COAST BAYS FORM	MATION]		EXXX XXX	- 0.5		152/44	3.5	0.5m-5.0m - Screened with	Filter
-				<u>IXXX</u> IXXX	F				Sock	
 becoming orange streake 	d light grov				Ł				Sample 1 Disturbed	
	a iigin grey				-1.0		155/55	2.8	0.5-1.0m	
-					F					
-					Ł					
 becoming insensitive 				<u> </u>	-1.5		149/97	1.5		
-				ţŶŶŶ	F	l:E:				
-					È.					
-					- 2.0		138/91	1.5		
		- 41 - 14		XXX						
limonite	ed grey. Very stiff, moist, high pla	sucity, insensitive, wi	in trace	-x-x-x-						
-				-x-x-x-	- 2.5		108/72	1.5		
					F					
					F					
-					-3.0		105/72	1.5		
-				-x-x-x- -x-x-x-	F					
-				-x-x-x- -x-x-x-	F					
-				-x-x-x- -x-x-x-	- 3.5		105/69	1.5		
-				-x-x-x- -x-x-x-	F				Standing Groundwater	
				- <u>×-×-×</u> ·	Ļ	¦≝t			as on 12.02.2 19.02.21 (3.8	
becoming stiff					-4.0	╞┲╴	72/41	1.8	Standing	
F				-x-x-x -x-x-x- -x-x-x-	\mathbf{F}				Groundwater as on 09.02.2	
F				-x-x-x- -x-x-x- -x-x-x-	F				(4.05m)	
 becoming very stiff 				-x-x-x-	-4.5		127/77	1.6		
E				-×-×-×- -×-×-×-×-	ł					
 at 5.0m, becoming moder 	rately sensitive			-×-×-×- -×-×-×-	F					
EOB at 5.0m. Target Dep					- 5.0	''	110/52	2.1		
-					F					
ŀ					F					
-					- 5.5					
t					F					
F					╞					
-	Common to a	Borehole Diameter: To		 	-6.0	<u> </u>	Com L 1	 . • • •	Plutenia	+++
	Comments: Groundwater not encountered.	50mm Fil	osoil	╘┝┾╋	and ravel		Sandston	e 2 Z Z	1 Idionic	<u></u>
LANDER	UTP = unable to penetrate.	Checked: Cla	<u> </u>		rganic	YYY YYY		- 777	╡	
geotechnical	EOB = end of borehole.	JM sit		(X) (X)	umice			- 	1	

Client : Project	Locatio	n : ⁹⁶	NTLEY STUDIOS			A AVENUE	=	Aug	er Bo	oreho			HA12 of 16
_		BE	ACH HAVEN				Vane	Head:	Logge	d By:	Process		
Job Nu	mber:	J0 ²	1675	_			2	153		M	PL		.02.21
Borehole	mN		mE	Gro	und R.L.			<u> </u>	ng evel	Pa) ^{dual}	ty	Sample	and
Location:	Description	:	Refer to site plan				Legend	Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity	Laboratory	/ / Other
		SO	IL DESCRIPTIC	ON			Le	De	St Wat	She Peak	Ser	Deta	
TOPSOIL							$\overline{\mathcal{M}}$	<u> </u>					
silty CLAY v high plastici	vith trace fine ty, sensitive	e sand, or [RESIDU	range mottled light g AL EAST COAST B,	grey. Ve BAYS F	ery stiff, moist, n ORMATION]	nedium to				167/24	7.0		
 becoming m becoming hi 	 becoming moderately sensitive becoming high plasticity, without fine sand 							- - -		191/55	3.5		
- - -	-							-1.5		157/80	2.0		
- ━ becoming in - -	 becoming insensitive 							- 2.0		160/111	1.4		
- - - -								- 2.5		141/93	1.5		
- - - becoming m	noist to wet							-3.0		179/105	1.7		
	tiff, moderate	- -						- - - 3.5		96/43	2.2	Scala Penetrom Test	
	vith trace fine coming dark (rey. Hard, moist to w	vet, me	dium to high pla	sticity	<u>-x-x-</u>	: <u>+</u>		UTP		(Blows/10	0mm)
EOB at 3.85 found effect	ōm. Too Harc ive refusal (E	I to Auge ER) at 4.1	r Further. Scala pen m.	etrome	eter test commer	nced and		-4.0				– 4 – 12 – 20+ (ER)	
- - -								- 					
- - -								- 					
- - - - -								- - 5.5 - - -					
	-	Comme	onte:		Borehole Diameter:	Topsoil	$\frac{1}{2}$	-6.0	· · · ·	Sandstone	•••	Plutonic	+++
			water not encounter		50mm	Fill	$\rightarrow \rightarrow +$	Gravel		Siltstone	2 Z Z :	≞	┝╾╾╾
LAND			unable to penetrate.	ľ	Checked:	Clay –		Organic	itt itte	Limestone	+		
geotech	nical	EOB = 0	end of borehole.		JM		XXX XXX F	umice		Volcanic		V I	

Client : Project Locatio	Client : BENTLEY STUDIOS LIMITED Project Location : 96 BEACH HAVEN ROAD & 13 CRESTA AVEN BEACH HAVEN					er Bo	oreho			HA13 of 16
-	BEACH HAVEN			Vane H	lead:	Logge	d By:	Process		
Job Number:	J01675			30			κΖ	RZ		.02.21
Borehole mN	mE	Ground R.L.			(E	ng evel	Pa) ^{dual}	ity	Sample	and
Location: Description	: Refer to site plan			Legend	Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity	Laboratory	/ Other
	SOIL DESCRIPTION	N		Ľ	ď	St Wai	She Peal	Ser	Deta	
_ TOPSOIL				$\overline{\mathbb{N}}$	-					
_				\square	F					
silty CLAY, orange, brow [RESIDUAL EAST COAS	n and light grey mottled. Hard, ST BAYS FORMATION]	dry, medium plasticity			╞					
-					— 0.5		UTP			
 becoming moist 					Ł					
 becoming orange mottled 	d light grey			-x-x-x -x-x-x	+		204 .			
-				-×-×-× -×-×-×	— 1.0		201+			
				- <u>×-×-×</u>	ŧ					
-				- <u>×-×-×</u>	- 					
-							201+			
]					
-					- 2.0		201+			
with trace fine sand					- 2.0		201+			
with trace fine sand					F					
 becoming very stiff, mode 	erately sensitive			-x-x-x -x-x-x	- 2.5		184/89	2.1		
				- <u>-</u>	2		104/00	2.1		
-				-x-x-x -x-x-x	F					
 becoming stiff, high plast 	icity, insensitive, without fine sa	and		- <u>×-</u> ×-× - <u>×-</u> ×-×	- 3.0		95/58	1.6		
-	th some woody inclusions			- <u>×-×-×</u>						
-	-				╞					
 becoming orange motiled becoming very stiff 	d light grey/white, without wood	y inclusions			- 3.5		130/112	1.2		
 becoming light grey 					È					
					Ł					
-				-x-x-x -x-x-x	-4.0		132/75	1.8		
 becoming orange mottled 	d light grey			-x-x-x -x-x-x	ŧ					
-				-×-×-× -×-×-×						
-				- <u>×-×-×</u>	-4.5		158/109	1.4		
-					F					
ļ –				-x-x-x -x-x-x -x-x-x]					
EOB at 5.0m. Target Dep	oth.				-5.0		176/115	1.5		
ŀ					╞					
F					F					
-					- 5.5					
Ł					F					
ŀ					╞					
-	Commenter	Borehole Diameter:			-6.0		Sondat-		Plutonic	+++
	Comments: Groundwater not encountered		opsoil ill	≻+	and iravel		Sandstone Siltstone	2 Z Z 2		┝╾╾┷
LANDER	UTP = unable to penetrate. EOB = end of borehole.		lay		rganic	<u>www</u> www	Limestone	+		
geotechnical		JM s	lt XX	< X X < X X P	umice		Volcanic		Č	

Client : Proiect	roject Location : 96 BEACH HAVEN ROAD & 13 CRESTA AVENU BEACH HAVEN							Aug	er Bo	oreho			HA14 of 16
Job Nu		DE	ACH HAVEN 1675				Vane	Head: 750	Logge	d By: M	Process	sor : Date:	
	mN		mE	Gro	ound R.L.								
Borehole Location:	Description:		Refer to site plan	1010			- pu	Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity	Sample Laboratory	
	Decemption						Legend	Dept	Stan /ater	Va hear ^{eak /} r	So ensi	Tes	st
		SO		ON					>	0 ĕ	ى ە	Deta	llS
TOPSOIL							\mathbb{N}	ł					
COAST BA	, light brown. YS FORMATI ed and light gr	ON1	y to moist, low to no ed light brown	o plasti	city [RESIDUAL I	EAST		- - - - 0.5		216+			
– – becoming r –	ed mottled ligh	nt brown											
silty CLAY,	nedium plastic grey streaked	-	brown. Very stiff, m	noist, m	nedium to high pla	asticity,	-x-x-x	- - - - 1.0		188/108	1.7		
insensitive becoming orange/brown streaked grey						- - - - 1.5 -		177/68	1.7				
- - - becoming re	- - - - becoming red and orange/brown streaked grey					-x-x->	- 2.0		154/139	1.1			
- - -	range/brown s						-x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x -x-x-x-x	- - - 2.5		170/120	1.4		
-	igh plasticity	areakeu	gicy					- 		167/127	1.3		
- - - -								- - - - -		182/139	1.3		
- - - -								- - - 4.0		145/120	1.2		
- - - -								- - - -		142/139	1.0		
– _ EOB at 5.0n	n. Target Dept	h.						- 		139/108	1.3		
- - - - - - -								- - - - - - - - - - - -					
12.02		Comme	ents:		Borehole Diameter:	Topsoil	\mathbb{N}	Sand		Sandstone		Plutonic	++++
		Ground	water not encounte		50mm	Fill	\square	Gravel			2 2 2	No Core	
geotech			unable to penetrate end of borehole.		Checked: JM	Clay –	xxx	Organic Pumice	(<u>**</u> * (*** 	Limestone Volcanic	 		

Client :							Aug	er Bo	oreho			HA15
Project	Locatio		ACH HAVEN RO I HAVEN	DAD & 13 CREST	A AVENUE							of 16
Job Nu	mber:	J01675				Vane ⊢ 30		Logge	d By: RZ	Process PL		.02.21
										FL	04.	.02.21
Borehole Location:	mN	mE Defe	Į	Ground R.L.		- p	Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	l ivity	Sample	
Location	Description	Keler	r to site plan			Legend	Depth	Stanc ater	Var ⊃ear(ak / r∈	Soil Sensitivity	Laboratory Tes	t
		SOIL D	DESCRIPTION	N				~ ×	Ng	Ň	Deta	ils
- TOPSOIL							-					
È.							F					
ŀ						$\langle \rangle \rangle$	\vdash					
-						\mathbb{N}	- 0.5		132/106	1.2		
-						\sum	E					
silty CLAY, o COAST BAY			Hard, moist, mee	dium plasticity [RESI	DUAL EAST		F					
-	o i oranizari					-2-2-2-	-1.0		201+			
 becoming ora 	ange and ligl	ht grey motted	l, with trace fine s	sand			\vdash					
F							F					
 becoming ver 	ry stiff, inser	nsitive					-1.5		115/81	1.4		
-							F					
-							E					
 becoming mo 	oderately ser	nsitive					- 2.0		124/55	2.3		
 becoming hig 	nh plasticity	without sand				- <u>×-</u> ×-×- - <u>×-</u> ×-×-						
-						- <u>×-</u> ×-×- - <u>×-</u> ×-×-	-	\Box				
 becoming ins 	sensitive					- <u>×-</u> ×-×-×-	- 2.5		104/72	1.4		
F												
F							-					
 becoming still 	ff. saturated					-x-x-x-			86/52	1.7		
-	,						- 3.0		00/32	1.7		
F							F					
– — becoming ha	rd grov						-					
- becoming ha	iiu, grey						- 3.5		201+			
È i							F					
F							-					
 becoming ver 	ry stiff, inser	isitive					- 4.0		118/63	1.9		
 becoming ora 	ange mottlec	l grey										
-							-					
 becoming ha 	rd						- 4.5		201+			
-						- <u>x-x-</u> x-	\mathbf{F}					
F						-*-*-*	F					
 EOB at 5.0m.	. Target Dep	oth.					-5.0		201+			
-	F						╞					
F							 -					
-							- 5.5					
F							F					
Ľ							E					
_							-6.0					
		Comments:		Borehole Diameter:	Topsoil	S	and		Sandstone		Plutonic	· + + +
		Groundwater 3.0m.	r encountered at	50mm	Fill	G	ravel		Siltstone	222	No Core	
LAND geotech	DER nical	UTP = unable	e to penetrate.	Checked:	Clay	ਨੰਨੀ	ganic		Limestone		쿼	
a contract		EOB = end o	of borehole.	JM	Silt X	XX PL	imice	·~~~	Volcanic	100	~	

Client :	oction	BENTLEY STUDIOS				Aug	er Bo	oreho	le No	
Project Lo Job Numb		BEACH HAVEN			Vane F 19		Logge	d By: RG	Process	
Borehole mN		mE	Ground R.L.							
	scription:	Refer to site plan			Legend	Depth (m)	Standing Water Level	Vane Shear(kPa) _{peak / residual}	Soil Sensitivity	Sample and Laboratory / Other Test
			ON			Ō	Va Va	Sh	Se	Details
TOPSOIL					(<u>Piezometer Details:</u> 0.0m-0.5m -
		ed grey. Very stiff, moist, I BAYS FORMATION]	ow to medium plasticity	/		╞				Bentonite Seal
-						- 0.5		193+		Screened with Filter
 becoming medium 	m plasticity	у				╞				
-					XXX XXX	- 1.0		193+		
-					$\begin{bmatrix} X \\ X \\ \overline{X} \\ \overline{X}$					
-						F				
 with trace coarse sand sized white pumiceous inclusions 					ÊXXX EXXX	— 1.5		193+		Standing Groundwater Level
_										as on 19.02.21 (1.70m)
<pre>silty CLAY, orang</pre>	ge streake	d grey. Very stiff, moist, m	edium to high plasticity	, insensitive	-x-x-x- -x-x-x- -x-x-x-	- 2.0		144/86	1.7	
 with black organic 	c streaks,	with trace fine sand			-x-x-x- -x-x-x-	_ -				
clayey SILT, oran sensitive, with tra	nge mottle	d light grey. Very stiff, moi	st, medium plasticity, n	noderately	XXX	- 2.5		127/50	2.5	
_ _ _					ÊXXX EXXX					
-										
 becoming stiff, ins 	sensitive					- 3.0		97/52	1.9	
-					$\begin{array}{c} \times \times \times \times \\ \overline{\times} \overline{\times} \overline{\times} \overline{\times} \\ \overline{\times} \overline{\times} \overline{\times} \end{array}$					
silty CLAY, orang trace limonite	ge streake	d light grey. Stiff, moist, m	edium plasticity, insens	itive, with	-×-×-×- -×-×-×-	- 3.5		86/52	1.7	Standing
					-×-×-× -×-×-×-× -×-×-×-×	$\frac{1}{1}$		•		Groundwater Level as on 12.02.21
 becoming modera 	atelv sens	itive				- 4.0		75/36	2.1	(3.70m) Standing
-					-x-x-x- -x-x-x- -x-x-x-					Groundwater Level as on 09.02.21 (4.10m)
-					-x-x-x- -x-x-x-x-	- -				(4.1011)
 becoming insensi 	itive				-×-×-×-×-	- 4.5		97/64	1.5	
 becoming grey 					-x-x-x -x-x-x- -x-x-x-					
EOB at 5.0m. Tar	rget Depth	۱.				-5.0		75/41	1.8	
-						F				
- -						-				
ŀ										
- -						F				
-		Comments:	Borehole Diameter:	Topsoil		-6.0	L	Sandston		Plutonic +++
		Groundwater not encounter	red. 50mm	Fill	╘┝┾╋	ravel		Siltstone	2 Z Z	▋┤───┝┷┷┷
geotechnic		JTP = unable to penetrate. EOB = end of borehole.	Checked: JM	Clay Silt	ō ōł "	ganic umice	· <u>**</u> ** ·****	Limestone		
				Sill XX	< X Y ^{PL}		****	VUICATIIC	<u>г ° °</u>	<u> </u>

Our Ref: 1009521.1123.0.0/Rep1 Customer Ref: J01675 19 February 2021

Lander Geotechnical Consultants Limited Level 3, 3 Osterley way Manukau Auckland 2104

Attention: Rosie Garrill

Dear Rosie

96 Beach Haven & 13 Cresta Avenue Beach Haven

Laboratory Test Report

Samples from the above mentioned site have been tested as received according to your instructions and the results are included in this report. Results apply only to the sample(s) tested.

Descriptions are enclosed for your information, but are not covered under the IANZ endorsement of this report.

This report has been prepared for the benefit of Lander Geotechnical Consultants Limited , with respect to the particular brief given to us and it cannot be relied upon in other contexts or for any other purpose without our prior review and agreement.

This report may be reproduced only in full.

Samples not destroyed during testing will be retained for one month from the date of this report before being discarded. If we can be of any further assistance, feel free to get in touch. Contact details are provided at the bottom of this page.

GEOTECHNICS LTD

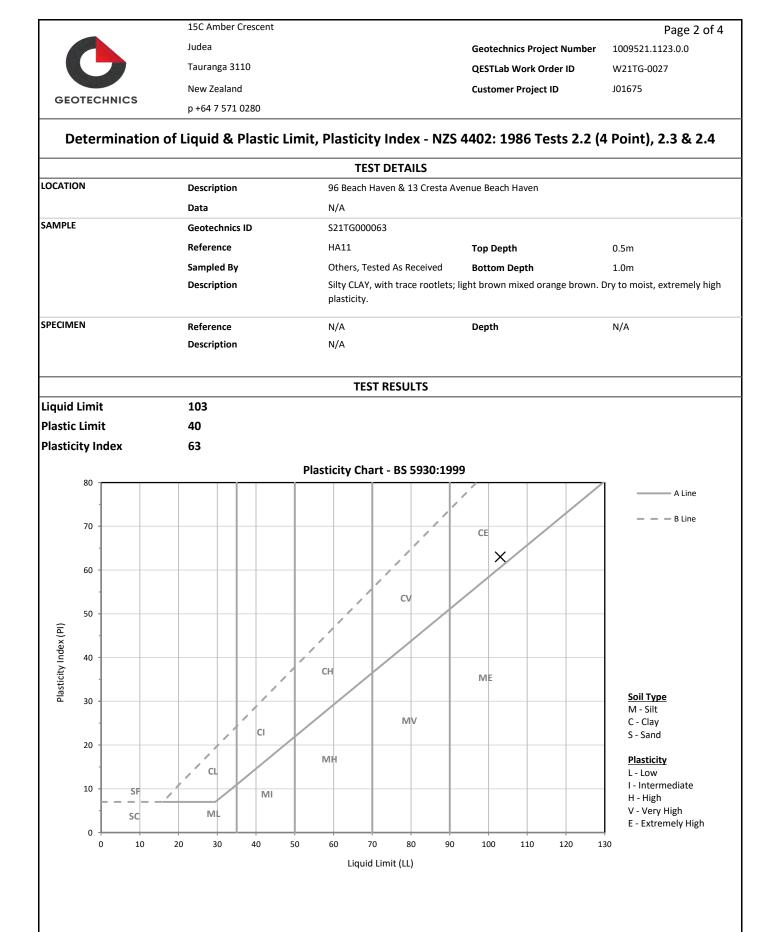
Report prepared by:

Tylah Wardrope Laboratory Technician

Report checked by:

Ryan Milligan Project Manager Approved Signatory

Authorised for Geotechnics by:


Paul Burton Project Director

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

19-Feb-21 t:\geotechnicsgroup\projects\1009521\1009521.1123\workingmaterial\20210219.96 beach haven & 13 cresta avenue beach haven .tywa.docx

> 15c Amber Crescent, Judea, Tauranga | PO Box 317, Tauranga 3140 p +64 7 571 0280 | tauranga@geotechnics.co.nz | www.geotechnics.co.nz

TEST REMARKS

• The material used for testing was natural, fraction passing a 425um sieve. • This test result is IANZ accredited.•Date tested 18/02/2021

Approved Signatory Ryan Milligan

19/02/2021

Date

	15C Amber Crescent			Page 3 of 4
	Judea		Geotechnics Project Number	1009521.1123.0.0
	Tauranga 3110		QESTLab Work Order ID	W21TG-0027
GEOTECHNICS	New Zealand		Customer Project ID	J01675
	p +64 7 571 0280			
	Determination of	of the Linear Shrinkage - N	ZS 4402:1986 Test 2.6	
0017101		TEST DETAILS		
OCATION	Description	96 Beach Haven & 13 Cresta Ave	nue Beach Haven	
SAMPLE	Data	N/A		
SAMPLE	Geotechnics ID	S21TG000063		
	Reference	HA11	Top Depth	0.5m
	Sampled By Description	Others, Tested As Received	Bottom Depth ght brown mixed orange brown. Dry to r	1.0m
	Description	Silly CLAY, with trace rootiets, lig	ght brown mixed brange brown. Dry to r	noist, extremely high plastich
SPECIMEN	Reference		Depth	
	Description			
Linear Shrinkage	22%			
		TEST REMARKS		
 This test result is IANZ accredited 	•Date tested 17/02/2021			
Approved Signatory	Rvan Millizan			
Approved Signatory Date	Ryan Milligan 19/02/2021			

Tauranga 15C Amber Crescent Judea Tauranga 3110 New Zealand

GEOTECHNICS	p +64 7 571 0280
Material Test Report	Report No: MAT:S21TG000063 Issue No: 1
Customer: Lander Geotechnical Address: Level 3, 3 Osterley Way Manukau, 2104 Project: 96 Beach Haven & 13 Cresta Avenue Beach Haven Project No.: 1009521.1123.0.0 Customer Reference No.: J01675 Report Authorised By : Ryan Milligan	Approved By: Ryan Milligan (Development Manager) Date of Issue: 19/02/2021 Please reproduce this report in full when transmitting to others or including in internal reports.
Sample Details Location 96 Beach Haven & 13 Cresta Avenue Beach Haven Geotechnics ID S21TG000063 Sample Reference HA11 Sample Description Silty CLAY, with trace rootlets; light brown mixed orange brown. Dry to moist, extremely high plasticity. Sample Depth 0.5m Bottom Depth 1.0m	
Description Method Moisture Content [NZS 4402:1986 Test 2.1] Moisture Content (%) Date Tested Date Tested	ResultLimits31.4 15/02/2021
Comments	

This test result is IANZ accredited.

If samples have been taken, and were not destroyed during testing, they will be retained for one month from the date of this report before being discarded. Form No: 18909, Report No: MAT:S21TG000063 © 2000-2018 QESTLab by SpectraQEST.com

3.2 Slab-on-ground in expansive soils

3.2.1 NZS 3604 Clause 1.1.2 Buildings covered by this Standard

Amend 1.1.2(a) to read:

"Buildings founded on good ground or on expansive soils where the requirements of 1.1.5 are met"

3.2.2 NZS 3604 New Clause Add new: "Clause 1.1.5 Buildings on expansive soils

Buildings on expansive soils shall be supported on slab-on-ground foundations complying with 7.5.13 and in addition to 1.1.2 shall be limited as follows:

- (a) single storey, stand-alone household unit, and
- (b)maximum length or width of floor of 24.0 m including any attached garage, and
- (c) simple plan shapes such as rectangular, L, T or boomerang, and
- (d) concrete slab-on-ground with a minimum thickness of 100 mm and a minimum concrete compressive strength of 20 MPa, and
- (e)simple roof forms, incorporating hips, valleys, gables or mono pitches, and
- (f) maximum overall height of 7.0 m to roof apex from lowest cleared ground level, and
- (g)maximum roof height of 3.0 m, and
- (h)roof slope between 10° and 35° from the horizontal, and
- (i) maximum span of roof truss 12.0 m, and
- (j) external walls maximum of 2.4 m height studs, other than gable end walls and walls to mono-pitched roofs, which shall not exceed 4.0 m.

COMMENT:

Floor plans

Where floor plans incorporate re-entrant corners then continuity of the exterior ground beam shall be maintained by continuing it as an internal beam, with the exterior beam details continued for a length of at least 1.0 m into the internal beam. This is only applicable where internal beams are specified in Tables 7.4A and 7.4B. This is aimed to bring the solution in NZS 3604 in line with Clause 5.3.8 of AS 2870:2011.

Ground movement

Provision for the additional ground movement effects from trees near to foundations in expansive soils should be considered. Trees remove moisture from the soil for a radius equal to the height of the tree. This causes expansive soils to shrink to varying degrees, and when near houses leads to differential settlement occurring under foundations. Movement of the foundations may lead to cracks in the building and door jamming.

Where existing trees (including trees that have been recently removed) are located closer to the foundations than 1.5 times the mature height of a tree, then additional geotechnical advice should be obtained. Planting of new trees should be avoided near foundations of new buildings or neighbouring buildings on sites with expansive soils.

3.2.3 NZS 3604 Clause 7.5.1

Add the following paragraph at the end of Clause 7.5.1:

"Slabs on expansive soils for buildings meeting the requirements of 1.1.5 shall, in addition to meeting the requirements of 7.5.1 to 7.5.12, meet the requirements of 7.5.13. Where there is conflict the requirements of 7.5.13 shall apply."

3.2.4 NZS 3604 New clause, tables and figures

Add new: Clause 7.5.13 Slab-on-ground in expansive soils

7.5.13.1 Identification of expansive soils 7.5.13.1.1 Should reasonable enquiry as outlined in 3.1.3 show any signs of expansive soils, the expansive soil class, as defined in AS 2870, shall be established by one or all of:

(a) enquiry to the local territorial authority, and/or

- (b) reference to the certificate of suitability issued in terms of NZS 4431, and/or
- (c) a soil test undertaken by a suitably qualified soils engineer.

7.5.13.1.2 Expansive soil class shall be defined as:

- (a) Slightly 'S', having an I_{SS} range of 0–1.9%, and a 500 year design characteristic surface movement return (y_S) of 22 mm, or
- (b)Moderately 'M', having an I_{SS} range of 2.0–3.7% and a 500 year design characteristic surface movement return (y_S) of 44 mm, or

Amend 19 Nov 2019

Amend 19

Nov 2019

- (c) Highly 'H', having an $\rm I_{SS}$ range of 3.8–6.5% and a 500 year design characteristic surface movement return (y_S) of 78 mm, or
- (d) Extremely 'E', having an I_{SS} range of 6.6–7.5% and a 500 year design characteristic surface movement return (y_S) of 90 mm.

7.5.13.2 Maximum aspect ratio of concrete slabs

The aspect ratio of the concrete slabs or bays of concrete slabs, such as in the case of L, T or boomerang concrete slab shapes, shall not exceed 5 to 1 (length to width).

7.5.13.3 Foundation details

7.5.13.3.1 For the identified expansive soil class the foundation details, external and internal thickenings shall be as follows.

- (a) For light wall claddings refer to Table 7.4A and Figure 7.22.
- (b)For medium wall or heavy wall claddings refer to Table 7.4B and Figure 7.23.

7.5.13.3.2 Situations where no internal thickenings shall be required are limited to a rectangular slab with long side not exceeding 17.0 m. Where this limit is exceeded, add additional internal thickenings across the slab with the same cross section dimensions and reinforcing as the external footing, so that the centre to centre spacing of thickenings is always less than 17.0 m.

COMMENT:

Design constraints:

- a) The characteristic surface movements and the corresponding expansivity classifications have been calculated based on design for ultimate limit state (ULS) conditions for a 1 in 1000 year "extreme" drought event, and the serviceability limit state (SLS) conditions for a 1 in 500 year drought event.
- b) Maximum soil movements are calculated to be based on a 500 year return period for SLS, and a 1000 year return period for ULS*;

(*NB: This differed from the recommendations contained within BRANZ Study Report 120A (BSR120A) which used a 300 year return period for the design level drought conditions)

Amend 19 Nov 2019

- c) Climate parameters adopted from BSR120A of $\Delta u = 1.2$ pF, Hs = 1.5 m, and a crack depth of 0.5 Hs
- d) The I_{SS} (soil stability index) ranges attributed to the expansivity classifications as defined in 3.2.4 above have been calculated using the parameters presented in BSR120A and Equation 2.3.1 of AS 2870:2011.
- e) Sites subject to parameters that differ from those mentioned above, in particular sites where the crack depth is less than 0.75 m, such as cut natural ground or clay backfill, require specific engineering assessment to confirm their appropriate site classification.
- f) The effects of nearby trees (whether existing, recently removed, or future planting) are not considered in these solutions. It is recommended that specific geotechnical engineering advice is obtained where a tree is within a lateral distance of 1.5 times its mature height of the foundations.

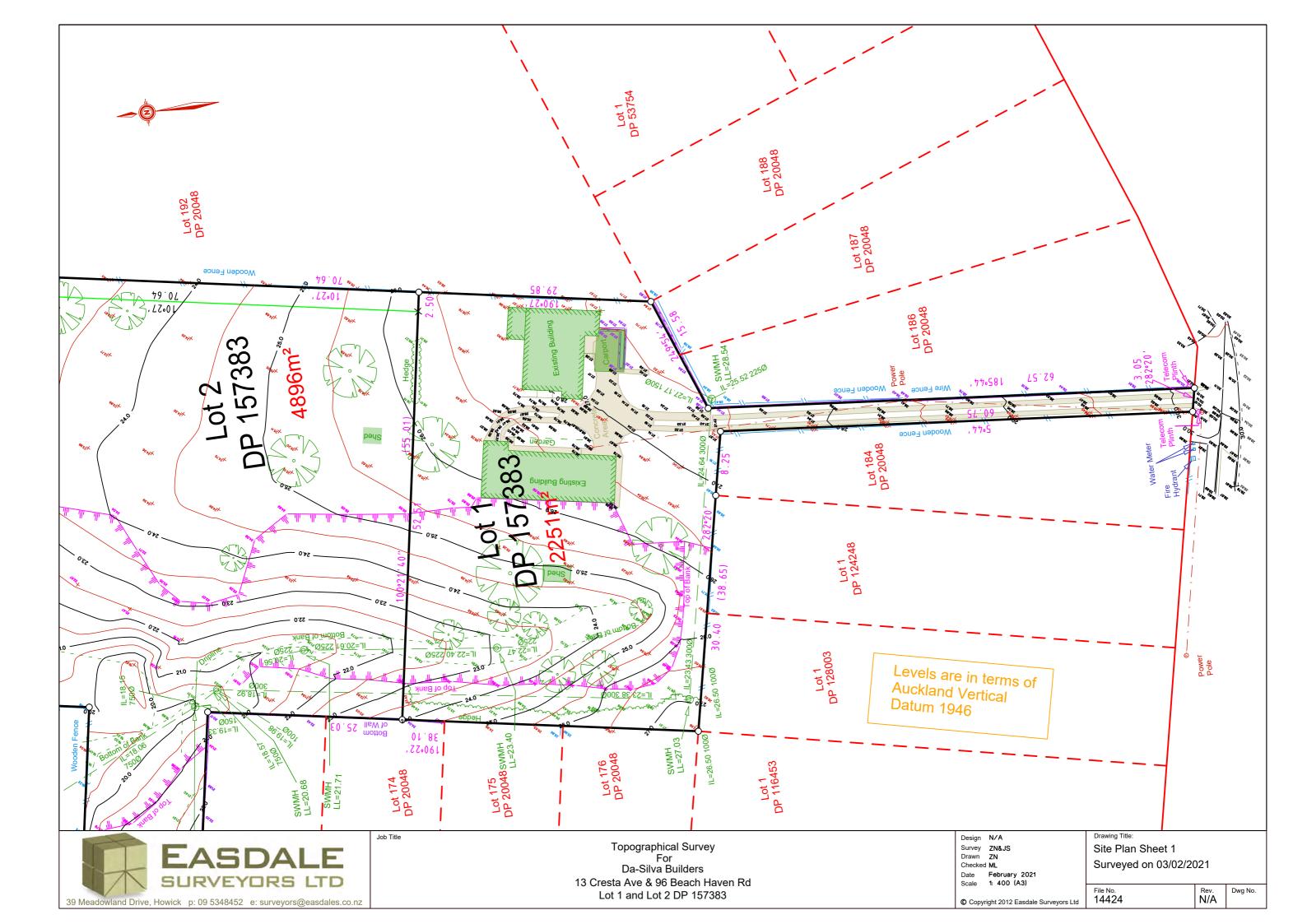
Maintenance of foundations in expansive soils

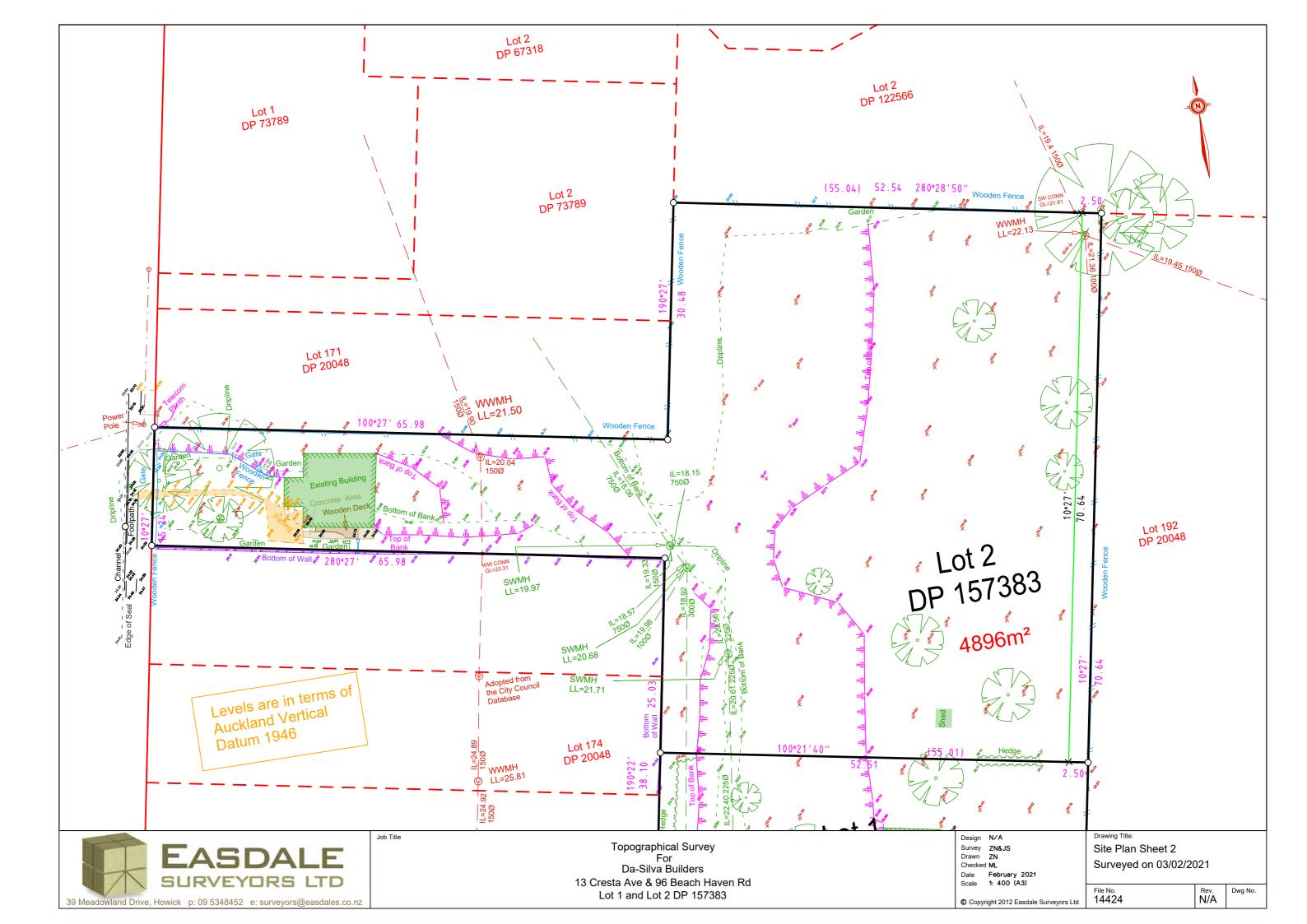
Normal maintenance is that work generally recognised as necessary to achieve the expected performance over time of the foundation located on expansive soils. Unless otherwise specified by the designer and noted on the drawings, basic normal maintenance tasks should ensure that:

- a) the drainage and wetting of the site is controlled so that extremes of wetting and drying of the soils are prevented, and
- b) the position and operation of gardens adjacent to the dwelling are controlled, and the planting of trees near to foundations is suitably restricted, and
- c) any leaks which develop in plumbing, storm water or sanitary sewage systems are repaired promptly.

Amend 19 Nov 2019

Table 7.4A Reinforced concrete foundations in expansive soils for light wall claddings Clause 7.5.13 and Figure 7.22										
Expansive soil class	Slightly 'S'	Moderately 'M'	Highly 'H'	Extremely 'E'						
Soil embedment (De)	375 mm	525 mm	575 mm	625 mm						
Top steel (As top)	2/D 16	2/D16	2/D16	2/ D16						
Bottom steel (A _s bottom)	1/ D16	1/ D25	1/ D20	1/ D25						
Stirrups	R6/ 125 crs.	R6/ 125 crs.	R6/300 crs.	R6/ 300 crs.						
Maximum spacing of internal thickenings	no internal thickening	no internal thickening	2.5 m crs.	2.5 m crs.						
Depth of thickening (D1)	-	-	400 mm	450 mm						
Base width (B1)	-	-	300 mm	350 mm						
Top steel (A _s top)	-	-	2/ D20	2/ D20						
Bottom steel (A _s bottom)	-	-	2/D16	2/ D20						
Stirrups	-	-	R6/ 150 crs.	R6/ 150 crs.						


Table 7.4B Reinforced concrete foundations in expansive soils for medium wall and heavy wall claddings Clause 7.5.13 and Figure 7.23									
Expansive soil class	Slightly 'S'	Moderately 'M'	Highly 'H'	Extremely 'E'					
Soil embedment (De)	500 mm	550 mm	775 mm	800 mm					
Top steel (A _s top)	2/ D16	2/ D20	2/ D20	3/ D20					
Bottom steel (A _s bottom)	2/ D16	2/ D16	2/ D20	2/ D20					
Stirrups	R6/ 125 crs.	R6/ 250 crs.	R6/300 crs.	R6/ 300 crs.					
Maximum spacing of internal thickenings	-	2.5 m crs.	2.5 m crs.	2.5 m crs.					
Depth of thickening (D1)	-	350 mm	450 mm	500 mm					
Base width (B1)	-	300 mm	300 mm	350 mm					
Top steel (A _s top)	-	2/ D16	3/ D20	3/ D20					
Bottom steel (A _s bottom)	-	2/ D16	2/ D16	2/ D20					
Stirrups	-	R6/ 125 crs.	R6/ 150 crs.	R6/ 150 crs.					


Amend 19 Nov 2019

Appendix E

Easdale Surveyors – Topographical Survey Plans

