

A & L Sargeant Ltd GEOTECHNICAL INVESTIGATION REPORT

147 to 153 Edgewater Drive, Pakuranga

Project Reference: J00983 April 17, 2025

DOCUMENT CONTROL

Version	Date	Comments
Α	17/04/2023	For resource consent

Version	Issued For	Prepared By	Reviewed &Authorised By
A	Issued for Consent	Che Cheng Associate Geotechnical Engineer CMEngNZ, CPEng	Shane Lander Principal Geotechnical Engineer CMEngNZ, CPEng

CONTENTS

1	PROJ	ECT BRIEF AND SCOPE	1
2	DESK	TOP APPRAISAL	1
	2.1 R	lelated Reports	1
		ite Description	
	2.3 D	evelopment Proposals	2
		latural Hazard Risk Assessment	
3	GEOL	OGY / GEOMORPHOLOGY	5
4	SITE I	INVESTIGATIONS	5
5	SUMN	MARY OF GROUND CONDITIONS	6
	5.1 G	Seological model	6
	5.1.1	Topsoil	6
	5.1.2	Uncontrolled fill	
	5.1.3	Ash and alluvium	7
	5.1.4	Transitional Waitemata Group	7
	5.1.5	Transitional Waitemata Bedrock	7
	5.1.6	Groundwater	7
	5.2 E	xpansive Soils	8
6	GEOT	ECHNICAL ASSESSMENTS	9
	6.1 S	eismic Consideration	9
	6.1.1	Seismic Site Subsoil Class	
	6.1.2	Ground acceleration	
		Quantitative Liquefaction Assessment	
	6.2.1	Approach	
	6.2.2	Results	
		oundation Assessments	
	6.3.1	Shallow foundation	
		ored pile foundations	
		trength reduction factor	
		Other deep foundation options	
		avement and Floor slab subgrade	
		arthwork	
		etaining wall design	
		lope stability	
	6.10.1	=	
	6.10.2	Slope at eastern boundary	14
	6.11 G	Froundwater Consent Requirements	15
7		CTS ON NEIGHBOURING ASSETS	16
	7.1.1		
	7.1.2	Groundwater drawdown induced settlement	19
	7.2 A	ssessment of effect on buried services and neighbouring building	20
8	BASE	MENT DRAINAGE DESIGN	21
9		JNDWATER AND SETTLEMENT MONITORING CONTINGENCY PLAN	
10		HER WORK	
11	LIMIT/	ATIONS	22

APPENDICES:

Annandix	۸.	Cupplied	drowings
Appendix .	A:	Supplied	arawınas

Appendix A: Supplied drawings
Appendix B: Site investigation records

Appendix C: Site plan and Geological cross section

Appendix D: Liquefaction Analysis Appendix E: Slope stability Analysis

Appendix F: Wallap Analysis Appendix G: Drawdown Analysis Appendix H: Settlement Profile

Draft Groundwater and Settlement Monitoring Contingency plan Appendix I:

PROJECT BRIEF AND SCOPE

This report has been prepared for A & L Sargeant Ltd in support of an application to Auckland Council for Resource Consent in accordance with the requirements of the Resource Management Act 1991.

Where appropriate, it is in accordance with the recommendations of NZS 4404, Land Development and Subdivision Engineering; Auckland Council Code of Practice for Land development and Subdivision, Section 2 Earthworks and Geotechnical Requirements (version 2.0); and related documents.

The principal objectives of this report were to determine:

- Ground model of the subject site.
- Groundwater condition of the subject site.
- Seismic consideration including liquefaction potential.
- Foundation options.
- Excavation and retention design recommendation for the basement,
- Potential effects on nearby structures due to groundwater drawdown and/or excavation.
- Subgrade strength for slabs on grade and pavements.

DESKTOP APPRAISAL

2.1 Related Reports

The following related reports have been reviewed in preparation of this report:

- Geotechnical report prepared by Moss Engineering Ltd (ref. 4116G) dated 27 November 2017 which was subsequently revised (REV 1) on 3 March 2018 (Moss).
- Geotechnical design report prepared by Lander Geotechnical Consultants Ltd (ref. J00983) dated 20 December 2018 (Lander). This was for a previous proposal within the same study area that has now been revised.
- Geotechnical Investigation Report prepared by LDE Ltd (Ref J00983), Dated 3/02/2023. This was for a previous proposal within the same study area that has now been revised.

2.2 Site Description

The site comprises 147 to 153 Edgewater Drive and covers an area of approximately 2,990 m². It is bounded by the Ambridge Rose Manor rest home to the north, a residential property to the south, Edgewater drive to the west and an esplanade reserve to the east. The overall site is relatively flat although dips gently to the southeast towards the reserve.

The lots are currently occupied by single level residential dwellings and garages/carports. A wastewater line runs approximately north/south through the central portions of the subject site.

2.3 Development Proposals

The development proposal is shown in the supplied drawings presented in Appendix A. The proposed development comprises two standalone, seven storey buildings (Blocks A and B) with ground floor level at RL5.1m. Block A has a basement level with Finished floor level of RL2.1m.

Block A occupies 151 and 153 Edgewater Drive while Block B occupies 147 and 149 Edgewater Drive.

Minor fill and cut will be required to level out the building platforms to RL approximately 5m.

2.4 Natural Hazard Risk Assessment

In accordance with Section106 of the Resource Management Act (1991 and subsequent amendments), we have undertaken a qualitative site-specific natural hazards risk assessment for the proposed development which is presented in Table 1.

		Consequence				
		Insignificant 1	Minor 2	Moderate 3	Major 4	Extreme 5
	Almost Certain 5	Medium 5	High 10	Very high 15	Extremely high 20	Extremely high 25
P	Likely 4	Low 4	Medium 8	High 12	Very high 16	Extremely high 20
Likelihood	Moderate 3	Low 3	Medium 6	Medium 9	High 12	Very high 15
ž	Unlikely 2	Very low 2	Low 4	Medium 6	Medium 8	High 10
	Rare 1	Very low 1	Very low 2	Low 3	Low 4	Medium 5

In summary, with appropriate design, the proposed development is unlikely to be affected by site-specific natural hazards and therefore fulfils Section 106 of the Act. Although touched on below, some regional hazards are beyond the scope of this report.

The risk rating scores (pre and post construction) outlined below have been assessed by LDE in accordance with Section 2.4.3 of ACCoP (inset right).

Table 1: Natural hazard and risk assessment

	Untreated Risk	Residual Risk	Risk Owner			
Seismic Hazards	2 (Very Low)	1 (Very Low)	Building Designer			
Potential Susceptibility	The site is more than 20km from the nearest active fault (the Waikopua Fault).					
Mitigation Measures	All future structures should be desig	ned in accordance with the relevant	Standards and guidelines.			
Groundwater	Untreated Risk	Residual Risk	Risk Owner			
Drawdown	5 (Medium)	2 (Low)	N/A			
Potential Susceptibility	highest groundwater levels approxing ground floor level (allowing for 500m)	nm over excavation and basement ta	source not found.) and determined el. Cut depths are up to 3.5m from the nking) and will intercept the water table. essment of effects provided (Section 7).			
Mitigation Measures	Nil					
Limunfontion	Untreated Risk	Residual Risk	Risk Owner			
Liquefaction	6 (Medium)	3 (Low)	N/A			
Potential Susceptibility	Auckland council GEOMAP show that the site is classified as 'Liquefaction Category is Undetermined' based on LEVEL B assessment. This site therefore requires a specific assessment. The liquefaction potential is determined to be moderate with no surface manifestation.					
Mitigation Measures	Foundation to be founded on piles a	and account for drag down effect.				
Settlement and	Untreated Risk	Residual Risk	Risk Owner			
Compressible Soils	6 (Medium)	4 (Low)	Foundation Designer			
Potential Susceptibility	The alluvial soils generally consist of stiff to very stiff clay and slit, and are not prone to major consolidation settlement the fill platform surcharge loads. However under the scale of building proposed, consolidation settlement can be a concern. Given the settlement concern, foundations for the structure should be piled to found within competent East Coast Bays Formation bedrock to mitigate these risks. Any lightly loaded structural elements (e.g. vehicle ramps, etc.) will not unacceptably settle if recommended bearing capacities for shallow foundations are not exceeded.					
Mitigation Measures	Building to be embedded within com	npetent bedrock.				
	Untreated Risk	Residual Risk	Risk Owner			
Expansive Soils	6 (Medium)	4 (Low)	Foundation Designer			
Soils encountered at the basement level within the site generally comprised of silt and clay, which are expansive. This is typically mitigated via specific foundation design.						
Mitigation Measures	The buildings are to be founded on	piles.				

Sensitive Soils	Untreated Risk	Residual Risk	Risk Owner				
Genative Gons	4 (Low)	3 (Low)	Contractor				
Potential Susceptibility	Soil sensitivities are shown in the borehole records (Appendix B) and were generally moderately sensitive to sensitive.						
Mitigation Measures		reful earthworks trafficking, and progran	· •				
	Untreated Risk	Residual Risk	Risk Owner				
Collapsible Soils	1 (Very Low)	1 (Very Low)	N/A				
Potential Susceptibility	No evidence of collapsible soils was	encountered on this site.					
Mitigation Measures	Nil						
Landslide Susceptible	Untreated Risk	Residual Risk	Risk Owner				
Ground	2 (Very Low)	2 (Very Low)	N/A				
Potential Susceptibility	The site is generally flat with downs instability.	slope steeper than 1v to 4h to the eas	t, with no obvious evidence of slo				
Mitigation Measures	Nil						
Stream Instability and	Untreated Risk	Residual Risk	Risk Owner				
Erosion	1 (Very Low)	1 (Very Low)	N/A				
Potential Susceptibility	There are no streams present on the development.	site and therefore stream instability is	not considered a risk to the propose				
Mitigation Measures	Nil						
Coastal Instability and	Untreated Risk	Residual Risk	Risk Owner				
Erosion	6 (Medium)	1 (Very Low)	N/A				
	Auckland Council Geomaps viewer s areas.	shows that the site is within the zone for	coastal inundation and instability				
Potential Susceptibility		side our area of scope of work and is ac stern boundary wall preliminary design t					
Mitigation Measures	Retaining wall to mitigate long term e	erosion risk to property.					
October 11	Untreated Risk	Residual Risk	Risk Owner				
Geothermal Issues	1 (Very Low)	1 (Very Low)	N/A				
Potential Susceptibility	There is no evidence of geothermal a	activity on this site.					
oternial ousceptibility		,					

Soil Erosion	Untreated Risk	Residual Risk	Risk Owner	
Soil Erosion	6 (Medium)	1 (Very Low)	Contractor	
Potential Susceptibility & Mitigation Measures	Refer to our response to Coastal Instability and Erosion.			
Rockfall or Falling	Untreated Risk	Residual Risk	Risk Owner	
Debris	1 (Very Low)	1 (Very Low)	N/A	
Potential Susceptibility	There is no ground elevated steeply above the site.			
Mitigation Measures	Nil			
Uncontrolled Fill	Untreated Risk	Residual Risk	Risk Owner	
Uncontrolled Fill	4 (Low)	2 (Very Low)	Contractor and Geotechnical Engineer	
Potential Susceptibility	Uncontrolled fill was encountered in	MH02 location to 500mm below exis	ting ground level.	
Mitigation Measures	Any pre-existing fill will be removed	as a during the basement excavation	1.	
Flood Hazard	Untreated Risk	Residual Risk	Risk Owner	
Flood Hazard	1 (Low)	1 (Low)	-	
Potential Susceptibility	Auckland Council GeoMaps view shows the site is not within a mapped flood plain.			
Mitigation Measures	Nil			

GEOLOGY / GEOMORPHOLOGY

Based on GNS 1:250000 geology web map, the site is underlain by Puketoka Formation late Pliocene to middle Pleistocene age pumiceous river deposits of the Tauranga group.

SITE INVESTIGATIONS

Site investigations have been undertaken at the subject site by Moss in 2017 and by Lander in 2018, and by LDE in 2024. The previous investigations consist of the following:

- Moss Engineering Ltd previous investigation:
 - Eight hand auger boreholes (BH) to a depth of up to 5m below ground level (bgl).
 - Three CPT tests to between 11m and 15m bgl.
 - Two standpipe piezometers installed at BH3 and BH6 location.
- Lander geotechnical previous investigation:

- Three machine boreholes (MH01-MH03) extend to 16.5m bgl.
- Three standpipe piezometers installed in each machine borehole.
- LDE recent geotechnical investigation:
 - Three CPTs with standpipe installation to up to 15.3m bgl
 - One hand auger to 5m depth.

The site investigation records are presented in Appendix B.

SUMMARY OF GROUND CONDITIONS

5.1 Geological model

A geological model of the site has been developed based on the previous site investigations, and is summarised in Table 2 below:

Table 2: Ground model

Layer No	Geological Unit	Depth to top of layer (m)	Thickness range (m)	CPT qc range (MPa)
1	Topsoil/uncontrolled fill	0	0 – 0.4	-
2	Ash	0-0.4	0 - 1.8	1-2
3	Puketoka formation Alluvium	0.4 -2.0	5.9- 9.5	0.5-14
4	Transitional Waitemata group	7.4-11.5	1.5 - 3.1	1-10
5	Waitemata Group Bedrock	10.5-13	-	5-20+

Site investigation location plan and three cross sections are presented in Appendix C. Details are as follows:

5.1.1 Topsoil

Up to 400mm of topsoil has been identified across the site.

5.1.2 Uncontrolled fill

Uncontrolled fill that consists of clayey SILT with fine gravels was encounter at MH02 locations. Given that the uncontrolled fill was not encountered in any of the other investigation locations, we consider this layer is likely to be localised.

5.1.3 Ash and alluvium

Ash and alluvium were encountered from near surface in all machine boreholes, however Ash was not encountered at the recent LDE HA01 location. These materials generally comprised inorganic, stiff to hard, orange/brown/grey, silts and clays. Vane shear strengths measured in the drilling barrel and Hand auger location ranged between 32kPa and 200kPa and SPT N values ranged were typically between 4 and 8, although results of 17 and 27 were noted at the base of this layer in MH01.

5.1.4 Transitional Waitemata Group

Waitemata Group transitional materials were encountered between 7.4m and 9.5m below existing ground level in all boreholes. These materials comprised very stiff to hard, inorganic, dark grey, silty clays and sands. SPT N values within this layer ranged between 6 and 8 at the top of the layer to 50 at the base of the layer. The recent CPTs indicates that this layer is encountered at similar depth as the Machine boreholes.

5.1.5 Transitional Waitemata Bedrock

Waitemata Group bedrock materials were encountered beyond 10.5m to 12.5m below existing level across the site in all three boreholes. While CPT 06 infers rock level at the southeastern corner of 147 Edgewater Drive is at about 13m depth. These comprised very weak to weak, interbedded sandstone and siltstone with SPT N values all in excess of 50.

5.1.6 Groundwater

Historically, groundwater levels were measured at the completion of the hand auger boreholes on 11/11/2017, and in the standpipe piezometers on 22/11/2017 by Moss Engineering Ltd at BH3 and BH6 location. The groundwater was also measured in the standpipe piezometer at MH01 location by LDE on 28/03/2022, 9/12/2022, and 12/12/2022. Standpipe installed at BH3, BH6, MH02 and MH03 locations were not measured as they were destroyed by the time the readings were taken in 2022.

At the recent CPT standpipe locations, the groundwater levels were measured by LDE at 1/11/2024, 6/11/2024, 8/11/2024.

The groundwater monitoring record are summarised in Table 3 below:

Table 3: Groundwater levels

Standpipe location	Ground elevation (RL.m)	Measurement date	Groundwater depth (m.bgl)	groundwater depth (RL.m)
BH3	5.5	11/11/2017	4.2*	1.3*
		22/11/2017	2.9	2.6
BH6	5.6	11/11/2017	3.6*	2.0
		22/11/2017	2.4	3.2
MH01	5.8	28/03/2022	2.0	3.8
		9/12/2022 (high tide)	1.7	4.1
		9/12/2022 (low tide)	1.7	4.1
		12/12/2022 (high tide)	1.5	4.3
		12/12/2022 (low tide)	1.5	4.3
CPT04	5.8	1/11/2024	1.7	4.3
		6/11/2024	1.9	4.1
		8/11/2024	1.9	4.1
CPT05	5.8	1/11/2024	1.8	4.0
		6/11/2024	2.0	3.9
		8/11/2024	2.0	3.8
CPT06	5.9	1/11/2024	0.9	5.0
		6/11/2024	1.2	4.7
		8/11/2024	1.2	4.7

^{*}Groundwater level measured on the day of the hand auger borehole, equilibrium may not have been reached, not used as basis of geotechnical assessments.

Mean high water spring tidal level and mean low water spring tidal level within the Tamaki River estuary are at RL 1.44m and RL -1.42m respectively based on LINZ information (https://www.linz.govt.nz/guidance/marine-information/tide-prediction-guidance/standard-port-tidal-levels). The relevant modelling shows no obvious tidal influences on GWL's.

5.2 Expansive Soils

A phenomenon common to the plastic soils found throughout this region is their expansive nature and tendency to shrink and swell, particularly with seasonal fluctuations of near surface water contents.

Technically, expansive soils are defined in NZS 3604 as those soils having a Liquid Limit of more than 50% and a Linear Shrinkage of more than 15%. Where soils are quite silty or sandy, expansion is less of a problem, due to lower clay contents.

Based on plasticity and our experience of the surficial ash and alluvium material, we assess that the near-surface soils are Highly Expansive (Class H1 in term of AS2870.2011). This should be subject to verification via laboratory Shrink-Swell testing during the detailed design phase, as outlined in by the guidance in MBIE (Acceptable Solution B1/AS1, amendment 20), if indeed expansive soils are even a consideration for the foundation and/ or floor slab design for a large building of this type.

6 GEOTECHNICAL ASSESSMENTS

6.1 Seismic Consideration

6.1.1 Seismic Site Subsoil Class

Based on the ground investigations at the site, and our experience in the area, we consider the seismic sub soil class for the site to be Class C – shallow rock sites in accordance with NZS 1170.5:2004 Section 3.1.3.

6.1.2 Ground acceleration

In accordance with the updated MBIE Guideline Module 1, the design PGA and effective magnitude is:

- ULS case PGA of 0.19g, effective magnitude of 6.5 with return period of 500 years.
- SLS case PGA of 0.04g, effective magnitude of 5.9 with return period of 25 years.

6.2 Quantitative Liquefaction Assessment

6.2.1 Approach

A seismic liquefaction assessment has been completed using GeoLogismiki Cliq v.3.5.2.5 software based on CPT04, CPT05 and CPT06 data.

The earthquake peak ground acceleration (PGA) and magnitude (Mw) for the Auckland region is provided in Table A1 of Module 1¹. Therefore, a ULS PGA of 0.19g and Mw of 6.5 have been used for this assessment assuming Importance Level 2 with a design working life of 50 years, Table 3.1, NZS1170.0².

The analysis has been completed by applying the Boulanger and Idriss (2014) CPT-based method in accordance with MBIE Module 3. CPT-based method which evaluates a soil's potential to liquefy based on the soil behaviour type index (I_c) and liquefaction triggering factor (i.e., the factor of safety). The soils behaviour index (I_c) has been estimated based on the Robertson and Wride methods. Soils have been assumed to be non-liquefiable when the Ic value is greater than 2.6.

The following assumptions have been made in our analysis:

- The material encounter at site does not trigger SLS level liquefaction concern.
- The soils at this site are assumed to be Class C, shallow soil site (NZS1170.5:2004 Table 3.2),
- The proposed building is assumed to be Importance Level 2 as defined in NZS1170.0:2002,

² AS/NZS1170.0 (2002). Structural Design Actions, General Principles.

¹ New Zealand Geotechnical Society (NZGS) and Ministry of Business Innovation & Employment (MBIE) guidelines for Earthquake Geotechnical Practice in New Zealand. (2021) "Module 1: Overview of the guidelines" Rev. 1

- Lateral spreading has not been considered in our analyses, given the silty natural of the alluvium material on site, liquefaction is only expected to occur in isolated pockets of soils and will not trigger lateral spreading concern.
- A conservative groundwater level of 1.0m has been used for all analysed scenarios CPTs across the site based on groundwater levels measured within the piezometers to date.
- We have limited the analysis depth to 10m in accordance with Canterbury Technical Guidance Part C.

6.2.2 Results

Liquefaction Potential Index (LPI) is used to assess the general performance level of liquefied deposits. The table below summarises the results from the liquefaction analysis. Based on the Module 3 guidelines for performance level categorisation as outlined in Table 5.1 of that document, this assessment found that the liquefaction risk was found to be L2 moderate (small differential settlements) for an Importance Level 2 ULS case. This is summarised in table 4 below:

Table 4: Liquefaction Analysis Results Summary

Test	LPI	Vertical Free field Settlement	Performance Level Categorisation (Module 3, Table 5.1)
CPT04	0.91	12mm	L2, Moderate (small differential settlements)
CPT05	1.82	27mm	L2, Moderate (small differential settlements)
CPT06	3.63	42mm	L2, Moderate (small differential settlements)

Given that the superstructure will be suspended on piles embedded within bedrock, liquefaction induced settlements will not affect the superstructure. Down-drag caused by post-liquefaction settlement will need to be considered for negative skin friction pile design.

The liquefaction analysis outputs are presented in Appendix D.

6.3 Foundation Assessments

6.3.1 Shallow foundation

Shallow foundations are not recommended for primary structures. For ancillary structures (e.g., sheds), 300 kPa bearing capacity may be used for strip and pad footings up to 0.6m wide and 1.0m square respectively. Where these are used, to account for expansive soils, we recommend they are embedded a minimum depth below final external ground level of 900mm or alternatively are designed in accordance with AS2870 for site class H1 (high) and/ or a specific design that accommodates this expansive site class.

6.4 Bored pile foundations

For bored cast-in-situ pile foundations founded on the Waitemata group bedrock at 10.5 to 13m below ground level, the design parameters presented in Table 5 are recommended for design. These capacities are unfactored and a strength reduction factor of 0.5 should be applied when calculating the factored (ULS) geotechnical resistance.

Table 5: Pile design geotechnical parameters

Material	Ultimate shaft friction (kPa)	Ultimate end bearing capacity (kPa)
Alluvium/ash	-	-
Transitional Waitemata Group	60	-
Waitemata Group bedrock	500	5000

Notes:

- 1. A minimum embedment of three times the pile diameter into the rock layer is required in order to use the bearing capacity given in the table for that layer.
- 2. A reduction factor of 0.8 should be applied to the ultimate shaft friction for uplift tension loading.
- 3. The upper 1m of soil should be discounted in the pile design due to the presence of topsoil, fill and expansive soils.
- 4. Depth to top of rock should be confirmed by site observations during construction for all piles relying on the bedrock capacities.
- 5. Piles should be spaced at least 3 pile diameter apart to avoid vertical pile ground effect.

For seismic case design of pile compression loading only, a down drag shaft friction of 40kPa should be accounted for over the top 8.5m length of the pile, to account for liquefaction induced negative skin friction effect.

It should be noted that given that shallow groundwater was encountered at the site, although the alluvial soils were generally noted to be stiff silts and clays, there were alluvial sands encountered in MH01. Therefore, we recommend the contractor allow a contingency for casings or a bentonite slurry if these materials do prove to collapse in.

For piling over existing public services, please refer to requirements in Watercare Pipe Bridging guidelines.

6.5 Strength reduction factor

As required by Section B1/VM4 of the New Zealand Building Code Handbook, a strength reduction factor of 0.50 must be applied to all recommended geotechnical ultimate soil capacities in conjunction with their use in factored design load cases for static and earthquake overstrength conditions respectively.

6.6 Other deep foundation options

Driven piles foundation is not recommended for the subject site due to the noise and proximity to residential neighbourhood / existing aged care facility, plus the potential for vibrations to be felt associated with such method.

Depending on structural loads screw piles could also be an alternative piling option for this project. These piles comprise steel tubes with flighted auger tips screwed into the bearing strata to design loads measured by torque meter. Some piles are then test-loaded with kentledge. Subject to economics, their use should be appropriate on this site. Anticipated load carrying capacities need to be assessed in conjunction with the specialist contractors who promote this product.

6.7 Pavement and Floor slab subgrade

Based on the site investigation we consider that a ground bearing slab constructed on grade is appropriate on this site. A CBR of 3% may be assumed for slabs and pavement bearing over subgrade with a minimum undrained shear strength of 70kPa. We recommend that shear vane testing be carried out at the time of construction to confirm the final subgrade construction details. Subgrade in areas which fall below the design CBR value may require undercutting and replacement with hardfill. It should be noted that CBR values can be highly affected by moisture content (i.e., exposure to the elements), and trafficking and we therefore recommend that the subgrade is only trimmed to final level immediately prior to placing basecourse.

6.8 Earthwork

No earthworks plans have been provided to us at the time of preparing this report, however based on the supplied drawings, we anticipate that at the edge of the proposed Block A developments, cut up to 3.5m will be necessary to construct the building basement and cut and fills of up to 800mm, for the proposed development.

Within areas of the subdivision affected by earthworks, all topsoil, vegetation, pre-existing fill, and any near surface organic, soft or otherwise unsuitable materials should be cleared under our direction. All stripping operations should be inspected by us to confirm competent soils have been exposed.

Any batters that are required to be formed higher than 3.5m, or not having the crest at the current ground level should be subject to specific design.

All engineered fills should be placed and compacted in lifts of no greater than 200mm to 300mm and fill compaction testing should be undertaken to ensure that fills meet minimum compaction requirements. Fill compaction requirements should be set by the certifying geotechnical professional prior to fill placement and once proposed fill materials are known.

Where imported fills are to be used, the certifying geo-professional should be given the opportunity to inspect the proposed fill to be used to confirm its suitability.

Redundant services will need to be removed and backfilled where they are shallow. Any deep obsolete services can be infilled with grout and left in place.

Given the low compressibility of the ground at the site, settlement due to earthwork fill is expected to be minor.

6.9 Retaining wall design

The design of any soldier pile wall to support the temporary basement excavation should include interaction between the geotechnical and the structural engineer during detailed design to ensure the design adequately captures all loads and deflections are within acceptable ranges.

For the design of the retaining wall on site, retaining wall geotechnical design parameters are summarised in table 6 below:

Table 6: Retaining wall design parameters

Depth (m)	Material	Unit Weight (kN/m³)	Drained cohesion (kPa)	Effective friction angle	Undrained shear strength (kPa)	Effective young's modulus (MPa)
0-2	Ash	17.5	7	30	70	25
2-2.5	Firm Alluvium	17.5	3	26	35	10.5
2.5+	Stiff Alluvium	17.5	5	30	50	15

Due allowance should be made in the design for effects of building loads, traffic loads, and water loading etc. The retaining wall designer should decide whether Ka or Ko is more appropriate for design.

The proposed buildings are situates above an estuary. An in-ground palisade wall may be required at the eastern site boundary to mitigate long term coastal regression effect. This is a matter for detailed design, and we understand that coastal regression will be determined by a coastal engineer / scientist in a separate report.

6.10 Slope stability

6.10.1 Basement temporary batter

We understand that there may be scope to carry out temporary batters down to basement level. To assess appropriate batter angles for the basement excavations, a cut batter stability assessment was carried out using software SLIDE 2.0, using the Morgenstern-Price method for circular slips.

Based on the groundwater level monitoring data to date, a groundwater level of 1m below ground level was assumed.

A surcharge of 5kPa is modelled between the crest of the cut to 1m from the crest to represent pedestrian surcharge. 12kPa is modelled at 1m from the crest of the wall representing construction vehicles and surcharge outside of the property boundaries.

A factor of safety of 1.25 was targeted for construction case.

Based on the site investigation, we have adopted a ground model with parameters as presented in Table 7.

Table 7: Soil properties

Material	Unit Weight (kN/m³)	Drained cohesion (kPa)	Effective friction angle
Alluvium/ash very stiff	17.5	5	30
Alluvium firm	17.5	3	28
Alluvium stiff	17.5	5	30

Full details of stability analysis are presented in Appendix E and are summarised in Table 8.

Table 8: Temporary batter stability summary

Conditions of Analysis	Maximum batter	Factor of safety
3.5m high temporary batter	1V:1.5H	1.29
3m high temporary batter	1V:1.3H	1.31
2.5m high temporary batter	1V:1.2H	1.32

Further if cut batters are left open for any period of time, especially during periods of rain, they should be covered with polythene sheeting and appropriate measures should be put in place upslope of the batters to appropriately redirect overland flow to avoid concentrated flows on the batters. The Contractor shall be responsible for such measures as deemed necessary.

6.10.2 Slope at eastern boundary

While the site is generally flat, preliminary slope stability analysis of the estuary along the eastern boundary has been assessed based on cross section CS2.

This cross section was then analyzed using computer modelling software Slide 2 (2018) using the Morgenstern/Price method for circular modes of failure using worst case scenario techniques.

The degree of stability of a slope is expressed as the factor of safety, which is the ratio of the resisting and driving forces causing instability. Theoretical failure of a slope is possible when the factor is 1.0, while increasing values above 1.0 indicate improving stability.

Acceptable factors of safety (FoS) for are prescribed in Auckland Council Code of Practice (ACCoP) Section 2.6.8 for residential developments as outlined in below.

- Normal conditions (long term conditions), minimum FoS 1.5
- Extreme (0.5m below ground level) groundwater conditions (short term transient conditions), minimum FoS 1.3
- Seismic condition with a 1 in 500-year event with a ULS seismic load of 0.19g and earthquake magnitude (Mw) of 6.5 is specified by in the NZGS Earthquake Geotechnical Engineering Practice Module 1, 2022, minimum FoS 1.0

A summary of analysis is presented in Table 9 below, indicating risk of slope instability encroaching the building platform is low even with conservative retaining wall embedment assumed:

Table 9: Estuary stability summary

Conditions of Analysis	Minimum FOS required	Factor of safety achieved
Existing groundwater	1.5	1.8
Elevated groundwater	1.3	1.6
Seismic	1.0	1.1

6.11 Groundwater Consent Requirements

Due to an expected requirement for a permanent groundwater take at the site the development will require a consent as a Restricted Discretionary Activity under the Auckland Unitary Plan (AUP) requirements as it falls outside of the "Permitted Activities" requirements. Based on the architectural drawings, we understand that the basement floor level is at RL 2.1m, by assuming a 0.5m over excavation, a final excavation level at RL 1.6m is assumed.

The summer/spring groundwater levels monitoring from the standpipes are presented in Section 8.1.6 based on standpipe readings, the lowest recorded water reading was at BH3 location at RL 2.6m. and the highest recorded water reading was at CPT06 location at RL 5.0m. Tidal influences appeared to be negligible. For resource consent purpose, a conservative groundwater of RL5.0m has been adopted in the E.7 assessments.

Table 10 assesses the compliance of the proposed lower floor excavations, as well as the installation of the proposed stormwater and wastewater infrastructure, to Auckland Council's Unitary Plan E7 groundwater guidelines, E7.6.1.6 and E7.6.1.10.

Table 10: E7 6.1.6 and E7.6.1.10 Assessment

Rule	Activity	Applicability to Site
E7.6.1.6 (1)	The water take must not be geothermal water.	Complies: There is no evidence of geothermal activity at the site in question.
E7.6.1.6 (2)	The water take must not be for a period of more than 10 days where it occurs in peat soils, or 30 days in other types of soil or rock.	Does Not Comply: The basement walls of the buildings will likely be permanently drained.
E7.6.1.6 (3)	The water take must only occur during construction.	Does Not Comply: The basement walls will likely be permanently drained. The water take due to construction of the stormwater and wastewater infrastructures are likely only temporary (i.e. during their construction).
E7.6.1.10 (2)	Any excavation that extends below natural groundwater level must not exceed: 1ha in total area; and 6m depth below the natural ground level	Complies: For the basement excavation, excavations proposed to extend below natural groundwater levels are less than 1ha in total and are less than 6m below ground depth.
E7.6.1.10 (3)	The natural groundwater level must not be reduced by more than 2m on the boundary of any adjoining site.	Does not Comply: There is a risk that the drawdown at the boundary is more than 2m.
E7.6.1.10 (4)	Any structure, excluding sheet piling that remains in place no more than 30 days, that physically impedes the flow	Does Not Comply: Length of the basement exceeded 20m and may extend more than 2m below the natural groundwater level.

Rule	Activity	Applicability to Site
	of groundwater through the site must not: Impeded the flow of groundwater over a length of more than 20m; and Extend more than 2m below the natural groundwater level	
E7.6.1.10 (5a)	The distance to any existing building or structure (excluding timber fences and small structures on the boundary) on an adjoining site from the edge of any trench or open excavation that extends below natural groundwater level must be at least equal to the depth of the excavation	Does Not Comply: the basement excavations are expected to have excavation depths greater than the offset at the northern and western sides.

As presented in table 10, the site does not comply with rules E7.6.1.6 (2), E7.6.1.6 (3), E7.6.1.10 (3), E7.6.1.10 (4) and E7.6.1.10 (5a) and a consent to take groundwater will be required.

7 EFFECTS ON NEIGHBOURING ASSETS

Based on the information retrieved from Auckland Council Geomaps, referring to Inset 2 below, settlement consideration due to the basement excavation and the boundary earthwork cut is given to the following assets.

Inset 2: Services and properties in the vicinity of the site

- Close edge of the Edgewater Drive footpath, approximately 1.5m from the site boundary.
- 50 diameter PVC water pipe runs along the far edge footpath of Edgewater Drive. Assumed to be buried
 1m below current ground level. 6m horizontal offset to the proposed Block A basement excavation, and
 3m offset from the boundary.

The neighbouring property Ambridge rose rest home at 159 Edgewater Drive has a drained basement level at RL3.1m, and is owned by our client A&L Sargant Ltd. Settlement effect on this building due to the proposed development is to be assessed in the detailed design stage.

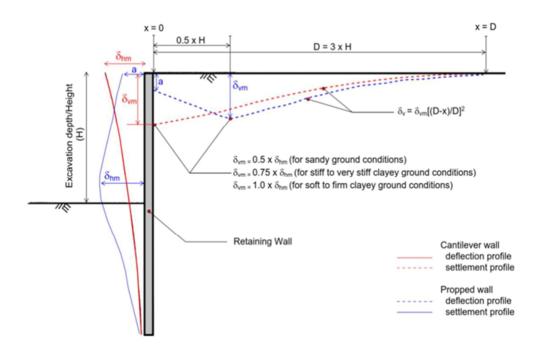
A wastewater pipe running southwest to northeast through the Block A basement would likely require rerouting within the development extent subject to the opinion of the project civil engineer.

The effects on adjacent assets consist of two primary components:

- 1. 1. Mechanical deformation of land behind temporary basement retaining walls, where space constraints prevent cutting a stable temporary batter.
- 2. 2. Settlement of land due to basement dewatering.

The magnitude of these components is estimated in the following sections.

Adopting a temporary batter instead of a soldier pile wall prior to construction minimizes mechanical deformation. The basement's long-term structural integrity is ensured by the ground-level floor slab, which provides propping before backfilling behind the basement wall.


In areas with insufficient space for a full batter, a temporary retaining wall can be constructed below an excavated safe batter. This approach controls the required retaining wall size, height, and embedment.

For resource consent purposes, the analysis assumes a conservative approach, assuming the soldier pile walls at the building edges, extending to current ground level.

7.1.1 Mechanical deformation calculation

The WALLAP analysis included a staged approach to construction of installing the piles first and then excavating down to the target depths prior to installing permanent basement retaining wall in front of piles. Following the WALLAP analysis, a mechanical settlement profile has been prepared using the Ou, C., Hsieh, P., & Chiou, D. Y. (1993) method as outlined in a recent Engineering NZ course (Embedded Retaining Walls, by Martin Larish).

Inset 3: Ou,C.,Hsieh, P., &Chiou,D.Y. (1993) mechanical settlement estimation

Basement excavation:

- 3.5m design height; (top of wall RL5.1m, base of wall RL1.6m, including over excavation)
- Reinforced concrete pile 600 diameter at 1.8m spacing;
- E = 30GPa (Assume 30MPa concrete), Itemp = 0.002651 m4/m run; (75% Igross)
- Assume ground water at base of excavation level due to dewatering.
- Construction stage surcharge of 12kPa, 1m from the edge of the excavation.
- 4m embedment.
- Calculated deflection 11mm corresponding to 8mm of settlement at top of the wall.

WALLAP analysis results are presented in Appendix F.

7.1.2 Groundwater drawdown induced settlement

We have undertaken groundwater drawdown analysis using computer software SLIDE2.0, along a typical basement north/east section to estimate drawdown profile based on the lowest groundwater level at MH012m below ground level for drawdown settlement calculation. The analysis were carried out based on MH01 readings given its proximity to the western site boundary, and the data was monitored by LDE directly.

The soil permeability value was estimated based on the 3 recent CPTs. The minimum characteristic value was estimated to be $5 \times 10^{-7} \text{m/}^2$, based on soil between 2m to 5m depth which will experience the drawdown.

: Tabular results	for cone resistance	/alues ::								
CPT Name	Start depth (m)	End depth (m)	Average q (MPa)	t No points			in. charact. qt value (MPa)	Min. q (Mi		
CPT04	1.00	5.00	2.04	401	2.	58	1.82	0.	34	
CPT05	1.00	5.00	2.13	401	2.	39	1.94	0.	31	
CPT06	1.00	5.00	0.85	401	0.	43	0.81	0.	39	
All CPT's			1.67	1203	2.	12	1.57	0	31	
: Minimum charae	cteristc values for es	timated re	sults::							
CPT Name	Ksbt (m/s)	N ₆₀ (blows/ 30cm)	Es (MPa)	Dr (%)	phi (°)	M (MPa)	Go (MPa)	Su (kPa)	Su ratio	OCR
CPT04	5.97E-007	6	0.00	0.00	0.00	14.20	32.34	52.82	1.54	7.10
CPT05	5.30E-007	7	0.00	0.00	0.00	15.08	36.16	75.95	1.85	8.52
CPT06	6.68E-008	4	0.00	0.00	0.00	6.09	20.13	48.92	1.58	7.29

Inset 4: CPT estimated permeability Ksbt

A radius of influence from the excavation face of 20m has been estimated based on long term steady state analysis using SLIDE.

The drawdown profile in comparison to the lowest groundwater recording due to the Building A excavation was undertaken using computer software SLIDE.

The consolidated settlement at the edge of the Ambridge Manor rest home building is calculated using 1D consolidation formula of $s=(mv)(H)(\Delta\sigma)$

Table 11: Typical values of the coefficient of volume compressibility mv.

Typical Values of the Coefficient of Volume Compressibility, m, (after Carter 1983)

			$\mathbf{m}_{\mathbf{v}}$			
Type of clay	Description	$(x10^{-3}m^2/kN)$				
	Lower Limit		Upper Limit	Average		
Heavy over-consolidated boulder clays, stiff weathered rocks and hard clays	Very low compressibility		0.05			
Boulder clays, marls, very stiff tropical red clays	Low compressibility	0.05	0.1	0.075		
Firm clays, glacial outwash clays, lake deposits, weathered marls, firm boulder clays, normally consolidated clays at depth and firm tropical red clays		0.1	0.3	0.2		

Where mv is the compressibility of the soil assumed to be 0.0001 m2/kN for stiff to very stiff clay by referring to table 11 above. (lower limit of firm clays).

 $\Delta \sigma$ is change in stress due to groundwater drawdown.

'H' is the thickness of the compressible alluvium layer below the drawdown groundwater profile, to the base of the alluvium layer at RL-4. Stress reduction over depth due to drawdown is conservatively ignored.

The calculated settlement is therefore considered to project to 0mm at 20m distance, as per drawdown envelop curve developed by our SLIDE drawdown analysis.

Within 20m of the proposed development, to the west of the Block A excavation, the water pipe along Edgewater Drive and the footpath may be affected by the groundwater drawdown.

Drawdown settlement calculation has therefore been undertaken for these services and structures, the calculation results were annotated to our SLIDE drawdown analysis output and is presented in Appendix G.

7.2 Assessment of effect on buried services and neighbouring building

The PVC water pipe and footpath along Edgewater Drive are assumed to be relatively ductile and is able to tolerate up to 20mm of settlement,

Combining the findings presented in section 7.11 and 7.12, the combined settlement effect on the water pipe and footpath are summarised in table 12 below.

Note that in table 12, the differential settlement gradient is for between the close and the far edge of the affected structures. Settlement profile estimation are presented in Appendix H.

Table 12: Combined settlement effect

Asset	Mechanical deformation settlement (mm)	Groundwater drawdown settlement (mm)	Total settlement at close edge of asset (mm)	Differential settlement gradient	Damage category
Close edge of the Edgewater Drive footpath	5	7	12	N/A	Likely acceptable
50mm diameter PVC water pipe/far edge of the Edgewater Drive footpath		5	8	N/A	Likely acceptable

8 BASEMENT DRAINAGE DESIGN

Following discussions with the client, a drained basement is the preferred approach for the proposed development. The design may incorporate:

- A regular grid of subsoil drains with redundant flow paths
- A hardfill blanket covering the entire basement area

The drainage collector system will slope to a sump below basement level or be pumped out.

Approximate inflows to the excavation have been calculated, based on the estimation of steady state inflow rate to an open pit. This equation was derived from Thiem-Dupuit equation. Groundwater inflow was calculated by the following analytical equation presented by Krussenman and De Ridder (1976) and Sigh et al.(1985).

$$Q = \frac{\pi K (H^2 - h^2)}{\ln(\frac{R}{r_p})}$$

Where K is the permeability of the soil based on a baseline permeability of 5 x 10⁻⁷m/s

H is the thickness of measured existing groundwater level to top of the transitional ECBF material

h is the thickness of excavation level to top of the transitional ECBF material

R is the radius of influence from the centre of the excavation

rp is the equivalent well radius, calculated based on Signh and Reed (1988) method (for mines) as:

$$r = (2/\pi)(Y.W)^{1/2}$$
;

where: Y = length of mine (m)

W = width of mine (m)

The estimated baseline inflow is 9m³/day for Block A, an inflow range of 5m³/day to 15m³/day is recommended for preliminary design.

9 GROUNDWATER AND SETTLEMENT MONITORING CONTINGENCY

PLAN

The proposed works will follow a prescribed construction sequence and monitoring is recommended to allow early review of ground response trends enabling early initiation of mitigation measures if these are required.

A draft construction monitoring and contingency plan (refer Appendix I) has been prepared and includes survey controls installed to monitor retaining wall deformation and potential building settlement due to ground excavation works. The Plan also indicates response procedures for reporting and potential mitigation measures should the alert or trigger levels be exceeded. The draft plan may required updating during the detailed design process.

10 FURTHER WORK

We understand at this stage that the proposed development will comprise Buildings founded on piles with single level basement. If significant changes (such as changes in retaining wall type or a foundation system not mentioned in this report) are proposed, we must be given an opportunity to review the updated drawings and reserve the right to revisit our evaluations and recommendations when they come to hand.

Borehole information has been extrapolated due to constraints from existing structures and property access. Further investigations are recommended during detailed design / building consent to confirm the ground model where conditions have been inferred by extrapolation, in order to reduce unforeseen ground condition risks during construction. Further investigations are recommended as part of a detailed design process.

Further, we should be given every opportunity to observe the construction works including (but not limited to) site stripping, earthworks operations, subgrade formation and all retaining wall and foundation/pile excavations to ensure the design parameters given in this report are valid. At the successful completion of these inspections we would then be in a position to provide a Producer Statement (PS4), if this is a requirement of a future building consent.

11 LIMITATIONS

This report has been prepared exclusively for A & L Sargeant Ltd in accordance with the brief given to us or the agreed scope and they will be deemed the exclusive owner on full and final payment of the invoice. Information, opinions, and recommendations contained within this report can only be used for the purposes with which it was intended. LDE accepts no liability or responsibility whatsoever for any use or reliance on the report by any party other than the owner or parties working for or on behalf of the owner, such as local authorities, and for purposes beyond those for which it was intended.

Project Reference: J00983 153 Edgewater Drive, Pakuranga Document ID: 534103

This report was prepared in general accordance with current standards, codes and best practice at the time of this report. These may be subject to change.

Opinions given in this report are based on visual methods and subsurface investigations at discrete locations designed to the constraints of the project scope to provide the best assessment of the environment. It must be appreciated that the nature and continuity of the subsurface materials between these locations are inferred and that actual conditions could vary from that described herein. We should be contacted immediately if the conditions are found to differ from those described in this report.

APPENDIX A SUPPLIED DRAWINGS

2114 - Ambridge Rose

peddlethorp

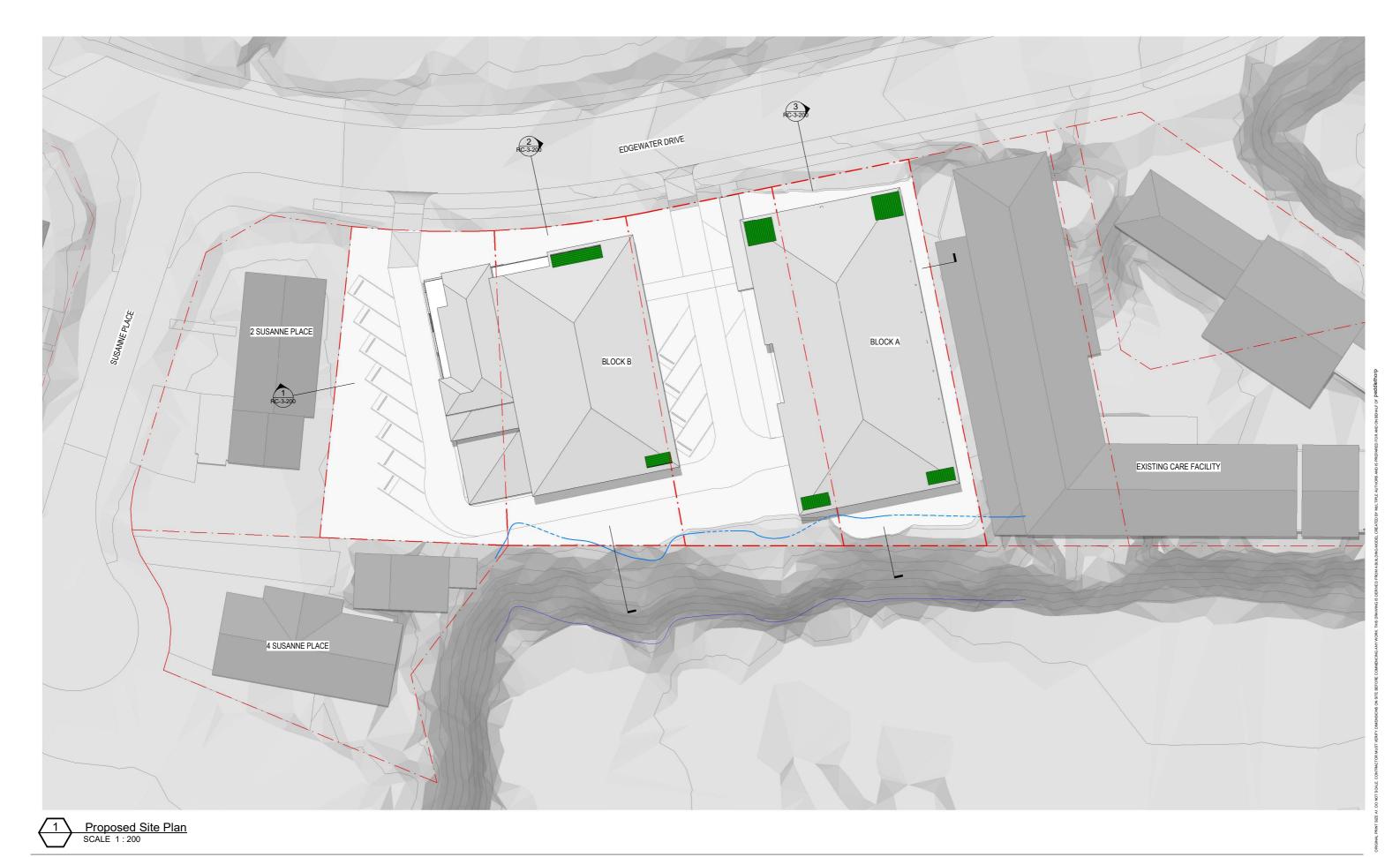
10 - RC SHEET LIST								
DRAWING NUMBER	DRAWING TITLE	REVISION	Drawn By	Checked By	Sheet Orientation	Sheet Size	Drawing Series	
RC-000	COVER PAGE		A #	01 1			0-000 GENERAL	
			Author	Checker	Landscape	A1	000000000000000000000000000000000000000	
RC-0-100	Cover Page		Author	Checker	Landscape	A1	0-000 GENERAL	
RC-0-101	Sheet List		CB	Checker	Landscape	A1	0-000 GENERAL	
RC-001	DRAWING LIST		Author	Checker	Landscape	A1	0-000 GENERAL	
RC-099	EXISTING BASEMENT FLOOR PLAN		Author	Checker	Landscape	A1	1-000 EXISTING CONDITIONS & SITE	
RC-100	EXISTING GROUND FLOOR PLAN		Author	Checker	Landscape	A1	1-000 EXISTING CONDITIONS & SITE	
RC-101	EXISTING LEVEL 1 FLOOR PLAN		Author	Checker	Landscape	A1	1-000 EXISTING CONDITIONS & SITE	
RC-102	EXISTING LEVEL 2 FLOOR PLAN		Author	Checker	Landscape	A1	1-000 EXISTING CONDITIONS & SITE	
RC-103	EXISTING LEVEL 3 FLOOR PLAN		Author	Checker	Landscape	A1	1-000 EXISTING CONDITIONS & SITE	
RC-2-000	Location Plan		CB	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-001	Proposed Site Plan - Roof Plan		CB	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-002	Proposed Site Plan - Ground Floor		СВ	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-004	Controls Plan		CB	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-010	SOLAR STUDY		СВ	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-011	SOLAR STUDY		СВ	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-012	Hour by hour - Spring Equinox		СВ	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-013	Hour by hour - Winter Solstice		СВ	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-014	Site Coverage		СВ	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-015	Height Control		СВ	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-016	HIRB Views		СВ	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-003	UNITARY PLAN		Author	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-004	REGULATORY CONTROLS		Author	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-030	SITE ELEVATIONS (OVERALL)		Author	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-040	SITE SECTIONS (OVERALL)		Author	Checker	Landscape	A1	2-000 GA PLANS/SECTIONS & ELEVATIONS	
RC-2-100	Block A - Basement Plan		СВ	Checker	Landscape	A1	2-100 FLOOR PLANS	
RC-2-101	Block A - Ground Floor Plan		СВ	Checker	Landscape	A1	2-100 FLOOR PLANS	
RC-2-102	Block A - Typical Floor Plan		CB	Checker	Landscape	A1	2-100 FLOOR PLANS	
RC-2-103	Block A - Level 5 Floor Plan		CB	Checker	Landscape	A1	2-100 FLOOR PLANS	
RC-2-105	Block B - Ground Floor Plan		CB	Checker	Landscape	A1	2-100 FLOOR PLANS	
RC-2-105	Block B - Typical Floor plan		CB	Checker	Landscape	A1	2-100 FLOOR PLANS	
RC-2-100 RC-2-107	Block B - Level 4 Floor Plan		CB	Checker	Landscape	A1	2-100 FLOOR PLANS	
RC-2-107 RC-2-108	Block B - Level 5 Floor Plan		CB	Checker		A1	2-100 FLOOR PLANS	
RC-2-108 RC-119	PROPOSED BASEMENT PLAN		Author	Checker	Landscape	A1	2-100 FLOOR PLANS	
RC-119 RC-120			Author	2	Landscape	A1	77 77	
	PROPOSED GROUND FLOOR PLAN			Checker	Landscape		2-100 FLOOR PLANS	
RC-121	PROPOSED LEVEL 1 FLOOR PLAN		Author	Checker	Landscape	A1	2-100 FLOOR PLANS	
RC-122	PROPOSED LEVEL 2 FLOOR PLAN		Author	Checker	Landscape	A1	2-100 FLOOR PLANS	

			10 - RC	SHEET	LIST		
DRAWING NUMBER	DRAWING TITLE	REVISION	Drawn By	Checked By	Sheet Orientation	Sheet Size	Drawing Series
RC-123	PROPOSED LEVEL 3 FLOOR PLAN		Author	Checker	Landscape	A1	2-100 FLOOR PLANS
RC-170	AREA SCHEDULE		Author	Checker	Landscape	A1	2-100 FLOOR PLANS
RC-3-100	Site Flevations		CB	Checker	Landscape	A1	3-100 ELEVATIONS - GA
RC-3-110	Block A - Flevations		CB	Checker	Landscape	A1	3-100 ELEVATIONS - GA
RC-3-111	Block A - Flevations		CB	Checker	Landscape	A1	3-100 ELEVATIONS - GA
RC-3-115	Block B - Elevations		CB	Checker	Landscape	A1	3-100 ELEVATIONS - GA
RC-3-116	Block B - Elevations		CB	Checker	Landscape	A1	3-100 ELEVATIONS - GA
RC-300	PROPOSED ELEVATION 1 (inc. MATERIALITY)		Author	Checker	Landscape	A1	3-100 ELEVATIONS - GA
RC-301	PROPOSED ELEVATION 2 (inc. MATERIALITY)		Author	Checker	Landscape	A1	3-100 ELEVATIONS - GA
RC-310	MATERIAL PALLETTE		Author	Checker	Landscape	A1	3-100 ELEVATIONS - GA
RC-3-200	Site Sections		CB	Checker	Landscape	A1	3-200 SECTIONS - GA
RC-3-210	Block A - Sections		CB	Checker	Landscape	A1	3-200 SECTIONS - GA
RC-3-211	Block B - Sections		CB	Checker	Landscape	A1	3-200 SECTIONS - GA
RC-400	PROPOSED SECTION (if required)		Author	Checker	Landscape	A1	3-200 SECTIONS - GA
RC-9-000	Renders		CB	Checker	Landscape	A1	9-000 3D VIEWS
RC-9-001	Renders		CB	Checker	Landscape	A1	9-000 3D VIEWS
RC-9-002	Renders		CB	Checker	Landscape	A1	9-000 3D VIEWS
RC-9-003	Renders		CB	Checker	Landscape	A1	9-000 3D VIEWS
RC-500	PERSPECTIVE VIEW 1		Author	Checker	Landscape	A1	9-000 3D VIEWS
RC-501	PERSPECTIVE VIEW 2		Author	Checker	Landscape	A1	9-000 3D VIEWS
RC-502	PERSPECTIVE VIEW 3		Author	Checker	Landscape	A1	9-000 3D VIEWS
RC-600	SOLAR STUDY 1		Author	Checker	Landscape	A1	9-000 3D VIEWS
RC-601	SOLAR STUDY 2		Author	Checker	Landscape	A1	9-000 3D VIEWS
RC-602	SOLAR STUDY 3		Author	Checker	Landscape	A1	9-000 3D VIEWS
60							

2114 - RC-0-101

north

peddlethorp


Location Plan 2114 - Ambridge Rose 147-153 Edgewater Drive DRAFT Checker

SHEET NUMBER:

2114 -

-RC-2-000

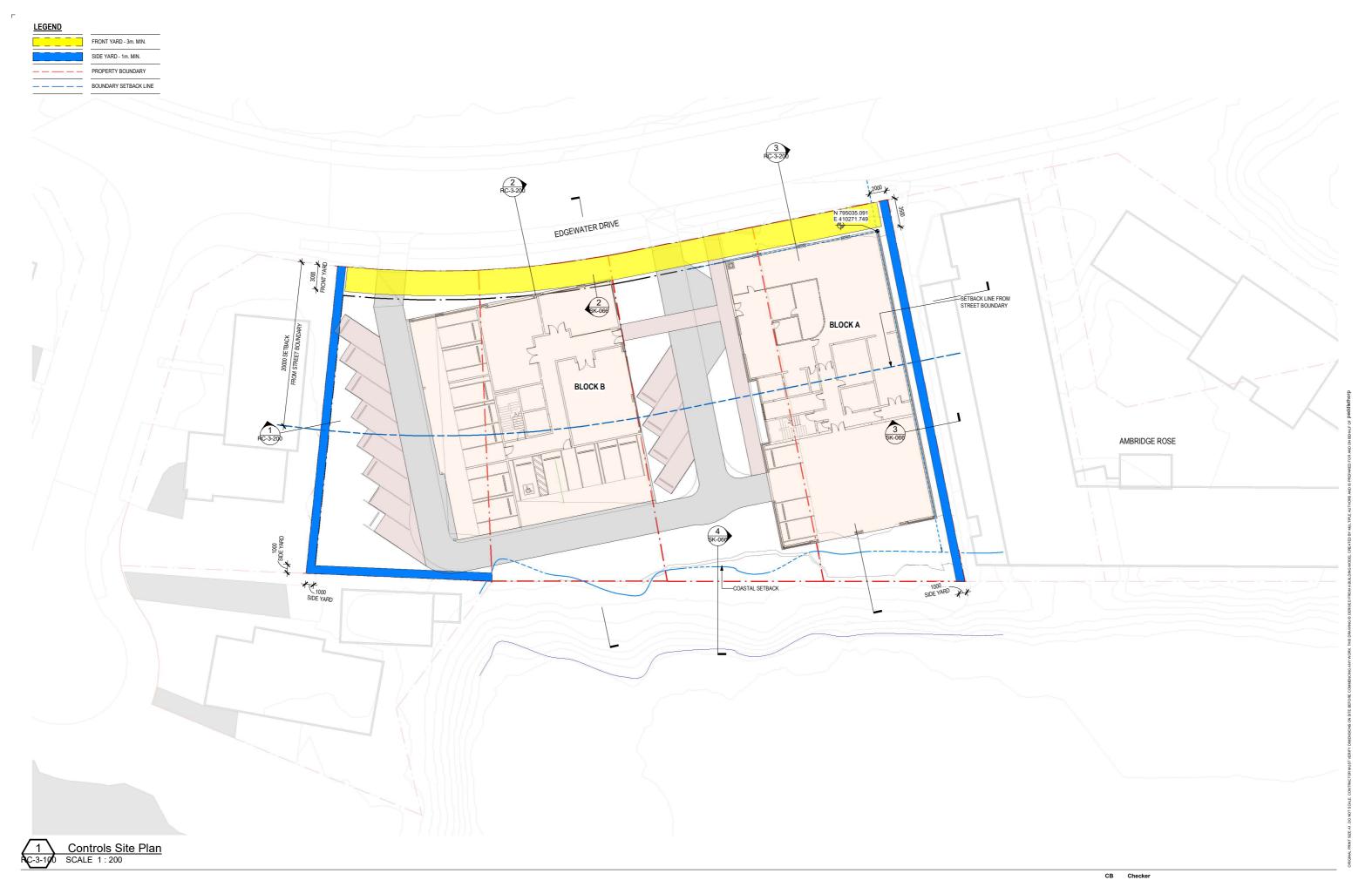
Peddle Thorp Aitken Ltd TĀMAKI-MAKAURAU

Proposed Site Plan - Roof Plan 2114 - Ambridge Rose 147-153 Edgewater Drive Checker

2114 - RC-2-001

Peddle Thorp Aitken Ltd TĀMAKI-MAKAURAU ŌTAUTAHI

+64 9 379 9405 peddlethorp.co.nz

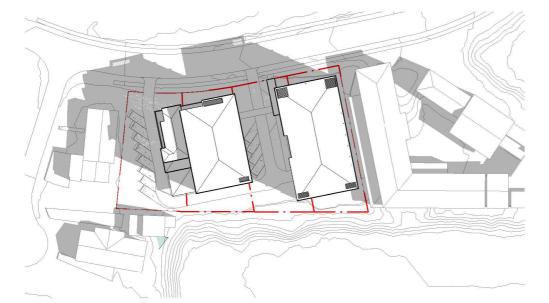

Proposed Site Plan - Ground Floor 2114 - Ambridge Rose 147-153 Edgewater Drive

2114 - RC-2-002

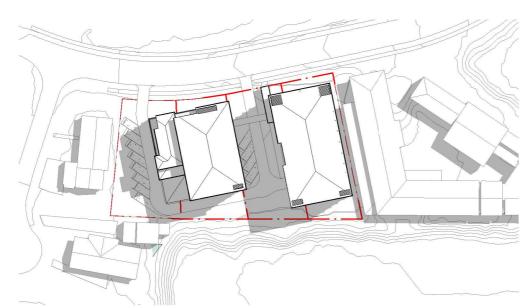
2114 - RC-2-002

Peddle Thorp Aitken Ltd TĀMAKI-MAKAURAU ŌTAUTAHI

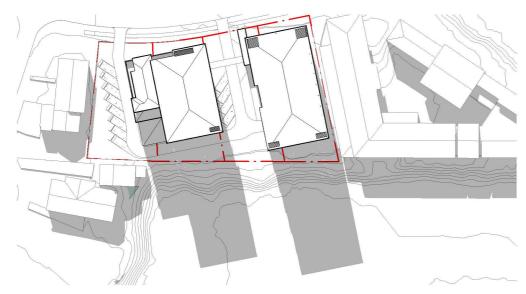
+64 9 379 9405 peddlethorp.co.nz



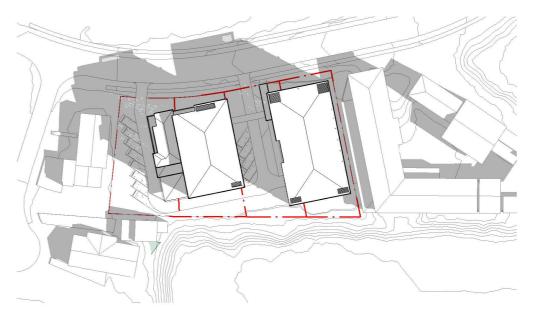
Controls Plan 2114 - Ambridge Rose 147-153 Edgewater Drive SHEET NUMBER:

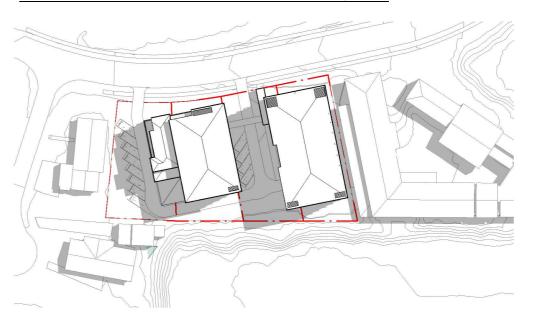

2114 - RC-2-004
Peddle Thorp Altken Ltd

Peddle Thorp Aitken Ltd TĀMAKI-MAKAURAU ŌTAUTAHI

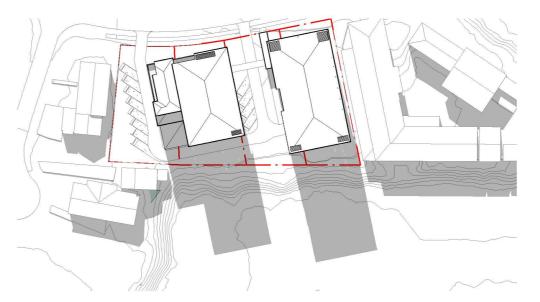

+64 9 379 9405 peddlethorp.co.nz

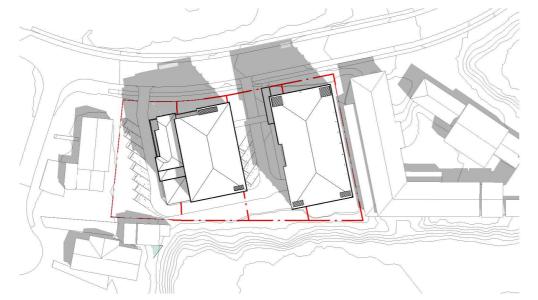
RC - SOLAR STUDY - 20 SEPTEMBER 9am - SPRING EQUINOX

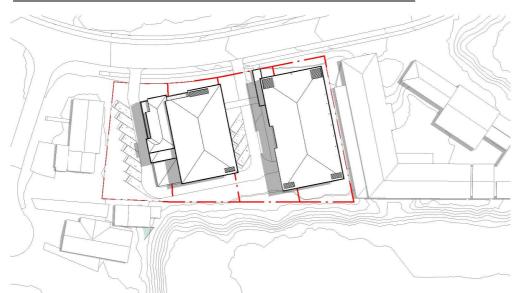

RC - SOLAR STUDY - 20 SEPTEMBER 12pm - SPRING EQUINOX

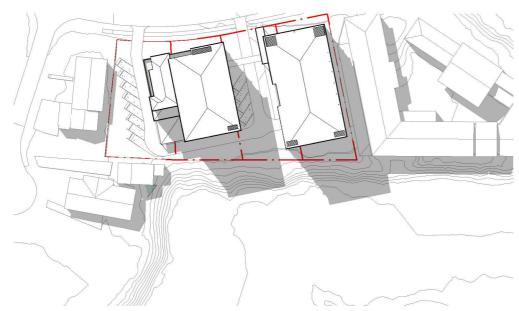

RC - SOLAR STUDY - 20 SPTEMBERE 4pm - SPRING EQUINOX

SOLAR STUDY

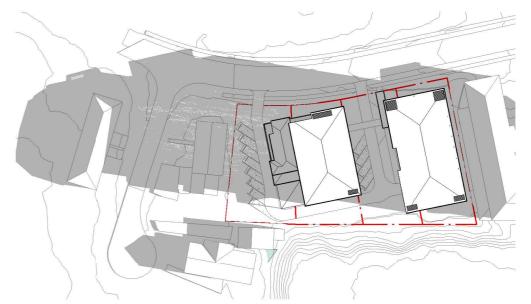

2114 - Ambridge Rose 147-153 Edgewater Drive

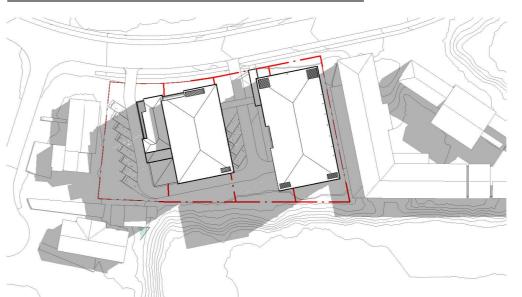

RC - SOLAR STUDY - 20 MARCH 9am - AUTUMN EQUINOX


RC - SOLAR STUDY - 20 MARCH 12pm - AUTUMN EQUINOX

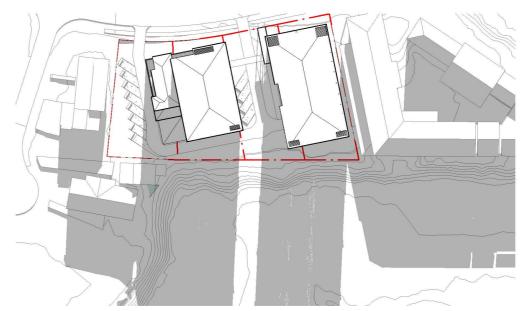

RC - SOLAR STUDY - 20 MARCH 4pm - AUTUMN EQUINOX

RC - SOLAR STYDY - 20 DECEMBER 9am - SUMMER SOLSTICE

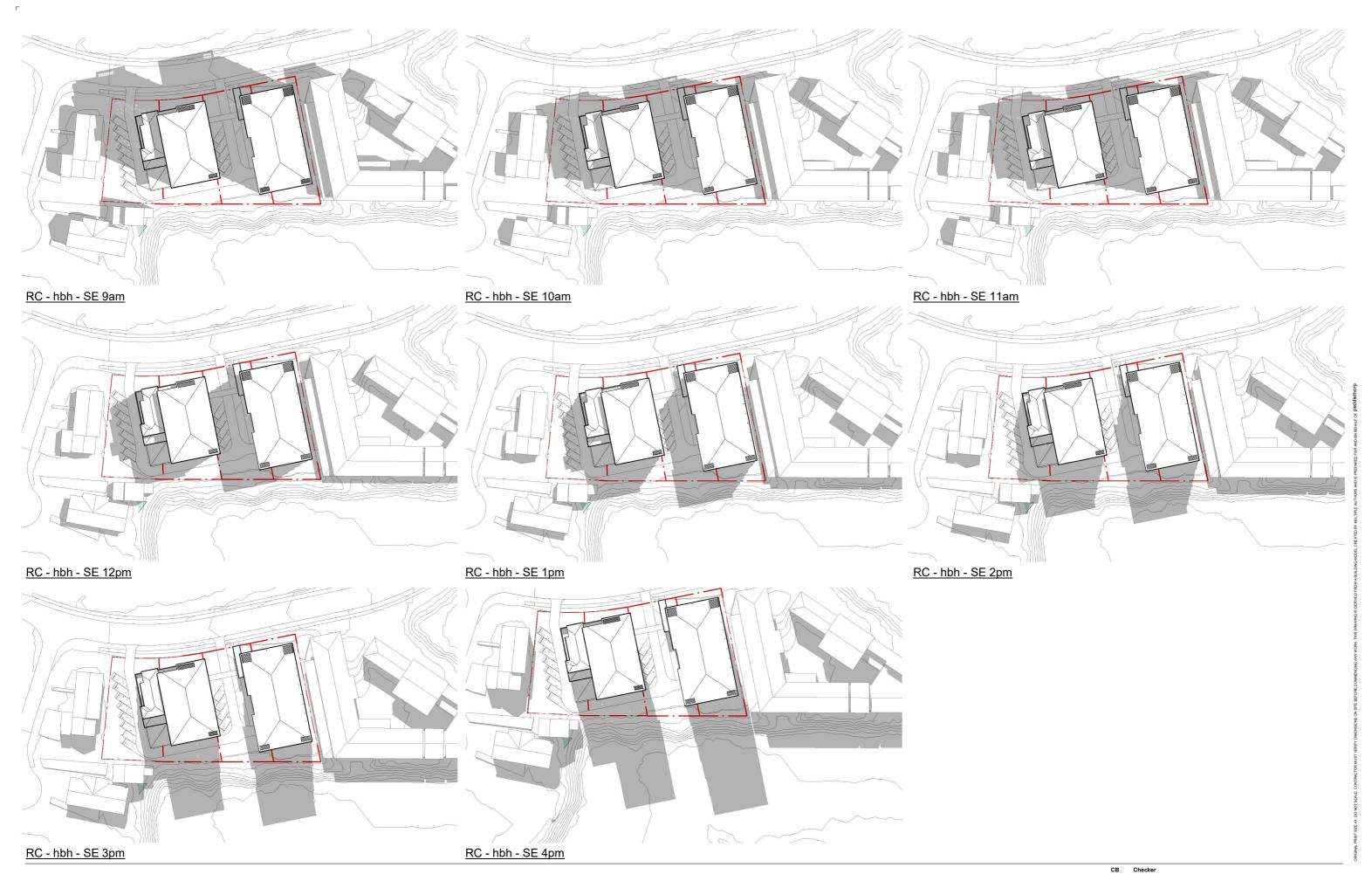

RC - SOLAR STUDY - 20 DESEMBER 12pm - SUMMER SOLSTICE


RC - SOLAR STUDY - 20 DESEMBER 4pm - SUMMER SOLSTICE

SOLAR STUDY


2114 - Ambridge Rose 147-153 Edgewater Drive

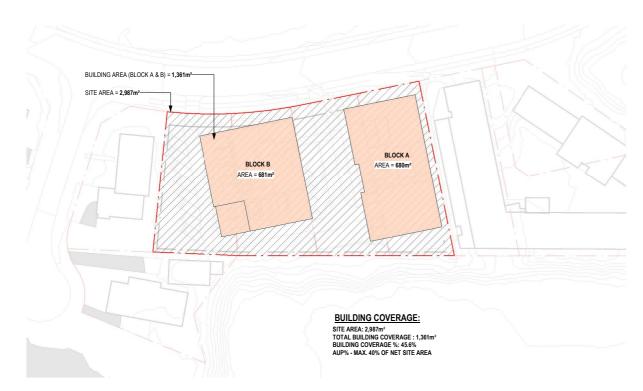
RC - SOLAR STUDY - 20JUNE 9am - WINTER SOLSTICE

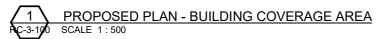

RC - SOLAR STUDY - 20 JUNE 12pm - WINTER SOLSTICE

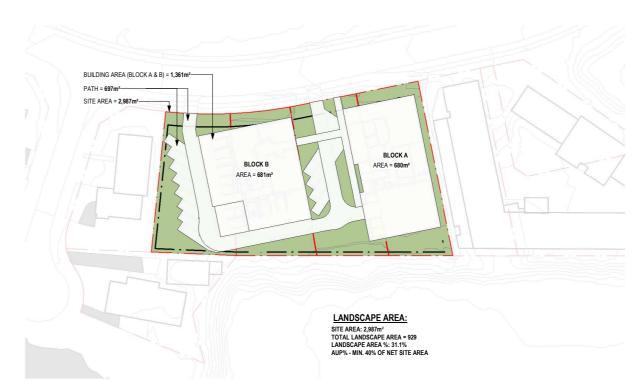
RC - SOLAR STUDY - 20 JUNE 4pm - WINTER SOLSTICE

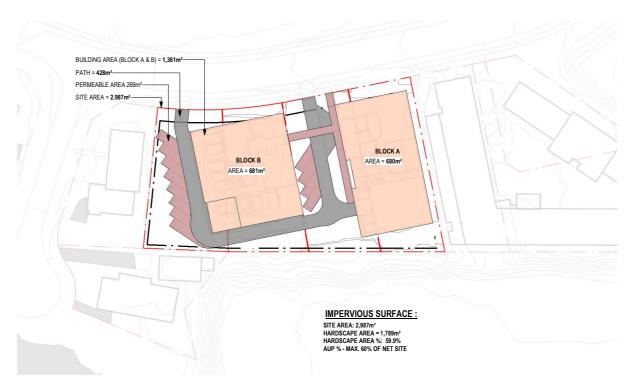
CB Check

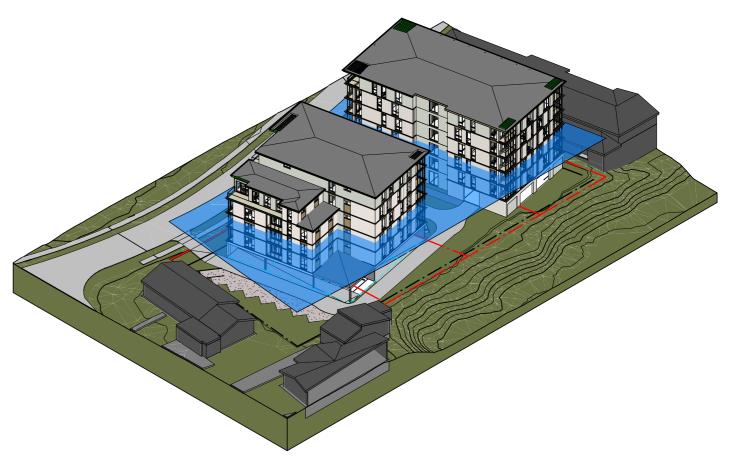
+64 9 379 9405






Hour by hour - Spring Equinox 2114 - Ambridge Rose 147-153 Edgewater Drive



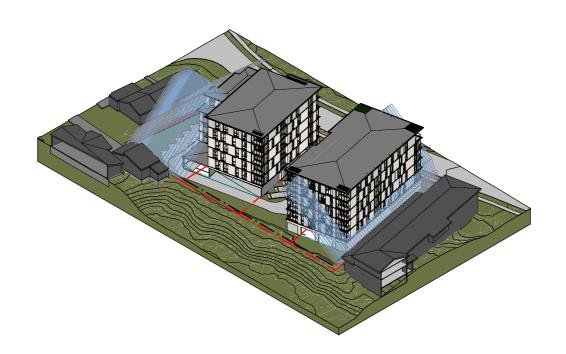

PROPOSED PLAN - LANDSCAPE AREA SCALE 1:500

PROPOSED PLAN - IMPERVIOUS SURFACES
AC-3-190 SCALE 1:500

2114 - RC-2-014

Max Height 3D - 01 Max Height 3D - 02

Height Control 2114 - Ambridge Rose 147-153 Edgewater Drive



HIRB 3D - 01

HIRB Views 2114 - Ambridge Rose 147-153 Edgewater Drive

<u>HIRB 3D - 02</u>

<u>HIRB 3D - 04</u> HIRB 3D - 03

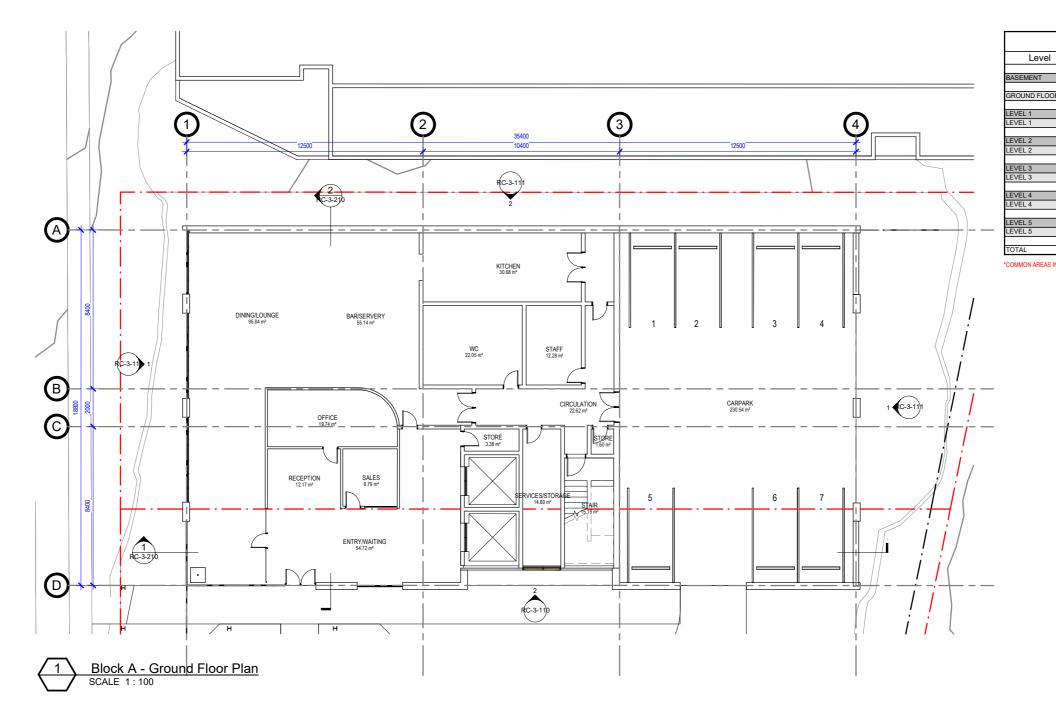
TOTAL GFA - BLOCK A

EXISTING BUILDING <u>A</u> BINSTORE RC-3-11 1 B © 1 RC-3-210 STORAGE AREA STORAGE AREA **D**-RC-3-110

Block A - Basement Plan SCALE 1:100

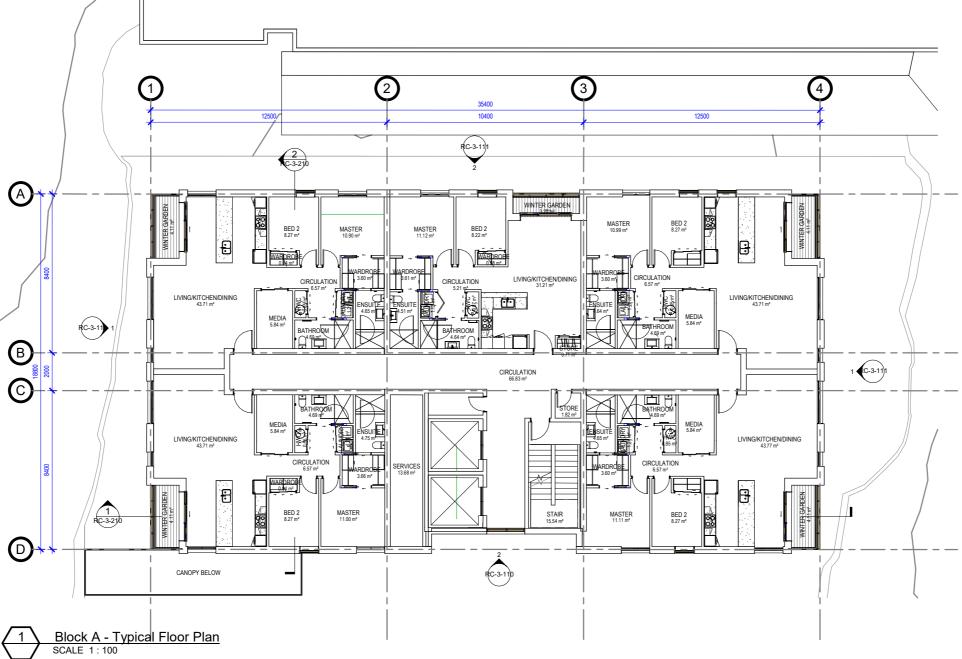
Block A - Basement Plan

2114 - Ambridge Rose 147-153 Edgewater Drive


peddlethorp

2114 -

+64 9 379 9405 peddlethorp.co.nz


TOTAL GFA - BLOCK A

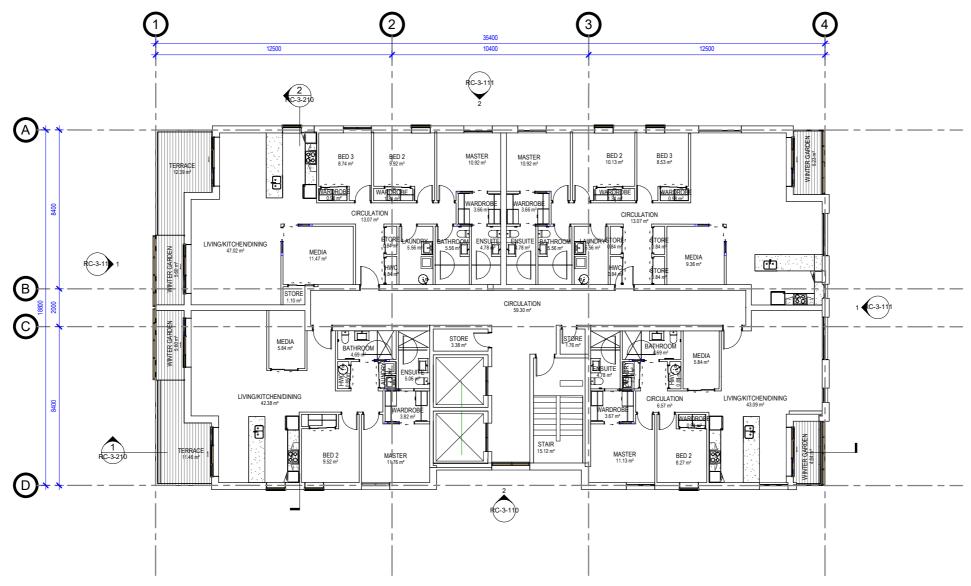
Area

peddlethorp

- RC-2-101 2114 -

Level	Name	Area
LCVCI	Name	7400
BASEMENT	BLOCK A - COMMON AREAS	659 m²
		659 m²
GROUND FLOOR	BLOCK A - COMMON AREAS	677 m²
		677 m²
LEVEL 1	BLOCK A - COMMON AREAS	139 m²
LEVEL 1	BLOCK A - APARTMENTS	537 m²
		676 m²
LEVEL 2	BLOCK A - COMMON AREAS	139 m²
LEVEL 2	BLOCK A - APARTMENTS	537 m²
		676 m²
LEVEL 3	BLOCK A - COMMON AREAS	139 m²
LEVEL 3	BLOCK A - APARTMENTS	537 m²
		676 m²
LEVEL 4	BLOCK A - COMMON AREAS	139 m²
LEVEL 4	BLOCK A - APARTMENTS	537 m²
		676 m²
LEVEL 5	BLOCK A - COMMON AREAS	113 m²
LEVEL 5	BLOCK A - APARTMENTS	561 m²
		674 m²
TOTAL		4715 m²

*COMMON AREAS INCLUDE SERVICES/CIRCULATION/CARPARKS.


COMMON ALEAS INCLUDE SERVICES/GIRCOLATION/CART ARROS.											
APARTM	APARTMENT SCHEDULE - BLOCK A										
Level	Name	Area									
LEVEL 1	BLOCK A - 2 BED - TYPE A	88 m²									
LEVEL 1	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 1	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 1	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 1	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 2	BLOCK A - 2 BED - TYPE A	88 m²									
LEVEL 2	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 2	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 2	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 2	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 3	BLOCK A - 2 BED - TYPE A	88 m²									
LEVEL 3	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 3	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 3	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 3	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 4	BLOCK A - 2 BED - TYPE A	88 m²									
LEVEL 4	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 4	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 4	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 4	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 5	BLOCK A - 2 BED PLUS - TYPE B	112 m²									
LEVEL 5	BLOCK A - 3 BED - TYPE B	156 m²									
LEVEL 5	BLOCK A - 2 BED PLUS - TYPE C	157 m²									
LEVEL 5	BLOCK A - 3 BED - TYPE A	160 m²									
TOTAL APARTMENTS:	24										

Area

Level

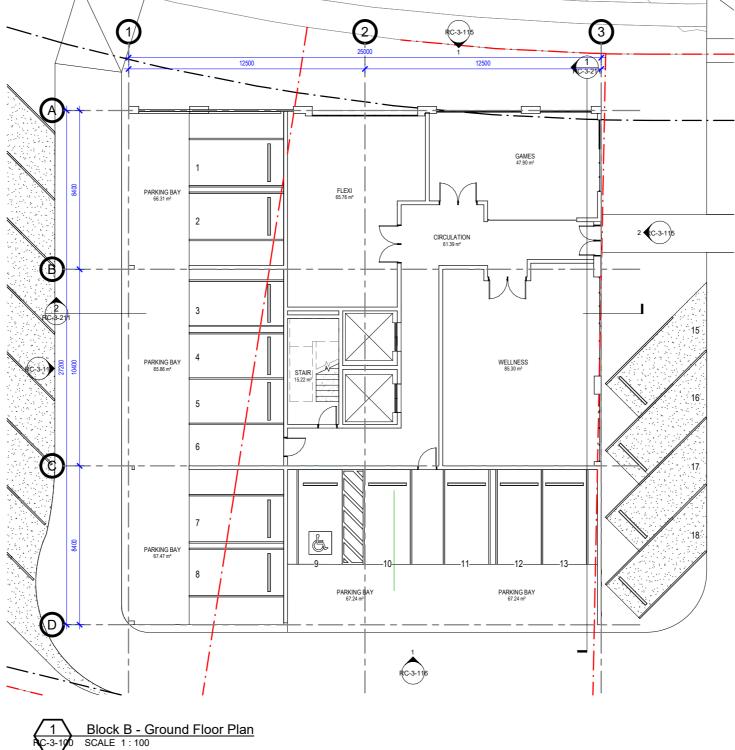
APARTMENT SCHEDULE - BLOCK A									
Level	Name	Area							
LEVEL 1	BLOCK A - 2 BED - TYPE A	88 m²							
LEVEL 1	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 1	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 1	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 1	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
		200							
LEVEL 2	BLOCK A - 2 BED - TYPE A	88 m²							
LEVEL 2	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 2	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 2	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 2	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 3	BLOCK A - 2 BED - TYPE A	88 m²							
LEVEL 3	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 3	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 3	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 3	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 4	BLOCK A - 2 BED - TYPE A	88 m²							
LEVEL 4	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 4	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 4	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 4	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 5	BLOCK A - 2 BED PLUS - TYPE B	112 m²							
LEVEL 5	BLOCK A - 3 BED - TYPE B	156 m²							
LEVEL 5	BLOCK A - 2 BED PLUS - TYPE C	157 m²							
LEVEL 5	BLOCK A - 3 BED - TYPE A	160 m²							
TOTAL APARTMENTS	: 24								

TOTAL GFA - BLOCK A

peddlethorp

2114 -

-RC-2-103

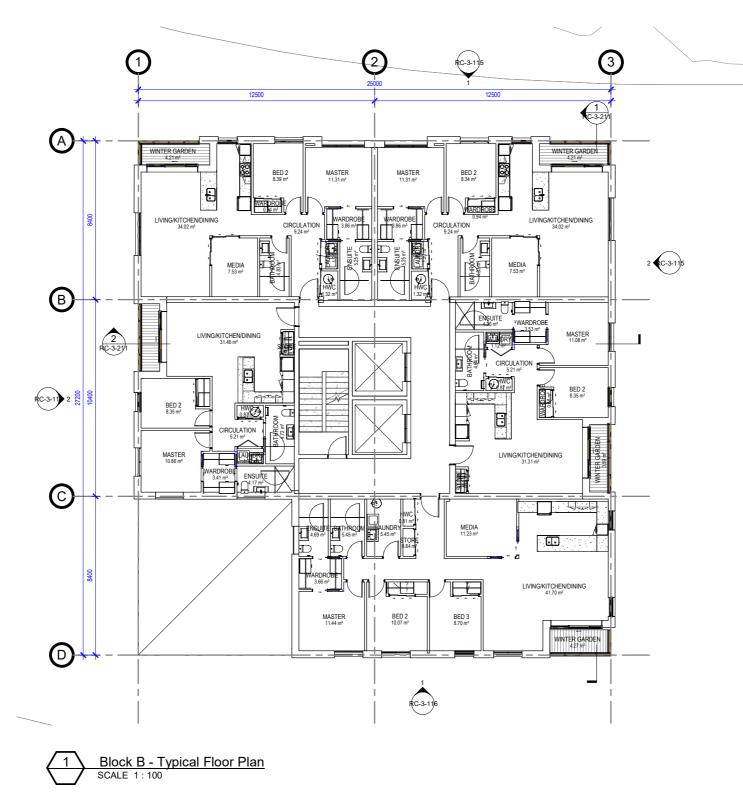

+64 9 379 9405 peddlethorp.co.nz

Block A - Level 5 Floor Plan

2114 - Ambridge Rose 147-153 Edgewater Drive

TOTAL GFA - BLOCK B

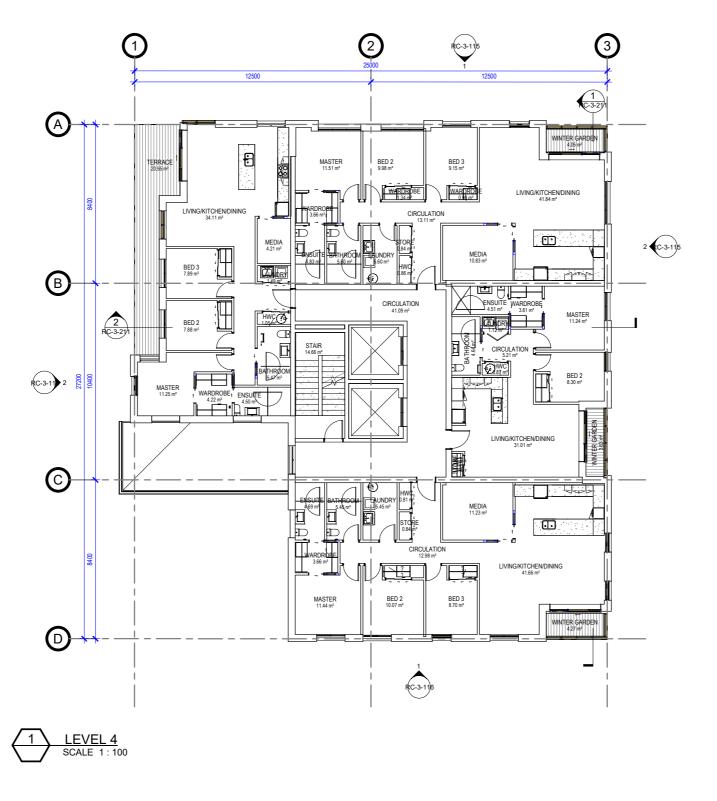
Area



peddlethorp

CB Checker

2114 -


-RC-2-105

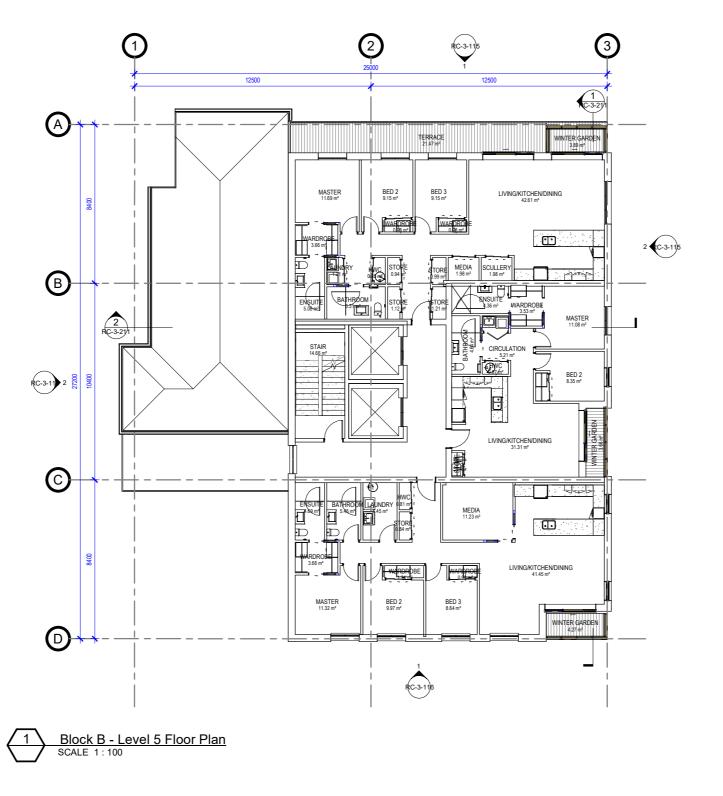
Т	OTAL GFA - BLOCK	ΚB
Level	Name	Area
GROUND FLOOR	BLOCK B - COMMON AREAS	681 m²
		681 m²
LEVEL 1	BLOCK B - COMMON AREAS	85 m²
LEVEL 1	BLOCK B - APARTMENTS	541 m²
		626 m²
LEVEL 2	BLOCK B - COMMON AREAS	85 m²
LEVEL 2	BLOCK B - APARTMENTS	541 m²
		626 m²
LEVEL 3	BLOCK B - COMMON AREAS	85 m²
LEVEL 3	BLOCK B - APARTMENTS	541 m²
		626 m²
LEVEL 4	BLOCK B - COMMON AREAS	85 m²
LEVEL 4	BLOCK B - APARTMENTS	513 m²
		598 m²
LEVEL 5	BLOCK B - COMMON AREAS	71 m²
LEVEL 5	BLOCK B - APARTMENTS	398 m²
		469 m²
TOTAL	1	3625 m²

*COMMON AREAS INCLUDE SERVICES/CIRCULATION/CARE	PAF
---	-----

APARTMENT SCHEDULE - BLOCK B										
Level	Name	Area								
	1145	7.00								
LEVEL 1	BLOCK B - 2 BED - TYPE A	89 m²								
LEVEL 1	BLOCK B - 2 BED - TYPE B	90 m²								
LEVEL 1	BLOCK B - 2 BED PLUS - TYPE B	109 m²								
LEVEL 1	BLOCK B - 2 BED PLUS - TYPE B	109 m²								
LEVEL 1	BLOCK B - 3 BED - TYPE A	145 m²								
	BEGORD OBED THEM	110111								
LEVEL 2	BLOCK B - 2 BED - TYPE A	89 m²								
LEVEL 2	BLOCK B - 2 BED - TYPE B	90 m²								
LEVEL 2	BLOCK B - 2 BED PLUS - TYPE B	109 m²								
LEVEL 2	BLOCK B - 2 BED PLUS - TYPE B	109 m²								
LEVEL 2	BLOCK B - 3 BED - TYPE A	145 m²								
LEVEL 3	BLOCK B - 2 BED - TYPE A	89 m²								
LEVEL 3	BLOCK B - 2 BED - TYPE B	90 m²								
LEVEL 3	BLOCK B - 2 BED PLUS - TYPE B	109 m²								
LEVEL 3	BLOCK B - 2 BED PLUS - TYPE B	109 m²								
LEVEL 3	BLOCK B - 3 BED - TYPE A	145 m²								
LEVEL 4	BLOCK B - 2 BED - TYPE A	89 m²								
LEVEL 4	BLOCK B - 3 BED - TYPE B	135 m²								
LEVEL 4	BLOCK B - 3 BED - TYPE A	145 m²								
LEVEL 4	BLOCK B - 3 BED - TYPE A	145 m²								
LEVEL 5	BLOCK B - 2 BED - TYPE A	89 m²								
LEVEL 5	BLOCK B - 3 BED - TYPE A	145 m²								
LEVEL 5	BLOCK B - 3 BED - TYPE C	164 m²								
TOTAL APARTMENTS:	22									

T	OTAL GFA - BLOCK	ΚB
Level	Name	Area
GROUND FLOOR	BLOCK B - COMMON AREAS	681 m²
		681 m²
LEVEL 1	BLOCK B - COMMON AREAS	85 m²
LEVEL 1	BLOCK B - APARTMENTS	541 m²
		626 m²
LEVEL 2	BLOCK B - COMMON AREAS	85 m²
LEVEL 2	BLOCK B - APARTMENTS	541 m²
		626 m²
LEVEL 3	BLOCK B - COMMON AREAS	85 m²
LEVEL 3	BLOCK B - APARTMENTS	541 m²
		626 m²
LEVEL 4	BLOCK B - COMMON AREAS	85 m²
LEVEL 4	BLOCK B - APARTMENTS	513 m²
		598 m²
LEVEL 5	BLOCK B - COMMON AREAS	71 m²
LEVEL 5	BLOCK B - APARTMENTS	398 m²
		469 m²
TOTAL		3625 m²

*COMMON AREAS INCLUDE SERVICES/CIRCULATION/CARPARKS.


APART	MENT SCHEDULE	- BLOCK B			
Level	Name	Area			
LEVEL 1	BLOCK B - 2 BED - TYPE A	89 m²			
LEVEL 1	BLOCK B - 2 BED - TYPE B	90 m²			
LEVEL 1	BLOCK B - 2 BED PLUS - TYPE B	109 m²			
LEVEL 1	BLOCK B - 2 BED PLUS - TYPE B	109 m²			
LEVEL 1	BLOCK B - 3 BED - TYPE A	145 m²			
LEVEL 2	BLOCK B - 2 BED - TYPE A	89 m²			
LEVEL 2					
	BLOCK B - 2 BED - TYPE B	90 m²			
LEVEL 2	BLOCK B - 2 BED PLUS - TYPE B	109 m²			
LEVEL 2	BLOCK B - 2 BED PLUS - TYPE B	109 m²			
LEVEL 2	BLOCK B - 3 BED - TYPE A	145 m²			
LEVEL 3	BLOCK B - 2 BED - TYPE A	89 m²			
LEVEL 3	BLOCK B - 2 BED - TYPE B	90 m²			
LEVEL 3	BLOCK B - 2 BED PLUS - TYPE B	109 m²			
LEVEL 3	BLOCK B - 2 BED PLUS - TYPE B	109 m²			
LEVEL 3	BLOCK B - 3 BED - TYPE A	145 m²			
LEVEL 4	BLOCK B - 2 BED - TYPE A	89 m²			
LEVEL 4	BLOCK B - 3 BED - TYPE B	135 m²			
LEVEL 4	BLOCK B - 3 BED - TYPE A	145 m²			
LEVEL 4	BLOCK B - 3 BED - TYPE A	145 m²			
LEVEL 5	BLOCK B - 2 BED - TYPE A	89 m²			
LEVEL 5	BLOCK B - 2 BED - TYPE A	145 m²			
LEVEL 5	BLOCK B - 3 BED - TYPE C	164 m²			
TOTAL APARTMEN		104 111"			

peddlethorp

CB Checker

2114 -

- RC-2-107

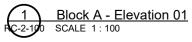
T	OTAL GFA - BLOCK	ΚB
Level	Name	Area
GROUND FLOOR	BLOCK B - COMMON AREAS	681 m²
		681 m²
LEVEL 1	BLOCK B - COMMON AREAS	85 m²
LEVEL 1	BLOCK B - APARTMENTS	541 m²
		626 m²
LEVEL 2	BLOCK B - COMMON AREAS	85 m²
LEVEL 2	BLOCK B - APARTMENTS	541 m²
		626 m²
LEVEL 3	BLOCK B - COMMON AREAS	85 m²
LEVEL 3	BLOCK B - APARTMENTS	541 m²
		626 m²
LEVEL 4	BLOCK B - COMMON AREAS	85 m²
LEVEL 4	BLOCK B - APARTMENTS	513 m²
		598 m²
LEVEL 5	BLOCK B - COMMON AREAS	71 m²
LEVEL 5	BLOCK B - APARTMENTS	398 m²
		469 m²
TOTAL		3625 m²

*COMMON AREAS INCLUDE SERVICES/CIRCULATION/CARPARKS.

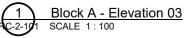
APARTM	IENT SCHEDULE -	BLOCK B
Level	Name	Area
LEVEL 1	BLOCK B - 2 BED - TYPE A	89 m²
LEVEL 1	BLOCK B - 2 BED - TYPE B	90 m²
LEVEL 1	BLOCK B - 2 BED PLUS - TYPE B	109 m²
LEVEL 1	BLOCK B - 2 BED PLUS - TYPE B	109 m²
LEVEL 1	BLOCK B - 3 BED - TYPE A	145 m²
LEVEL 2	BLOCK B - 2 BED - TYPE A	89 m²
LEVEL 2	BLOCK B - 2 BED - TYPE B	90 m²
LEVEL 2	BLOCK B - 2 BED PLUS - TYPE B	109 m²
LEVEL 2	BLOCK B - 2 BED PLUS - TYPE B	109 m²
LEVEL 2	BLOCK B - 3 BED - TYPE A	145 m²
LEVEL 3	BLOCK B - 2 BED - TYPE A	89 m²
LEVEL 3	BLOCK B - 2 BED - TYPE B	90 m²
LEVEL 3	BLOCK B - 2 BED PLUS - TYPE B	109 m²
LEVEL 3	BLOCK B - 2 BED PLUS - TYPE B	109 m²
LEVEL 3	BLOCK B - 3 BED - TYPE A	145 m²
LEVEL 4	BLOCK B - 2 BED - TYPE A	89 m²
LEVEL 4	BLOCK B - 3 BED - TYPE B	135 m²
LEVEL 4	BLOCK B - 3 BED - TYPE A	145 m²
LEVEL 4	BLOCK B - 3 BED - TYPE A	145 m²
LEVEL 5	BLOCK B - 2 BED - TYPE A	89 m²
LEVEL 5	BLOCK B - 3 BED - TYPE A	145 m²
LEVEL 5	BLOCK B - 3 BED - TYPE C	164 m²
TOTAL APARTMENTS	: 22	

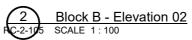
Cileckei

2114 - - RC-2-108

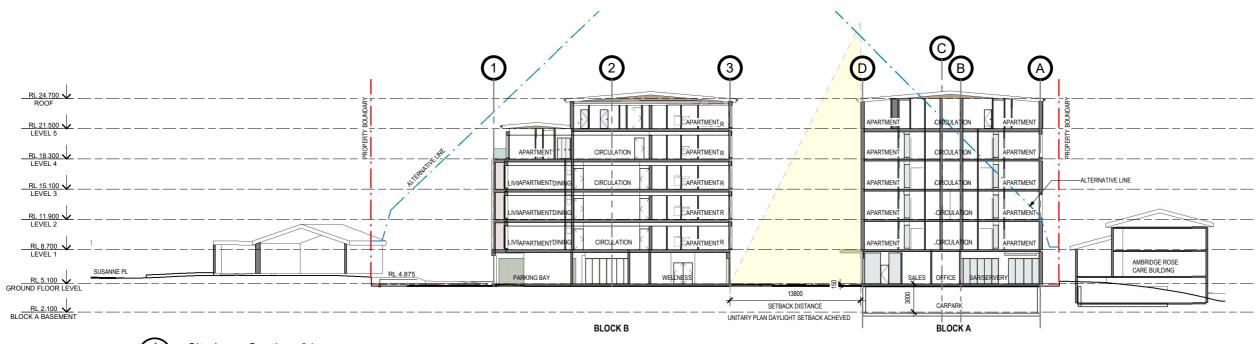


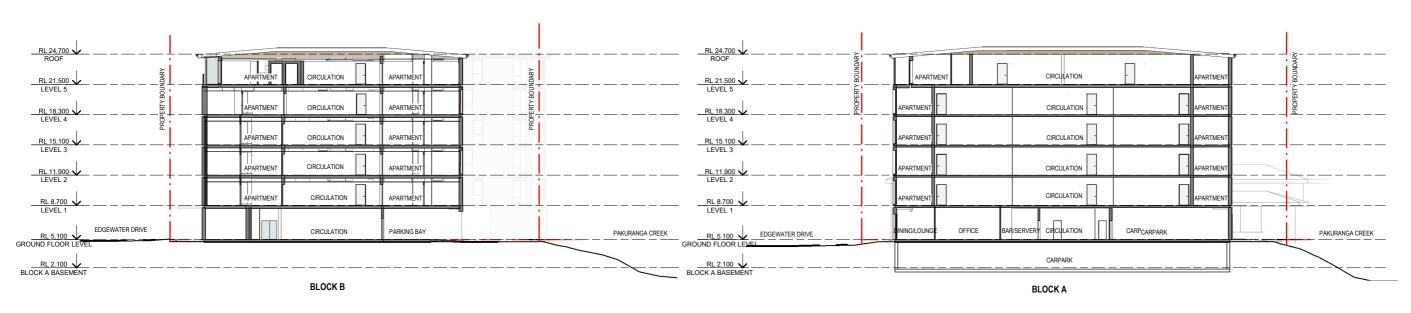
Coastal Elevation
SCALE 1:200

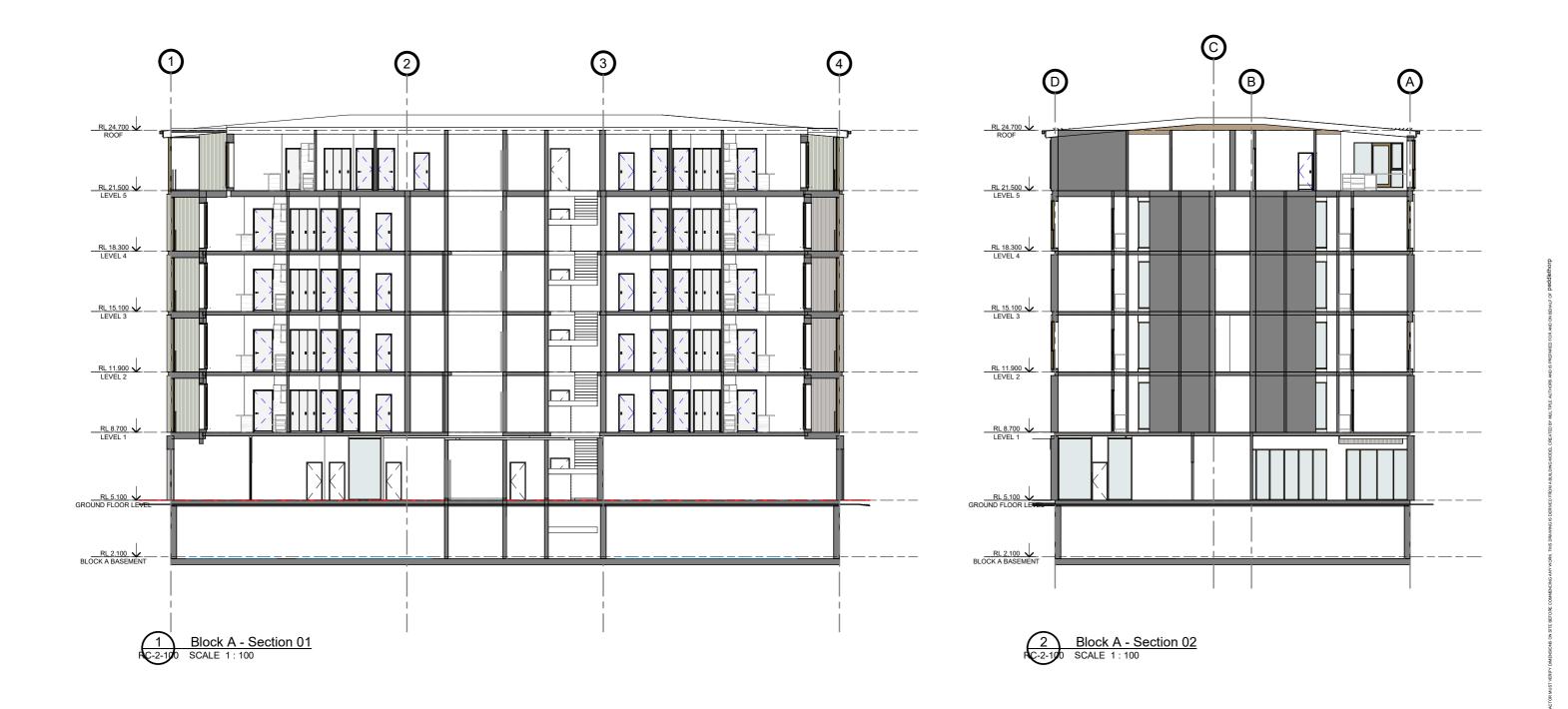




Block A - Elevation 04
AC-2-101 SCALE 1:100







Site Long Section 01

Site Cross Section 01 SCALE 1:200

Site Cross Section 02 SCALE 1:200

2114 - RC-3-210

Block A - Sections

2114 - Ambridge Rose 147-153 Edgewater Drive

2114 - RC-3-211

Block B - Sections

2114 - Ambridge Rose 147-153 Edgewater Drive

2114 - RC-9-000

Renders 2114 - Ambridge Rose 147-153 Edgewater Drive

2114 - RC-9-001

+64 9 379 9405 peddlethorp.co.nz

сь с

Cileckei

2114 - RC-9-002

B Cile

SHEET NUMBER:

APPENDIX B SITE INVESTIGATION RECORDS

	Client: A & L SARGEANT LT		Machine Borehole No. MH01										
	Project Location: 149 - 153 EDGEWATE	ER DR	RIVE, F	PAKURAN	GΑ	Sheet 1 of 3				f 3			
	Job Number: J00983				Vane Head: Logged By: Process 2153 AB AB			014.1.24.0.					
hy	Borehole mN mE			Ground R	.L.	•	•	iter/ ter	thod	(%)	(
Stratigraphy	Location: Description: Refer to site plan	1 7		Orientatio	n:	vertical		Groundwater/ Piezometer	g Met Sasin	Recovery (%)	RQD (%)	Sample and Laboratory Test Details	Vane Dial / Sensitivity & SPT
Stra	CORE DESCRIPTION	Legend	Depth (m)	Г	EFE	ECTS		Grou	Drilling Method & Casing	Reco	RC	San Lab Tesi	Var Ser &
	TOPSOIL silty CLAY, orange mottled orange/ brown. Very stiff, moist, medium to high plasticity, with some orange limonite silt inclusions and staining with occasional coarse sand to fine gravel sized limonite class	-2-2- -2-2- -2-2- -2-2-	, , , , , , , , , , , , , , , , , , ,						TO 1.5m	40			205+
Ash	inclusions at 0.8m, becoming orange and orange/ brown mottled brown/ grey	- <u> </u> ×-×-	- - - - 1.0 - -						WITH CASING	100 100			139/ 65
	silty CLAY, dark brown/ grey speckled blue/ grey. Very stiff, moist, medium to high plasticity, with trace organic staining	-X-X- -X-X- -X-X- -X-X- -X-X- -X-X- -X-X- -X-X-	1.5 2.0 						OPEN BARREL WITH	6			155/ 46
	becoming slightly silty CLAY, light blue/ grey, without organic staining becoming silty CLAY, green/ grey, with some medium to	-X-X- -X-X- -X-X- -X-X- -X-X- -X-X-	- - 2.5 - - - - - 3.0							79			53/ 21
	coarse sand sized clay clast inclusions clayey SILT, green/ grey. Hard, moist, low plasticity, with some medium to coarse sand sized clay clast inclusions	-2-2- -2-2- -2-2- -2-2- XX	- - - 3.5							SPT			SPT at 3.0-3.45m 2/2/3 N=5
	- - - - - -		- - - 4.0 - - -							81			
Alluvium	- - - - - - -		-4.5 - - - - - - 5.0 -							100			UTP
	- - - -		- 5.5 - - - - - - 6.0							100			UTP
	- - - -		- - - - - 6.5							SPT			UTP SPT at 6.0-6.45m 10/13/14 N=27
	pumiceous SILT, cream/ white. Loose, moist to wet, no plasticity becoming silt, grey	X X X X X X X X X X	- 0.5 7.0 - 7.0 7.5						TRIPLE TUBE	34			
	Comments:	X X : X X : X X : X X :	- - - 8.0	g Fluid: Tons	oil [///V.	Sand	 		andete	ne	Plute	nnic + + + +
	Comments:		1	iter Fill	UII	7777	Sand Gravel			andsto iltston	_		Core
	LANDER		Chec				Organic	L even	raz Vaz	imesto	ne		
	geotechnical Driller: Pro-Drill Rig: Tracto	ır		Silt	T	$\begin{array}{c} X \times X \times X \\ X \times X \times X \end{array}$	Pumice	800	*	olcani	c T	***\	

Г	Client: A & L SARGEANT LTD								Machine Borehole No. MH01					
	Project Location	on: 149 - 153 E	DGEWATE	R DF	RIVE, I	PAKUI	RANGA	Sheet 2 of 3					3	
	Job Number:	J00983						Vane Head: 2153	Logged I AB	By: Pr	ocess AB	sor :		e: 15.10.18 e: 15.10.18
Ş	Borehole mN	mE				Grou	nd R.L.		Iter/ ter	thod	(%)			
Stratigraphy	Location: Description	n: Refer to site plan		1 -5		Orie	ntation:	vertical	Groundwater/Piezometer	ng Meth Casing	Recovery (%)	RQD (%)	Sample and Laboratory Test Details	Vane Dial / Sensitivity & SPT
Stra	CORE	DESCRIPTION		Legend	Depth (m)		DEF	ECTS	Grou	Drilling Method & Casing	Reco	RO	Sarr Lab Test	Van Ser &
Alluvium	fine sandy SILT with clay plasticity clayey fine SAND, grey.	Stiff, moist, no to low pla		X X X X X X X X X X X X X	- - - - - - - - - - - - - - - - - - -					TRIPLE TUBE	76 SPT			SPT at 8.0-8.45m 8/8/9 N=17
Group	with moderately thin bed slightly silty CLAY, blue/	•	igh plasticity	-X-X- -X-X- -X-X- -X-X- -X-X- -X-X- -X-X-	- - - 9.5 - - - - - 10.0						SPT			SPT at 9.5-9.95m 2/3/3 N=6
Transitional Waitemata (-2-2- -2- -2	- 10.5 - 10.5 11.0 - 11.5						SPT 95			SPT at 11.0-11.45m 12/24/26 N=50
	highly weathered, dark g	rey, SILTSTONE; weak		×××× • • • • • • • • • • • • • • • • • •	- - - - - - - - - - - - - - - - - - -	12.0-1	12.5m, 5JT	⁻ , PL, 90°, R3			SPT 100	SPT 60		SPT at 12.5-12.9m 16/24/26 for 95mm N>50
ta Group Bedrock		rk grey, MUDSTONE; v	ery weak	•••	- - - 13.5 - - - - 14.0		PL, 90°, R3 PL, 75-90°,				82	78		
Waitemata	becoming highly weather highly weathered, dark g with occasional black car moderately weathered, d weak	rey, SILTSTONE; weak		2 Z Z Z Z Z Z Z Z Z	 14.5 _ _ _ _ _ _ 15.0 _ _	14.8-1 R3 2JT, I	R, 75-90°,	⁻ , PL-CU, 75-90 [°]			SPT 100	SPT 74		SPT at 15.0-15.1m 50 for 85mm N>50
	<u>-</u>	Comments:		•••	- 15.5 - - - - - Drilling	15.4-1	I5.5m, 2JT	, PL, 45-90°, R4		s:	Z 88	96	Pluto	onic +++
					wa	ter	Fill	Grave	el	s	iltston	е	2 2 No C	Core
	LANDER geotechnical	Driller: Pro-Drill	Rig: Tractor		Chec	ked:	Clay Silt	Orgai	8.80	& & l	mesto		/ / / /	

Client: A & L SARGEANT LTD Machine Borehole No. MH01 Project Location: 149 - 153 EDGEWATER DRIVE, PAKURANGA Sheet 3 Vane Head: Logged By: Processor Start Date: 15.10.18 Job Number: J00983 2153 ΑB ΑB Finish Date: 15.10.18 Drilling Method & Casing mΕ Groundwater/ Sample and Laboratory Test Details Ground R.L mΝ Stratigraphy Borehole Piezometer Vane Dial / Sensitivity & SPT 8 Location: Recovery Description: Refer to site plan Orientation: vertical RQD (-egend Depth (m) **DEFECTS CORE DESCRIPTION** • Bedrock 82 96 SPT at 16.5-16.1m 16.5 Group EOB at 16.5m. Target Depth. 50 for 95mm N>50 **-** 17.0 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.5 +++ Drilling Fluid: Comments: Topsoil Sand Sandstone Plutonic water Siltstone Gravel 222 No Core ANDER Checked: Organic Clay geotechnical Driller: Pro-Drill Rig: Tractor Silt **Pumice**

	Client: A & L SARGEANT LTD				Machine Borehole No. MH02						
	Project Location: 149 - 153 EDGEWAT	ER DR	RIVE, F	PAKURANGA	-					t 1 of	2
	Job Number: J00983				Vane Head: 2153	Logged AB	By: Pr	ocess AB			: 17.10.18 e: 17.10.18
ş	Borehole mN mE			Ground R.L.	1	ter/	poq	(%)			
Stratigraphy	Location: Description: Refer to site plan	1 8	_	Orientation:	vertical	Groundwater/ Piezometer	Drilling Method & Casing	Recovery (%)	RQD (%)	Sample and Laboratory Test Details	Vane Dial / Sensitivity & SPT
Stra	CORE DESCRIPTION	Legend	Depth (m)	DEF	ECTS	Grou	Drillin	Reco	S	San Lat Tes	Var Se
E	TOPSOIL		L								
"	_ clayey SILT with fine gravel, dark grey mottled orange/ brow Very stiff, moist, low plasticity	n. <u>X X </u>	-					06			
	silty CLAY, light brown/ grey. Very stiff, moist, high plasticity		- 0.5 - -								185/ 102
ے	<u></u>	-x-x- -x-x-	-								
Ash	<u>-</u>	-8-8-	- 1.0					100			
	with moderately thin layer of fine gravel	-x-x- -x-x-	-				_				
F	silty CLAY, streaked orange/ brown and grey. Very stiff, moi high plasticity, with occasional limonite staining	**-×- st, -×-×-	- 1.5 -				1.5M	H			81/ 21
		-8-8-					0 10				
	- - -	-x-x-	- 2.0				CASING				
		-x-x- -x-x-	-				CA	22			
	-	-x-x- -x-x-	- 2.5				WITH				
		-8-8-	-				ZEL,				
	-	-x-x- -x-x-	- 3.0				BARI				88/ 46 SPT at
	_	-x-x-	-				OPEN BARREL	SPT			3.0-3.45m 1/2/2
	-	-x-x-	- 3.5 -				ö				N=4
		-x-x- -x-x-	-								
inm	-	-x-x-	- 4.0 -					100			
Alluvit		-8-8-	_								
	SILT, green/ grey. Loose, moist, no plasticity	XXX XXX	- 4.5								UTP
	- -	$- \mathbf{X}\mathbf{X} $	- 5.0								
	<u> </u>	XXX XXX XXX	E					8			
	 - -		- 5.5								
		XX:	E								
	becoming medium dense	XXX XXX XXX	- 6.0					H			UTP
	<u> </u>		E					92			
	- -	XX:	- 6.5				TUBE	H			
	<u> </u>	XXX XXX XXX	Ē								
	- -		- 7.0				TRIPLE				
	silty CLAY, green/ grey. Very stiff, moist, medium plasticity	llxx:	E				🖹	93			
	- Jamy OLAT, green grey, very sun, moist, medium plasticity	-8-8- -8-8- -8-8- -5-5-1	- 7.5								
	Ė	-x-x- -x-x-	Ē								
\vdash	Comments:	<u> </u>	= 8.0 Drilling	g Fluid: Topsoil	San	d l	s	I I andstoi	ne	Pluto	nic +++
	ANDER			ter Fill	Grav	vel	s	iltstone	2 2	2 Z No C	ore
	Driller: Pro-Drill Rig: Tract	or	Chec	0.0,	Orga			mestor	7.7		
1	Driller: Pro-Drill Rig: Tract	UI	ı	Silt	XXXXPum	iice 📗 🔈	V	olcanic	: b	~ ~ /	1

Client: Machine Borehole No. A & L SARGEANT LTD MH02 Project Location: 149 - 153 EDGEWATER DRIVE, PAKURANGA Sheet 2 of 2 Vane Head: Logged By: Processor Start Date: 17.10.18 Job Number: J00983 2153 ΑB ΑB Finish Date: 17.10.18 Drilling Method & Casing mΕ Groundwater/ Sample and Laboratory Test Details Ground R.L mΝ Stratigraphy Vane Dial / Sensitivity & SPT Borehole Piezometer 8 Location: Recovery Refer to site plan Description: Orientation: vertical RQD Depth (m) **DEFECTS CORE DESCRIPTION** SPT at TUBE 8.0-8.45m SPT 2/4/4 N=8 **-** 8.5 **IRIPLE** -x-x--x-x-59 **-** 9.0 ×-×-**!** -×-×-I ×-×-[**Fransitional** ~-×-8 10.5 highly weathered, dark grey, SILTSTONE; weak 10.5-11.0m, 2JT, IR, 75°-90°, R3 SPT at 1JT, IR, 90°, R3 11.0-11.3m SPI 32/50 for 60mm highly weathered, dark grey, fine grained SANDSTONE; weak N>50 11.4-11.6m, 3JT, PL, 90°, R3 • 8 75 SPT at Waitemata 2DI, CU, 90°, R4 12.5-12.7m SP SP 38/50 for 15mm N>50 13.0-13.8m, 4JT, PL-CU, 90°, R4 slightly weathered, dark grey, fine to medium grained SANDSTONE; strong • • 99 ٠ 50 . ٠ :: 13.5 13.8-14.0m, chaotically fractured SPT at . . 12.5-12.7m SPI SPT EOB at 14.0m. Target Depth. 50 for 50mm N>50 +++ Drilling Fluid: Comments: Topsoil Sandstone Plutonic Sand 2 2 2 water Siltstone **Z Z Z** Fill Gravel No Core ANDER Checked: Organic Clay imestone geotechnical Driller: Pro-Drill Silt Rig: Tractor **Pumice**

	Client: A & L SARGEANT LTD					Machine Borehole No. MH03									
	Project Location	n: 149 - 153 E	OGEWATE	R DR	IVE, F	PAKURAI	NGA						Sh	neet 1 of	2
	Job Number:	J00983						Vane Head: 2153	Logg Al		By: Pr	ocess AB	sor :		: 16.10.18 e: 16.10.18
γ	Borehole mN	mE				Ground	R.L.			ater/ ter	thod	(%)	(0		
Stratigraphy	Location: Description	n: Refer to site plan		Г Б	l -	Orienta	ion:	vertical		Groundwater/ Piezometer	Drilling Method & Casing	Recovery (%)	RQD (%)	Sample and Laboratory Test Details	Vane Dial / Sensitivity & SPT
Stra	CORE	DESCRIPTION		Legend	Depth (m)		DEF	ECTS	Ç	Pie G	Drillir ⊗	Rec	Υ	Sar Lal Tes	Val Se
	TOPSOIL		10.2	$\overline{\mathcal{D}}$							1.5m				
	clayey SILT, orange/ brown with some clast inclusions		plasticity,		-						TO 1.5	20			
	<u>-</u>				- 0.5										205+
بي	silty CLAY, brown mottled _medium plasticity, with od			-X-X- -X-X-							CASING	06			
Ash	inclusions and staining at 1.0m, becoming streak	_		-x-x- -x-x-	- 1.0						Ŧ				131/ 73
	green/ grey	and ded b		-x-x-	<u> </u>						K	100			
	becoming mottled green/ some organic staining, wi inclusions			-x-x-	- 1.5 - -						RRE				131/ 53
	<u> </u>			-x-x-	<u> </u>						OPEN BARREL WITH				
	slightly silty CLAY, orange moist, high plasticity, with and staining	e/ brown streaked grey. n occasional limonite silt	Very stiff, inclusions	-x-x-	- 2.0 - -						OPE				
	becoming streaked orang	ge/ brown and grev		-x-x-	_ 2.5							87			
		gor brown and groy		-x-x- -x-x-	-										
	_			-x-x-	_ _ 3.0										7 9/ 46
	<u> </u>			-x-x- -x-x-								SPT			SPT at 3.0-3.45m
	becoming grey mottled or	range/ brown		-x-x-	- - 3.5							0)			2/2/4 N=6
	_			-×-×-											
	_			-x-x- -x-x-	- - 4.0							92			
	_			-x-x-	E										
inm	organic silty CLAY, green	n/ grey mottled dark brow	wn/ black.	-x-x- -x-x- -x-x-	4.5										120/ 57
Alluvium	Stiff, moist, medium to his wood inclusions	gh plasticity, with occas	ional decayed		_										
	slightly silty CLAY, green	/ grey. Stiff, moist to we	t, high	-8-8- -8-8-	5.0										
	plasticity			-x-x- -x-x-	-							100			
	<u>-</u>			-x-x- -x-x-	5.5										
	<u> </u>			-x-x- -x-x-											
	_			-x-x-	6.0							_			49/ 18 SPT at
				-x-x- -x-x-								SPT			6.0-6.45m 2/2/2
	-			-x-x-	- 6.5										N=4
	E			-x-x- -x-x-	E										
	organic clayey SILT, dark			-X-X- -X-X- -X-X-	- 7.0							89			
	plasticity, with major deca			-8-8- -8-8- -8-8- -8-8-	 										
	<u>-</u> -			-x-x-	- 7.5										165/ 57
	<u> </u>			-8-8- -8-8- -8-8-	8.0							100			
		Comments:		١	Drilling		psoil	San	nd		Sa	andsto	F	Pluto	nic +++
	LANDER				Chec	ter Fill		Gra		WY	T.	iltston	┢	Z Z Z No C	ore
	geotechnical	Driller: Pro-Drill	Rig: Tractor	r		Silf		XXXX XXXX	8			mesto olcanio		V V V I	

	Client: A & L SARGEANT LTD					Machine Borehole No. MH03									
	Project	Locati	on: 149 - 15	3 EDGEWATE	R DF	RIVE, I	PAKURAN							eet 2 of	2
	Job Nu	ımber:	J00983	3					Vane Head: L 2153	ogged I	By: Pr	ocess AB	sor :		e: 16.10.18 e: 16.10.18
γhς	Borehole	mN		mE			Ground I	₹.L.		ater/ ter	thod	(%)	(9		
Stratigraphy	Location:	Description	on: Refer to site	plan	T 0	l -	Orientati	on:	vertical	Groundwater/ Piezometer	Drilling Method & Casing	Recovery (%)	RQD (%)	Sample and Laboratory Test Details	Vane Dial / Sensitivity & SPT
Stra		CORE	DESCRIPTION	N	Legend	Depth (m)		DEFE	ECTS	Grou Pie	Drillir &	Reco	RC	Sar Lal Tes	Val Se
Alluvium	becoming					- - - - - - - - - - - - - - - - - - -					OPEN BARREL	SPT 100			SPT at 9.0-9.45m 2/3/4 N=7
aitemata Group	- - - - - - -		ery stiff, moist, med		-X-X- -X-X- -X-X- -X-X- -X-X- -X-X- -X-X-							81			
Transitional Waitemata	_ no plasticit	ty	ID, dark grey. Very s		-x-x-							100			
Trans	highly wea	thered, dark	grey, MUDSTONE;	extremely weak	-8-8- -8-8- -8-8- -8-8- -8-8-						E TUBE	33			
rock	becoming	moderately v	veathered, weak		2222222	- - - - - - - - - 12.5	Chaoticall	y Fract	tured		TRIPLE	SPT 100	SPT 100		SPT at 12.5-12.7m 37/50 for 30mm N>50
Waitemata Group Bedrock	- - - - - - -				N N N N N N N N N N N N N N N N N N N	-13.0 - - - - - 13.5						88	96		
Waite	highly wea	thered, dark	grey, fine grained S	ANDSTONE; very	22222	- - 14.0 - - -	14.0-14.1	m, 3JT	, PL, 90°, R3-R4			SPT	SPT		SPT at 14.0-14.15m 50 for 135mm N>50
	- - - - -				• • • • • • • • • • • • • • • • • • • •	14.5 - - - - 15.0	1JT, IR, 9		ı			91	82		
	EOB at 15	.5m. Target I	Depth.		•••	- - 15.5 - - - - 16.0	2JT, CU,	75°, R4	ı			SPT	SPT		SPT at 15.5-15.6m 50 for 95mm N>50
			Comments:		•	Drilling	g Fluid: Top	soil	Sand		Sa	andsto	ne	Pluto	onic +++
							ter Fill	_	Grave		s	iltston	е	2 2 N o C	Core
	LAN geotec	DER hnical	Driller: Pro-Drill	Rig: Tractor	r	Chec	cked: Cla		-	8.80	881	mesto /olcan		7 	

BOREHOLE NO: BH1								
ADDRESS:	149 – 153 Edgewater Drive	LOCATION:	Pakuran	ga				
CLIENT: A & L Sargeant Ltd		PROJECT No: 4116		3				
METHOD OF	BORING: Hand Auger	ELEVATION (m):		DATUM:				

		Samp	Samples and Tests				
Depth (m)	Soil Description	Depth (m)	Sample	Test	Water		
	Topsoil.	<u> </u>			<u> </u>		
0.5	Silty CLAY; grey mottled orange and blue. Stiff, moist, moderately plastic. [Alluvium] Becoming very stiff.	0.5		C=144 C _r =17			
1.0		1.0		C=150 C _r =37	1.4		
1.5	SAND; dark brown. Very dense (Inferred), wet, fine sand. EOB @ 1.5 m Too Hard to Auger Further	1.5		C=156 C _r =34	1.4		
2.0		2.0					
2.5		2.5					
3.0		3.0					
3.5		3.5					
4.0		4.0					
4.5		4.5					
5.0		5.0					

Date Started	11/11/17	Samples	In-Situ Tests
Date Finished	11/11/17		C = Undrained Shear Strength (kPa)
Driller	GS		
Logged by	GS		C _r = Residual Shear Strength (kPa)
Checked by	MK		S = Scala Reading, Blows / 150 mm
GEO	MOSS ENGINEERING TECHNICAL CONSULTANTS		UTP = Unable to Penetrate
	PO Box 151 326 New Lynn 9) 623 2071 Mobile: 021 387 779		

BOREHOLE NO: BH2							
ADDRESS:	149 – 153 Edgewater Drive	LOCATION: F	Pakuran	ga			
CLIENT: A & L Sargeant Ltd		PROJECT No: 4116		3			
METHOD OF	BORING: Hand Auger	ELEVATION (m):		DATUM:			

		Samp	les and T	ests	Ground
Depth (m)	Soil Description	Depth (m)	Sample	Test	Water
0.5	Topsoil. Silty CLAY; grey mottled orange. Stiff, moist, moderately plastic. [Alluvium] Becoming very stiff.	0.5		C=103 C _r =28	
1.0		1.0		C=121 C _r =31	1.4 m
1.5	SAND; dark brown. Very dense (Inferred), wet, fine sand.	1.5		C=114 C _r =23	
2.0	EOB @ 1.7 m Too Hard to Auger Further	2.0			
2.5		2.5			
3.0		3.0			
3.5		3.5			
4.0		4.0			
4.5		4.5			
5.0		5.0			

Date Started	11/11/17	Samples	In-Situ Tests
Date Finished	11/11/17		C = Undrained Shear Strength (kPa)
Driller	GS		j , ,
Logged by	GS		C _r = Residual Shear Strength (kPa)
Checked by	MK		S = Scala Reading, Blows / 150 mm
GEO	MOSS ENGINEERING TECHNICAL CONSULTANTS		UTP = Unable to Penetrate
	PO Box 151 326 New Lynn 9) 623 2071 Mobile: 021 387 779		

	BOREHOLE NO: BH3							
ADDRESS:	149 – 153 Edgewater Drive	LOCATION: F	Pakuran	ga				
CLIENT: A & L Sargeant Ltd		PROJECT No: 41160		3				
METHOD C	F BORING: Hand Auger	ELEVATION (m):		DATUM:				

		Samp	les and T	ests	Ground
Depth (m)	Soil Description	Depth (m)	Sample	Test	Water
	Topsoil. Silty CLAY; grey mottled orange and blue. Stiff, moist, moderately plastic. [Alluvium]				
0.5	Becoming very stiff.	0.5		C=101 C _r =43	
1.0		1.0		C=103 C _r =37	
1.5 	Thin layer of fine sand. (Approx. 30 mm thick)	1.5		C=103 C _r =20	
2.0	Becoming stiff. SILT with some fine sand; orange mottled grey. Stiff, moist,	2.0		C=72 C _r =28	
2.5	slightly plastic. Silty CLAY; grey mottled orange. Stiff, moist, moderately plastic. Becoming firm.	2.5		C=46 C _r =23	
3.0	Becoming very stiff.	3.0		C=117 C _r =31	
3.5	Becoming blue mottled orange and red.	3.5		C=131 C _r =46	
4.0	Sandy SILT with some clay; blue mottled grey. Very stiff, moist, slightly plastic.	4.0		C=179 C _r =48	4.2 m
4.5	Becoming wet. SAND with some silt; blue. Dense (inferred), wet, fine sand.	4.5		C=200+	_
5.0	EOB @ 5.0 m	5.0		C=200+	

Date Started	11/11/17	Samples	In-Situ Tests
Date Finished	11/11/17		C = Undrained Shear Strength (kPa)
Driller	GS		J , ,
Logged by	GS		C _r = Residual Shear Strength (kPa)
Checked by	MK		S = Scala Reading, Blows / 150 mm
GEO	MOSS ENGINEERING TECHNICAL CONSULTANTS		UTP = Unable to Penetrate
	PO Box 151 326 New Lynn 9) 623 2071 Mobile: 021 387 779		

BOREHOLE NO: BH4						
ADDRESS:	149 – 153 Edgewater Drive	LOCATION: F	Pakuran	ga		
CLIENT: A & L Sargeant Ltd		PROJECT No: 4116G		3		
METHOD OF BORING: Hand Auger		ELEVATION (m):		DATUM:		

		Samples and Tests		ests	Ground
Depth (m)	Soil Description	Depth (m)	Sample	Test	Water
0.5	Topsoil. Silty CLAY; grey mottled brown. Stiff, moist, moderately plastic. [Alluvium]	0.5		C=78	
				C _r =34	
1.0	Becoming very stiff.	1.0		C=111 C _r =43	1.6 m
1.5	Becoming wet. SAND; dark brown. Very dense (Inferred), wet, fine sand. EOB @ 1.8 m	1.5		C=131 C _r =28	
2.0	Too Hard to Auger Further	2.0			
2.5		2.5			
3.0		3.0			
3.5		3.5			
4.0		4.0			
4.5		4.5			
5.0		5.0			

Date Started	11/11/17	Samples	In-Situ Tests
Date Finished	11/11/17		C = Undrained Shear Strength (kPa)
Driller	GS		J , ,
Logged by	GS		C _r = Residual Shear Strength (kPa)
Checked by	MK		S = Scala Reading, Blows / 150 mm
MOSS ENGINEERING GEOTECHNICAL CONSULTANTS			UTP = Unable to Penetrate
PO Box 151 326 New Lynn Ph: (09) 623 2071 Mobile: 021 387 779			

BOREHOLE NO: BH5				
ADDRESS: 149 – 153 Edgewater Drive LOCATION: Pakuranga				
CLIENT: A & L Sargeant Ltd		PROJECT No: 4116G		3
METHOD OF BORING: Hand Auger		ELEVATION (m)):	DATUM:

		Samp	les and Te	ests	Ground
Depth (m)	Soil Description	Depth (m)	Sample	Test	Water
0.5	Silty CLAY; grey mottled orange and blue. Stiff, moist, moderately plastic. [Alluvium] Becoming very stiff.	0.5		C=101 C _r =51	
1.0	Becoming stiff. Becoming blue mottled grey.	1.0		C=98 C _r =54	
1.5	Becoming very stiff.	1.5		C=114 C _r =43	1.8 m
2.0	SAND; dark brown. Very dense (Inferred), wet, fine sand. EOB @ 1.9 m Too Hard to Auger Further	2.0			=
2.5		2.5			
3.0		3.0			
3.5		3.5			
4.0		4.0			
4.5		4.5			
5.0		5.0			

Date Started	11/11/17	Samples	In-Situ Tests
Date Finished	11/11/17		C = Undrained Shear Strength (kPa)
Driller	GS		3 ()
Logged by	GS		C _r = Residual Shear Strength (kPa)
Checked by	MK		S = Scala Reading, Blows / 150 mm
GEO	MOSS ENGINEERING TECHNICAL CONSULTANTS		UTP = Unable to Penetrate
	PO Box 151 326 New Lynn 9) 623 2071 Mobile: 021 387 779		

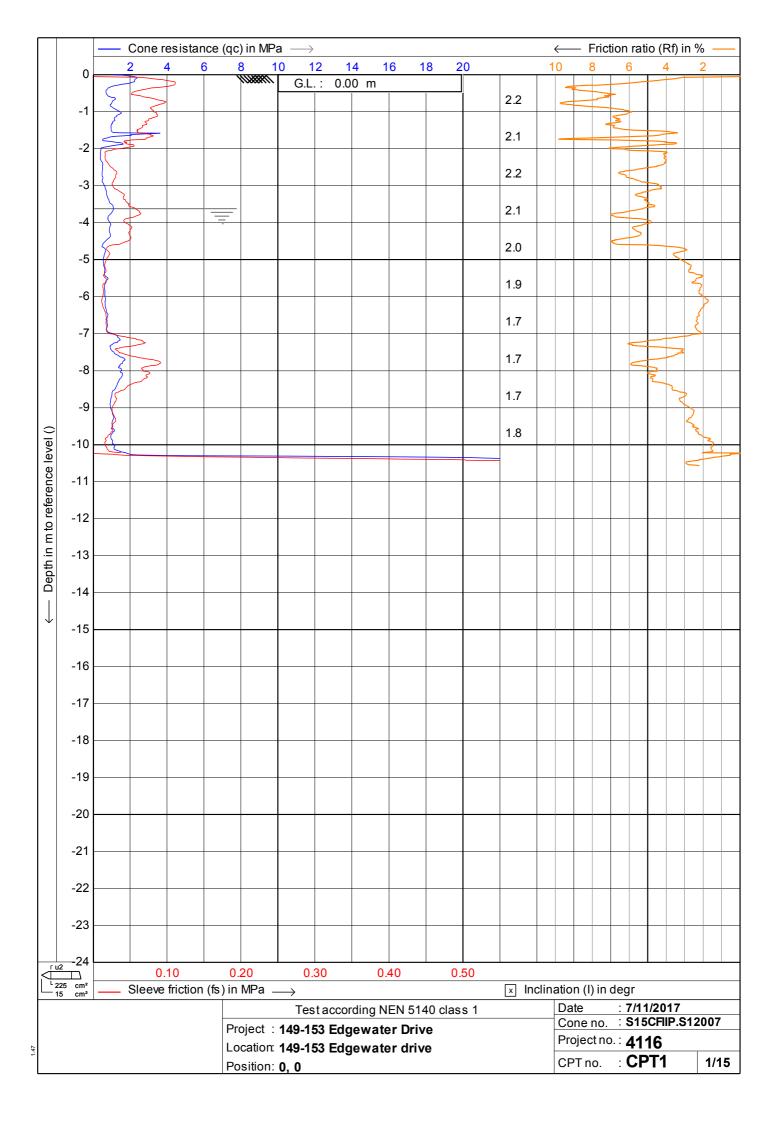
BOREHOLE NO: BH6				
ADDRESS: 149 – 153 Edgewater Drive LOCATION: Pakuranga				
CLIENT: A & L Sargeant Ltd		PROJECT No: 4116G		3
METHOD C	F BORING: Hand Auger	ELEVATION (m)):	DATUM:

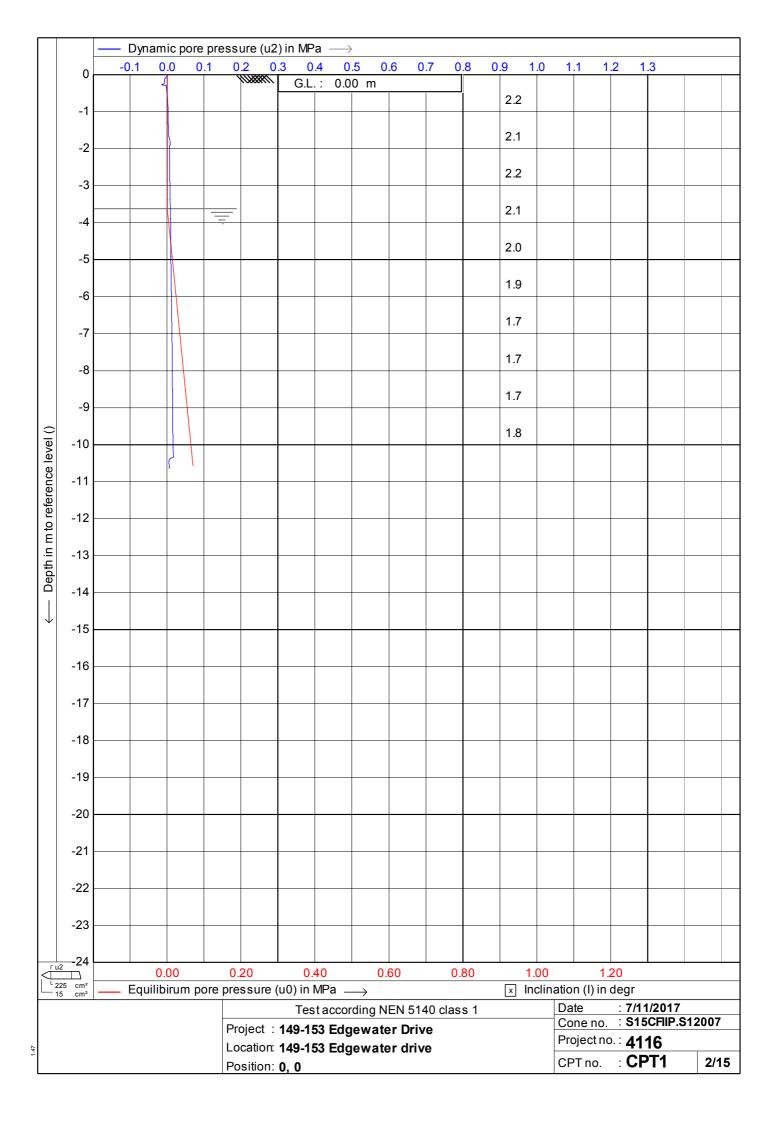
		Samp	les and To	ests	Ground
Depth (m)	Soil Description	Depth (m)	Sample	Test	Water
	Topsoil.	<u> </u>		<u> </u>	
0.5	Silty CLAY; brown mottled orange. Stiff, moist, moderately plastic. [Alluvium]	0.5		C=98 C _r =31	
1.0	Becoming very stiff. Thin layer of fine sand. (Approx. 30 mm thick)	1.0		C=111 C _r =43	
1.5	CLAY with some silt; brown mottled yellow and orange. Very stiff, moist, highly plastic.	1.5		C=111 C _r =20	
2.0	Becoming firm.	2.0		C=40 C _r =17	
2.5	Becoming stiff.	2.5		C=60 C _r =34	
3.0	Becoming very stiff.	3.0		C=109 C _r =34	
3.5	Becoming stiff. Becoming wet.	3.5		C=78 C _r =40	3.6 m
4.0	SAND with some silt; blue. Medium dense (Inferred), wet, fine sand.	4.0		C=111 C _r =43	
4.5	becoming dense.	4.5		C=200+	
5.0	EOB @ 5.0 m	5.0		C=200+	

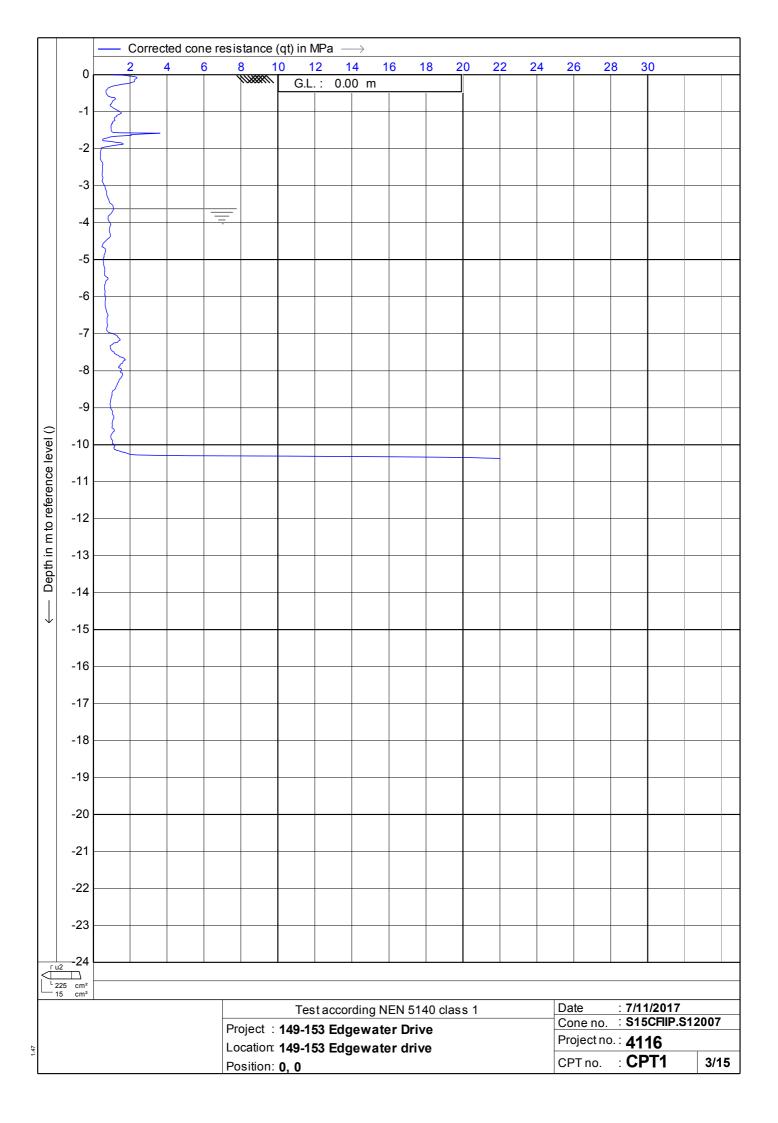
Date Started	11/11/17	Samples	In-Situ Tests
Date Finished	11/11/17		C = Undrained Shear Strength (kPa)
Driller	GS		
Logged by	GS		C _r = Residual Shear Strength (kPa)
Checked by	MK		S = Scala Reading, Blows / 150 mm
GEO	MOSS ENGINEERING TECHNICAL CONSULTANTS		UTP = Unable to Penetrate
	PO Box 151 326 New Lynn 9) 623 2071 Mobile: 021 387 779		

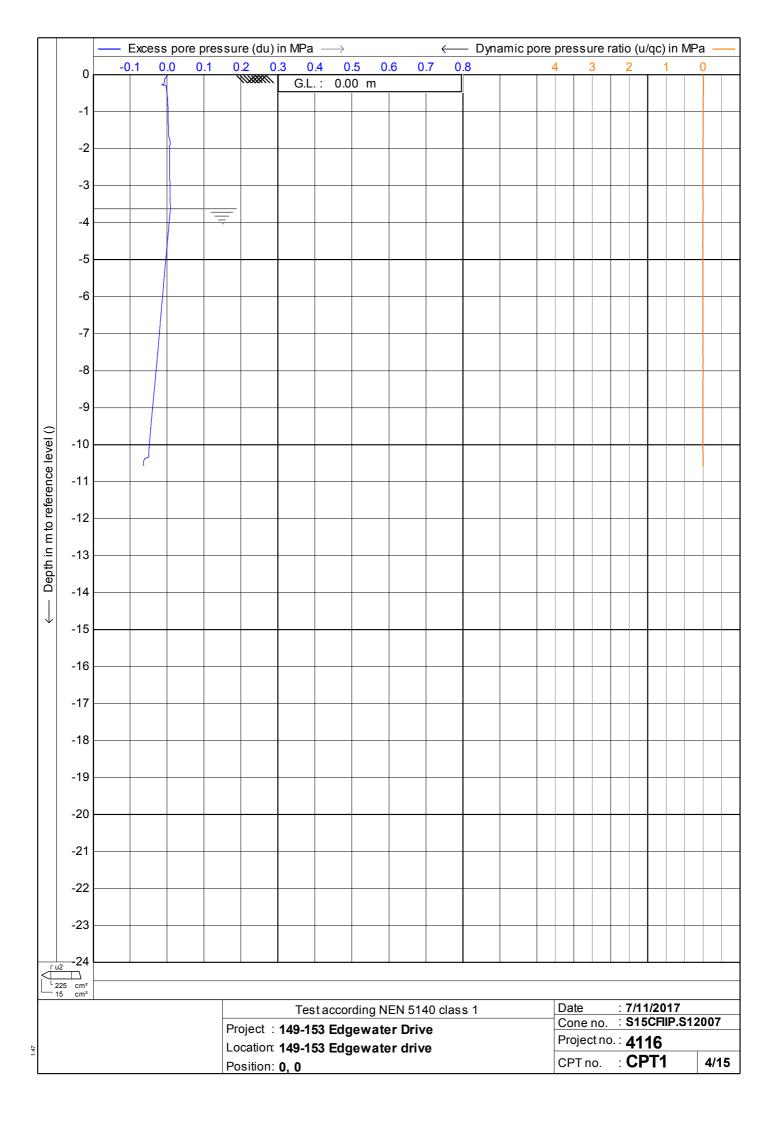
BOREHOLE NO: BH7				
ADDRESS:	149 – 153 Edgewater Drive	LOCATION: F	Pakuran	ga
CLIENT: A	& L Sargeant Ltd	PROJECT No:	41160	3
METHOD OF	BORING: Hand Auger	ELEVATION (m):	DATUM:

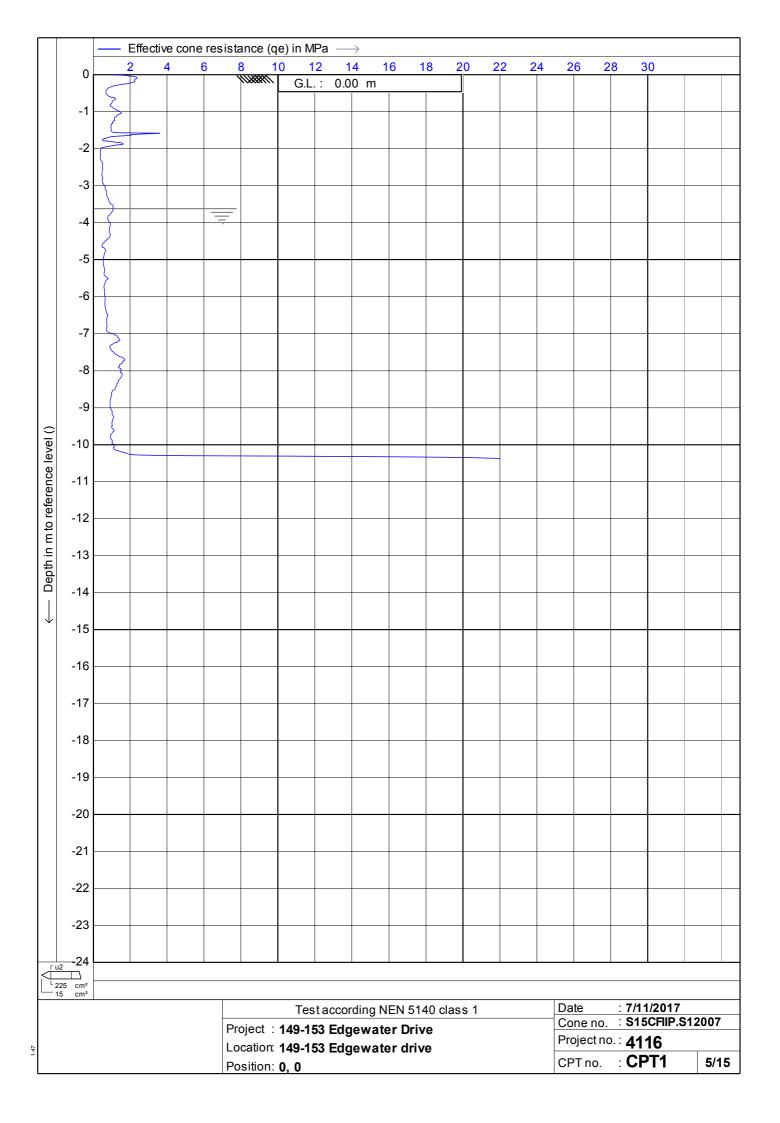
		Samp	les and Te	ests	Ground
Depth (m)	Soil Description	Depth (m)	Sample	Test	Water
0.5	Topsoil. Silty CLAY; orange mottled grey. Stiff, moist, moderately plastic. [Alluvium] Becoming very stiff.	0.5		C=141 C _r =40	
1.0		1.0		C=162 C _r =37	1.4 m
1.5	Becoming blue mottled grey, wet. SAND; dark brown. Very dense (Inferred), wet, fine sand.	1.5		C=139 C _r =34	=
2.0	EOB @ 1.8 m Too Hard to Auger Further	2.0			
2.5		2.5			
3.0		3.0			
3.5		3.5			
4.0		4.0			
4.5		4.5			
5.0		5.0			

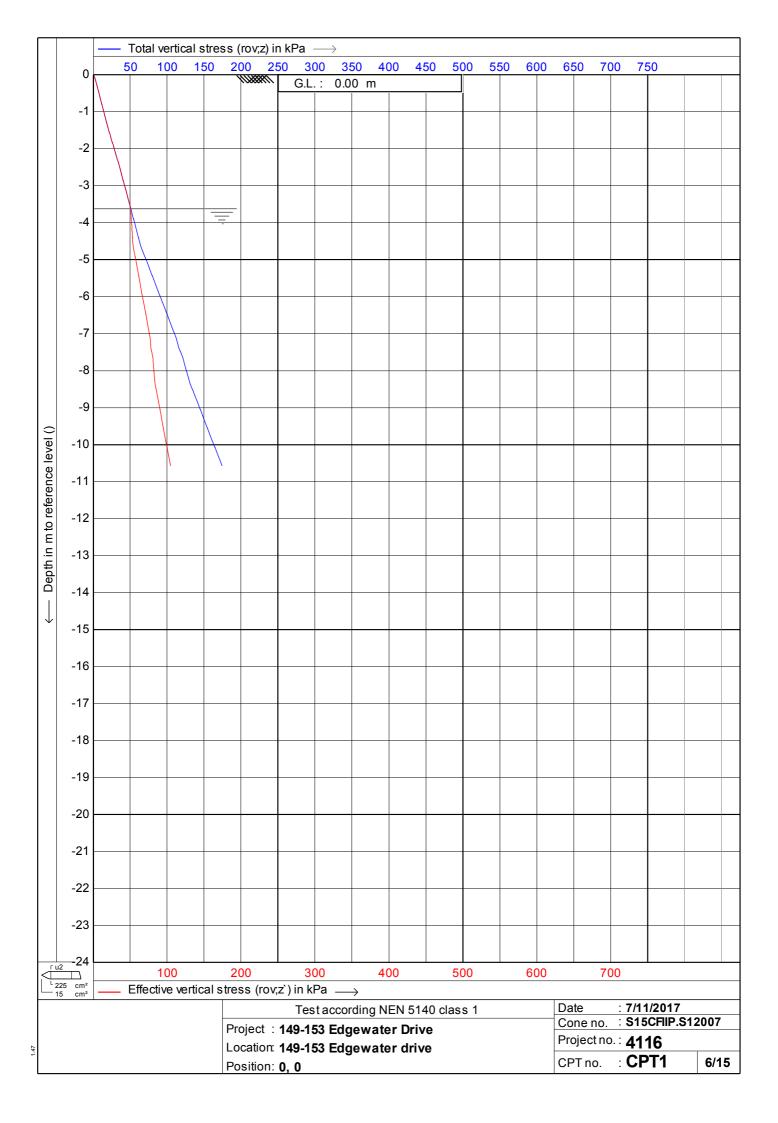

Date Started	11/11/17	Samples	In-Situ Tests
Date Finished	11/11/17		C = Undrained Shear Strength (kPa)
Driller	GS		
Logged by	GS		C _r = Residual Shear Strength (kPa)
Checked by	MK		S = Scala Reading, Blows / 150 mm
GEC	MOSS ENGINEERING DTECHNICAL CONSULTANTS		UTP = Unable to Penetrate
	PO Box 151 326 New Lynn 9) 623 2071 Mobile: 021 387 779		

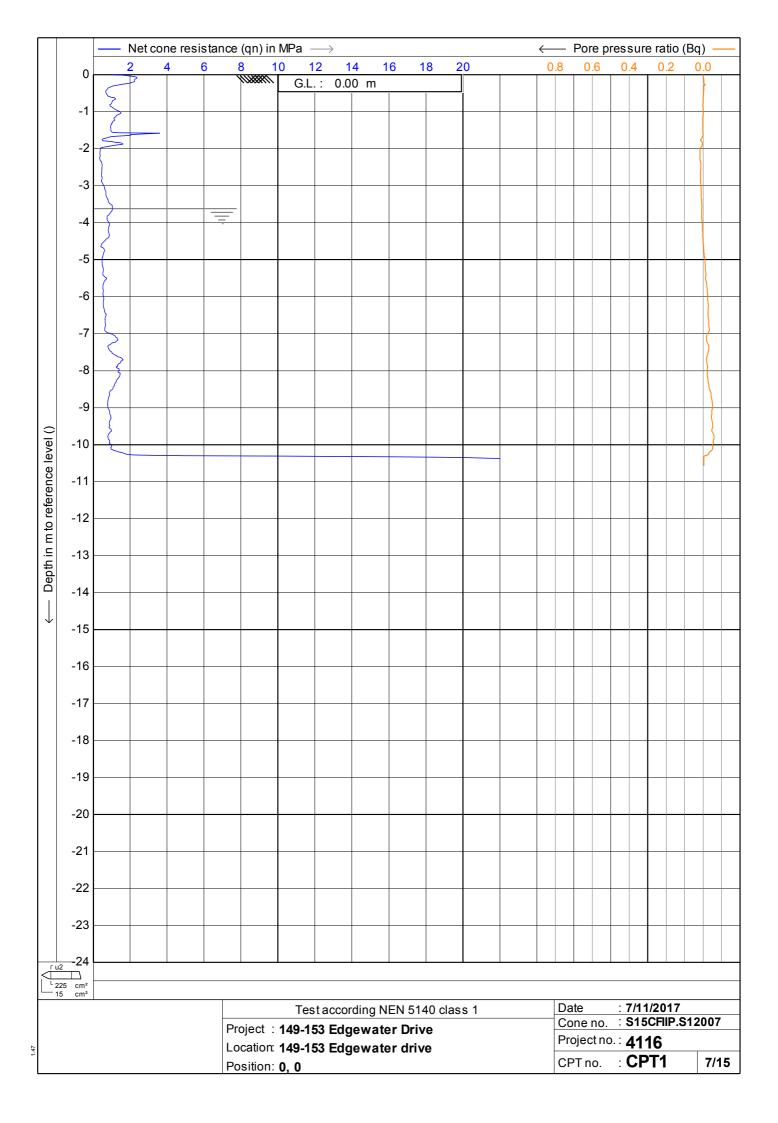

BOREHOLE NO: BH8				
ADDRESS: 149 – 153 Edgewater Drive LOCATION: Pakuranga				
CLIENT: A & L Sargeant Ltd		PROJECT No: 4116G		3
METHOD OF BORING: Hand Auger		ELEVATION (m):	DATUM:

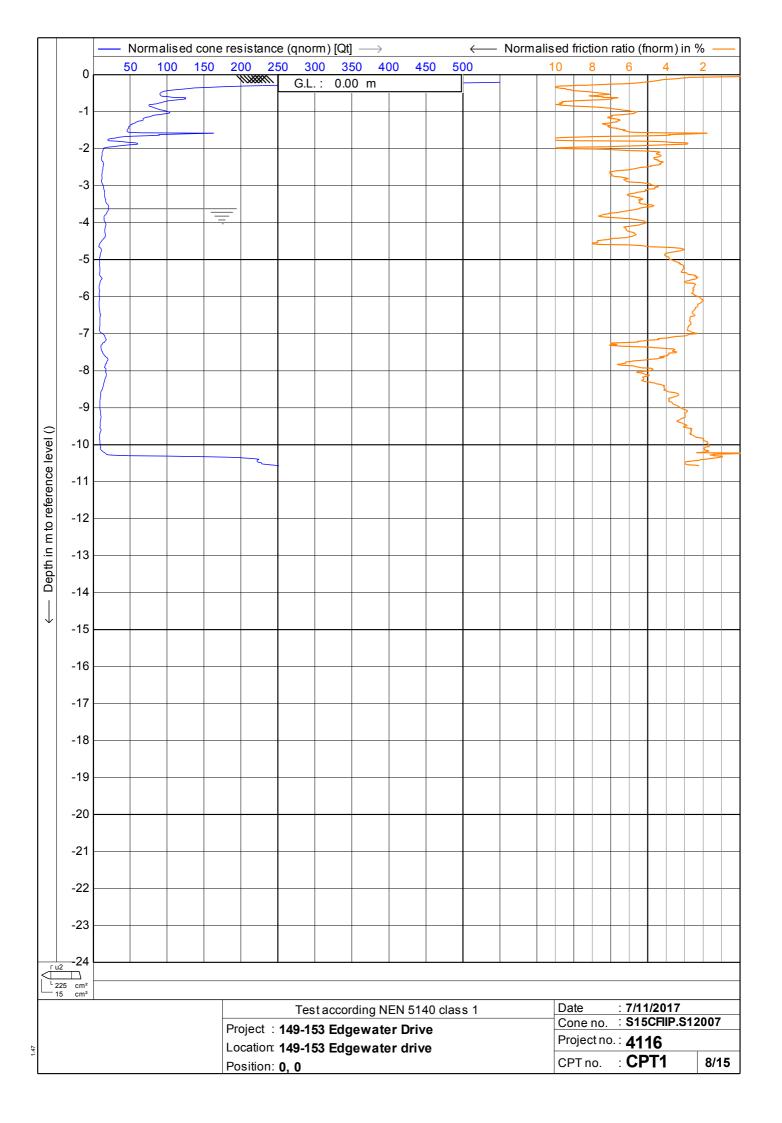

		Samp	les and Te	ests	Ground
Depth (m)	Soil Description	Depth (m)	Sample	Test	Water
0.5	Silty CLAY; grey mottled orange. Stiff, moist, moderately plastic. [Alluvium]	0.5		C=78	
1.0		1.0		C _r =37	
	EOB @ 1.0 m			C=87 C _r =43	
1.5		1.5			
2.0		2.0			
2.5		2.5			
3.0		3.0			
3.5		3.5			
4.0		4.0			
4.5		4.5			
5.0		5.0			

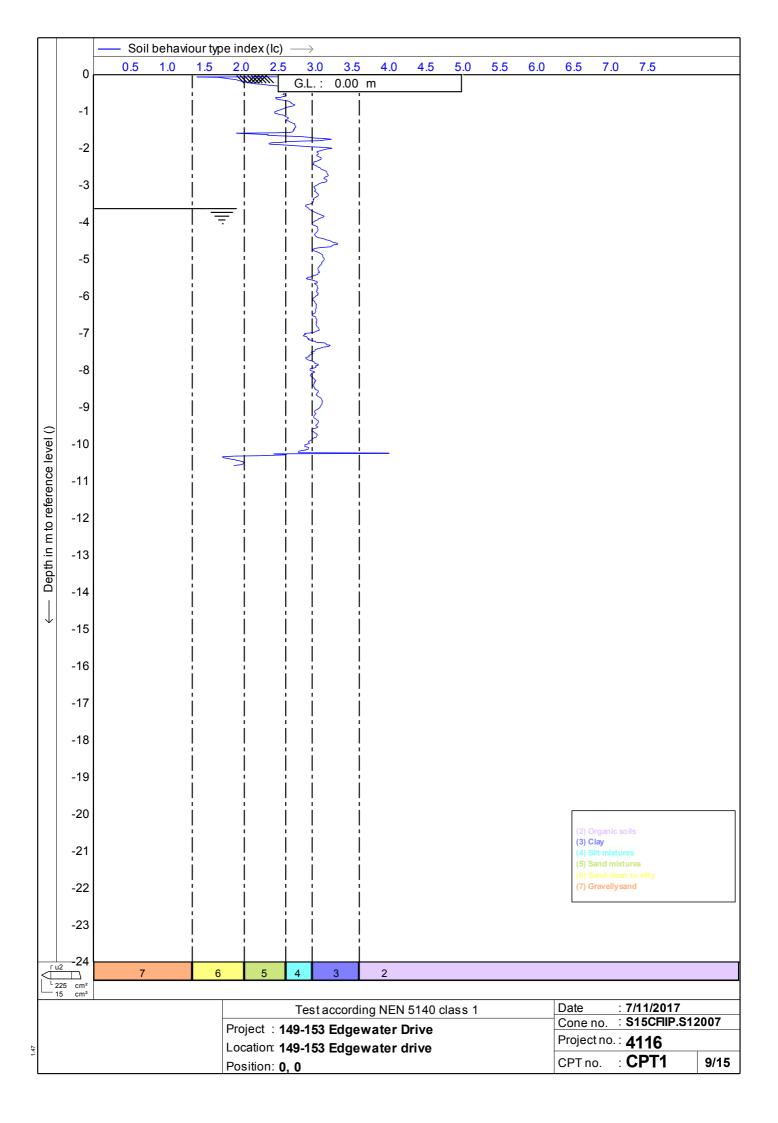

Date Started	11/11/17	Samples	In-Situ Tests
Date Finished	11/11/17		C = Undrained Shear Strength (kPa)
Driller	GS		
Logged by	GS		C _r = Residual Shear Strength (kPa)
Checked by	MK		S = Scala Reading, Blows / 150 mm
GEC	MOSS ENGINEERING DTECHNICAL CONSULTANTS		UTP = Unable to Penetrate
Ph: (0	PO Box 151 326 New Lynn 9) 623 2071 Mobile: 021 387 779		

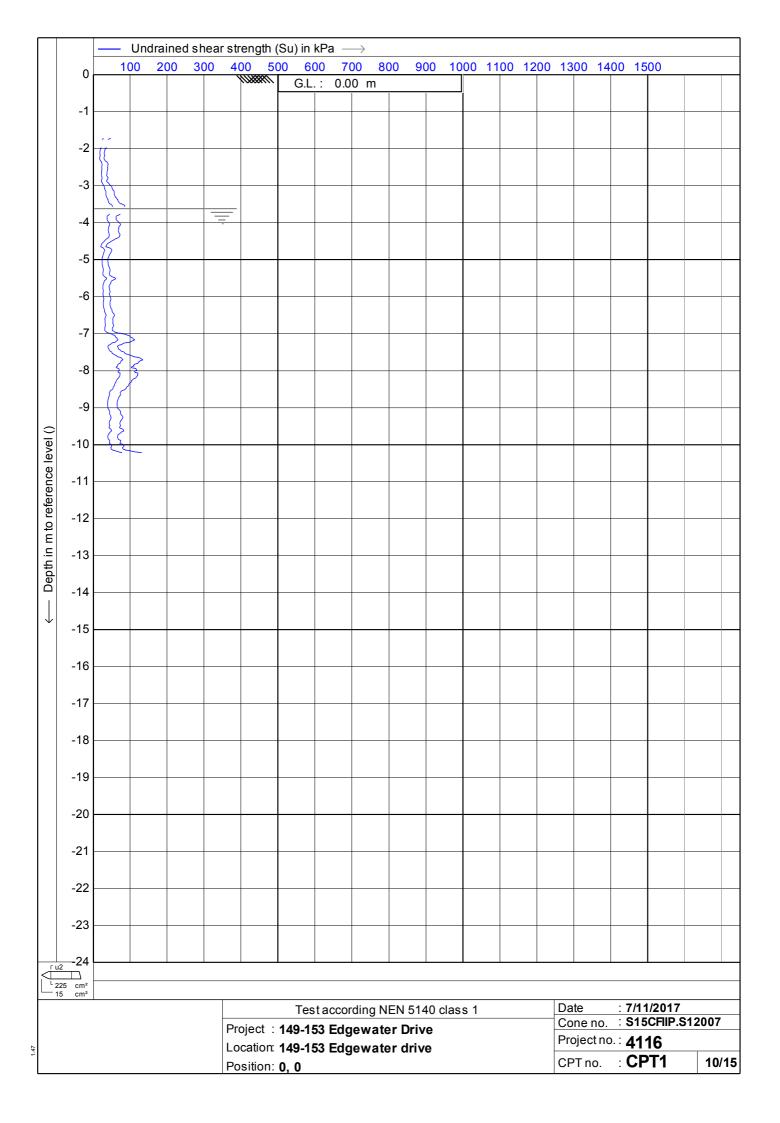

Generated with CORE-GS by Geroc - HA/TP Log with Photo v8.1 - 31/10/2024 1:17:32 pm

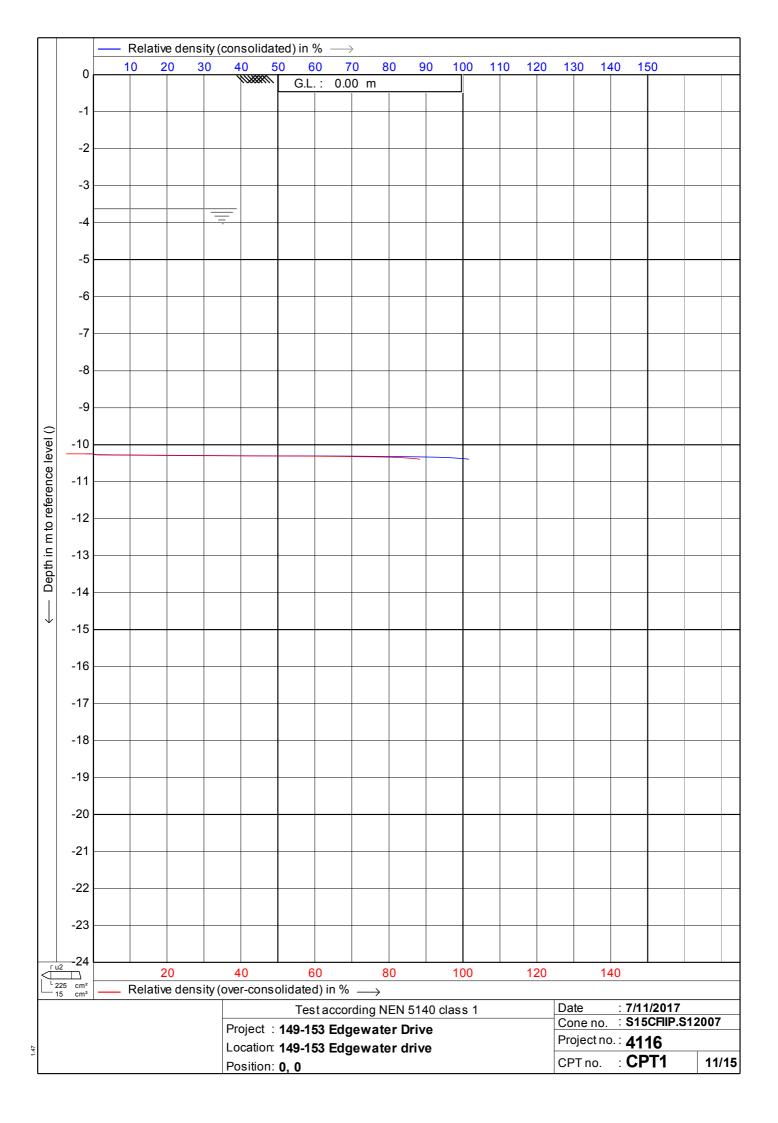


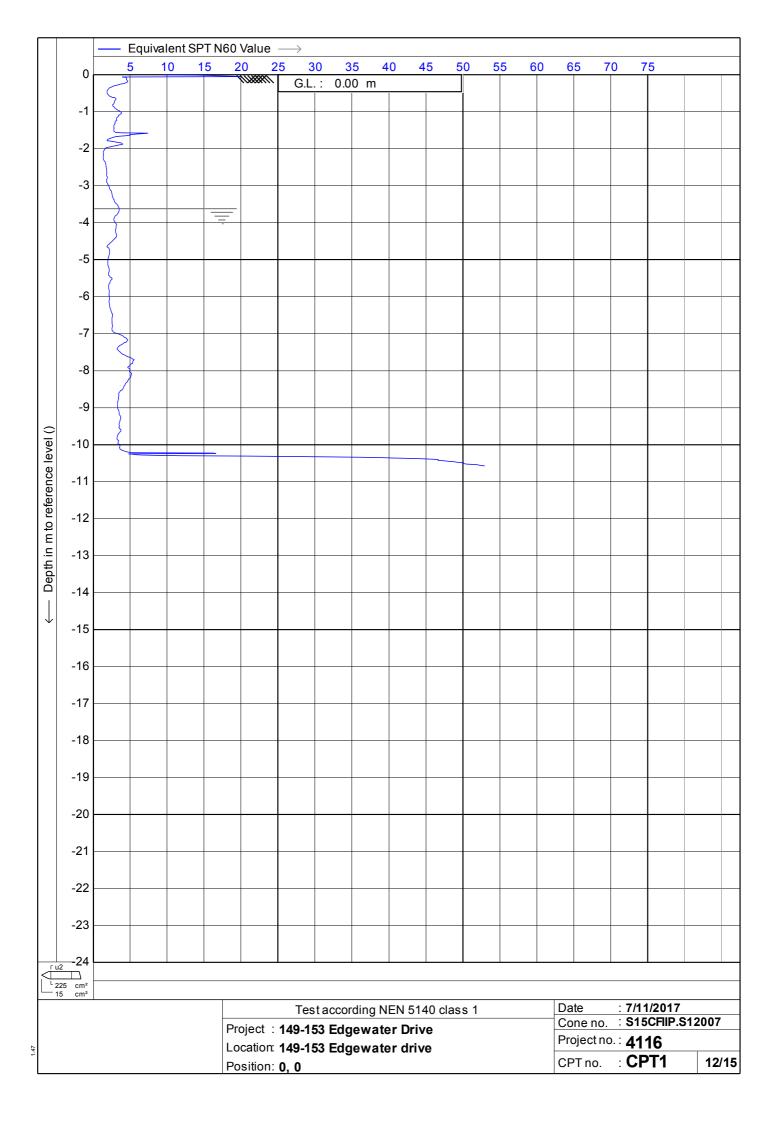


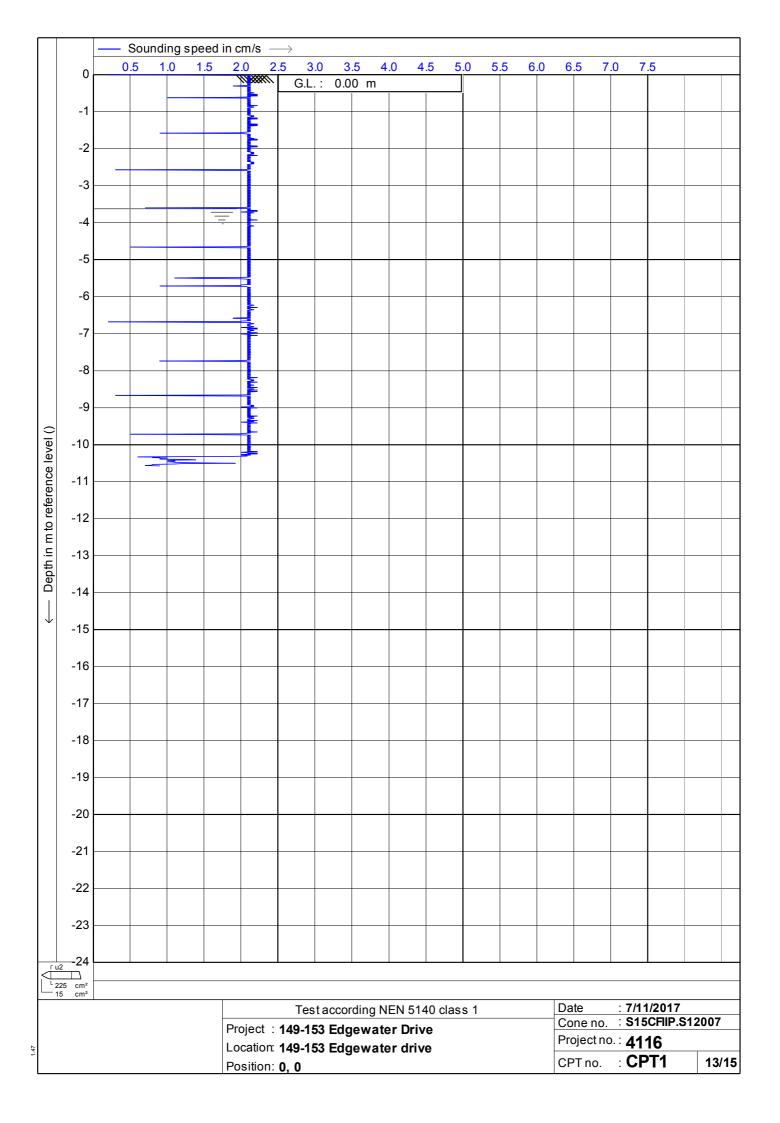


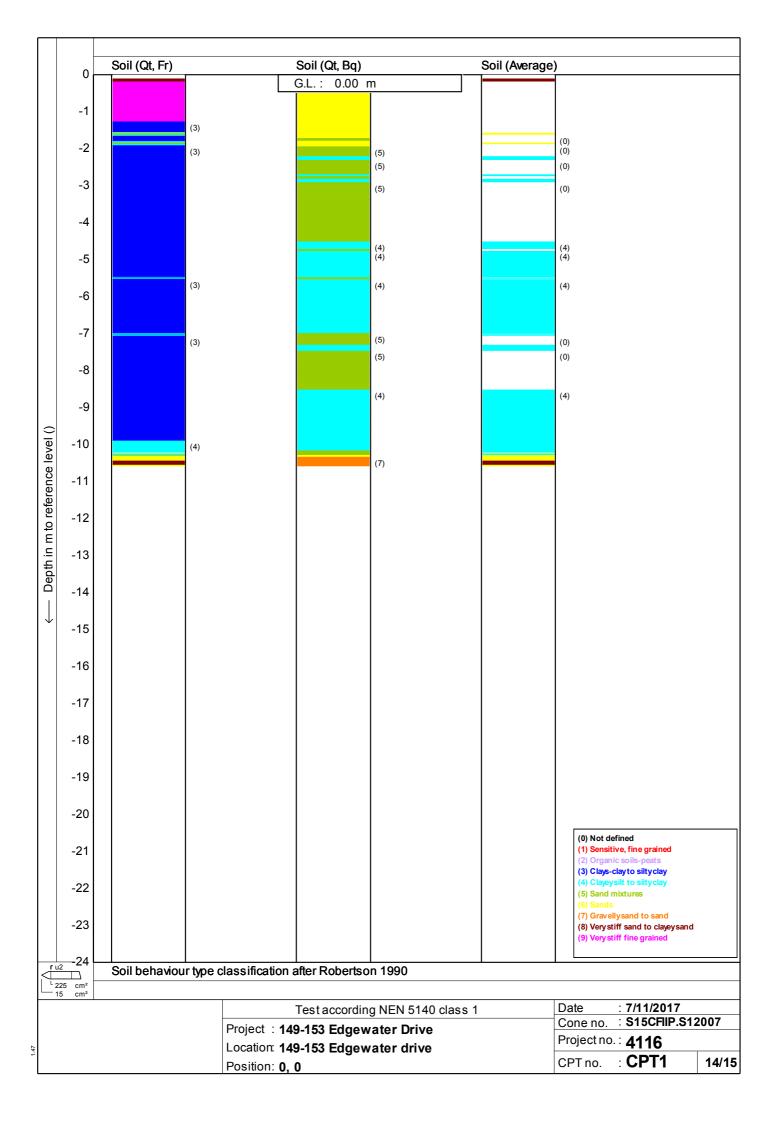


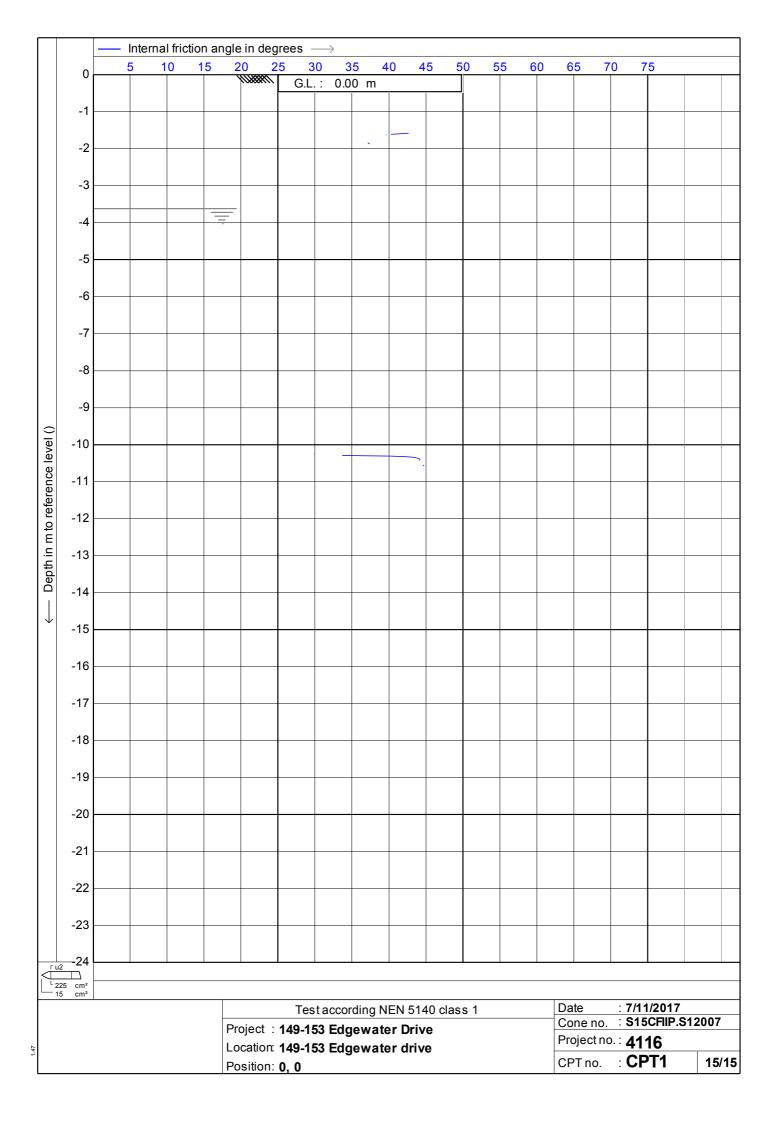


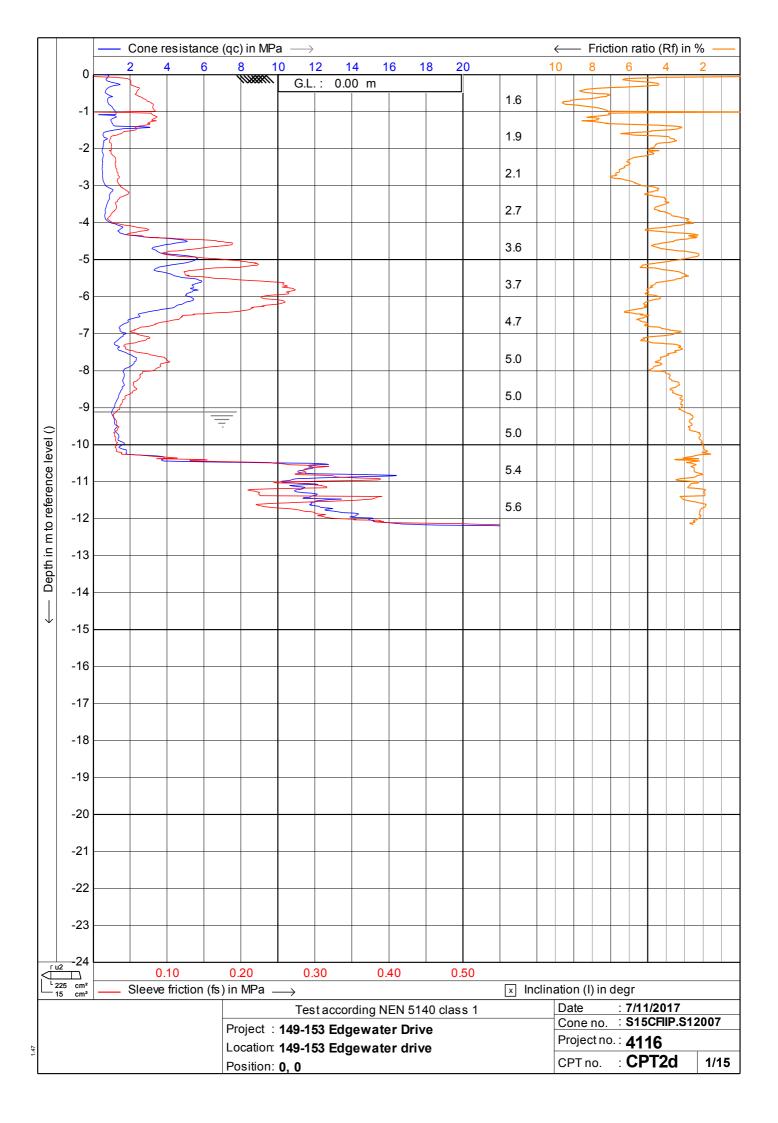


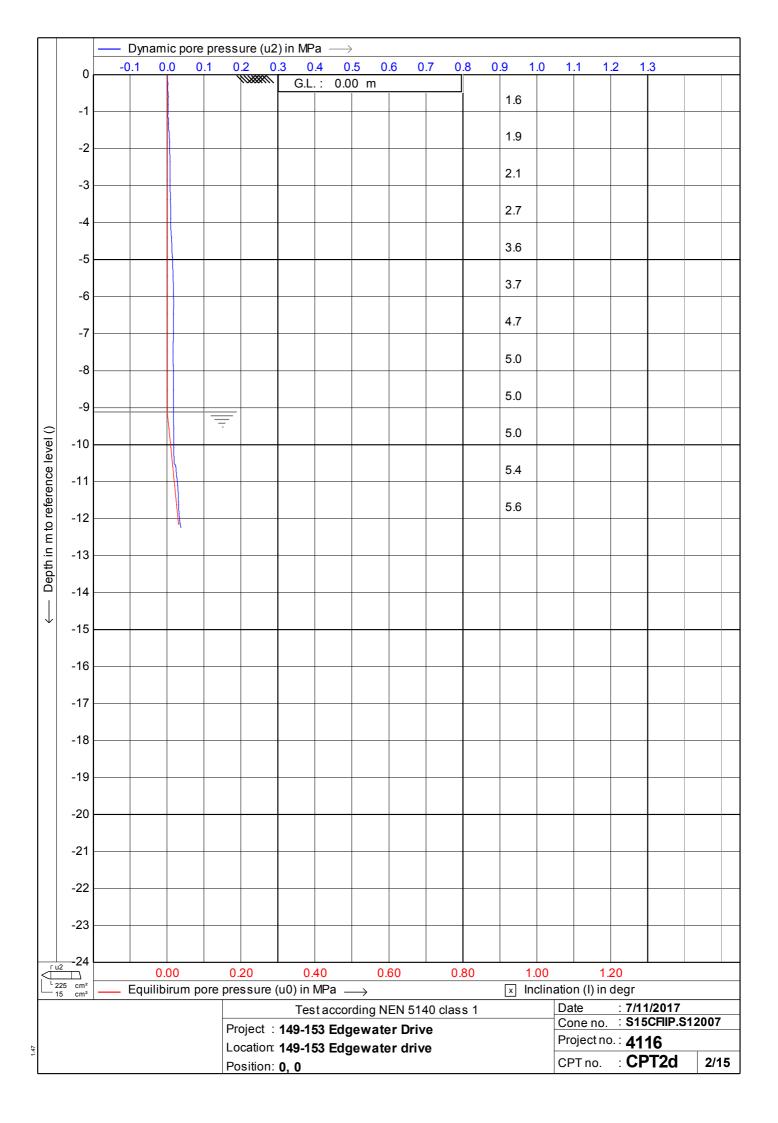


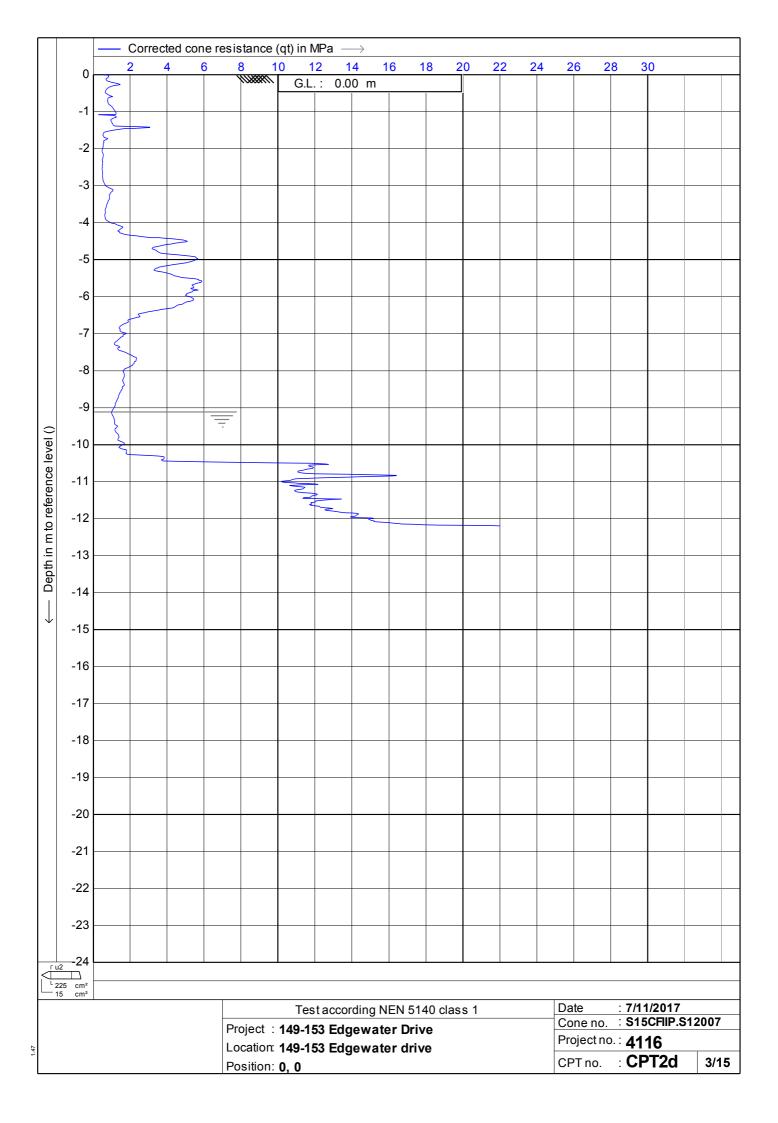


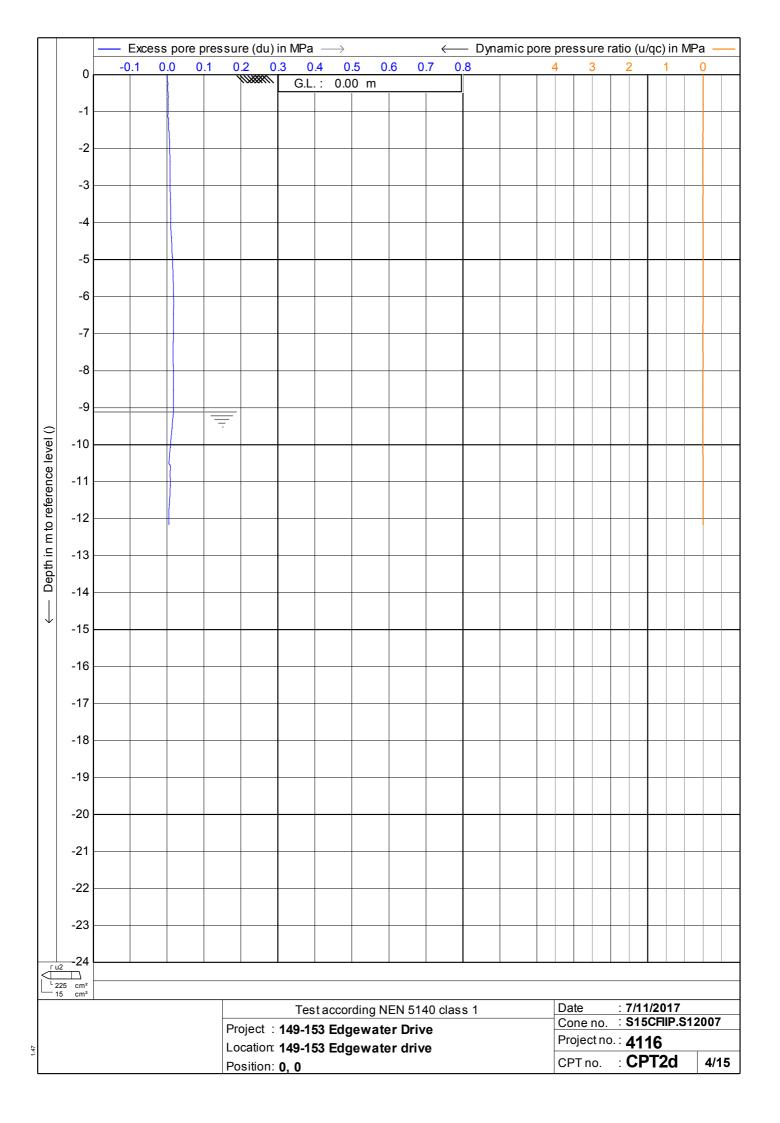


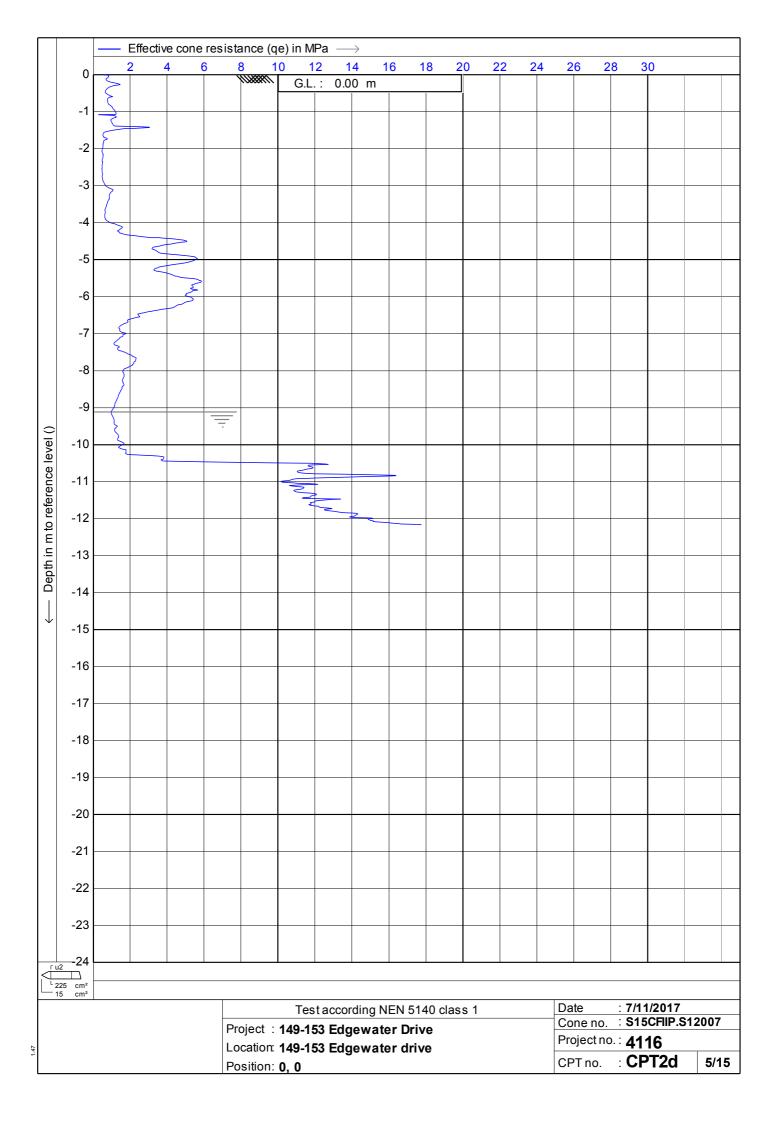


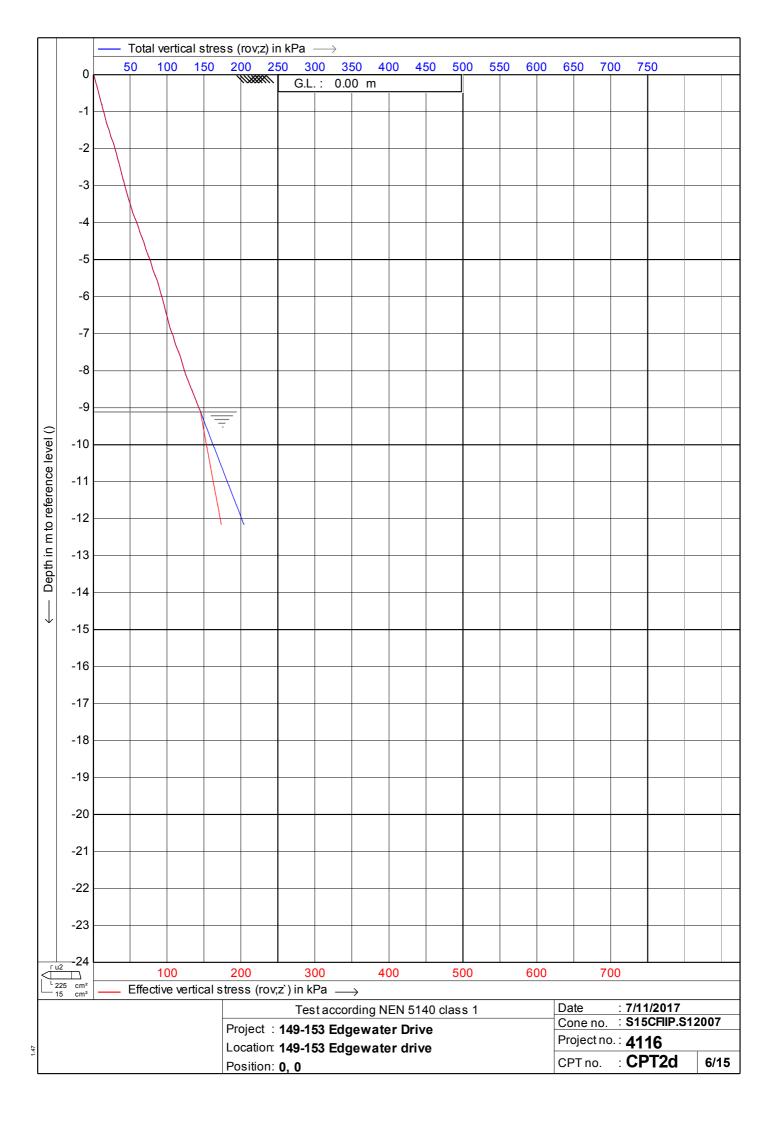


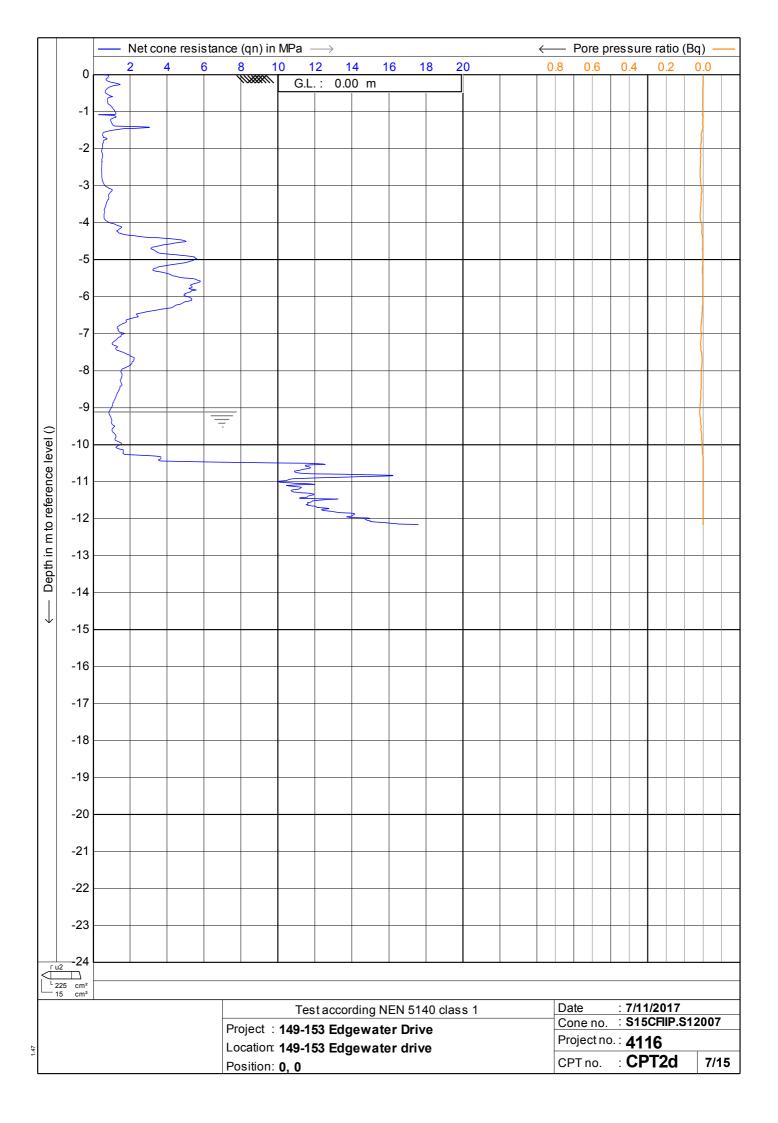


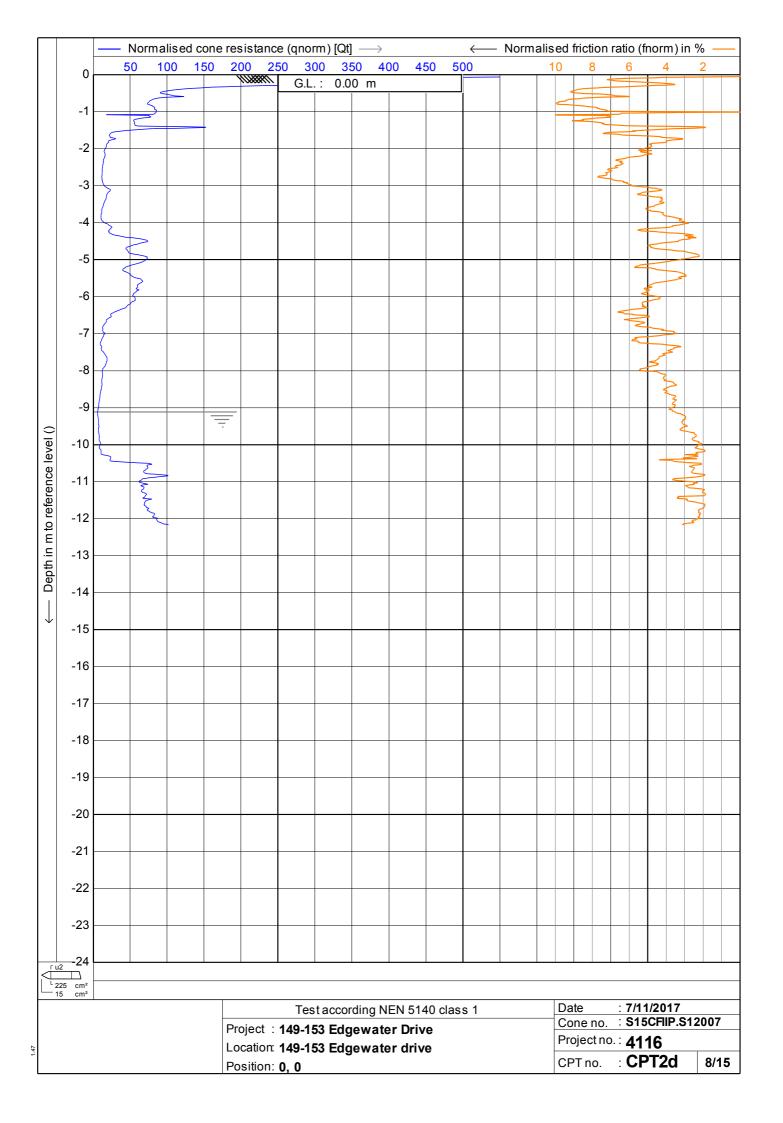


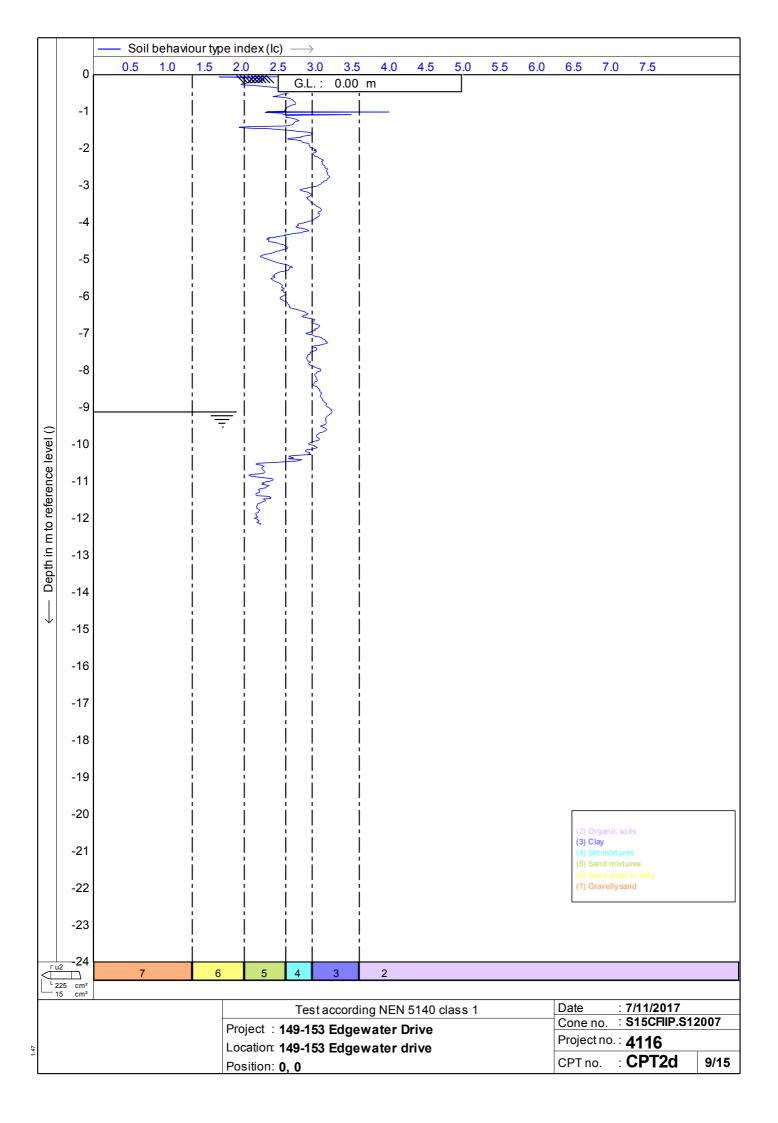


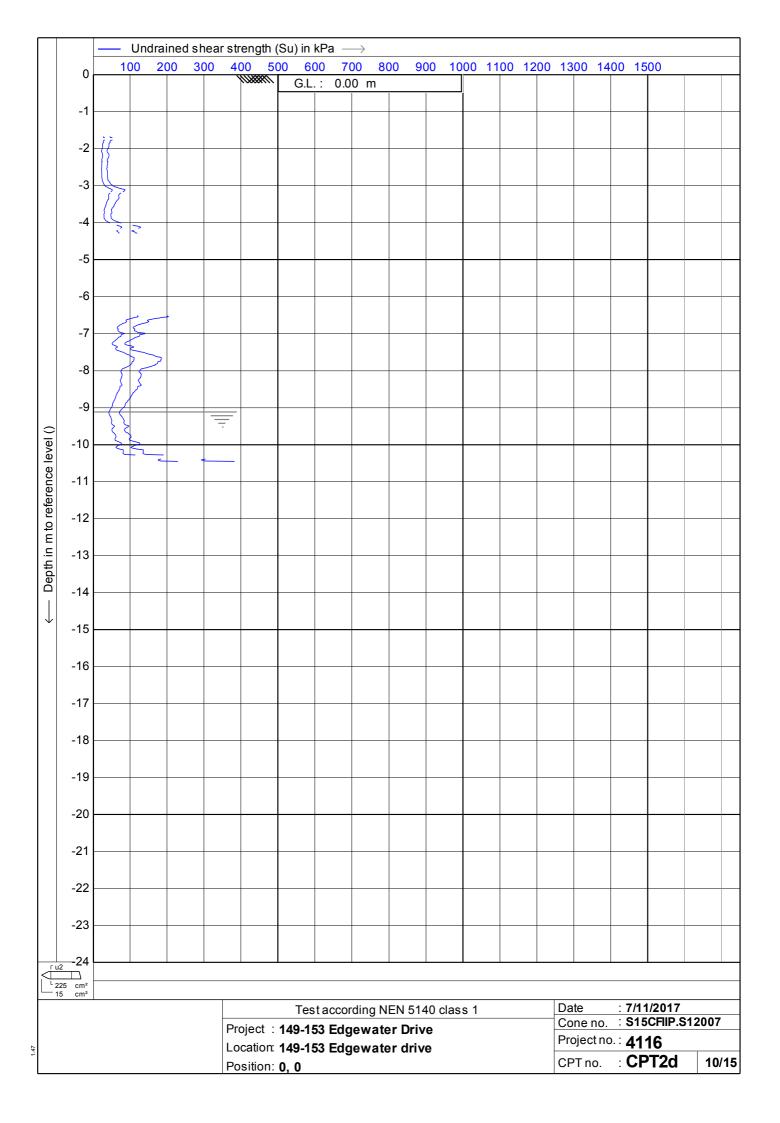


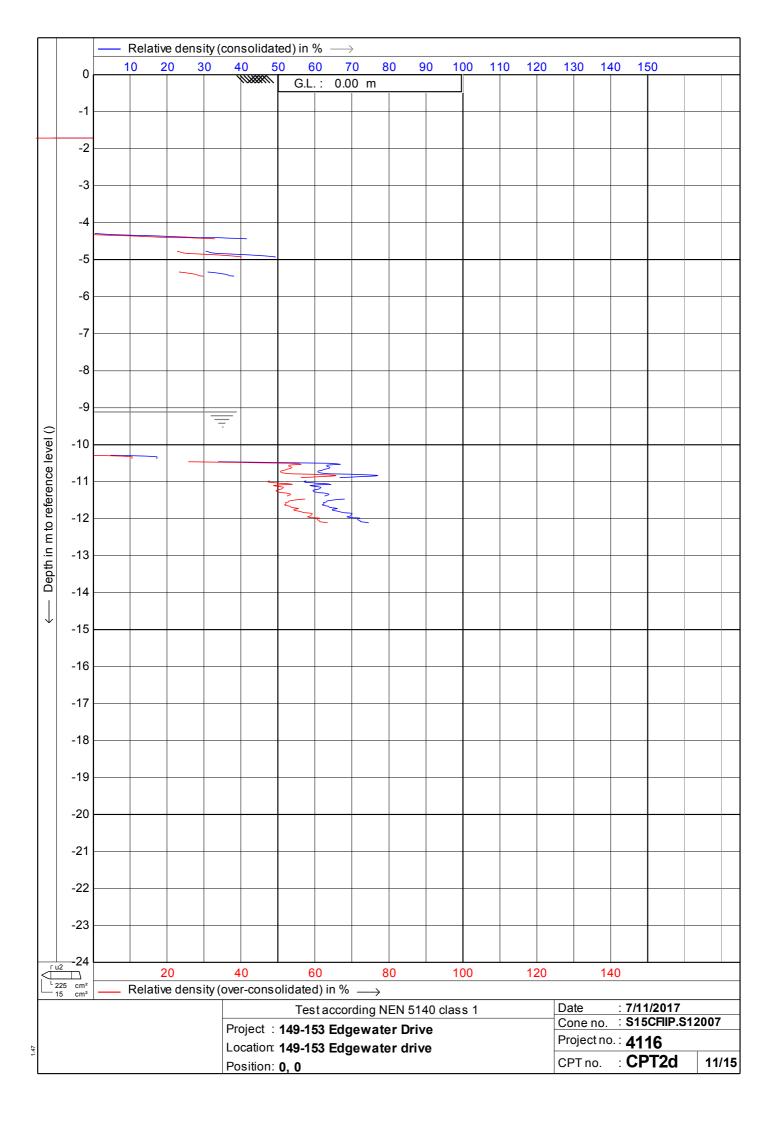


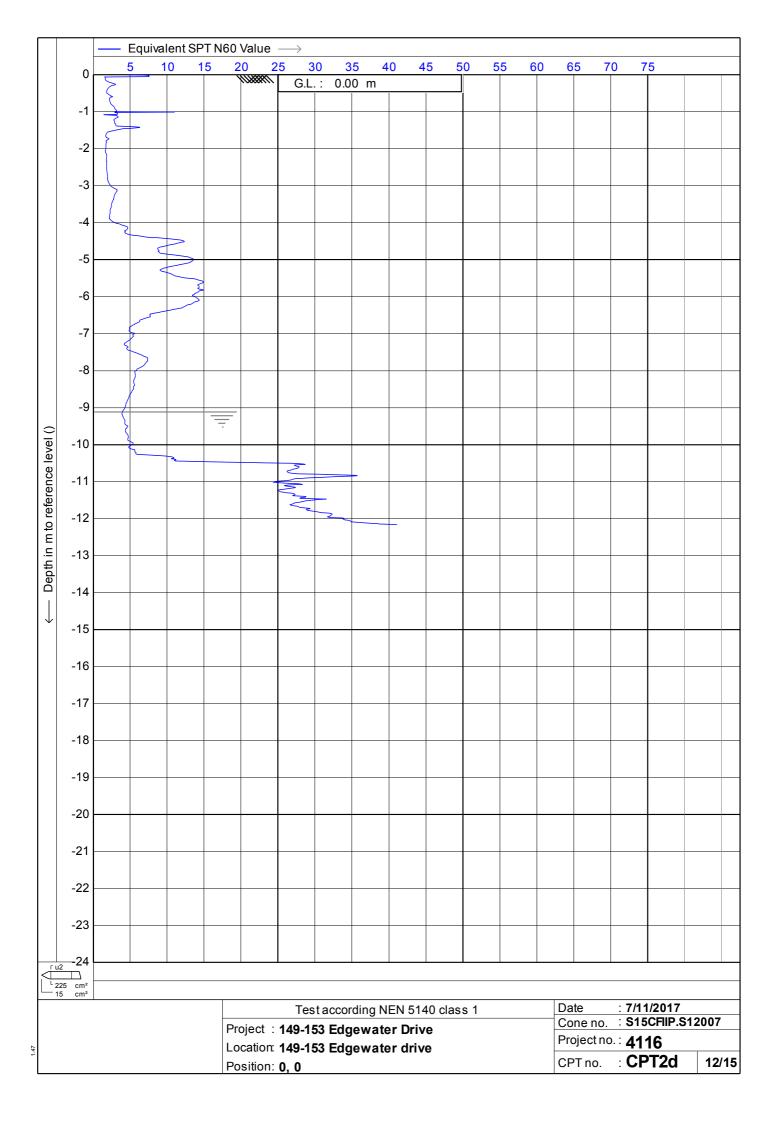


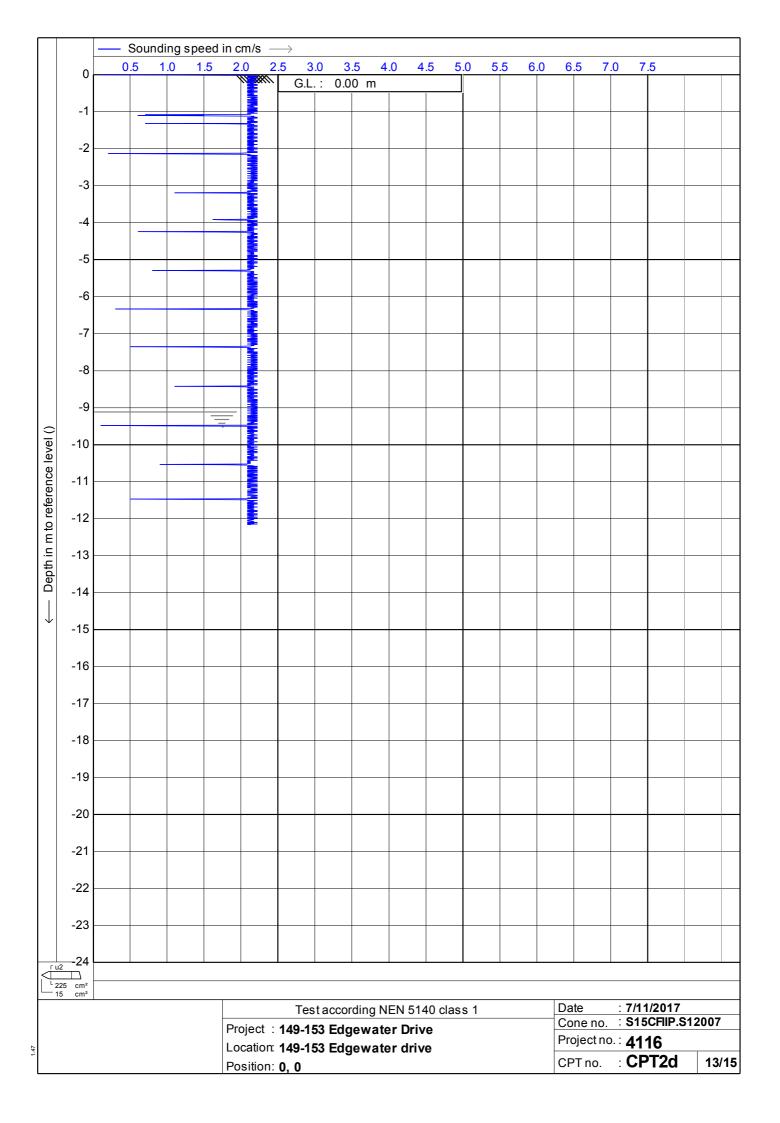


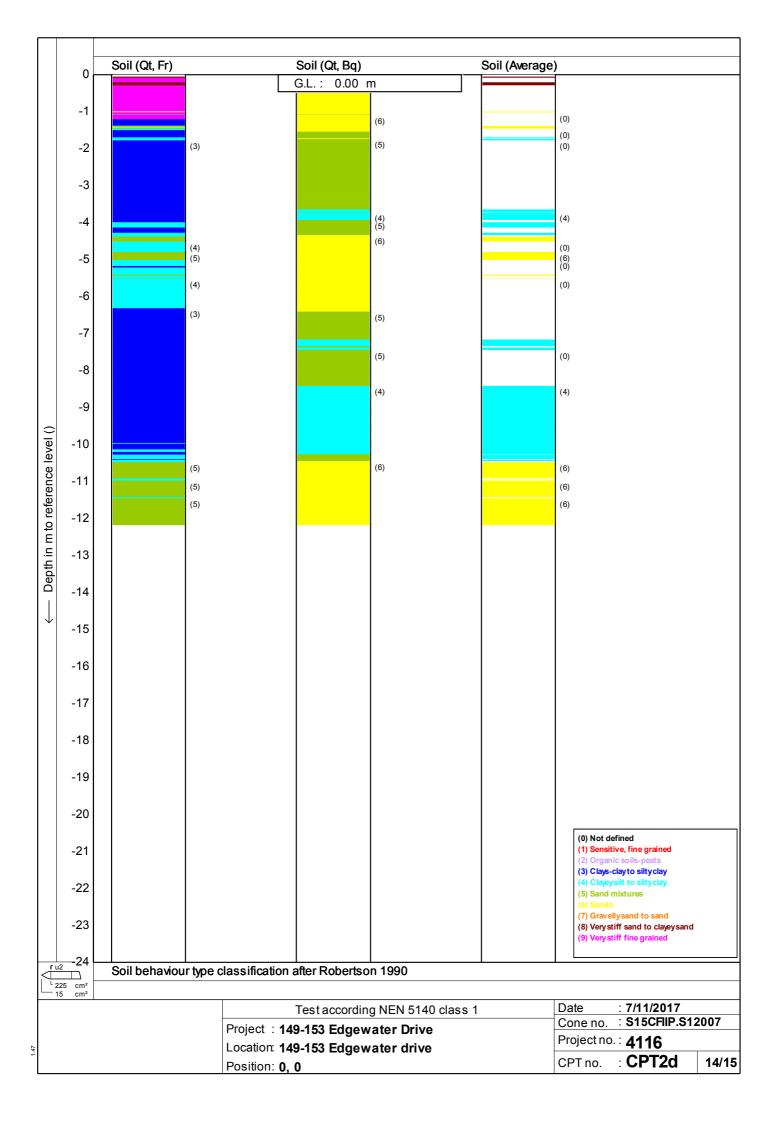


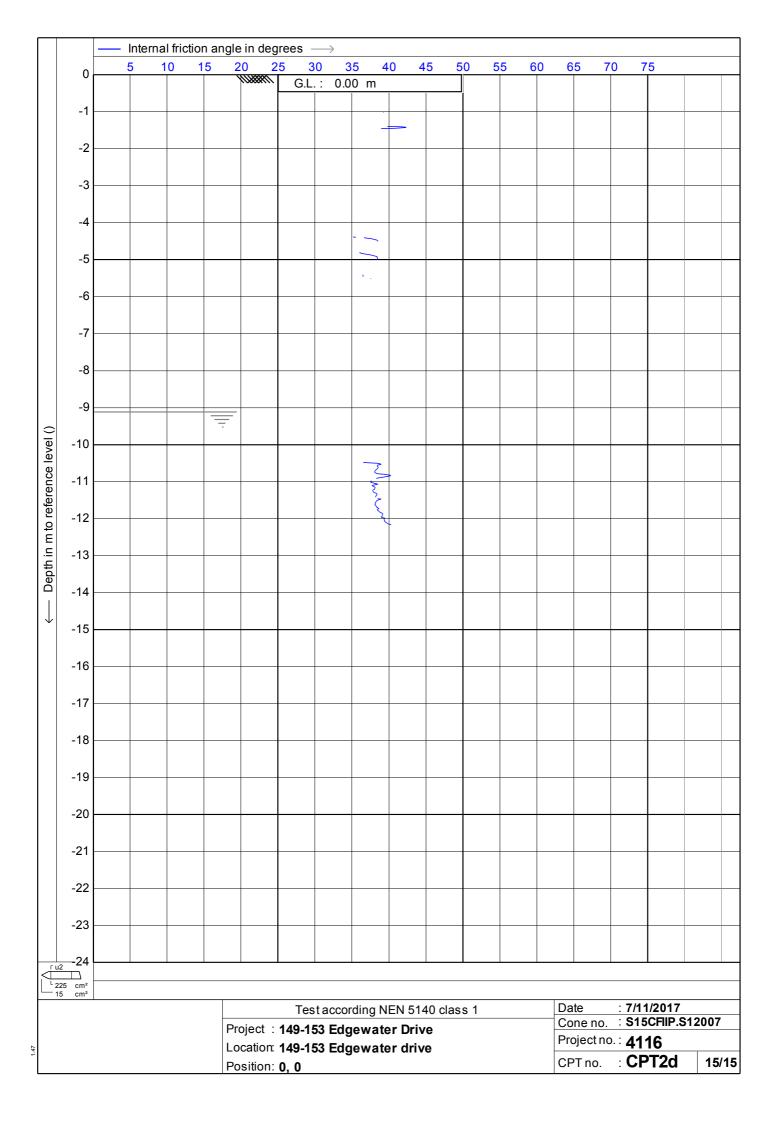


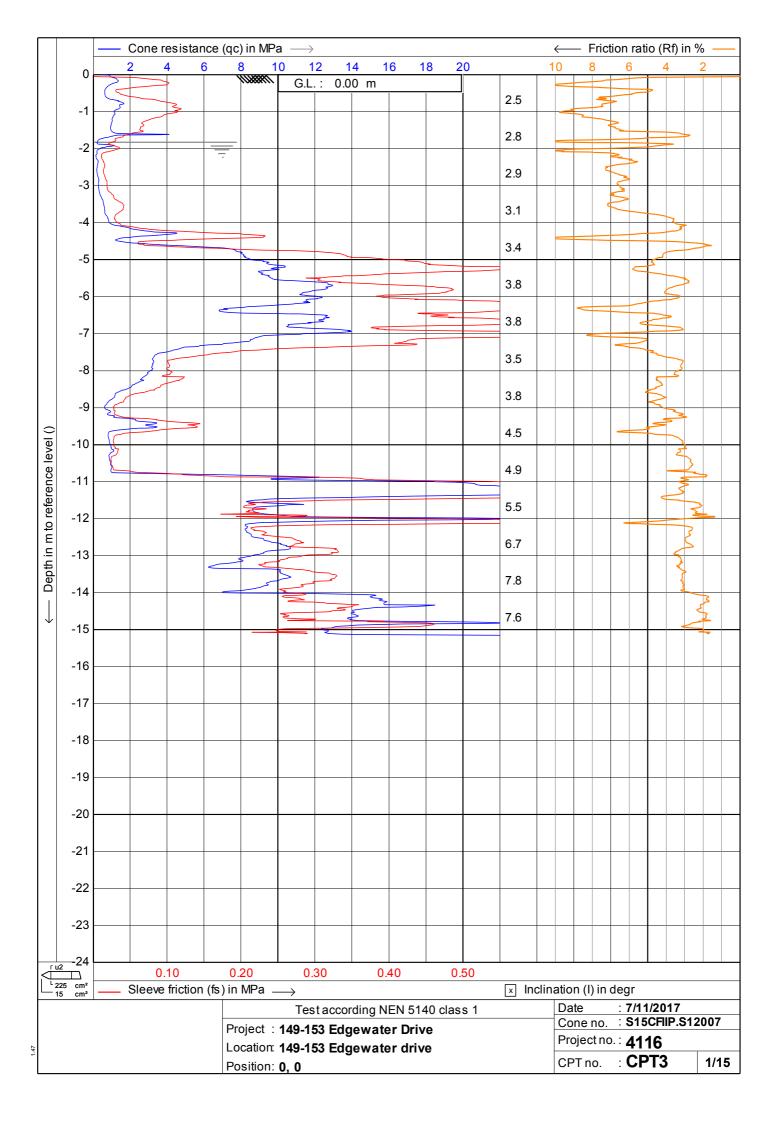


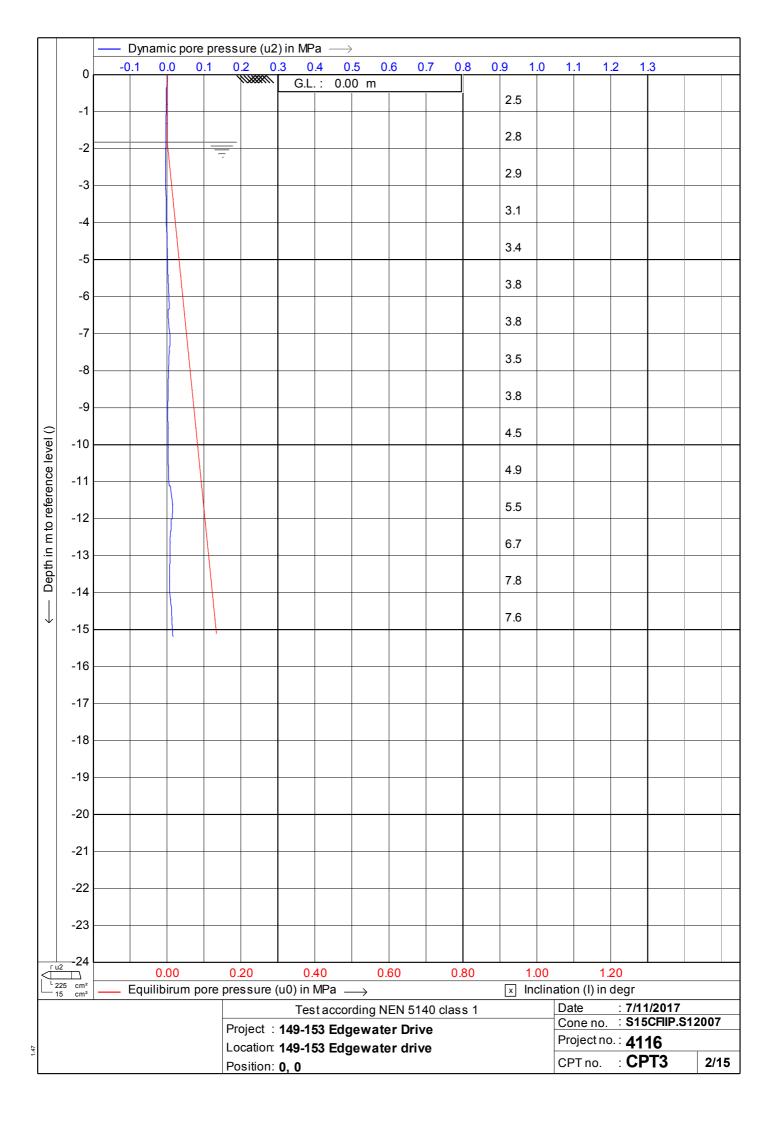


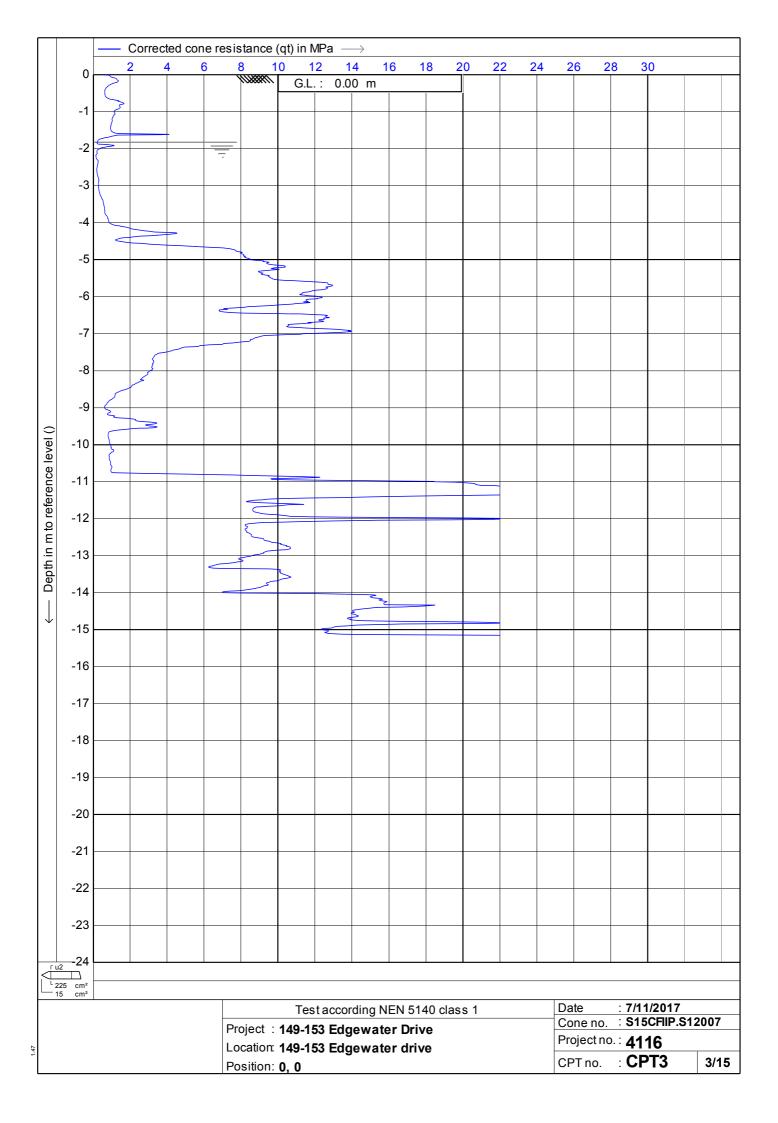


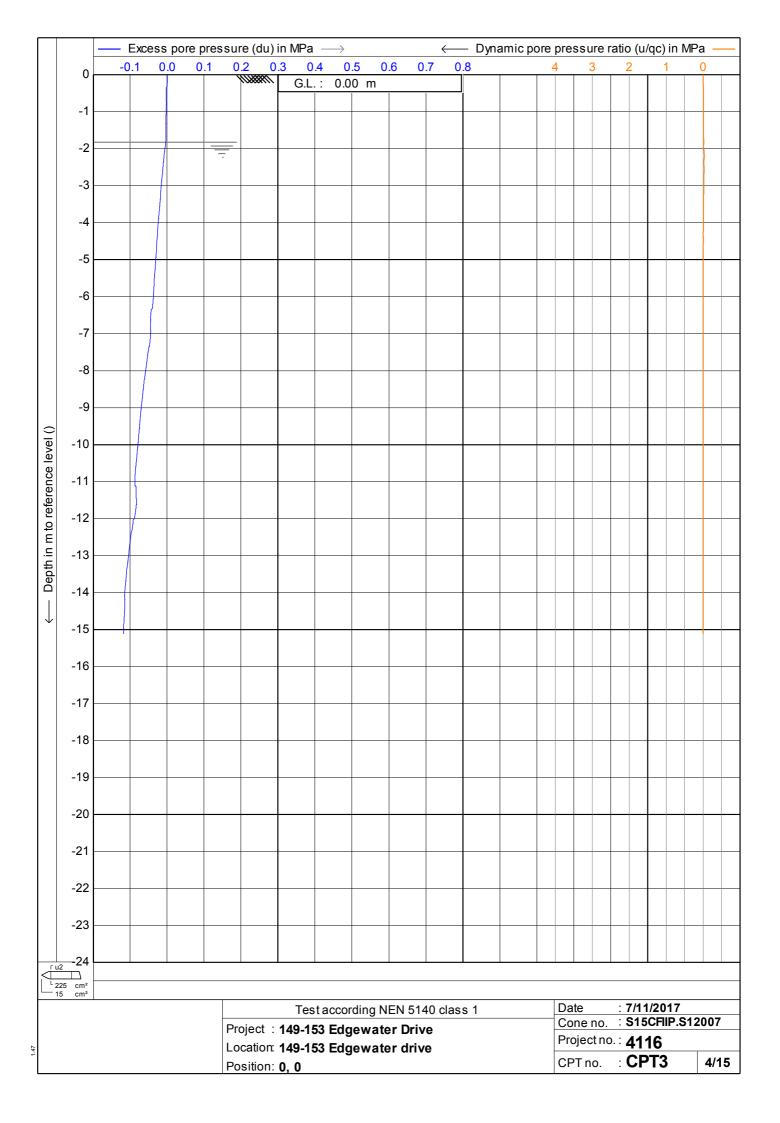


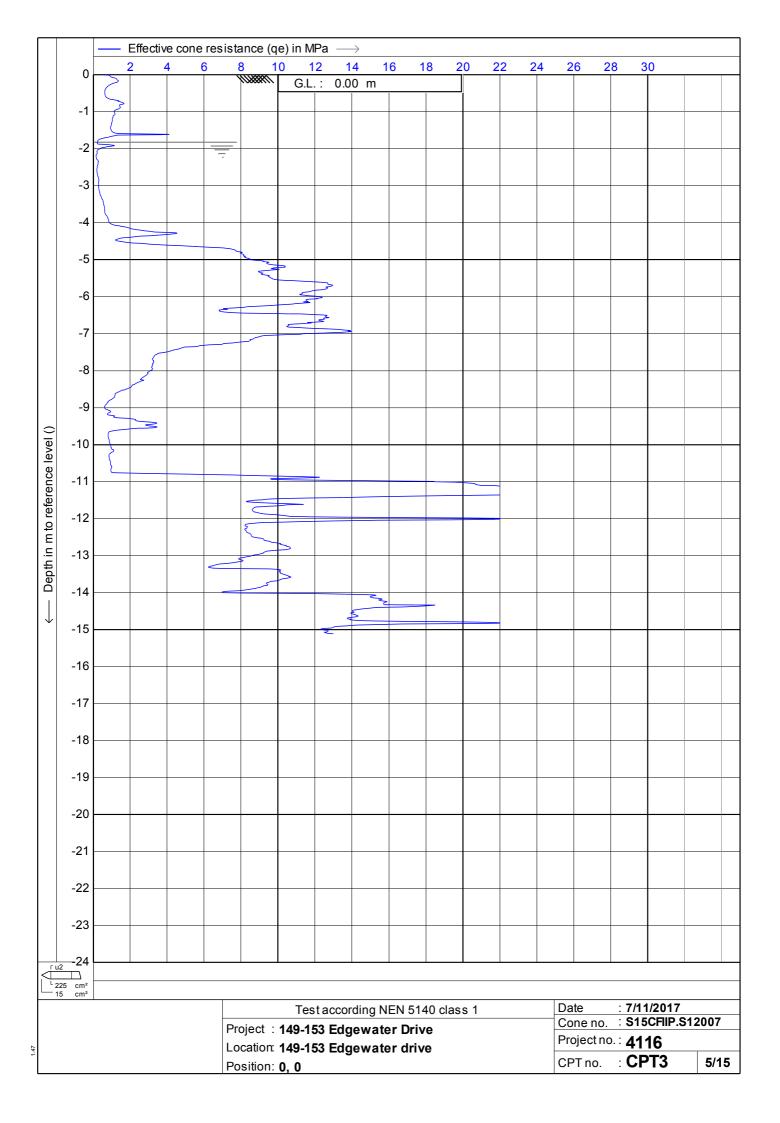


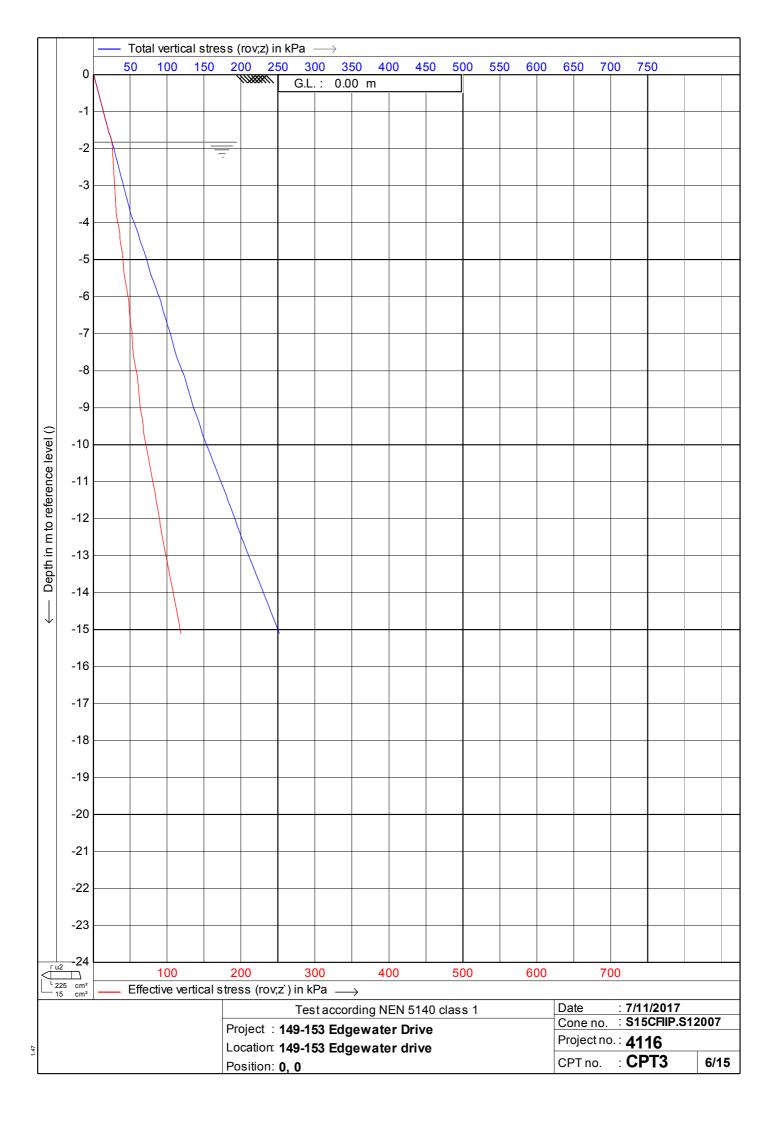


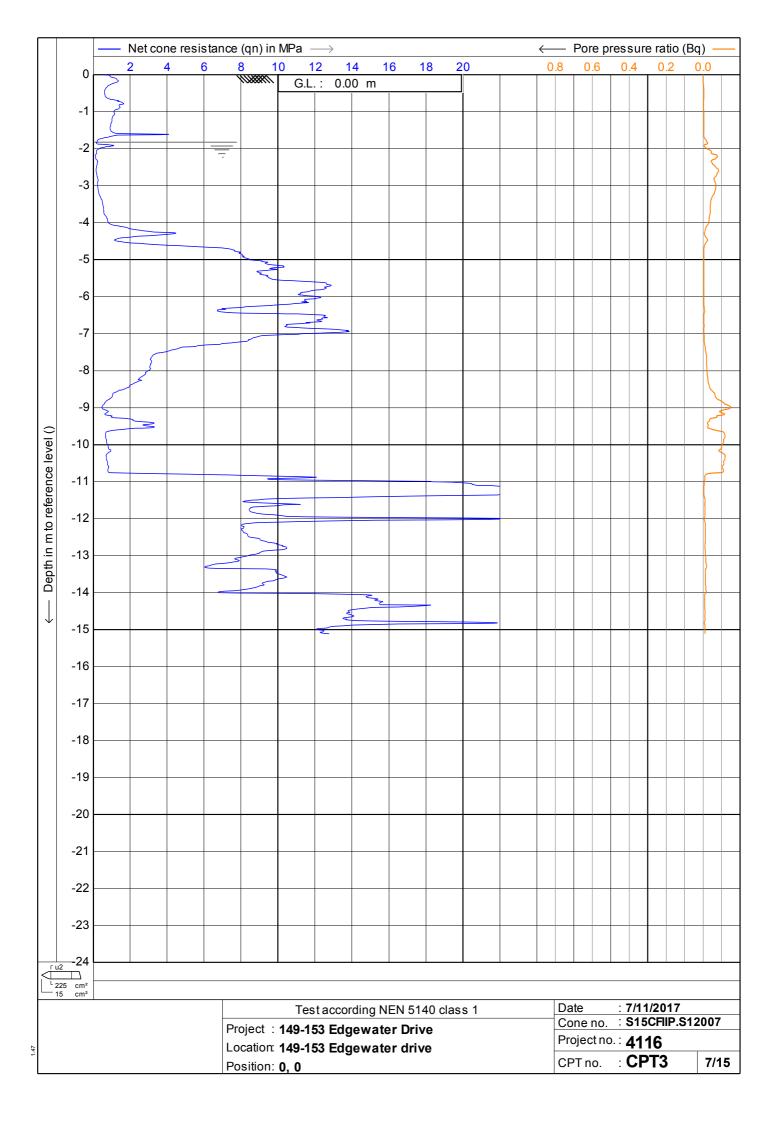


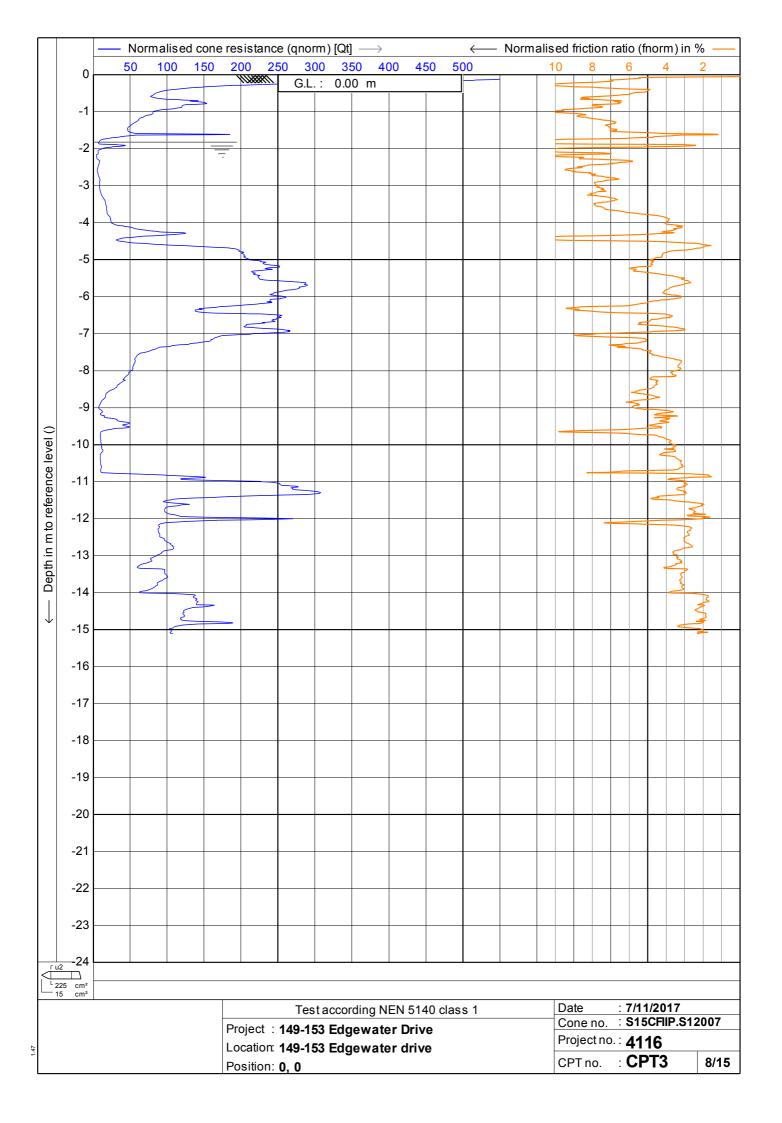


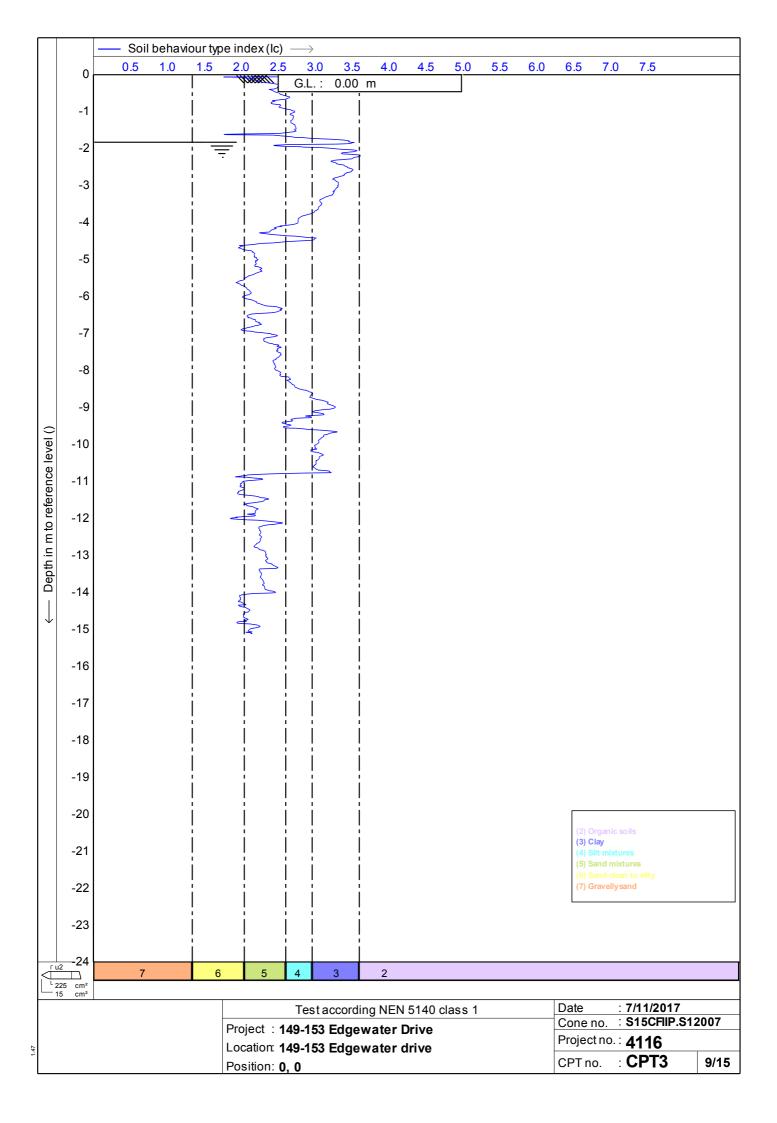


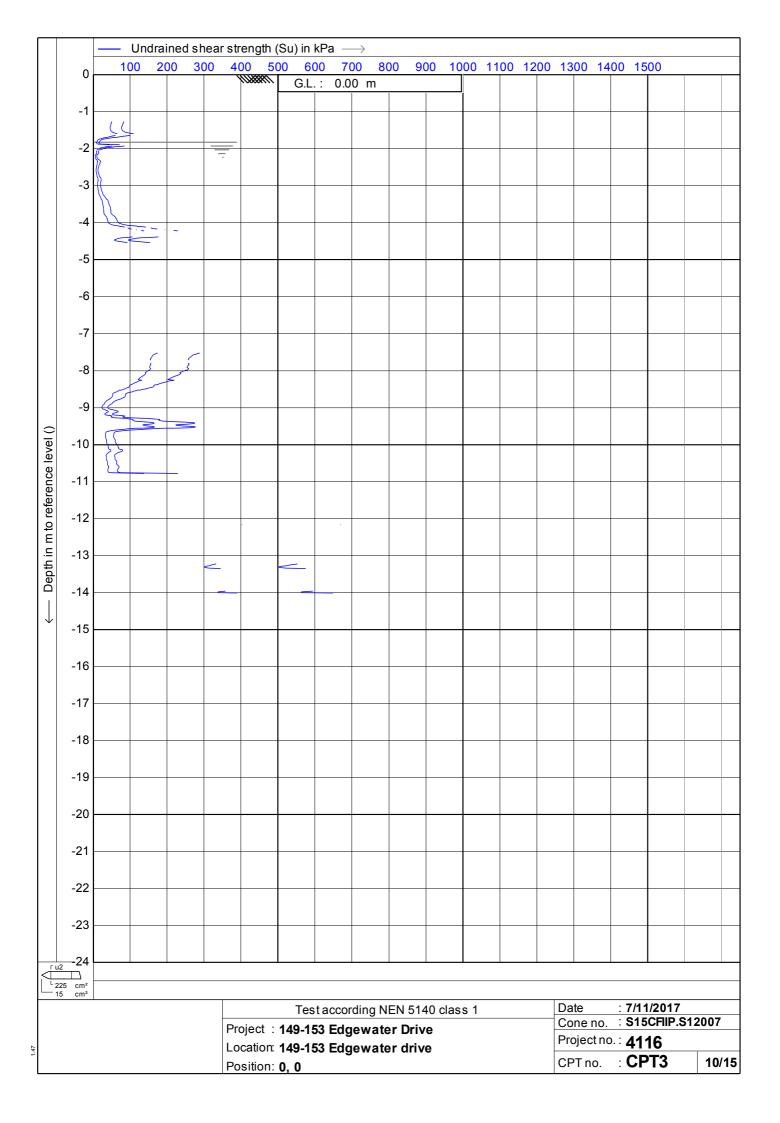


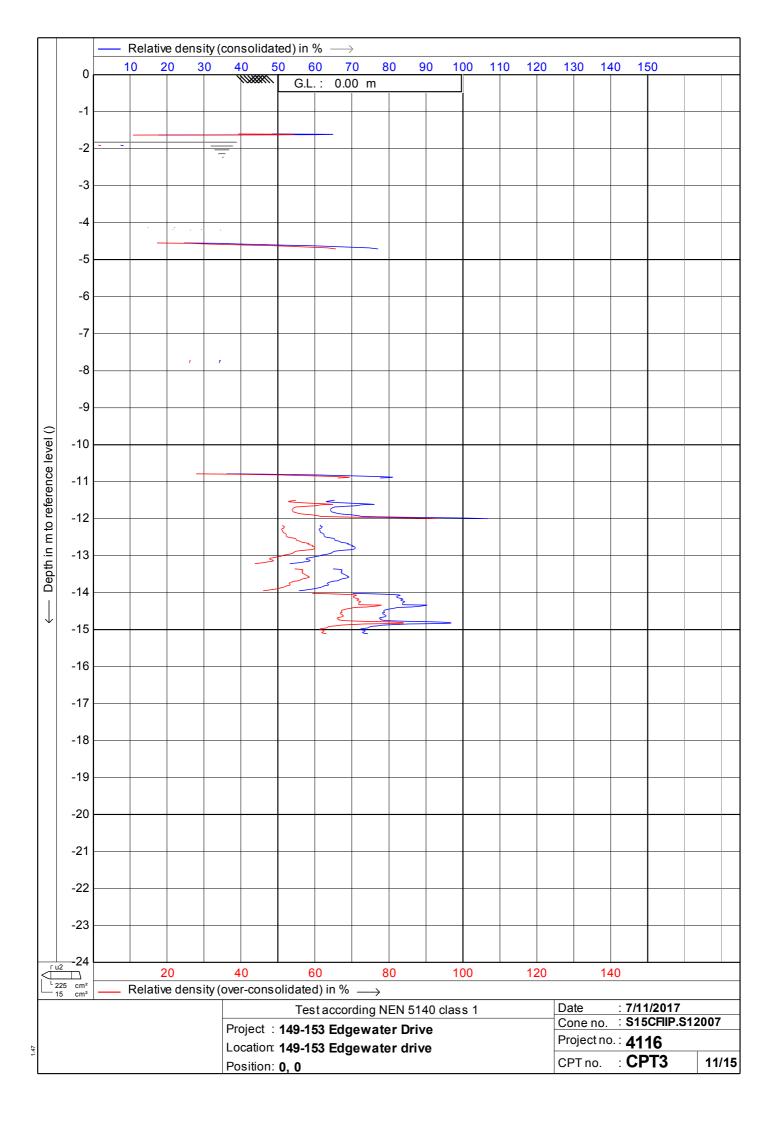


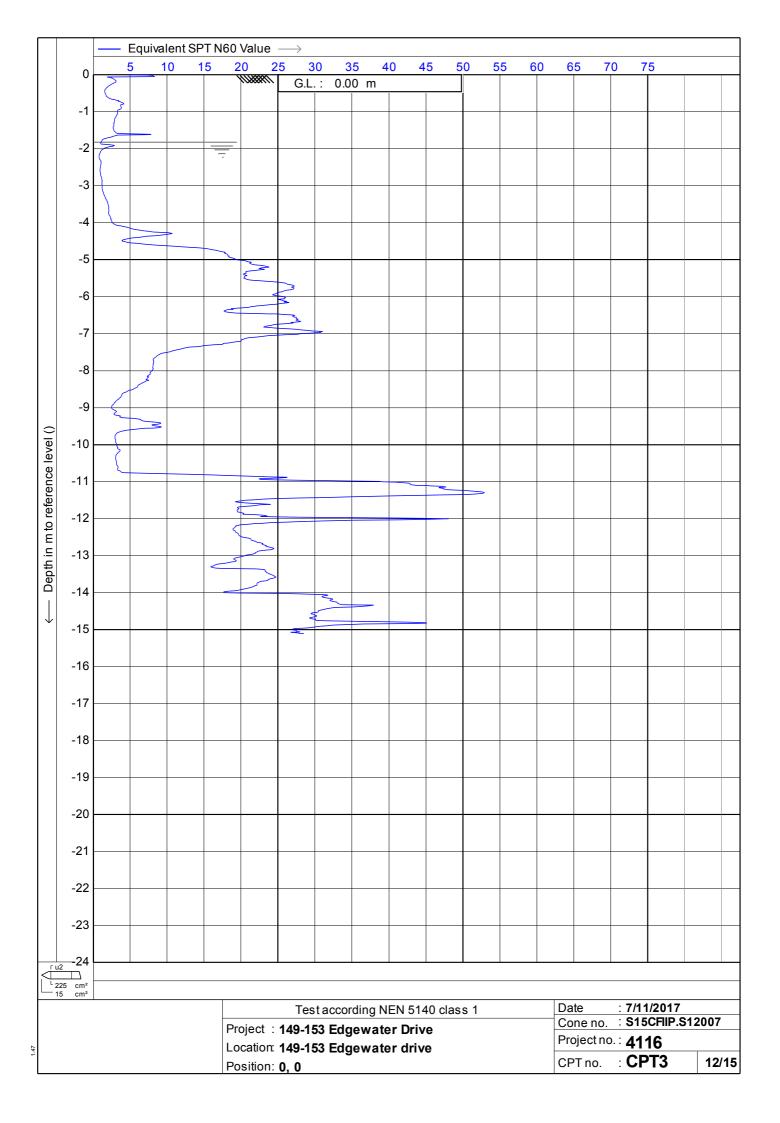


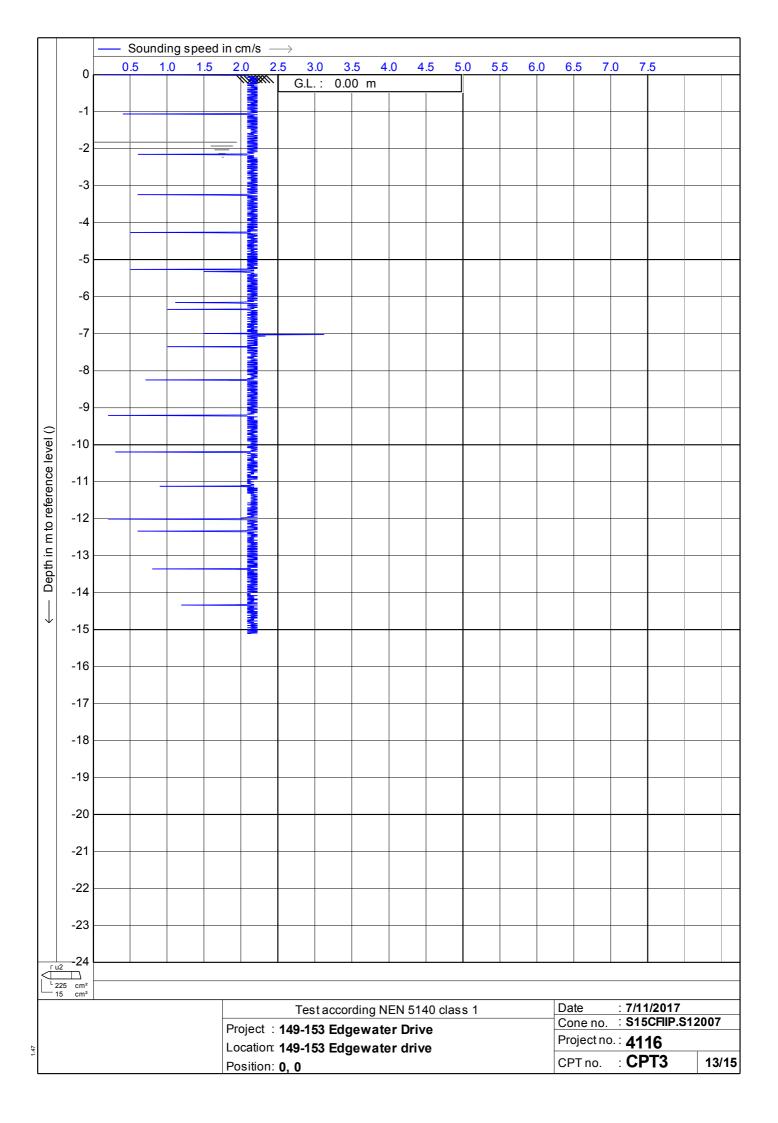


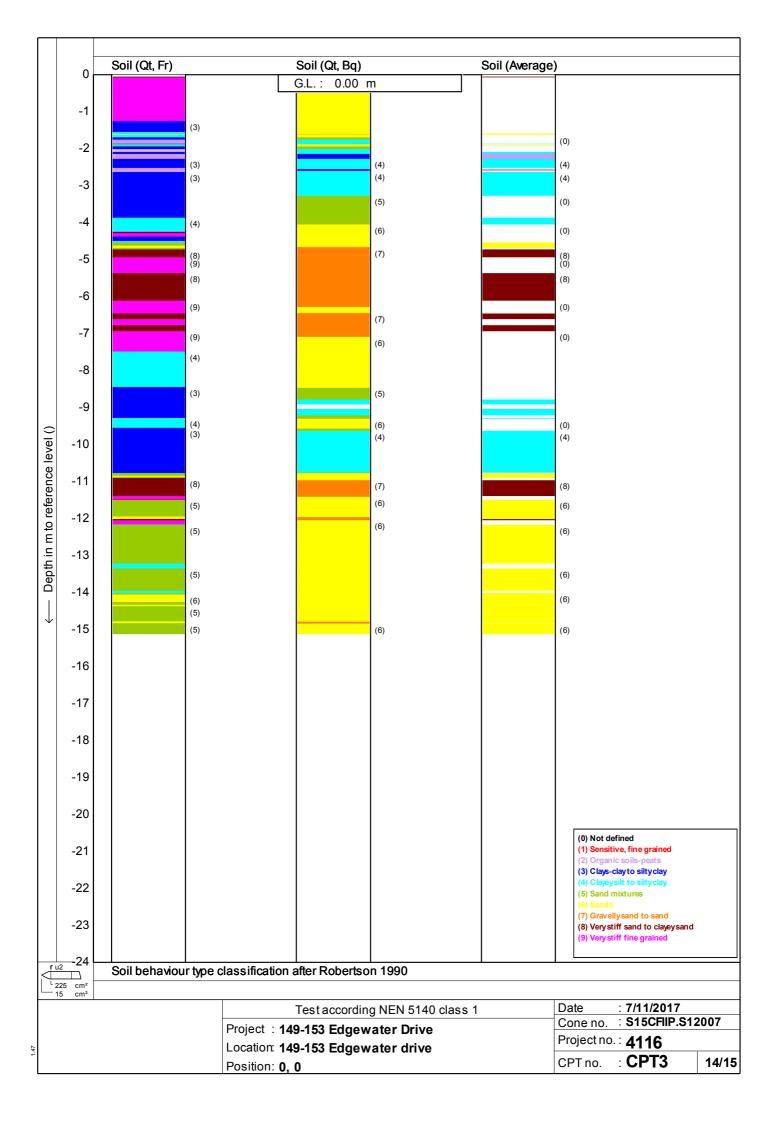


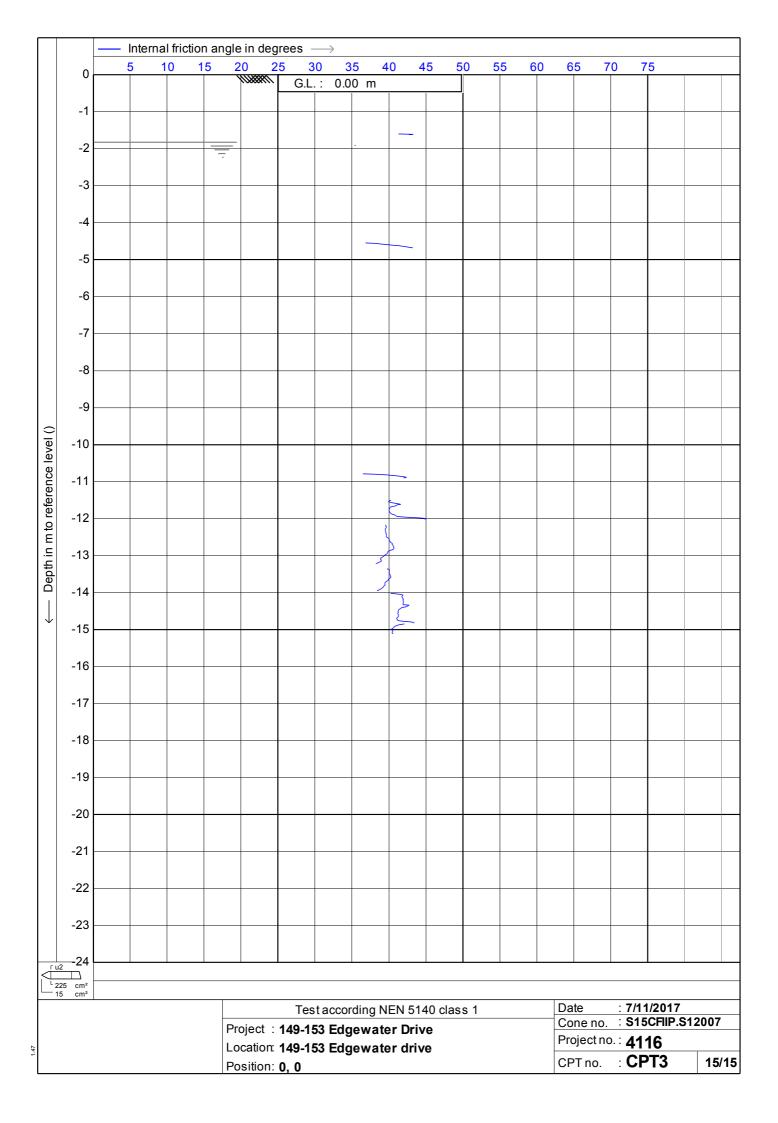


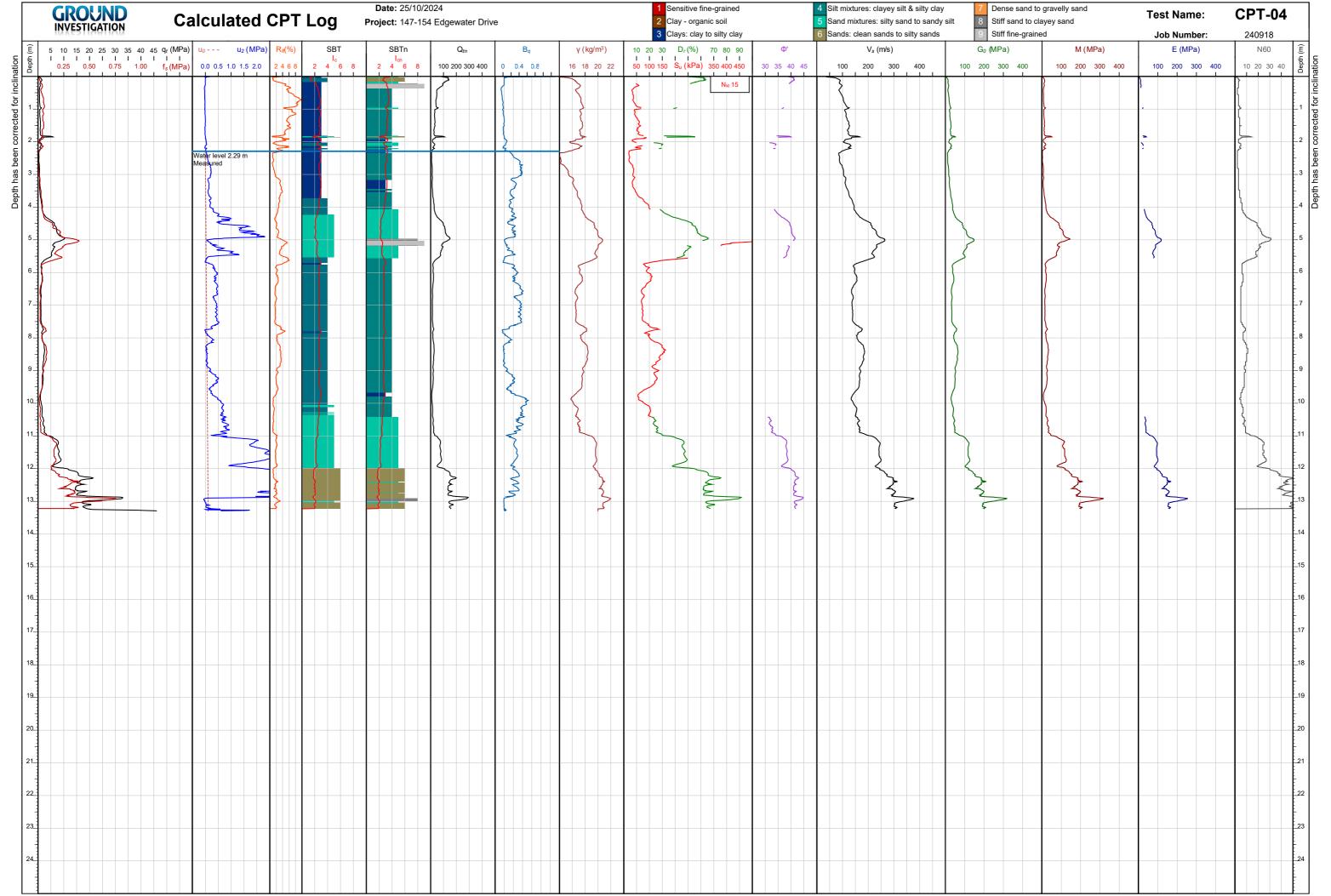












CPT Details

CPT Formulas

Test Name:

Job Number: 240918

CPT-04

General Information

Project: 147-154 Edgewater Drive
Contractor: Ground Investigation

WGS84 (deg): -36.924567, 174.879638 Elevation (m): Unknown

Date: 25/10/2024 11:48:08 AM

Test Setup

Standard: ISO 22476-1:2012

Test type:

 Pre-Drill (m):
 0.00

 Start length (m):
 0

 Cone ID:
 001188

Cone type: 10cm2 Compression

Cone class: Manufacturer:

Calibration date:

Cone area ratio: 0.79
Sleeve area ratio: 0
Sleeve offset: 0.07

Filter type: U2 Porous - Stainless Steel

Saturation method: Silicone oil

Rig setup variation:

Test Result

Termination reason: Limit of reaction force

Termination depth: 13.46
Ground water level: 2.29
Water level origin: Measured
Backfill: None

Observations and materials encountered:

Deviations and Deviations: Interuptions:

Corrections applied:

Test catagory:

Operator name: Marcelo Martinez

Manager name:

154 Edgewater Drive, Pakuranga, Auckland 2010, New

ealand.

Rig details: Pagani 03
Location method: Handheld GPS

Elevation datum:

Location:

Corrected cone resistance: $q_t = q_c + u_2 \cdot (1 - a)$

 $R_f = \frac{f_s}{q_c} \cdot 100$

Non-normalised soil behaviour type

(SBT):

Friction ratio:

Calculated using q_{net} and R_f for the Robertson's 2010 non-normalised CPT soil behaviour chart using zone equations defined by P.W. Mayne in "Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and

DMT" 2016

Soil behaviour type index, (used for $I_c = (3.47 - 10^{-3})$

non-normalised SBT) :

 $I_c = ((3.47 - \log(q_t))^2 + (\log(R_f) + 1.22)^2)^{0.5}$

Friction ratio:

$$F_r = \frac{f_s}{q_t - \sigma_{v0}} \bullet 100$$

Refined normalised cone resistance:

$$Q_{\rm tn} = \frac{\left(q_t - \sigma_{v0}\right) / \sigma_{\rm atm}}{\left(\sigma'_{v0} / \sigma_{\rm atm}\right)^n} \quad \text{where} \quad n = 0.381 \bullet I_c + 0.05 \bullet \left(\sigma'_{v0} / \sigma_{\rm atm}\right) - 0.05 \le 1.0$$

Normalised soil behaviour type index: $I_c = ((3.47 - \log(Q_{tn}))^2 + (\log(F_r) + 1.22)^2)^{0.5}$

Normalised pore pressure: $B_q = \frac{\Delta u}{q_t - \sigma_{v0}}$

Normalised soil behaviour type

Calculated using Q_m and F_r for the Robertson's 2010 normalised CPT soil behaviour chart using zone equations defined by P.W. Mayne in "Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and DMT"

2016

Undrained shear strength (s_u):

$$D_r = 100 \cdot \sqrt{\frac{Q_{\text{tn}}}{350}}$$

Friction angle (Φ'):

Relative density (D_r):

$$\Phi' = 17.60 + 11 \cdot \log(Q_{\rm tn})$$

Small strain shear modulus (G₀):

$$G_0 = (qt - \sigma_{v0}) \cdot (0.0188 \cdot 10^{(0.55 \cdot I_c + 1.68)})$$

Estimated shear wave velocity (V_s):

$$V_S = \sqrt{\frac{G_0}{\rho}}$$
 where $\rho = \frac{\gamma}{\gamma_w}$

Constrained modulus (M):

$$M = \alpha_M (q_t - \sigma_{v0})$$

when
$$I_c > 2.2$$

$$\alpha_M = Q_t$$
 when $Q_t < 14$

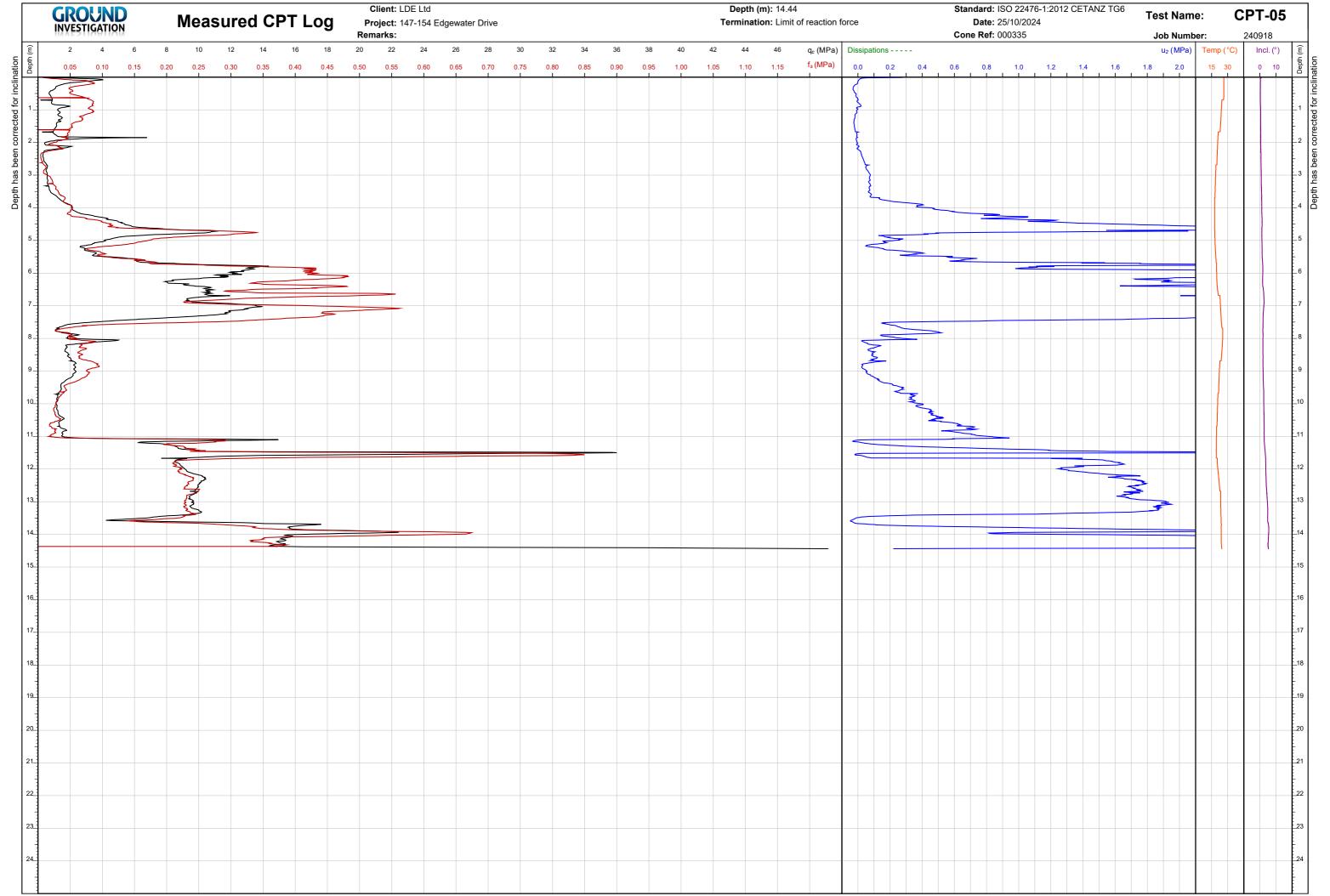
$$\alpha_M = 14$$
 when $Q_t > 14$

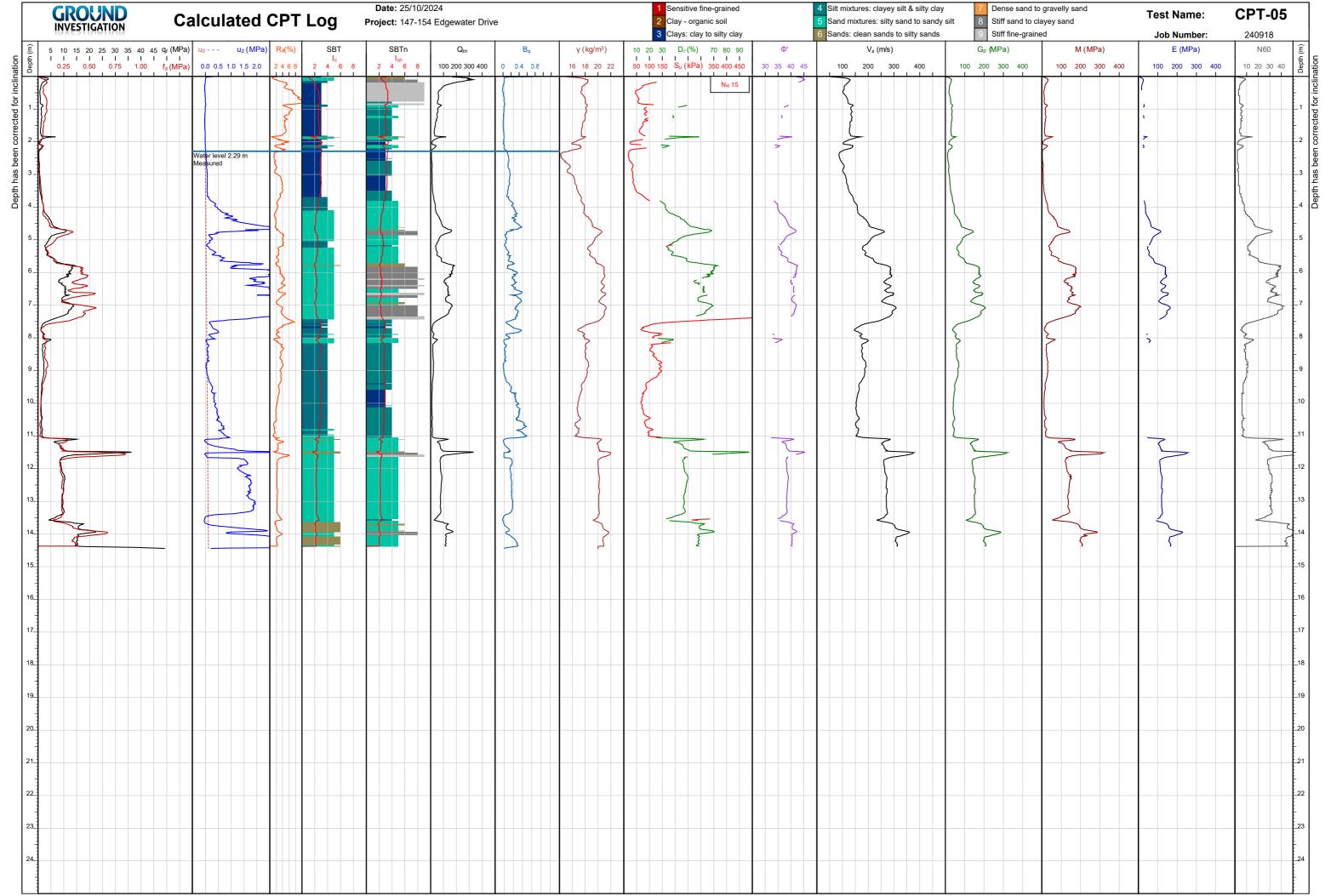
when
$$I_c < 2.2$$

$$\alpha_M = 0.0188 \cdot 10^{(0.55 \cdot I_c + 1.68)}$$

Youngs modulus (E_s):

$$E_s = (qt - \sigma_{v0}) \cdot (0.015 \cdot 10^{(0.55 \cdot I_c + 1.68)})$$


Estimated SPT N₆₀:


$$N_{60} = \frac{q_t / p_a}{8.5 \cdot \left(1 - \frac{I_c}{4.6}\right)}$$

Zero Readings

kPa	Initial zeros	Final zeros	Final difference	Clean zeros	Clean difference
Cone resistance	22,763.80	22,769.50	5.64	-	-
Sleeve friction	258.60	258.30	-0.26	-	-
Pore pressure	2,849.80	2,849.30	-0.55	-	-

Report Created: 25/10/2024 10:58:45 PM, Page 2 of 2

CPT Details

CPT Formulas

Test Name:

Job Number: 240918

CPT-05

General Information

Project: 147-154 Edgewater Drive

Contractor: Ground Investigation

WGS84 (deg): -36.924670, 174.879425

Elevation (m): Unknown

Date: 25/10/2024 1:12:52 PM

Test Setup

Standard: ISO 22476-1:2012

Test type:

 Pre-Drill (m):
 0.00

 Start length (m):
 0

 Cone ID:
 000335

Cone type: 10cm2 Compression

Cone class: Manufacturer:

Calibration date:
Cone area ratio:

Cone area ratio: 0.8

Sleeve area ratio: 0

Sleeve offset: 0.07

Filter type: U2 Porous - Stainless Steel

Saturation method: Silicone oil

Rig setup variation:

Test Result

Termination reason: Limit of reaction force

Termination depth: 14.59
Ground water level: 2.29
Water level origin: Measured
Backfill: None

Observations and materials encountered:

Deviations and interuptions: Interuptions:

Corrections applied:

Test catagory:

Operator name: Marcelo Martinez

Manager name:

, New Corre

154 Edgewater Drive, Pakuranga, Auckland 2010, New

cealand

Rig details: Pagani 03
Location method: Handheld GPS

Elevation datum:

Location:

Corrected cone resistance: $q_t = q_c + u_2 \cdot (1 - a)$

 $R_f = \frac{f_s}{q_c} \cdot 100$

Non-normalised soil behaviour type

(SBT):

Friction ratio:

Calculated using q_{net} and R_f for the Robertson's 2010 non-normalised CPT soil behaviour chart using zone equations defined by P.W. Mayne in "Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and

DMT" 2016

Soil behaviour type index, (used for $I_c = (3.47 -$

non-normalised SBT) :

 $I_c = ((3.47 - \log(q_t))^2 + (\log(R_f) + 1.22)^2)^{0.5}$

Friction ratio:

 $F_r = \frac{f_s}{q_t - \sigma_{v0}} \bullet 100$

Refined normalised cone resistance:

 $Q_{\rm tn} = \frac{\left(q_t - \sigma_{v0}\right) / \sigma_{\rm atm}}{\left(\sigma'_{v0} / \sigma_{\rm atm}\right)^n} \quad \text{where} \quad n = 0.381 \bullet I_c + 0.05 \bullet \left(\sigma'_{v0} / \sigma_{\rm atm}\right) - 0.05 \le 1.0$

Normalised soil behaviour type index: $I_c = ((3.47 - \log(Q_{tn}))^2 + (\log(F_r) + 1.22)^2)^{0.5}$

Normalised pore pressure:

 $B_q = \frac{\Delta u}{q_t - \sigma_{v0}}$

Normalised soil behaviour type

Calculated using Q_m and F_r for the Robertson's 2010 normalised CPT soil behaviour chart using zone equations defined by P.W. Mayne in "Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and DMT"

2016

Undrained shear strength (s_u):

 $D_r = 100 \cdot \sqrt{\frac{Q_{\text{tn}}}{350}}$

Friction angle (Φ'):

Relative density (D_r):

 $\Phi' = 17.60 + 11 \cdot \log(Q_{\rm tn})$

Small strain shear modulus (G₀):

 $G_0 = (qt - \sigma_{v0}) \cdot (0.0188 \cdot 10^{(0.55 \cdot I_c + 1.68)})$

Estimated shear wave velocity (V_s):

 $V_{S} = \sqrt{\frac{G_{0}}{\rho}}$ where $\rho = \frac{\gamma}{\gamma_{W}}$

Constrained modulus (M):

 $M = \alpha_{M}(q_{t} - \sigma_{v0})$

when $I_c > 2.2$

 $\alpha_M = Q_t$ when $Q_t < 14$

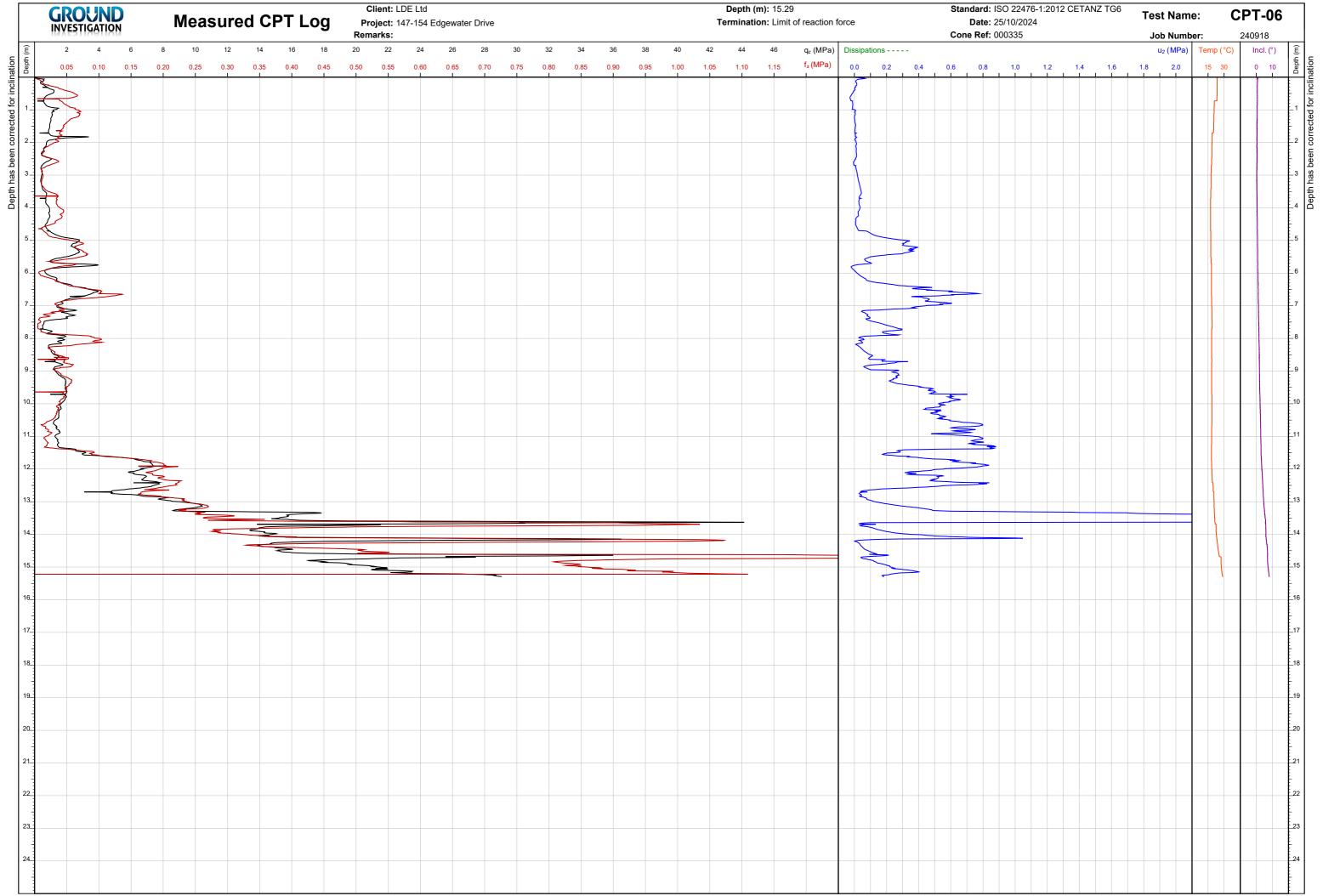
 $\alpha_M = 14$ when $Q_t > 14$

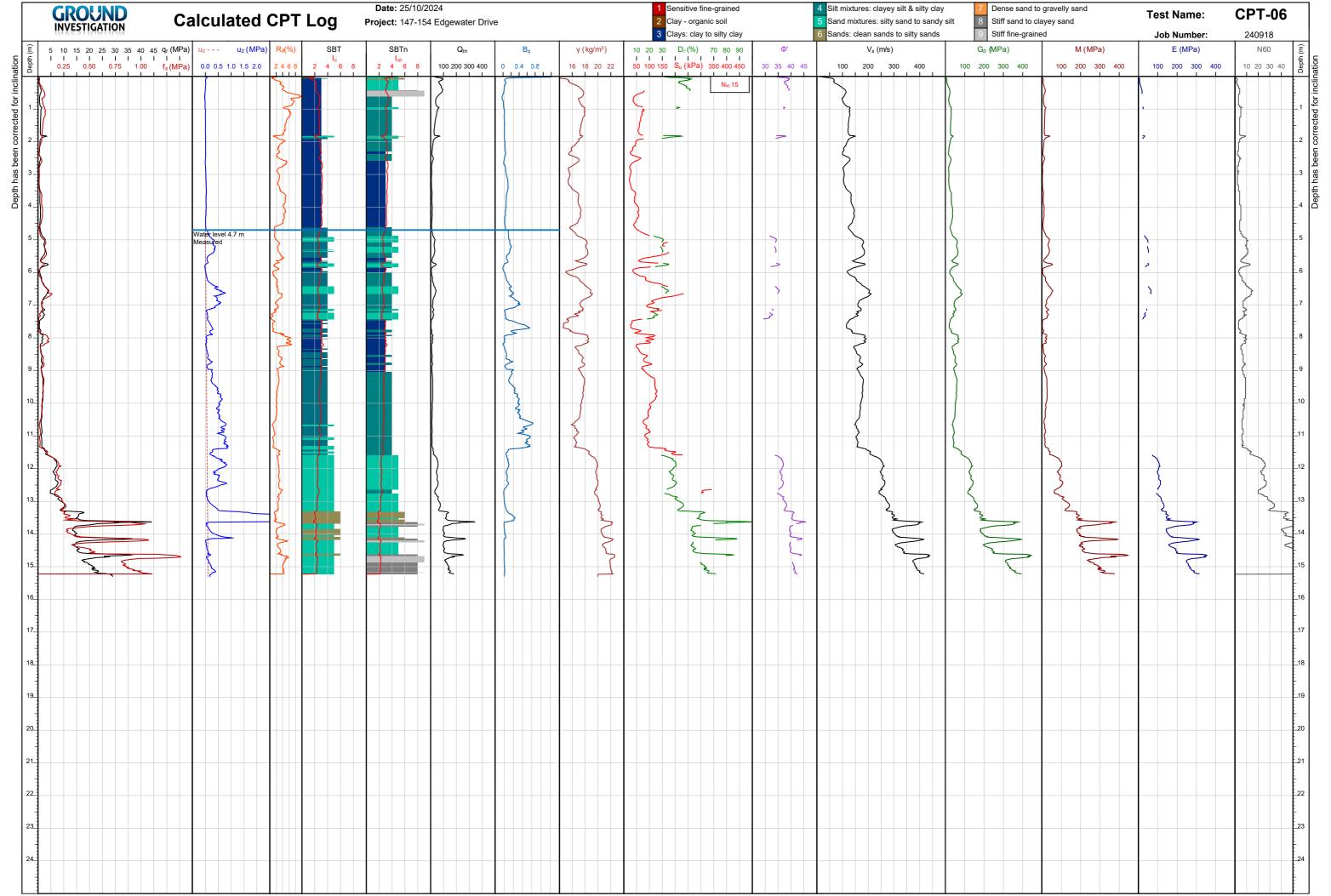
when $I_c < 2.2$

 $\alpha_M = 0.0188 \cdot 10^{(0.55 \cdot l_c + 1.68)}$

Youngs modulus (E_s):

 $E_s = (qt - \sigma_{v0}) \cdot (0.015 \cdot 10^{(0.55 \cdot I_c + 1.68)})$


Estimated SPT N₆₀:


 $N_{60} = \frac{q_t / p_a}{8.5 \cdot \left(1 - \frac{I_c}{4.6}\right)}$

Zero Readings

kPa	Initial zeros	Final zeros	Final difference	Clean zeros	Clean difference
Cone resistance	21,960.20	21,928.00	-32.24	-	-
Sleeve friction	263.60	264.60	0.93	-	-
Pore pressure	3,020.60	3,021.80	1.15	-	-

Report Created: 25/10/2024 10:58:47 PM, Page 2 of 2

CPT Details

Location:

Rig details:

Location method:

Elevation datum:

Pagani 03

Handheld GPS

CPT Formulas

Test Name: Job Number: 240918

CPT-06

General Information

Project: 147-154 Edgewater Drive

Contractor: **Ground Investigation** WGS84 (deg): -36.925071, 174.879340

Elevation (m):

25/10/2024 9:54:55 AM

Test Setup

Standard: ISO 22476-1:2012

Test type:

Pre-Drill (m): 0.00 Start length (m): 0 000335 Cone ID:

10cm2 Compression Cone type:

Cone class: Manufacturer:

Calibration date:

8.0 Cone area ratio: Sleeve area ratio: 0.07 Sleeve offset:

Filter type: U2 Porous - Stainless Steel

Saturation method: Silicone oil

Rig setup variation:

Test Result

Termination reason: Limit of reaction force

15.43 Termination depth: Ground water level: Water level origin: Measured Backfill: None

Observations and materials encountered:

Deviations and Deviations interuptions: Interuptions:

Corrections applied:

Test catagory:

Operator name: Marcelo Martinez

Manager name:

 $q_t = q_c + u_2 \bullet (1 - a)$ Corrected cone resistance:

 $R_f = \frac{f_s}{q_s} \cdot 100$

Friction ratio:

Non-normalised soil behaviour type

154 Edgewater Drive, Pakuranga, Auckland 2010, New

Calculated using q_{net} and R_f for the Robertson's 2010 non-normalised CPT soil behaviour chart using zone equations defined by P.W. Mayne in "Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and

Soil behaviour type index, (used for

non-normalised SBT) :

 $I_c = ((3.47 - \log(q_t))^2 + (\log(R_f) + 1.22)^2)^{0.5}$

Friction ratio:

 $F_r = \frac{f_s}{g_s - g_{ro}} \cdot 100$

Refined normalised cone resistance:

 $Q_{\rm tn} = \frac{\left(q_t - \sigma_{v0}\right) / \sigma_{\rm atm}}{\left(\sigma'_{v0} / \sigma_{\rm atm}\right)^n} \quad \text{where} \quad n = 0.381 \bullet I_c + 0.05 \bullet \left(\sigma'_{v0} / \sigma_{\rm atm}\right) - 0.05 \le 1.0$

Normalised soil behaviour type index: $I_c = ((3.47 - \log(Q_{tn}))^2 + (\log(F_r) + 1.22)^2)^{0.5}$

Normalised pore pressure:

 $B_q = \frac{\Delta u}{q_t - \sigma_{v0}}$

Normalised soil behaviour type

Calculated using Q_m and F_r for the Robertson's 2010 normalised CPT soil behaviour chart using zone equations defined by P.W. Mayne in "Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and DMT"

Undrained shear strength (su):

Relative density (D_r):

Friction angle (Φ'):

 $D_r = 100 \cdot \sqrt{\frac{Q_{\rm tn}}{350}}$

 $\Phi' = 17.60 + 11 \cdot \log(Q_{\rm tn})$

Small strain shear modulus (G₀):

 $G_0 = (qt - \sigma_{\nu 0}) \bullet (0.0188 \bullet 10^{(0.55 \bullet I_c + 1.68)})$

Estimated shear wave velocity (V_s):

 $V_S = \sqrt{\frac{G_0}{\rho}}$ where $\rho = \frac{\gamma}{V_{ss}}$

Constrained modulus (M):

 $M = \alpha_M (q_t - \sigma_{v0})$

when $I_c > 2.2$

 $\alpha_M = Q_t$ when $Q_t < 14$

 $\alpha_M = 14$ when $Q_t > 14$

when $I_c < 2.2$

 $\alpha_M = 0.0188 \cdot 10^{(0.55 \cdot l_c + 1.68)}$

Youngs modulus (Es):

 $E_s = (qt - \sigma_{v0}) \cdot (0.015 \cdot 10^{(0.55 \cdot I_c + 1.68)})$

Estimated SPT N₆₀:

 $N_{60} = \frac{q_t / p_a}{8.5 \cdot \left(1 - \frac{l_c}{4.6}\right)}$


Zero Readings

kPa	Initial zeros	Final zeros	Final difference	Clean zeros	Clean difference
Cone resistance	21,971.00	21,911.90	-59.11	-	-
Sleeve friction	263.80	264.80	1	-	-
Pore pressure	3,021.50	3,019.90	-1.62	-	-

Report Created: 25/10/2024 10:58:49 PM, Page 2 of 2

APPENDIX C SITE PLAN AND CROSS SECTIONS

Legend Note: Existing surface profile Ground profile based on contours supplied by Urbancapital Ltd, named "ACAD-101 topo 49603-Model.dwg" Property boundary Summer groundwater Topsoil/Fill Ash Alluvium Transitional Waitemata Waitemata Bedrock South boundary North boundary MH 02 MH01 MH 03 6m East of CPT04 15m West of 18m West of 5m East of CS CS CS 4.0m Footprint of building B FFL RL5.1m 3_N=5 3_N=4 Building A basement FFL RL2.1m 0.0m 6_N=27 6_N=4 8_N=17 8_N=8 -4.0m 11_N>50 11_N>50 12.5 N>50 12.5 N>50 12.5 N>50 -8.0m 14 - N > 50 N N 40 Tip resistance (MPa) 14 N>50 15_N>50 15.5 N>50 16.5 N>50 -12.0m 0.0m 12.0m 24.0m 36.0m 48.0m 60.0m 72.0m 84.0m **Geotechnical Cross Section** 1:250 2.5 Copyright: LDE Ltd. All rights reserved / Do not scale off drawings / Confirm all dimensions on site prior to work CLIENT Scale 1:250 (m) For Consent SJ A & L Sargeant Limited 147 - 153 Edgewater Drive, Pakuranga Geotechnical Cross Section CS1 DRAWN: DATE: 14.04.2025 78 Compass Point Way, Half Moon Bay, J00983 2 of 4 Auckland CC J00983-2 1:250 www.lde.co.nz • Auckland 09 280 6645 • Gisborne 06 867 3035 • Napier 06 929 0720 • Tauranga 07 975 0029 • Warkworth 09 425 0137 • Whanganui 06 867 3036 • Whangarei 09 974 8799 • email: info@lde.co.nz Legend Note: Existing surface profile Ground profile based on contours supplied by Urbancapital Ltd, named "ACAD-101 topo 49603-Model.dwg" Property boundary Summer groundwater Topsoil/Fill Ash Alluvium Transitional Waitemata Waitemata Bedrock West boundary East boundary MH 02 MH 03 13m South of CPT05 2m North of CPT04 0.5m CS2 19m South of CS2 South of CS2 4.0m 3 N=4 3_N=6 0.0m 6 N=4 6_N=4 Footprint of Building A FFL RL2.1m 8=N=8 -4.0m 11_N>50 12.5 12.5 N>50 N>50 -8.0m 14 N>50 14_N>50 15.5 N>50 30 40 Tip resistance (MPa) -12.0m 0.0m 12.0m 24.0m 36.0m 48.0m 60.0m 72.0m 84.0m **Geotechnical Cross Section** 1:250 2.5 10 12.5

1:250 www.lde.co.nz • Auckland 09 280 6645 • Gisborne 06 867 3035 • Napier 06 929 0720 • Tauranga 07 975 0029 • Warkworth 09 425 0137 • Whanganui 06 867 3036 • Whangarei 09 974 8799 • email: info@lde.co.nz

Geotechnical Cross Section CS2

Scale 1:250

SJ

14.04.2025

CC

DRAWN:

DATE:

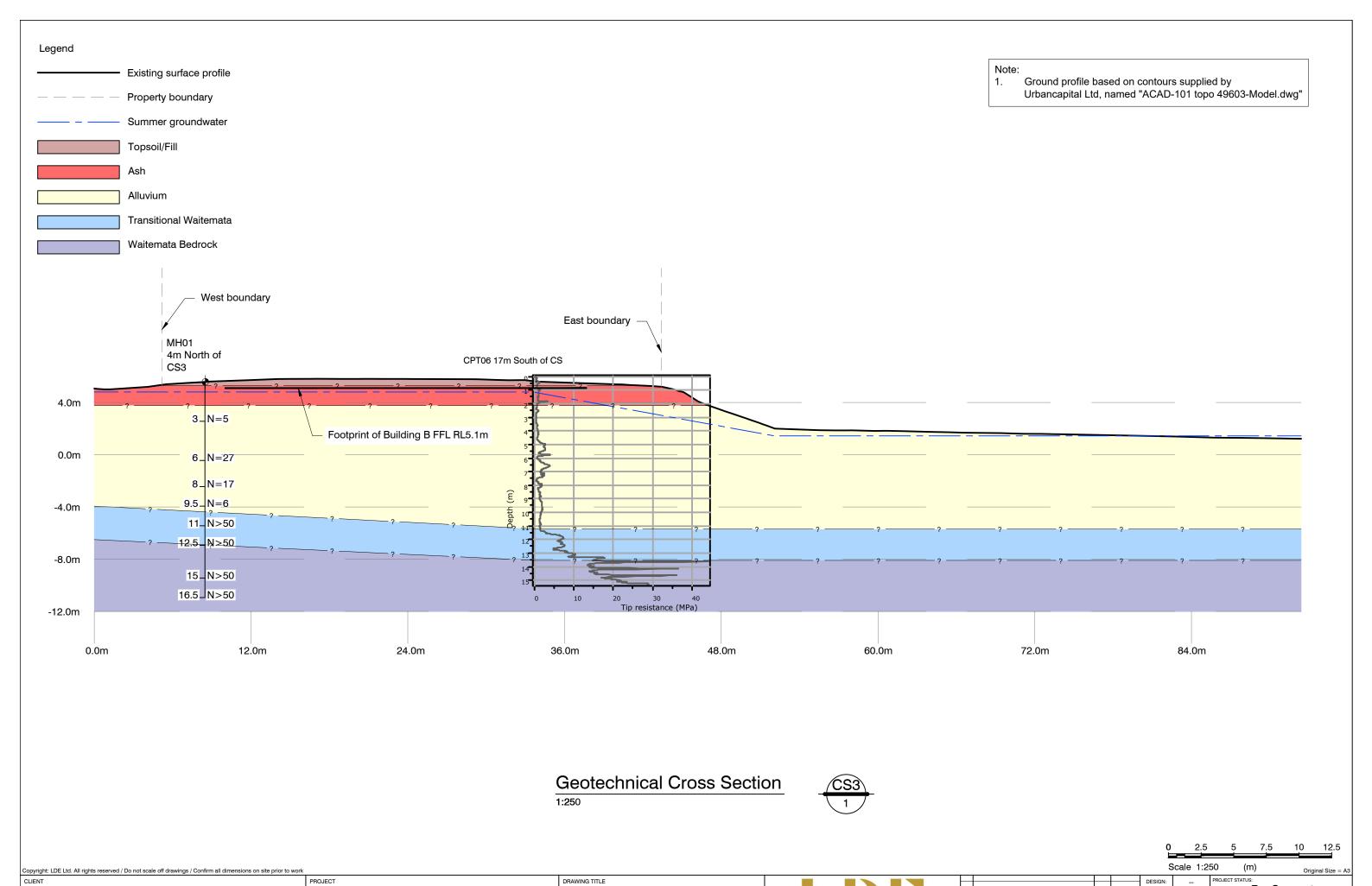
(m)

J00983

For Consent

J00983-3

3 of 4


Copyright: LDE Ltd. All rights reserved / Do not scale off drawings / Confirm all dimensions on site prior to work CLIENT

78 Compass Point Way, Half Moon Bay,

147 - 153 Edgewater Drive, Pakuranga

A & L Sargeant Limited

Auckland

Geotechnical Cross Section CS3

147 - 153 Edgewater Drive, Pakuranga

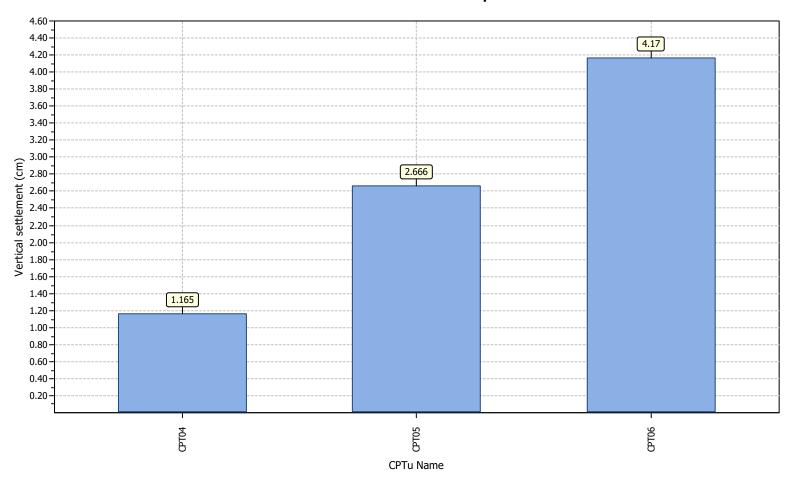
A & L Sargeant Limited

For Consent

SJ

DRAWN:

APPENDIX D LIQUEFACTION ANALYSIS



GeoLogismikiGeotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project title : 145-153 Edgewater drive **Location :** 145-153 Edgewater drive

Overall vertical settlements report

GeoLogismiki Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

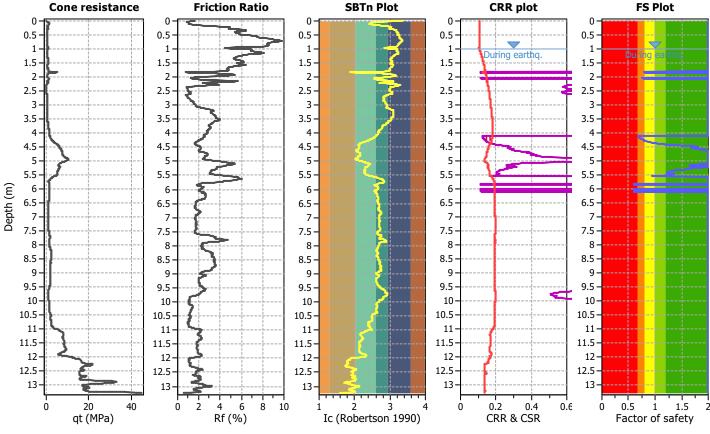
LIQUEFACTION ANALYSIS REPORT

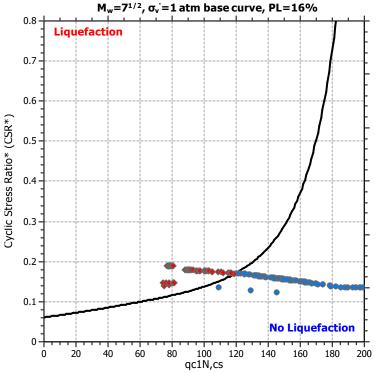
Project title: 145-153 Edgewater drive Location: 145-153 Edgewater drive

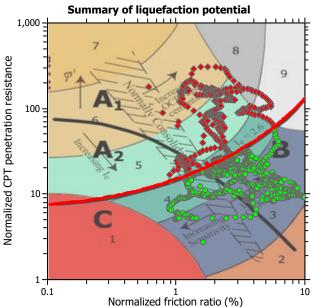
CPT file: CPT04

Input parameters and analysis data

B&I (2014) Analysis method: Fines correction method: B&I (2014) Points to test: Based on Ic value

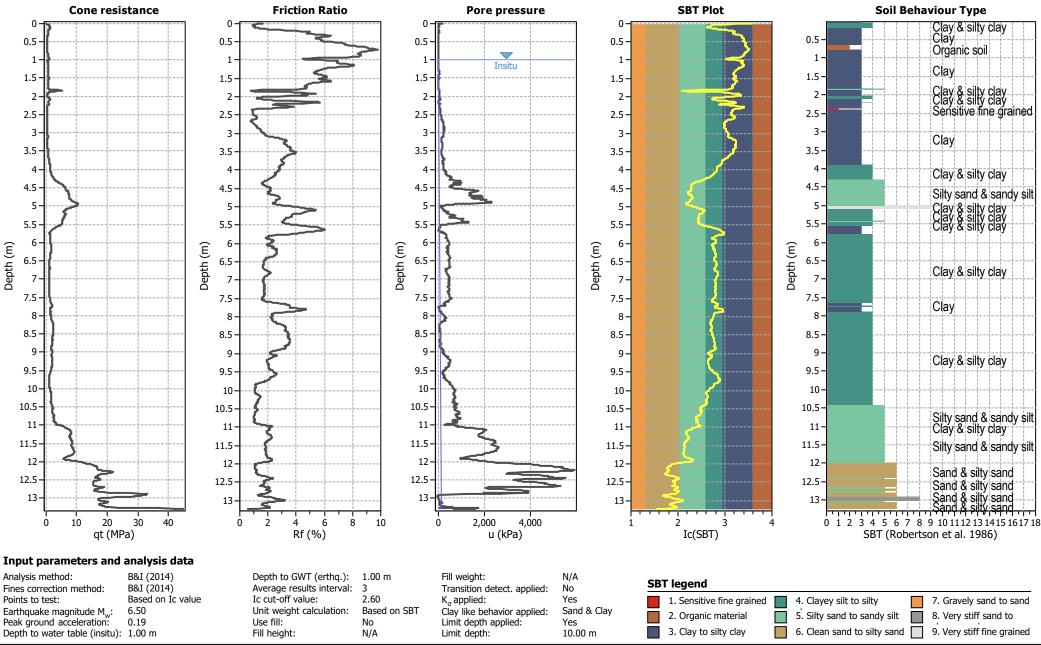

Earthquake magnitude M_w: 6.50 Peak ground acceleration: 0.19

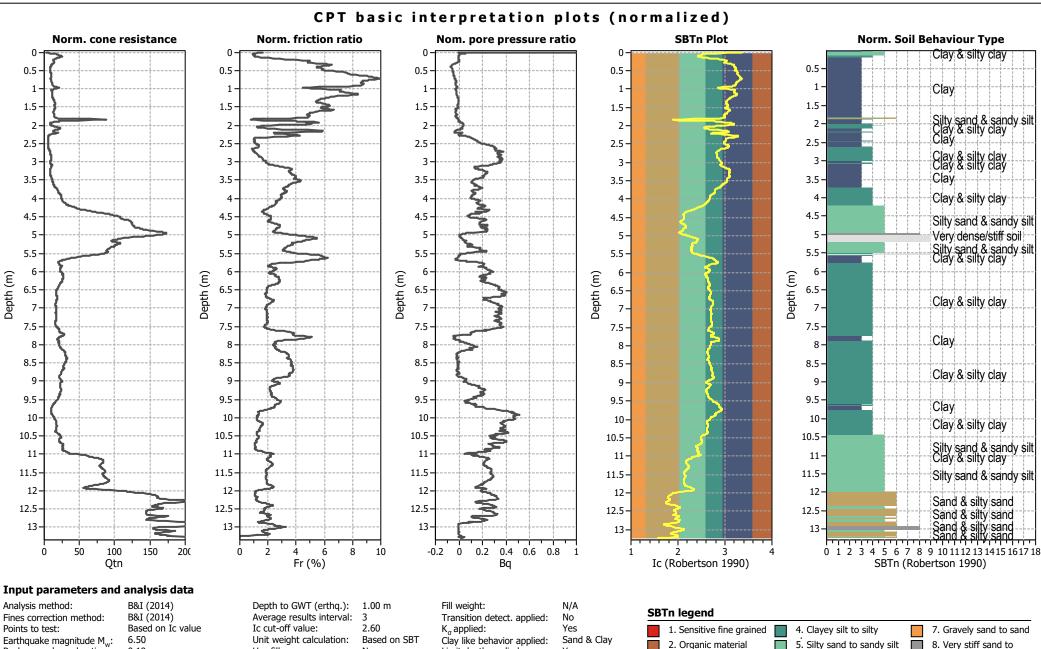

G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:


1.00 m 1.00 m 3 2.60 Based on SBT

Use fill: Nο Fill height: N/A Fill weight: N/A Trans. detect. applied: No K_{σ} applied: Yes

Clay like behavior applied: Sand & Clay Limit depth applied: Yes Limit depth: 10.00 m MSF method: Method based





Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground

Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity, brittleness/sensitivity, strain to peak undrained strength and ground geometry

CPT basic interpretation plots

Limit depth applied:

Limit depth:

Yes

10.00 m

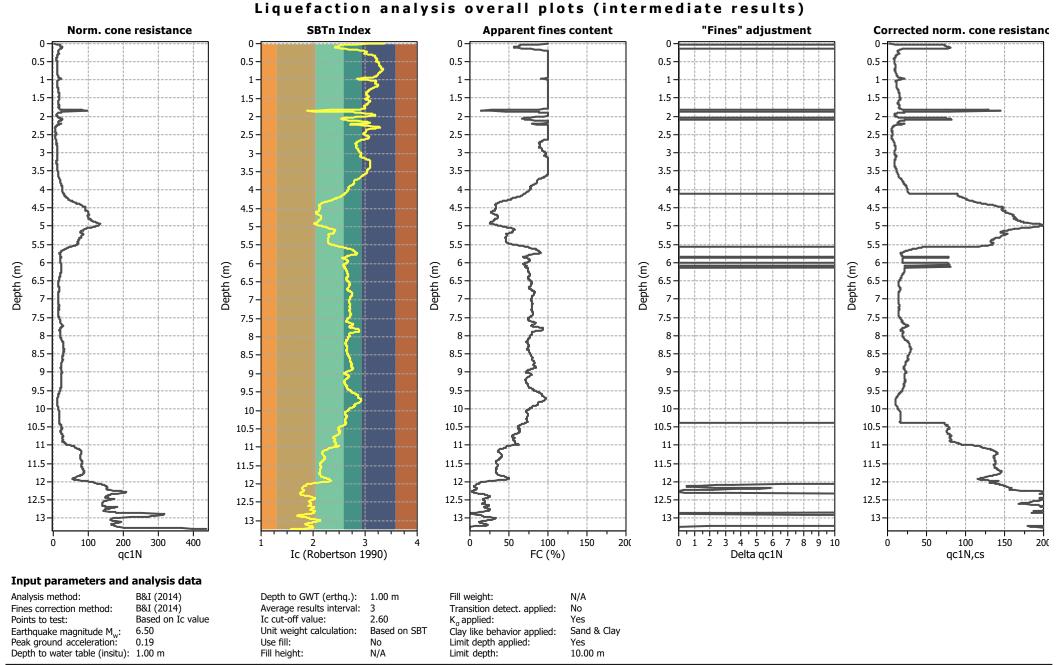
3. Clay to silty clay

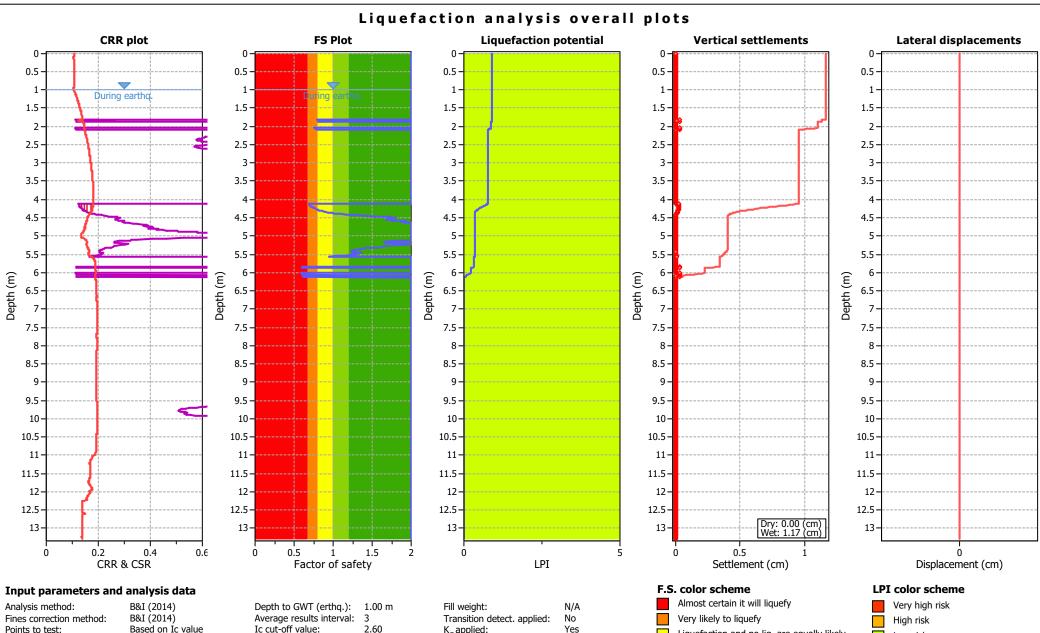
6. Clean sand to silty sand

No

N/A

Use fill:


Fill height:


Peak ground acceleration:

Depth to water table (insitu): 1.00 m

0.19

9. Very stiff fine grained

 K_{σ} applied:

Limit depth:

Clay like behavior applied:

Limit depth applied:

Based on SBT

N/A

Yes

Yes

10.00 m

Sand & Clay

Liquefaction and no liq. are equally likely

Almost certain it will not liquefy

Unlike to liquefy

CLiq v.3.5.3.10 - CPT Liquefaction Assessment Software - Report created on: 19/11/2024, 2:30:47 pm Project file: C:\Users\c.cheng\OneDrive - Land Development And Engineering LTD\Desktop\lde projects\145 edgewater\WIP\LIQUEFACTION ANALYSIS.clq

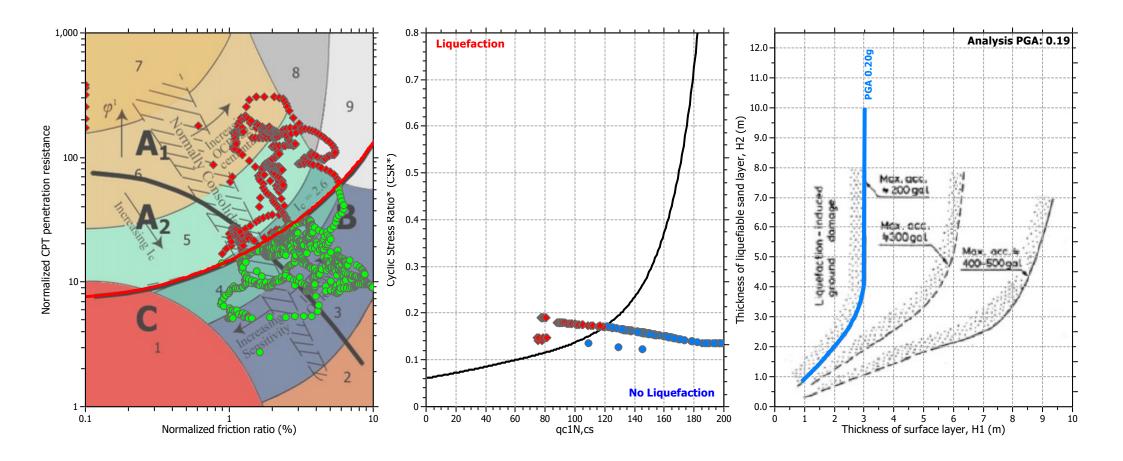
Unit weight calculation:

Use fill:

Fill height:

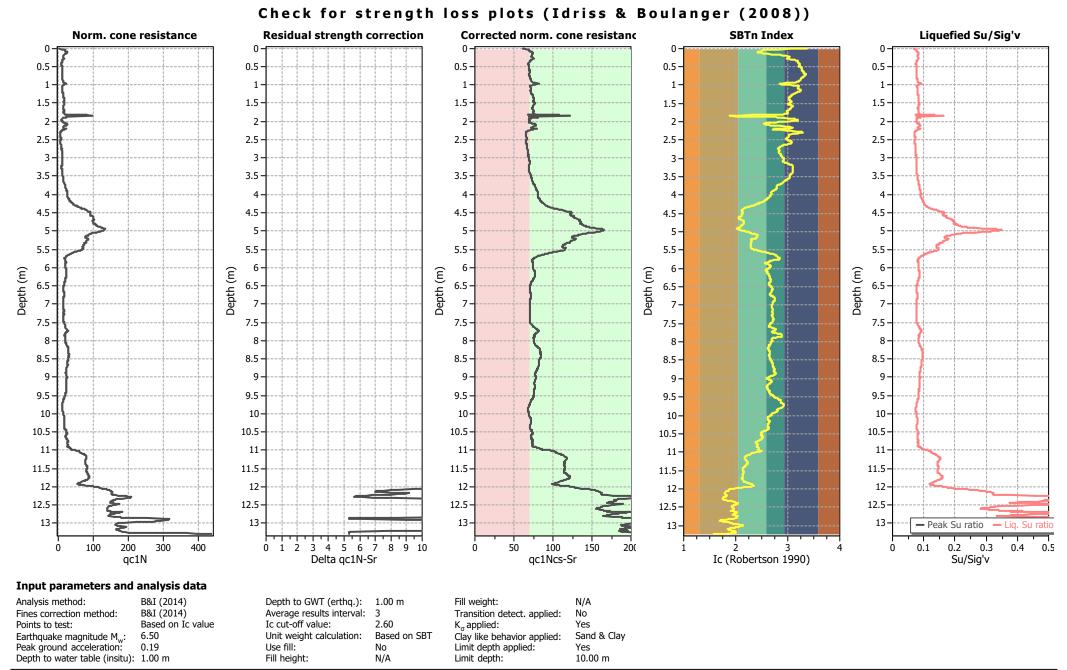
Points to test:

Earthquake magnitude M_w:


Peak ground acceleration:

Depth to water table (insitu): 1.00 m

6.50


Low risk

Liquefaction analysis summary plots

Input parameters and analysis data

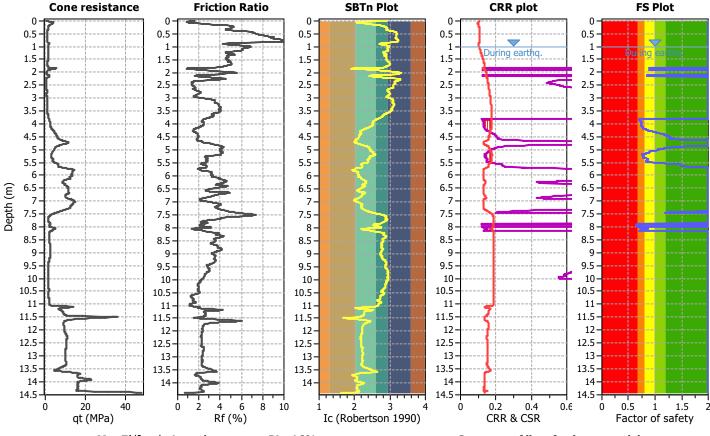
Depth to GWT (erthq.): Analysis method: B&I (2014) 1.00 m Fill weight: N/A Fines correction method: B&I (2014) Average results interval: 3 Transition detect. applied: No Based on Ic value Ic cut-off value: 2.60 Yes Points to test: K_{σ} applied: 6.50 Unit weight calculation: Based on SBT Clay like behavior applied: Sand & Clay Earthquake magnitude M_w: Peak ground acceleration: 0.19 Use fill: Limit depth applied: Yes Depth to water table (insitu): 1.00 m Fill height: N/A Limit depth: 10.00 m

LIQUEFACTION ANALYSIS REPORT

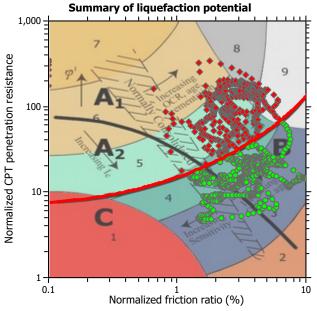
Project title: 145-153 Edgewater drive Location: 145-153 Edgewater drive

CPT file: CPT05

Input parameters and analysis data


B&I (2014) Analysis method: Fines correction method: B&I (2014) Points to test: Based on Ic value

Earthquake magnitude M_w: 6.50 Peak ground acceleration: 0.19


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value:

1.00 m 1.00 m 3 2.60 Unit weight calculation: Based on SBT Use fill: Nο Fill height: N/A Fill weight: N/A Trans. detect. applied: No K_{σ} applied: Yes

Clay like behavior applied: Sand & Clay Limit depth applied: Yes Limit depth: 10.00 m MSF method: Method based

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground

Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity, brittleness/sensitivity, strain to peak undrained strength and ground geometry

CPT basic interpretation plots **SBT Plot** Cone resistance **Friction Ratio** Pore pressure Soil Behaviour Type 0 -Silty sand & sandy silt 0.5 -Clay 0.5 0.5 0.5 Organic soil 1 -1-Insitu Clay 1.5-1.5 1.5 1.5 1.5 -Clay & silty clay 2 -2-2-Clay & silty clay 2.5 2.5 -2.5 -2.5 2.5 3 – Clay 3 -3 -3 -3 -3.5 -3.5 3.5 3.5 3.5 -4-4-Clay & silty clay 4-4.5 Silty sand & sandy silt 4.5 4.5 4.5 4.5 -5 -5 – Clay & silty clay 5.5 5.5 -5.5 5.5 5.5 Silty sand & sandy silt Very dense/stiff soil Clay & silty clay Very dense/stiff soil 6 6 -6-6.5 6.5 6.5 6.5 6.5 -Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) 7-Very dense/stiff soil Clay & silty clay 7.5 -7.5 7.5 -7.5 Clay & silty clay Clay & silty clay Clay & silty clay 8 -8-8. 8 -8.5 8.5 8.5 8.5 8.5 -Clay 9-9. 9 – 9 -Clav 9.5 9.5 9.5 9.5 -9.5 10 10 10 10-10-10.5 10.5 10.5-10.5 10.5-Clay & silty clay 11 11 11 11 11-Silty sand & sandy silt Silty sand & sandy silt Very dense/stiff soil 11.5 11.5 11.5 11.5-11.5 12 12 12-12 12-12.5 12.5 12.5 12.5-12.5-Silty sand & sandy silt 13 13 13 13-13-13.5 13.5 13.5-13.5 13.5 Clay & silty clay Silty sand & sandy silt Silty sand & sandy silt 14 14 14-14-14-

Input parameters and analysis data

20

qt (MPa)

30

0.19

Analysis method: Fines correction method: Points to test: Earthquake magnitude M_w:

Peak ground acceleration:

Depth to water table (insitu): 1.00 m

0

10

B&I (2014) B&I (2014) Based on Ic value 6.50

40

Depth to GWT (erthq.): Average results interval: Ic cut-off value: Unit weight calculation: Use fill: Fill height:

1.00 m 2.60 Based on SBT

Fill weight: N/A Transition detect. applied: No K_{σ} applied: Yes Sand & Clay Clay like behavior applied: Limit depth applied: Yes Limit depth: 10.00 m

2,000

u (kPa)

4,000

SBT legend

2

1. Sensitive fine grained 2. Organic material 3. Clay to silty clay

Ic(SBT)

3

4. Clayey silt to silty 5. Silty sand to sandy silt 6. Clean sand to silty sand

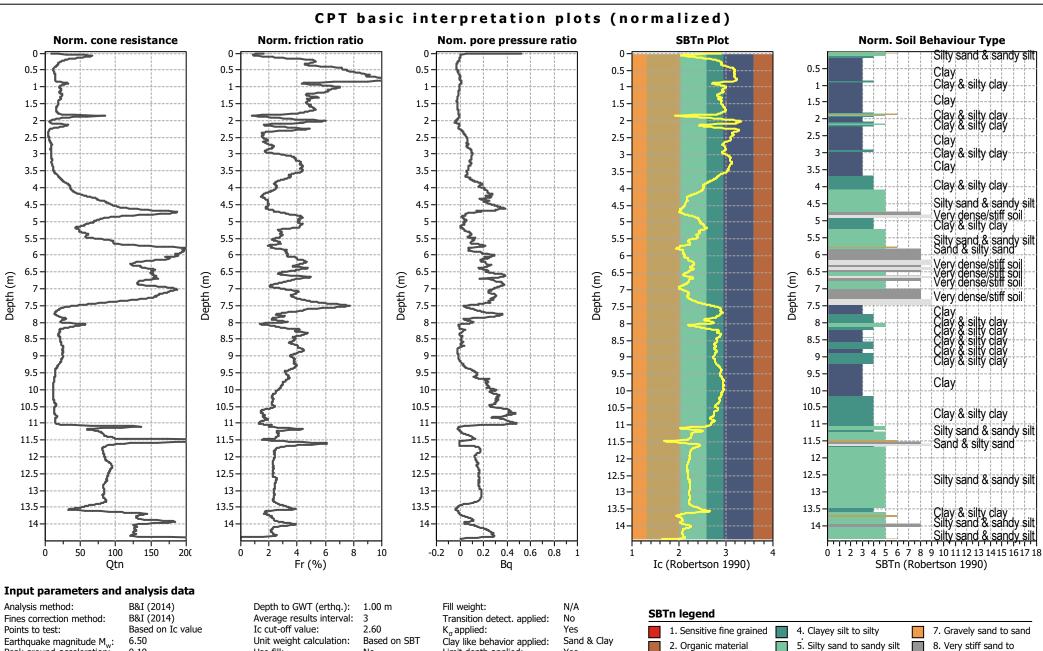
7. Gravely sand to sand 8. Very stiff sand to 9. Very stiff fine grained

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SBT (Robertson et al. 1986)

n

8


10

No

N/A

6

Rf (%)

Limit depth applied:

Limit depth:

Yes

10.00 m

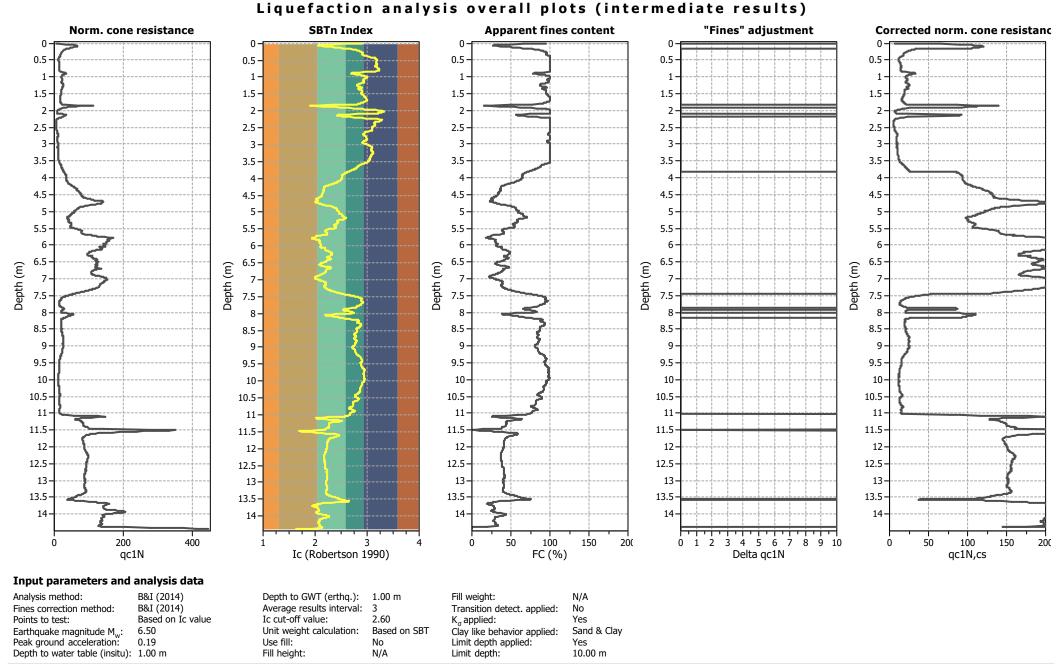
3. Clay to silty clay

6. Clean sand to silty sand

No

N/A

Use fill:


Fill height:

Peak ground acceleration:

Depth to water table (insitu): 1.00 m

0.19

9. Very stiff fine grained

Liquefaction analysis overall plots **CRR** plot **FS Plot** Liquefaction potential **Vertical settlements** Lateral displacements 0.5 0.5 0.5 0.5 1 -During earthq. 1.5 1.5 -1.5 1.5 -1.5 2 · 2 · 2.5 2.5 2.5 2.5 -2.5 3 -3 -3 -3. 3.5 -3.5 3.5 3.5 4.5 4.5 4.5 4.5 4.5 5.5 5.5 5.5 5.5 -5.5 6 6. 6.5 6.5 6.5 -Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) 7.5 7.5 -8.5 8.5 8.5 8.5 9.5 9.5 -9.5 10 10-10-10-10 10.5 10.5 10.5 10.5-10.5 11 11 11 11-11 11.5 11.5 11.5 11.5-11.5 12 12. 12 -12-12 12.5 12.5-12.5-12.5-12.5 13 13-13 13-13 13.5 13.5 13.5 13.5-13.5 Dry: 0.00 (cm) Wet: 2.67 (cm) 14 14-14 14-

Input parameters and analysis data

0.2

CRR & CSR

Analysis method: Fines correction method: Points to test: Earthquake magnitude M_w:

Peak ground acceleration:

Depth to water table (insitu): 1.00 m

Ó

B&I (2014) B&I (2014) Based on Ic value 6.50

0.4

Depth to GWT (erthq.): Average results interval: Ic cut-off value: Unit weight calculation:

Use fill:

Fill height:

n.): 1.00 m val: 3 2.60 on: Based on SBT

N/A

1.5

Fill weight: Transition detect. applied: K_{σ} applied: Clay like behavior applied: Limit depth applied:

Limit depth:

10

LPI

N/A
ed: No
Yes
ed: Sand & Clay
Yes
10.00 m

15

20

F.S. color scheme
Almost certain it will liquefy
Very likely to liquefy

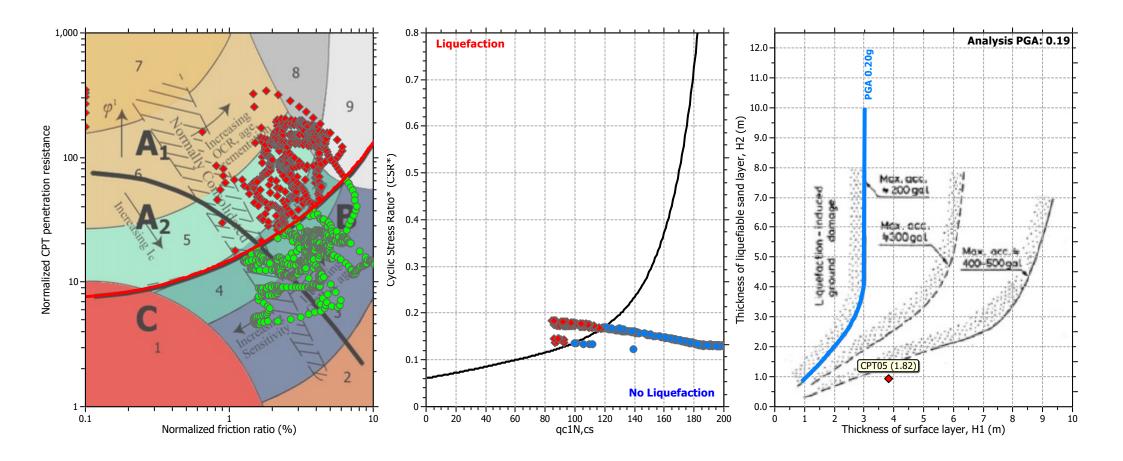
Very likely to liquefy
Liquefaction and no liq. are equally likely

Liquefaction and no liq. are equal Unlike to liquefy Almost certain it will not liquefy

Settlement (cm)

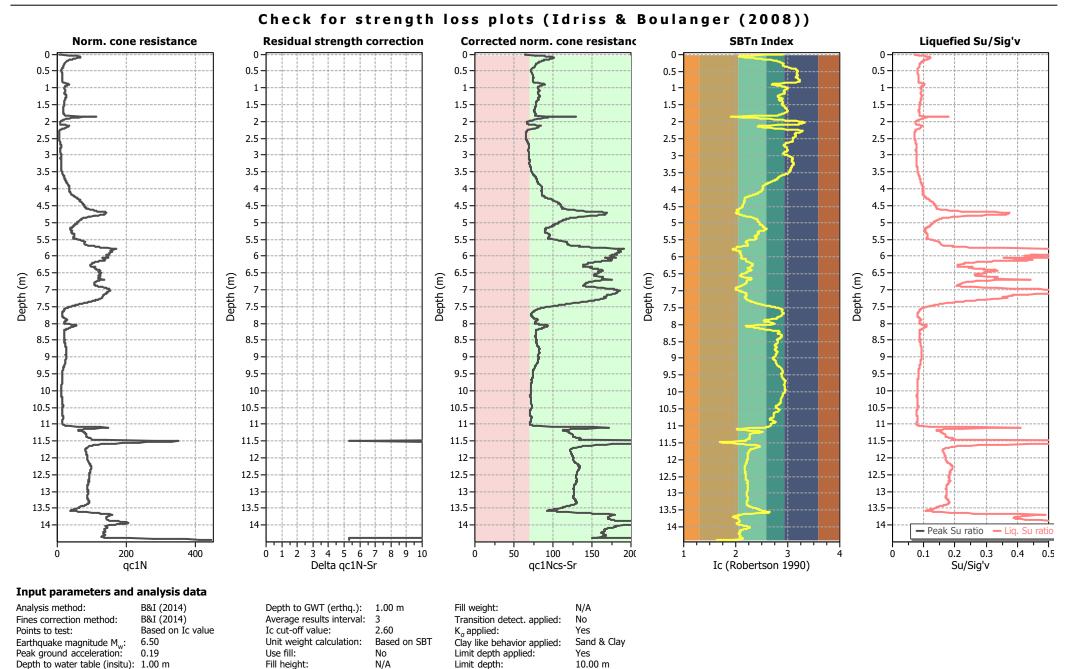
LPI color scheme

Very high risk


Displacement (cm)

High risk

Low risk


Factor of safety

Liquefaction analysis summary plots

Input parameters and analysis data

Analysis method: B&I (2014) Depth to GWT (erthq.): 1.00 m Fill weight: N/A Fines correction method: B&I (2014) Average results interval: 3 Transition detect. applied: No Based on Ic value Ic cut-off value: 2.60 Yes Points to test: K_{σ} applied: 6.50 Unit weight calculation: Based on SBT Clay like behavior applied: Sand & Clay Earthquake magnitude M_w: Peak ground acceleration: 0.19 Use fill: Limit depth applied: Yes Depth to water table (insitu): 1.00 m Fill height: N/A Limit depth: 10.00 m

GeoLogismiki

Geotechnical Engineers Merarhias 56 http://www.geologismiki.gr

LIQUEFACTION ANALYSIS REPORT

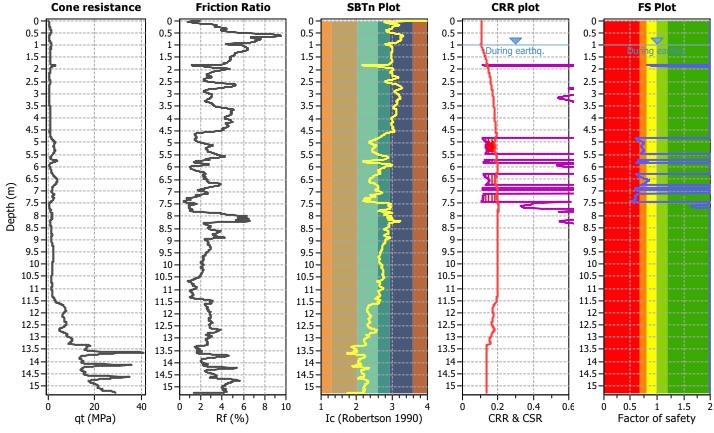
Project title: 145-153 Edgewater drive Location: 145-153 Edgewater drive

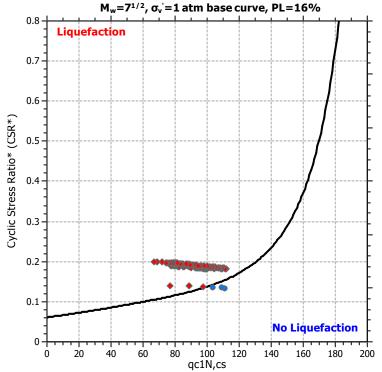
CPT file: CPT06

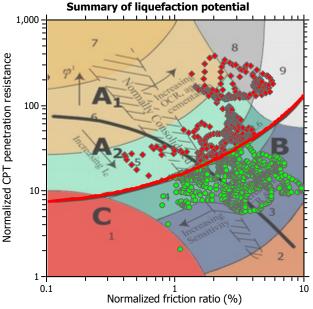
Input parameters and analysis data

B&I (2014) Analysis method: Fines correction method: B&I (2014) Points to test: Based on Ic value

Earthquake magnitude M_w: 6.50 Peak ground acceleration: 0.19

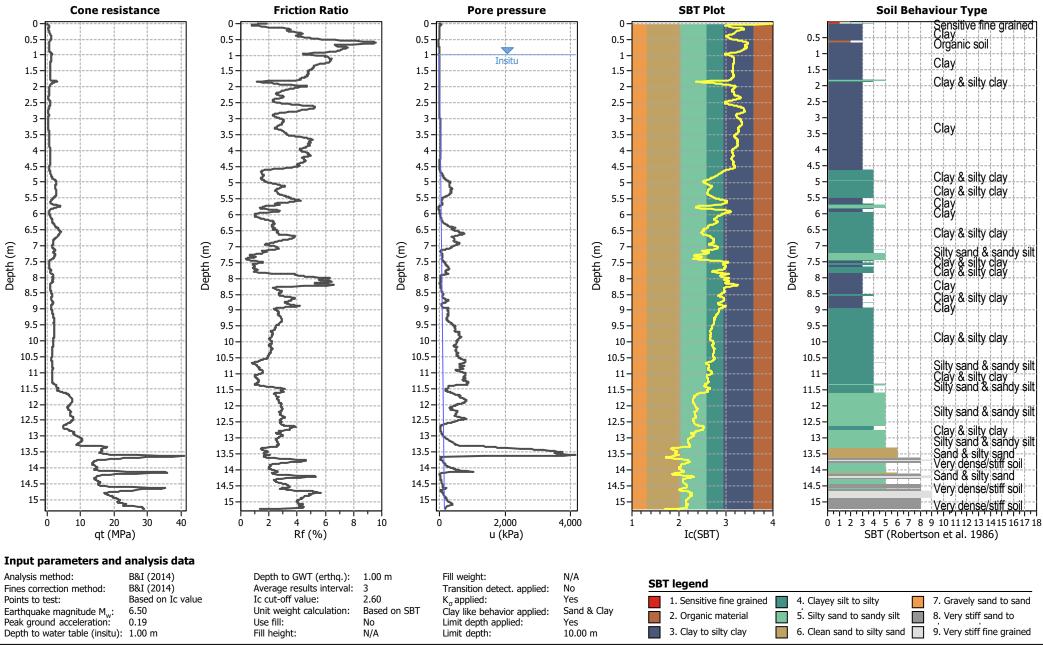

G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value:

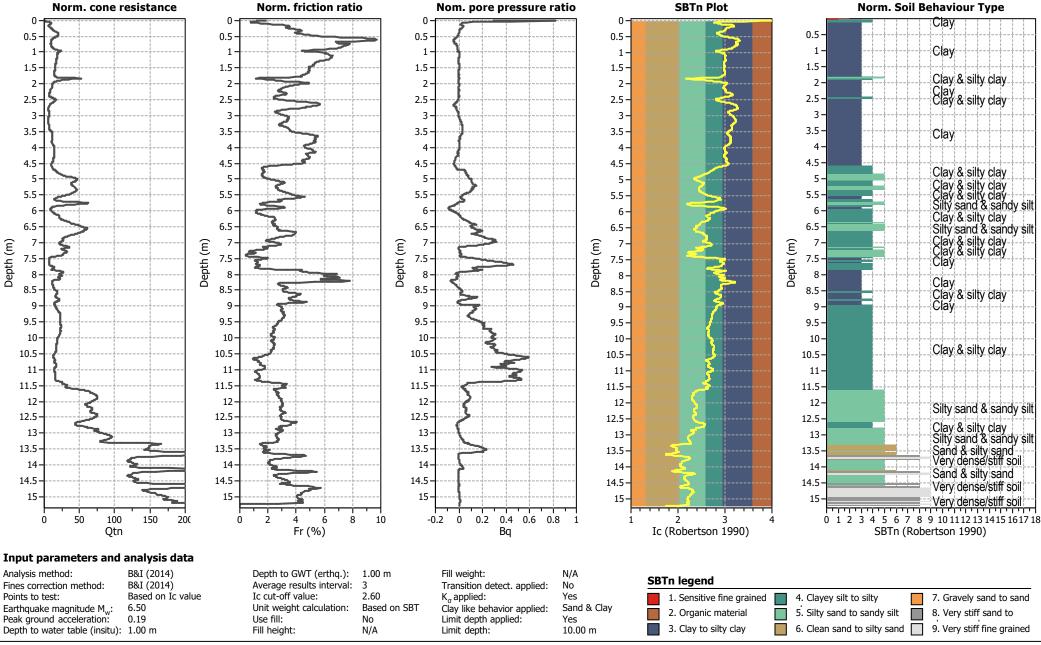

1.00 m 1.00 m 3 2.60 Unit weight calculation: Based on SBT

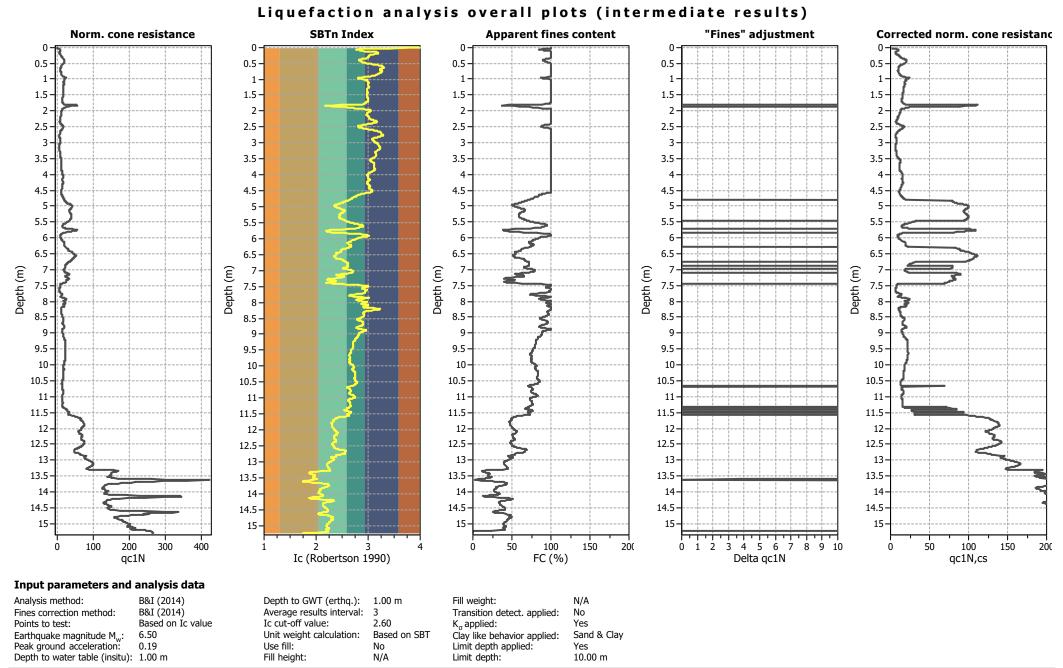

Use fill: Nο Fill height: N/A Fill weight: N/A Trans. detect. applied: No K_{σ} applied: Yes

Clay like behavior applied: Limit depth applied:

Sand & Clay Yes Limit depth: 10.00 m MSF method: Method based




Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground


Zone B: Liquefaction and post-earthquake strength loss unlikely, check cyclic softening Zone C: Cyclic liquefaction and strength loss possible depending on soil plasticity, brittleness/sensitivity, strain to peak undrained strength and ground geometry

CPT basic interpretation plots

CPT basic interpretation plots (normalized)

Liquefaction analysis overall plots **CRR** plot **FS Plot** Liquefaction potential **Vertical settlements** Lateral displacements 0.5 0.5 -0.5 0.5 0.5 During earthq. 1.5 1.5 1.5 1.5 -1.5 2 -2-2 -2 2.5 2.5 2.5 -2.5 -2.5 3 -3 -3 – 3 3.5 3.5 -3.5 3.5 3.5 4.5 4.5 4.5 4.5 -4.5 5 -5.5 5.5 -5.5 5.5 -5.5 6-6-6. 6-6.5 6.5 6.5 6.5 -6.5 Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) AIIIII 7.5 7.5 7.5 8.5 8.5 8.5 -8.5 9.5 9.5 9.5 -9.5 9.5 10-10-10 10 10-10.5 10.5 10.5 10.5-10.5 11 11 11 11-11 11.5 11.5 11.5 11.5 -11.5 12 12 12-12 12 12.5 12.5 12.5 12.5 -12.5 13-13 -13-13-13 13.5 13.5 13.5 13.5 -13.5 14 14-14 14 14-14.5 14.5 14.5-14.5 14.5 Dry: 0.00 (cm) Wet: 4.17 (cm)

Input parameters and analysis data

0.2

CRR & CSR

Analysis method: Fines correction method: Points to test: Earthquake magnitude M_w:

Peak ground acceleration:

Depth to water table (insitu): 1.00 m

15

Ó

B&I (2014) B&I (2014) Based on Ic value 6.50

0.4

Depth to GWT (erthq.): Average results interval: Ic cut-off value: Unit weight calculation:

1.00 m 2.60 Based on SBT

N/A

1.5

Fill weight: Transition detect. applied: K_{σ} applied: Clay like behavior applied: Limit depth applied:

Limit depth:

15-

N/A No Yes Sand & Clay Yes 10.00 m

15

20

10

LPI

F.S. color scheme Almost certain it will liquefy Very likely to liquefy

Settlement (cm)

Liquefaction and no liq. are equally likely

Unlike to liquefy Almost certain it will not liquefy

15-

LPI color scheme

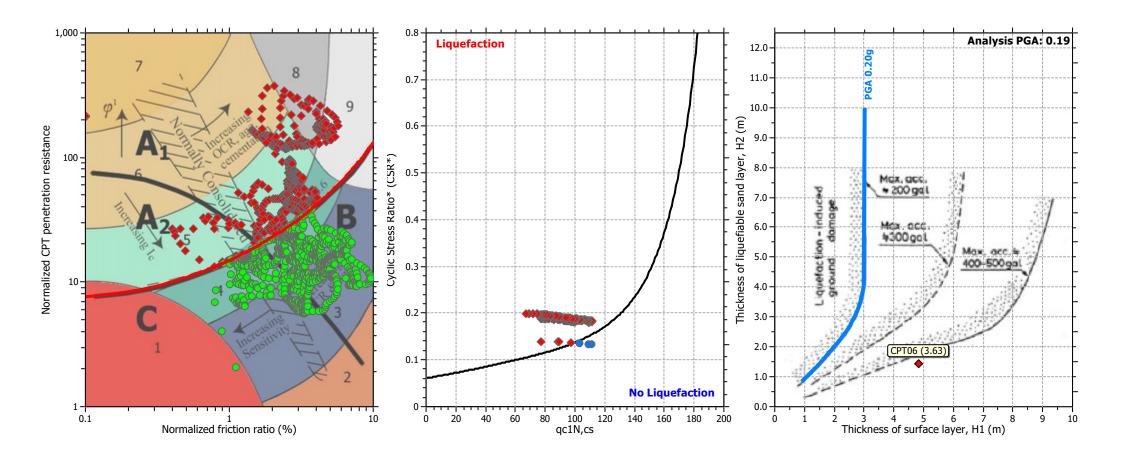
Displacement (cm)

Very high risk

High risk

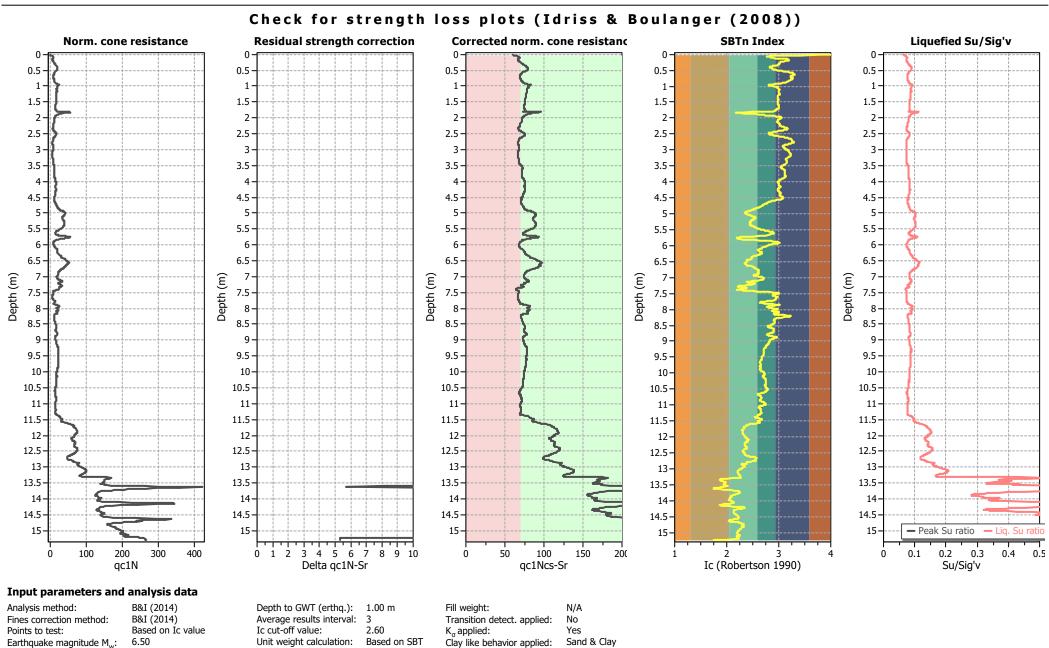
Low risk

15


Use fill:

Fill height:

15-


Factor of safety

Liquefaction analysis summary plots

Input parameters and analysis data

Analysis method: B&I (2014) Depth to GWT (erthq.): 1.00 m Fill weight: N/A Fines correction method: B&I (2014) Average results interval: 3 Transition detect. applied: No Based on Ic value Ic cut-off value: 2.60 Yes Points to test: K_{σ} applied: 6.50 Unit weight calculation: Based on SBT Clay like behavior applied: Sand & Clay Earthquake magnitude M_w: Peak ground acceleration: 0.19 Use fill: Limit depth applied: Yes Depth to water table (insitu): 1.00 m Fill height: N/A Limit depth: 10.00 m

Limit depth applied:

Limit depth:

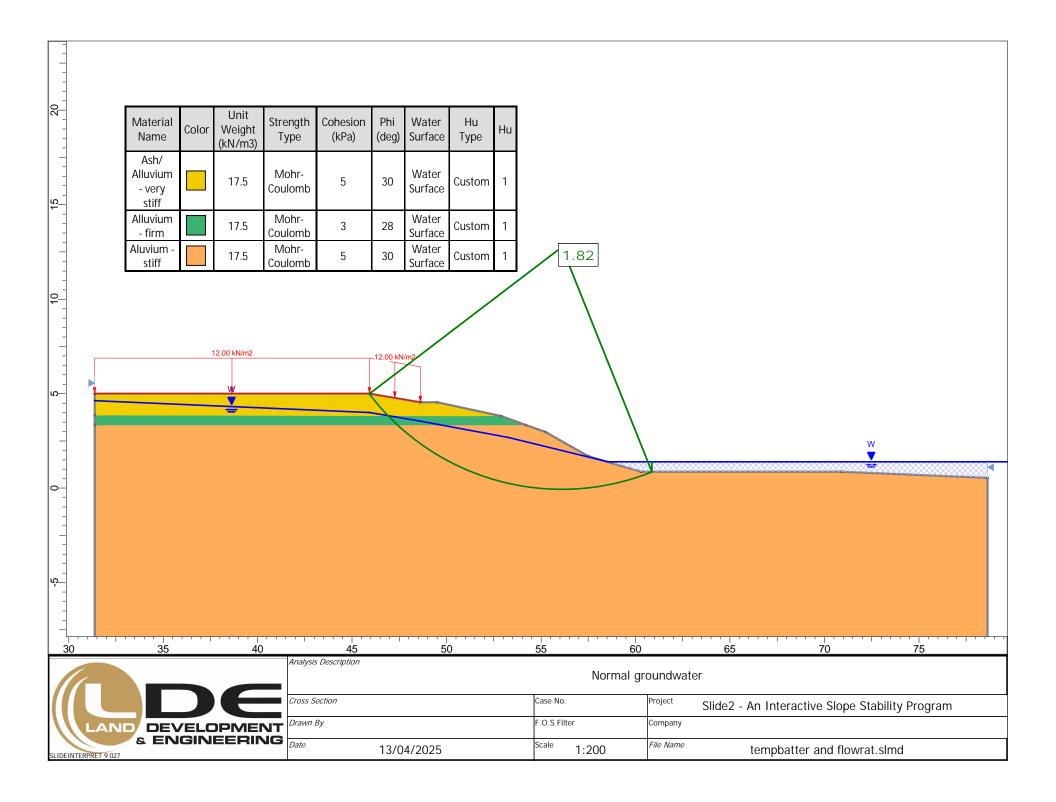
Yes

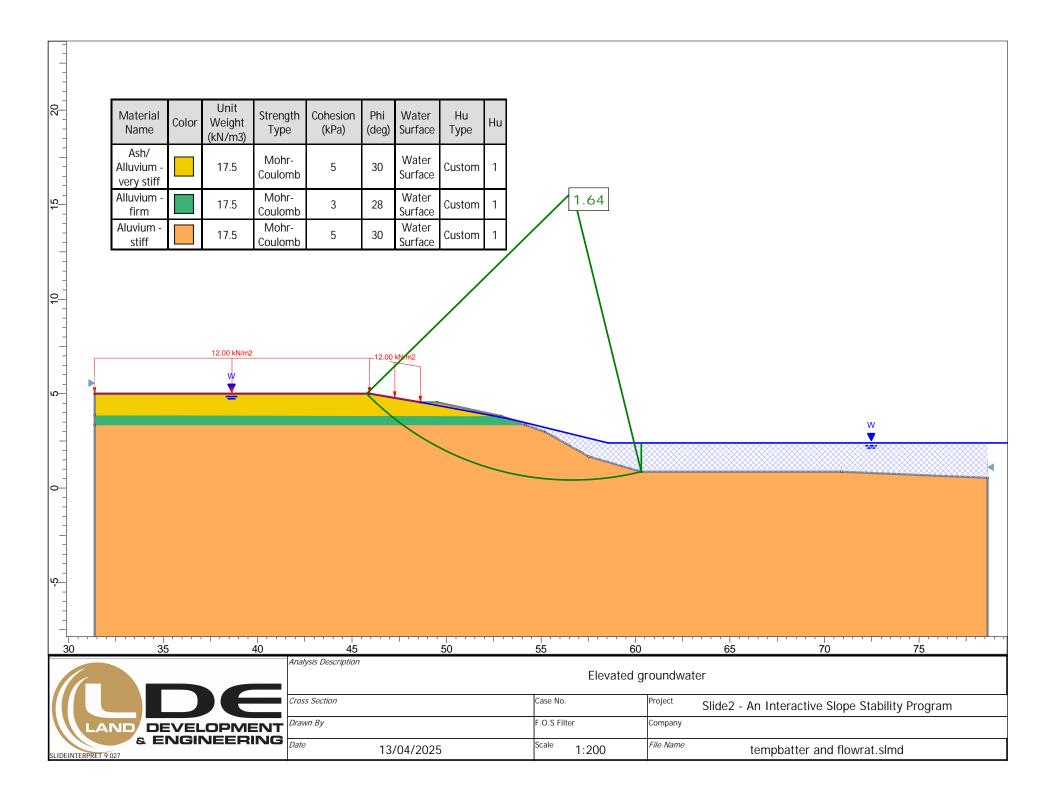
10.00 m

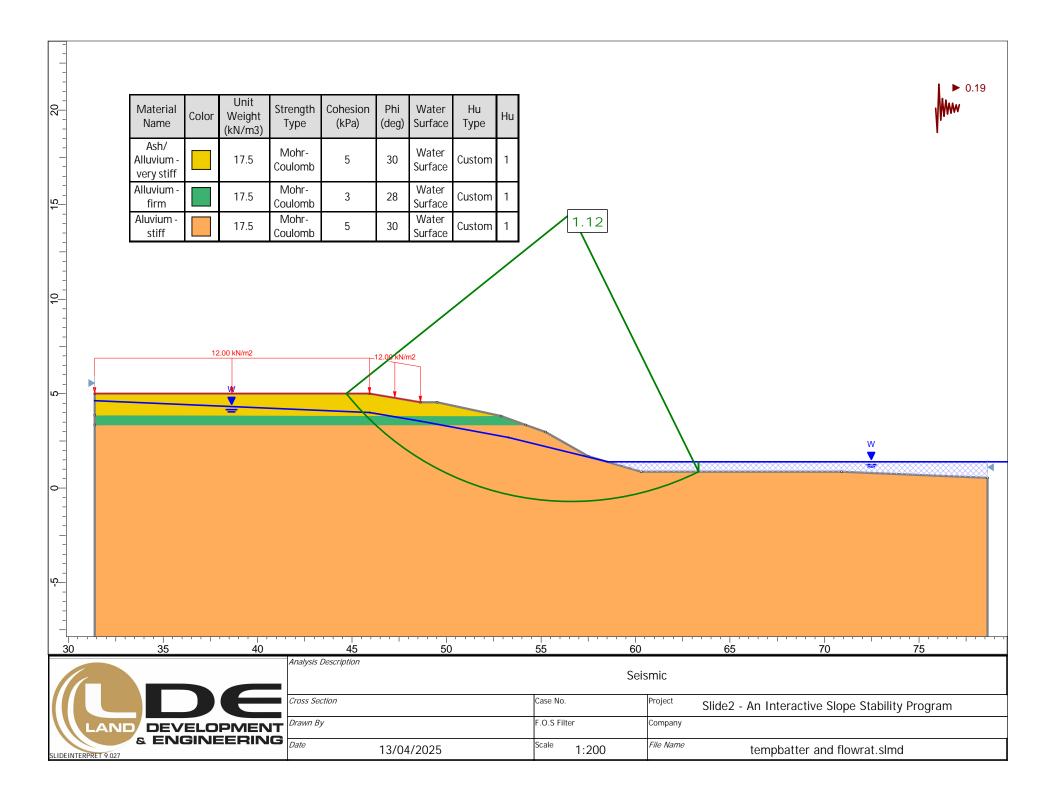
N/A

Use fill:

Fill height:


Peak ground acceleration:


Depth to water table (insitu): 1.00 m


0.19

APPENDIX E SLOPE STABILITY ANALYSIS

APPENDIX F WALLAP ANALYSIS

LDE LTD | Sheet No.

Program: WALLAP Version 6.07 Revision A55.B74.R58 | Job No. J00983

Licensed from GEOSOLVE

| Made by : CCHE

Data filename/Run ID: Basement_wall

Boundary wall wallap | Date:13-04-2025

Please modify / add | Checked :

Units: kN,m

INPUT DATA

SOIL PROFILE

Stratum	Elevation of		Soil types
no.	top of stratum	Left side	Right side
1	5.10	1 Ash	1 Ash
2	4.10	2 Firm Alluvium	2 Firm Alluvium
3	3.60	3 Stiff Alluvium	3 Stiff Alluvium

SOIL PROPERTIES

:	Soil type	Bulk density	Young's Modulus	At rest coeff.	Consol state.	Active limit	Passive limit	Cohesion
No.	Description	kN/m3	Eh, kN/m2	Ko	NC/OC	Ka	Kp	kN/m2
()	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Ash	17.50	25000	0.500	OC	0.294	4.288	7.000d
					(0.300)	(1.222)	(5.694)	
2	Firm	17.50	10500	0.560	OC	0.348	3.404	3.000d
	Alluvium				(0.300)	(1.337)	(4.929)	
3	Stiff	17.50	15000	0.500	OC	0.294	4.288	5.000d
	Alluvium				(0.300)	(1.222)	(5.694)	

Additional soil parameters associated with Ka and Kp

		param	eters for	Ka	param	Кр	
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Ash	30.00	0.464	0.00	30.00	0.464	0.00
2	Firm Alluvium	26.00	0.473	0.00	26.00	0.473	0.00
3	Stiff Alluvium	30.00	0.464	0.00	30.00	0.464	0.00

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

Left side Right side Initial water table elevation 1.60 1.60

Automatic water pressure balancing at toe of wall: No

WALL PROPERTIES

Type of structure = Fully Embedded Wall

Elevation of toe of wall = -2.40

Maximum finite element length = 0.40 m

Youngs modulus of wall E = 3.0000E+07 kN/m2

Moment of inertia of wall I = 2.6510E-03 m4/m run

E.I = 79530 kN.m2/m run

Yield Moment of wall = Not defined

STRUTS and ANCHORS

			Cross-			Inclin	Pre-	Strut	Allow	,
Prop		Prop	section	Youngs	Free	-ation	stress	or	tensio	n
no.	Elev.	spacing	area	modulus	length	(degs)	/prop	Anchor	?	L/R
		m	sq.m	kN/m2	m		kN			
1	0.70	1.00	0.300000	2.500E+07	10.00	0.00	0	Strut	No	R
2	4.30	1.00	0.300000	2.500E+07	10.00	0.00	0	Strut	No	R

SURCHARGE LOADS

Surch		Distance	Length	Width	Surcharge		Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	5.10	1.00(L)	100.00	20.00	12.00	=	N/A	N/A

Note: L = Left side, R = Right side

CONSTRUCTION STAGES

Construction Stage description stage no.

1 Apply surcharge no.1 at elevation 5.10
2 Excavate to elevation 1.60 on RIGHT side

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.00 Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3Maximum depth of water filled tension crack = 0.00 mBending moment and displacement calculation: Method - Subgrade reaction model using Influence Coefficients Open Tension Crack analysis? - No Non-linear Modulus Parameter (L) = 5.000 mBoundary conditions: Length of wall (normal to plane of analysis) = 1000.00 m Width of excavation on Left side of wall = 20.00 m Width of excavation on Right side of wall = 20.00 m Distance to rigid boundary on Left side = 20.00 mDistance to rigid boundary on Right side = 20.00 m

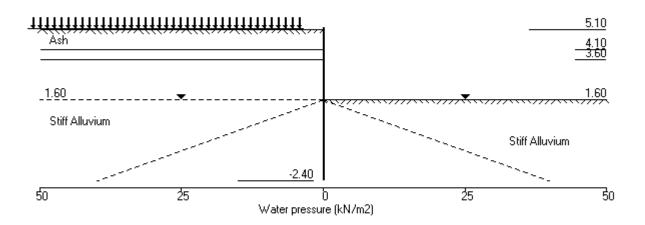
OUTPUT OPTIONS

Stage Stage description	Outpu	t options	
no.	Displacement	Active,	Graph.
	Bending mom.	Passive	output
	Shear force	pressures	
1 Apply surcharge no.1 at elev. 5.10	No	No	No
2 Excav. to elev. 1.60 on RIGHT side	Yes	Yes	Yes
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2020 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

LDE LTD | Sheet No.

Program: WALLAP Version 6.07 Revision A55.B74.R58 | Job No. J00983
Licensed from GEOSOLVE | Made by : CCHE


Data filename/Run ID: Basement_wall

Boundary wall wallap | Date:13-04-2025

Please modify / add | Checked :

Stage No.2 Excav. to elev. 1.60 on RIGHT side

Units: kN,m

| Sheet No. LDE LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 | Job No. J00983
Licensed from GEOSOLVE | Made by : CCHE

Data filename/Run ID: Basement_wall

Boundary wall wallap | Date:13-04-2025

Please modify / add | Checked :

Units: kN,m

Stage No. 2 Excavate to elevation 1.60 on RIGHT side

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

			FoS fo	r toe	Toe el	ev. for		
				elev. =	-2.40	FoS =	1.000	
Stage	Ground	d level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
2	5.10	1.60	Cant.	1.300	-2.11	-0.35	1.95	L to R

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 1000.00mSubgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall

Node	<u>Y</u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
· 		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	5.10	0.00	0.011	1.73E-03	0.0	0.0	
2	4.85	0.00	0.011	1.73E-03	0.0	0.0	
3	4.60	0.00	0.010	1.73E-03	0.0	0.0	
4	4.35	0.00	0.010	1.73E-03	0.0	0.0	
5	4.10	0.00	0.009	1.73E-03	0.0	0.0	
		2.84	0.009	1.73E-03	0.0	0.0	
6	3.85	4.69	0.009	1.73E-03	0.9	0.1	
7	3.60	6.51	0.008	1.72E-03	2.3	0.5	
		2.79	0.008	1.72E-03	2.3	0.5	
8	3.20	5.19	0.008	1.72E-03	3.9	1.8	
9	2.80	7.53	0.007	1.70E-03	6.5	3.8	
10	2.40	9.80	0.006	1.68E-03	9.9	7.1	
11	2.00	12.03	0.006	1.63E-03	14.3	11.9	
12	1.60	14.23	0.005	1.55E-03	19.6	18.7	
		-14.24	0.005	1.55E-03	19.6	18.7	
13	1.20	-24.64	0.005	1.44E-03	11.8	25.9	
14	0.80	-20.85	0.004	1.30E-03	2.7	28.7	
15	0.40	-16.28	0.003	1.16E-03	-4.7	28.6	
16	0.00	-10.12	0.003	1.02E-03	-10.0	25.4	
17	-0.40	-4.67	0.003	9.12E-04	-13.0	20.6	
18	-0.80	0.20	0.002	8.22E-04	-13.9	15.0	
19	-1.20	4.63	0.002	7.60E-04	-12.9	9.5	
20	-1.60	8.78	0.002	7.24E-04	-10.2	4.7	
21	-2.00	12.79	0.001	7.09E-04	-5.9	1.3	
22	-2.40	16.73	0.001	7.06E-04	0.0	-0.0	

| Sheet No.

| Date:13-04-2025

| Checked :

(continued)

Stage No.2 Excavate to elevation 1.60 on RIGHT side

LEFT side

				S	Total	Coeff. of		
Node	<u>Y</u>	Water	<u>Vertic</u>	Active	<u>Passive</u>	<u>Earth</u>	<u>earth</u>	subgrade
no.	coord	press.	<u>-al</u>	limit	<u>limit</u>	pressure	pressure	<u>reaction</u>
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	5.10	0.00	0.00	0.00	39.86	0.00	0.00a	10013
2	4.85	0.00	4.45	0.00	58.94	0.00	0.00a	10013
3	4.60	0.00	9.24	0.00	79.46	0.00	0.00a	10013
4	4.35	0.00	14.37	0.00	101.49	0.00	0.00a	10013
5	4.10	0.00	19.68	0.00	124.24	0.00	0.00a	10013
		0.00	19.68	2.84	81.78	2.84	2.84a	4205
6	3.85	0.00	24.99	4.69	99.87	4.69	4.69a	4205
7	3.60	0.00	30.23	6.51	117.70	6.51	6.51a	4205
		0.00	30.23	2.79	158.09	2.79	2.79a	6008
8	3.20	0.00	38.40	5.19	193.10	5.19	5.19a	6008
9	2.80	0.00	46.32	7.53	227.06	7.53	7.53a	6008
10	2.40	0.00	54.04	9.80	260.18	9.80	9.80a	6008
11	2.00	0.00	61.62	12.03	292.66	12.03	12.03a	6008
12	1.60	0.00	69.08	14.23	324.67	14.23	14.23a	6008
13	1.20	4.00	72.46	15.22	339.16	15.22	19.22a	6008
14	0.80	8.00	75.78	16.20	353.37	16.20	24.20a	6008
15	0.40	12.00	79.04	17.16	367.36	18.40	30.40	6008
16	0.00	16.00	82.26	18.11	381.16	22.65	38.65	6008
17	-0.40	20.00	85.44	19.05	394.82	26.57	46.57	6008
18	-0.80	24.00	88.60	19.98	408.37	30.23	54.23	6008
19	-1.20	28.00	91.74	20.90	421.80	33.70	61.70	6008
20	-1.60	32.00	94.85	21.82	435.16	37.04	69.04	6008
21	-2.00	36.00	97.95	22.73	448.43	40.32	76.32	6008
22	-2.40	40.00	101.03	23.63	461.65	43.57	83.57	6008

RI	GHT	side
111	OILI	DIG

				Effectiv	s	<u>Total</u>	Coeff. of	
Node	<u>Y</u>	Water	Vertic	Active	Passive	Earth	earth	subgrade
no.	coord	press.	<u>-al</u>	<u>limit</u>	<u>limit</u>	pressure	pressure	reaction
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	5.10	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.85	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	4.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	4.35	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	4.10	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	3.85	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	3.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	3.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	2.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
10	2.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
11	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
12	1.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	28.47	28.47	28.47p	7719
13	1.20	4.00	3.00	0.00	41.33	39.86	43.86	7719
14	0.80	8.00	6.00	0.00	54.20	37.05	45.05	7719
15	0.40	12.00	9.01	0.00	67.08	34.68	46.68	7719
16	0.00	16.00	12.01	0.00	79.98	32.76	48.76	7719
17	-0.40	20.00	15.03	0.00	92.89	31.23	51.23	7719
18	-0.80	24.00	18.04	0.00	105.84	30.03	54.03	7719
19	-1.20	28.00	21.07	0.09	118.81	29.07	57.07	7719
20	-1.60	32.00	24.10	0.99	131.82	28.26	60.26	7719
21	-2.00	36.00	27.15	1.88	144.86	27.53	63.53	7719
22	-2.40	40.00	30.20	2.78	157.95	26.83	66.83	7719

Run ID. Basement_wall
Boundary wall wallap
Please modify / add

lease modify / add | Checked :

(continued)

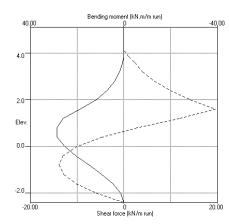
| Date:13-04-2025

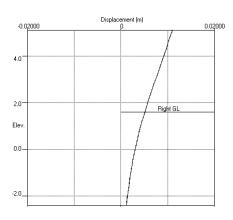
| Sheet No.

Stage No.2 Excavate to elevation 1.60 on RIGHT side Note: 24.20 a Soil pressure at active limit 28.47 p Soil pressure at passive limit

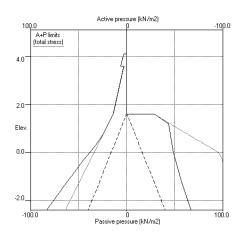
LDE LTD
Program: WALLAP Version 6.07 Revision A55.B74.R58
Licensed from GEOSOLVE

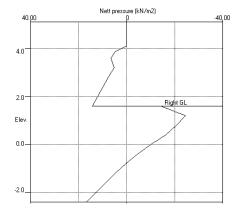
Data filename/Run ID: Basement_wall


Boundary wall wallap Please modify / add


| Sheet No. | Job No. J00983 | Made by : CCHE

| Date:13-04-2025 | Checked :


Units: kN,m


Stage No.2 Excav. to elev. 1.60 on RIGHT side

Stage No.2 Excav. to elev. 1.60 on RIGHT side

LDE LTD | Sheet No.

Program: WALLAP Version 6.07 Revision A55.B74.R58 | Job No. J00983

Licensed from GEOSOLVE | Made by : CCHE

Data filename/Run ID: Basement_wall |

Boundary wall wallap | Date:13-04-2025

Please modify / add | Checked :

Summary of results

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

Units: kN,m

				FoS for toe		Toe el	ev. for	
				elev. =	-2.40	FoS =	1.000	
Stage	Ground	level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
1	5.10	5.10	Cant.	Conditi	ons not sui	table f	or FoS ca	ilc.
2	5.10	1.60	Cant.	1.300	-2.11	-0.35	1.95	L to R

| Sheet No. LDE LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 | Job No. J00983 | Licensed from GEOSOLVE | Made by : CCHE

Data filename/Run ID: Basement_wall

Boundary wall wallap | Date:13-04-2025

Please modify / add | Checked :

Units: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

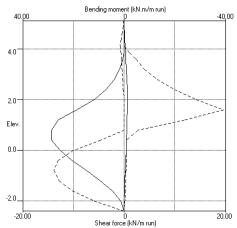
Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

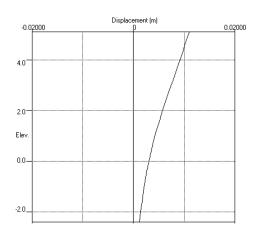
Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall

Bending moment, shear force and displacement envelopes

	, Diicar -	0200 0110	arbpracement.	CHITCHOPCD		
<u>Y</u>	Displac	ement	Bending	moment	Shear	force
coord	<u>maximum</u>	minimum	maximum	<u>minimum</u>	<u>maximum</u>	<u>minimum</u>
	m	m	kN.m/m	kN.m/m	kN/m	kN/m
5.10	0.011	0.000	0.0	0.0	0.0	0.0
4.85	0.011	0.000	0.0	-0.0	0.0	-0.1
4.60	0.010	0.000	0.0	-0.1	0.0	-0.3
4.35	0.010	0.000	0.0	-0.2	0.0	-0.6
4.10	0.009	0.000	0.0	-0.3	0.0	-0.8
3.85	0.009	0.000	0.1	-0.5	0.9	-0.7
3.60	0.008	0.000	0.5	-0.7	2.3	-0.6
3.20	0.008	0.000	1.8	-0.9	3.9	-0.5
2.80	0.007	0.000	3.8	-1.1	6.5	-0.4
2.40	0.006	0.000	7.1	-1.2	9.9	-0.2
2.00	0.006	0.000	11.9	-1.2	14.3	-0.1
1.60	0.005	0.000	18.7	-1.2	19.6	0.0
1.20	0.005	0.000	25.9	-1.1	11.8	0.0
0.80	0.004	0.000	28.7	-1.0	2.7	0.0
0.40	0.003	0.000	28.6	-0.9	0.4	-4.7
0.00	0.003	0.000	25.4	-0.7	0.4	-10.0
-0.40	0.003	0.000	20.6	-0.6	0.4	-13.0
-0.80	0.002	0.000	15.0	-0.4	0.4	-13.9
-1.20	0.002	0.000	9.5	-0.2	0.3	-12.9
-1.60	0.002	0.000	4.7	-0.1	0.3	-10.2
-2.00	0.001	0.000	1.3	-0.0	0.1	-5.9
-2.40	0.001	0.000	0.0	-0.0	0.0	0.0
	Y coord 5.10 4.85 4.60 4.35 4.10 3.85 3.60 3.20 2.80 2.40 2.00 1.60 1.20 0.80 0.40 0.00 -0.40 -0.80 -1.20 -1.60 -1.20 -1.60 -1.20	Y Displace Maximum m	Y Displacement minimum m 5.10 0.011 0.000 4.85 0.011 0.000 4.60 0.010 0.000 4.10 0.009 0.000 3.85 0.009 0.000 3.60 0.008 0.000 2.80 0.007 0.000 2.40 0.006 0.000 1.60 0.005 0.000 1.20 0.005 0.000 0.40 0.003 0.000 0.00 0.003 0.000 -0.40 0.003 0.000 -0.80 0.002 0.000 -1.20 0.002 0.000 -1.60 0.002 0.000 -2.00 0.001 0.000	Y Displacement monimum m Bending maximum minimum m 5.10 0.011 0.000 0.0 4.85 0.011 0.000 0.0 4.60 0.010 0.000 0.0 4.35 0.010 0.000 0.0 4.10 0.009 0.000 0.1 3.60 0.008 0.000 0.5 3.20 0.008 0.000 1.8 2.80 0.007 0.000 7.1 2.00 0.006 0.000 7.1 2.00 0.006 0.000 11.9 1.60 0.005 0.000 25.9 0.80 0.004 0.000 28.7 0.40 0.003 0.000 25.4 -0.40 0.003 0.000 25.4 -0.40 0.003 0.000 25.4 -0.80 0.002 0.000 9.5 -1.20 0.002 0.000 9.5 -1.60 0.002 0.000	Y Displacement moment Bending moment coord maximum m minimum m maximum kN.m/m minimum kN.m/m 5.10 0.011 0.000 0.0 0.0 4.85 0.011 0.000 0.0 -0.0 4.60 0.010 0.000 0.0 -0.1 4.35 0.010 0.000 0.0 -0.2 4.10 0.009 0.000 0.0 -0.3 3.85 0.009 0.000 0.5 -0.7 3.20 0.008 0.000 1.8 -0.9 2.80 0.007 0.000 3.8 -1.1 2.40 0.006 0.000 7.1 -1.2 2.00 0.006 0.000 7.1 -1.2 1.60 0.005 0.000 18.7 -1.2 1.20 0.005 0.000 25.9 -1.1 0.80 0.004 0.000 28.6 -0.9 0.00 0.003 0.000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

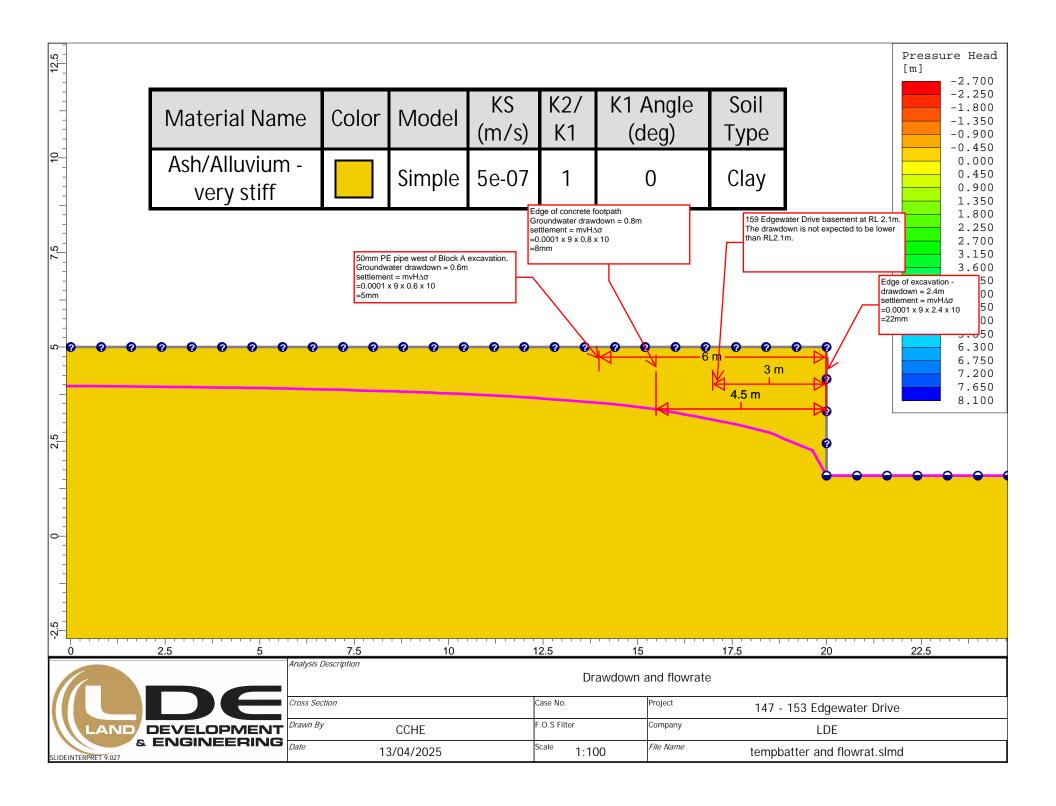
Maximum and minimum bending moment and shear force at each stage


Stage		Bending	moment -			Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	0.0	5.10	-1.2	2.00	0.4	-0.40	-0.8	4.10
2	28.7	0.80	-0.0	-2.40	19.6	1.60	-13.9	-0.80


Maximum and minimum displacement at each stage

Stage		Displace	ement		
no.	maximum	elev.	minimum	elev.	Stage description
	m		m		
1	0.000	-2.40	0.000	5.10	Apply surcharge no.1 at elev. 5.10
2	0.011	5.10	0.000	5.10	Excav. to elev. 1.60 on RIGHT side

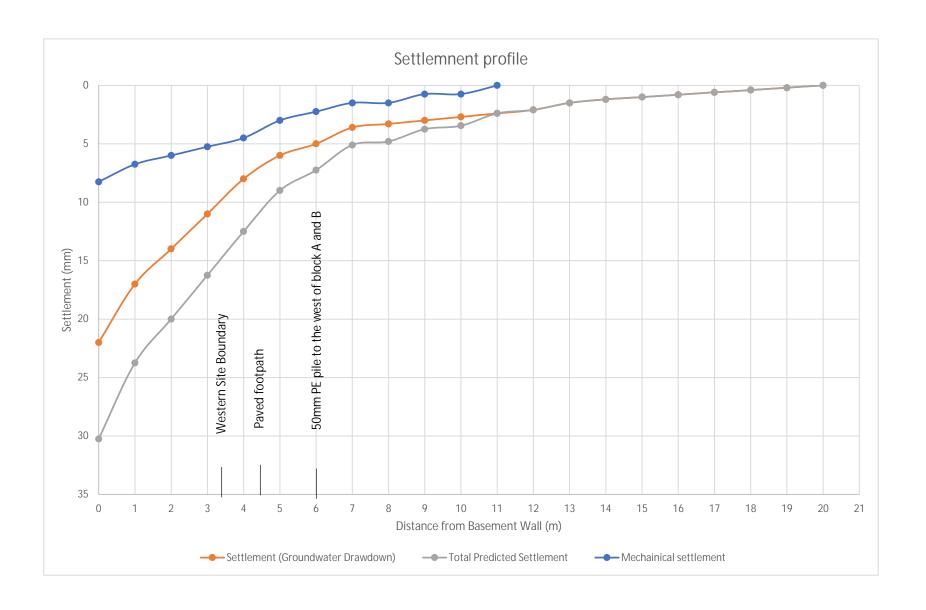
LDE LTD | Sheet No.
Program: WALLAP Version 6.07 Revision A55.B74.R58 | Job No. J00983
Licensed from GEOSOLVE | Made by : CCHE
Data filename/Run ID: Basement_wall |
Boundary wall wallap | Date:13-04-2025
Please modify / add | Checked :


Bending moment, shear force, displacement envelopes

APPENDIX G DRAWDOWN ANALYSIS OUTPUT

$$Q = \frac{\pi K (H^2 - h^2)}{\ln(\frac{R}{r_p})}$$

$$r = (2/\pi)(Y.W)^{1/2}$$
;


where: Y = length of mine (m)

W = width of mine (m)

		Baseline	Sensitivity	
Pi		3.14	3.14	
K	permeability	5.00E-07	8.00E-07 m/s	
		4.32E-02	6.91E-02 m/day	
Н	Depth of water level	9	9 mRL	This is water level to RL-4 - to account for groundwater flow
h		5.6	5.6 mRl	This is water level to RL-4 - to account for groundwater flow
R		37.05951	. 37.05950944 m	
L	length of building	19.2	2 19.2 m	
W	width of building	37.4	37.4 m	
rp	equivlent building radius	17.05951	17.05950944 m	
Q	inflow	8.68	13.89	

APPENDIX H SETTLEMENT PROFILE

APPENDIX I DRAFT GROUNDWATER AND SETTLEMENT MONITORING CONTINGENCY PLAN

A & L Sargeant Ltd

DRAFT GROUNDWATER MONITORING AND SETTLEMENT CONTINGENCY PLAN

147 – 153 Edgewater Drive, Pakuranga

Project Reference: J00983

April 17, 2025

CONTENTS

1	INTRODUCTION	1
2	CONCEPT CONSTRUCTION METHODOLOGY	1
3	CONDITION SURVEYS	1
	DISPLACEMENT MARKERS	
	I.1 Purposes and installation	
	l.2 Monitoring Frequency	
5	PIEZOMETERS	2
	HOLD POINTS	
	TRIGGER LEVELS	
	MITIGATION AND CONTINGENCY MEASURES	
	FURTHER WORK	
_	LIMITATIONS	

APPENDIX 1: FIGURE 1: MONITORING LOCATION PLAN

INTRODUCTION

The scope of this plan is to provide an indication of likely methods for monitoring displacements, indicate preliminary trigger levels and provide potential mitigation measures which could be utilised in the event that trigger levels were exceeded. The types of monitoring, locations, frequencies, trigger levels and appropriate mitigation measures are subject to change based on the outcome of detailed design and confirmation of construction methodologies.

The purpose of instrumentation and monitoring is to proactively verify compliance with performance criteria, assess impacts on neighbouring properties/services, and enable timely implementation of contingency measures. All parties must adhere to agreed communication protocols for trigger escalations.

The requirement for this plan arises as the basement retaining walls of Building A which may potentially affect the neighbouring properties and nearby buried services.

CONCEPT CONSTRUCTION METHODOLOGY

A construction methodology has not been confirmed for the above site yet as detailed design has not been completed and a contractor is yet to be involved. A concept staging sequence for the site is summarised below:

- 1. Excavate the site to finish level, leaving a safe batter at the boundary.
- 2. Where there is not enough space for safe batter, construction soldier pile wall for temporary retention purposes.
- 3. Form a capping beam at the top of the piles
- 4. Excavate to basement level.
- 5. Construct basement floor slab and wall, and then construct first floor slab to prop the wall long term, and backfill the space between the batter/solider pile wall and the building.

The assumed cantilever soldier pile wall methodology is preliminary. A revised risk assessment and monitoring plan update will be required once the contractor's methodology is finalized.

CONDITION SURVEYS

The proposed works will be designed to mitigate effects from the basement excavation and construction activities on the neighbouring pavements and structures. However, as a minimum a precautionary survey of the existing condition of the following is recommended (subject to private property owner approval where relevant) prior to and following construction to verify no visible damage has occurred as a result of the proposed works:

- 1. Edgewater Drive (along the sites full north-western boundary and 20m beyond in each direction) The footpath, berm and road pavement to observe existing condition;
- 2. Stormwater/wastewater lines to be rerouted.

The initial condition survey should involve general photos of the paved areas and building as well as noting any existing damage (aesthetic, serviceability and structural damage). Further the survey should identify foundation type where possible and note susceptibility of the structure to further movement.

A subsequent condition survey should be carried out at the completion of works to compare the condition of the pavements and structures to the initial condition survey and confirm that no further damage has occurred or to confirm the extent of any new damage that may have manifested as a result of the works.

4 DISPLACEMENT MARKERS

4.1 Purposes and installation

Retaining wall deflection markers should be attached to the top of basement retaining wall. These markers will monitor displacements and confirm they are within the design values and the performance criteria.

Locations in Figure 1 are provisional and require site verification during pre-start meetings. All displacement markers should be monitored in x, y and z directions and should be accurate to ±2mm.

4.2 Monitoring Frequency

Both foot path settlement and retaining wall deflection markers should be monitored as follows:

Table 1: Displacement Marker Minimum Monitoring Frequency

	3 1 7			
Construction Stage	Minimum Monitoring frequency			
Prior to excavation	2 Baseline readings			
During Excavation Works (i.e until basement and ground floo slabs have been completed)	Immediately prior to and following each stage of excavation and no less frequently than weekly			
At the completion of basement works	Monthly for 3 months			

The above frequencies may be increased by the Geotechnical Engineer should trigger levels be reached (as presented in Section 7) or if there is any other uncertainty in the data. They should also be reviewed if there is a change to the proposed concept methodology presented in Section 2.

5 PIEZOMETERS

Groundwater drawdown-induced settlements were considered in the design; thus, piezometers are not proposed at this stage.

HOLD POINTS

The following Hold Points should be adhered to during construction:

- A pre-start meeting should be held between the Constructor, Client, Geotechnical Engineer and Project Manager / Engineer to the Contract to discuss the proposed construction methodology, monitoring requirements and mitigation measures following site set out but prior to any works commencing on site, together with communication protocols;
- Basement construction should not commence until the minimum number of baseline readings outlined in Table 1 above have been obtained for all appropriate monitoring points and written approval of this is provided by the Geotechnical Engineer;
- A round of monitoring readings should be carried out and reviewed by the Geotechnical Engineer immediately prior to removal of the props. Written approval should be given by the Geotechnical Engineer prior to their removal.

TRIGGER LEVELS

The monitoring points and frequencies in the preceding sections are specified to ensure that retaining wall deflections stay within the required performance criteria and are in line with the assumptions made in the design. The alert and alarm levels presented in Table 2 are set to identify where the monitoring data is approaching (alert level) and exceeding (alarm level) the design levels.

Table 2: Alert and Alarm level for Monitoring Points

Monitoring station type	Alert level*	Alarm level*
Building excavation retaining wall horizontal displacement	15mm	20mm
Edgewater drive pavement settlement	15mm	20mm

^{*} Final trigger levels require validation during detailed design. Unapproved deviations from concept assumptions invalidate these thresholds.

If monitoring results exceed the above limits, as a minimum, the following actions should be undertaken:

Alert Level: The Site Engineer and Geotechnical Engineer should be notified as soon as possible and within 24 hours of exceedance. All monitoring points within 30m of the affected point should be remeasured to check if other marks have reached trigger levels and a site walkover carried out by the Geotechnical Engineer. A review of all monitoring data and works being undertaken on site should be carried out. Where appropriate modifications to monitoring frequencies and/or site works may be recommended, and design checks may be carried out.

Alarm Level: The Site Engineer and Geotechnical Engineer should be notified immediately of any exceedance. All works which may contribute to wall movement should be ceased until written approval from Geotechnical Engineer is given. All monitoring points within 30m of the affect point should be remeasured to check if other marks have reached trigger levels. Where appropriate contingency measures as described in Section 8 will be recommended by the Geotechnical Engineer.

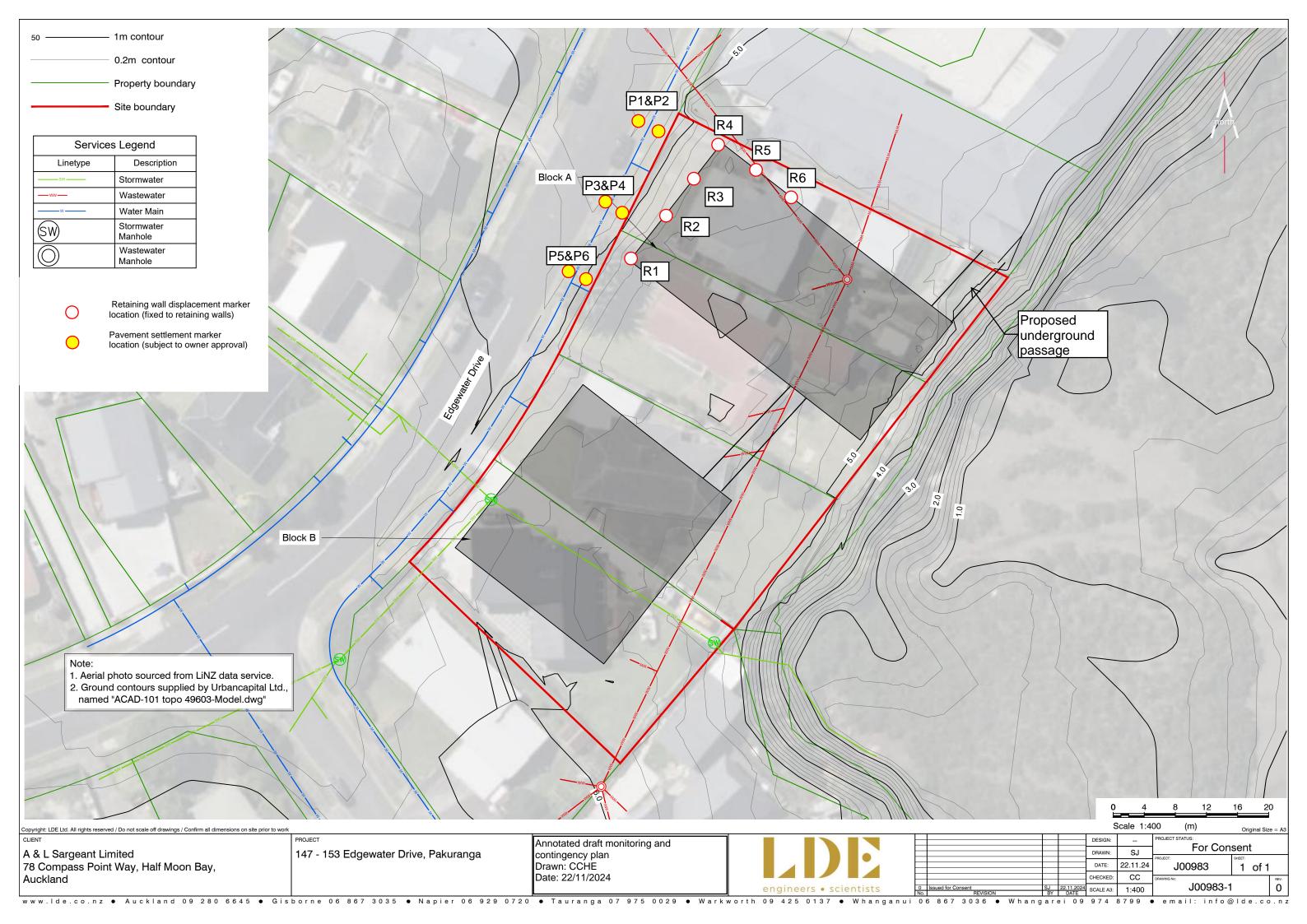
8 MITIGATION AND CONTINGENCY MEASURES

In the event that wall/ground movements are greater than allowed for in the design possible contingency options are presented below. The Contractor should have appropriate equipment on site (or readily available) during the basement construction period to immediately carry out these works if required.

- Add props to the affected portion of wall where practical to do so. The number and location of the additional props would be dependent on the stage of construction alarm levels are reached at and would be determined during site works, and would require specific design.
- Toe Buttress / Hardfill Berms This could involve placing a buttressing hardfill material back in front of
 the wall to prevent further movement following excavation. Excavation of the berm would then occur in
 a hit and miss or staged fashion once permanent retaining supports are in place, such that movements
 are controlled. This is also a specific design issue during construction.

9 FURTHER WORK

A wastewater pipe running southwest to northeast through the Block A basement would likely require rerouting subject to the confirmation of the project civil engineer. These rerouting would likely be required ahead of the basement excavation; Apart from the conditioning survey, settlement effect to the existing and rerouted portions of these pipes may need to be assessed once the location and depth of these rerouted drains are determined. Settlement criteria for rerouted drains must be incorporated into the final monitoring plan prior to excavation.


10 LIMITATIONS

This report has been prepared solely for the use of our client, A & L Sargeant Ltd, their professional advisers and the relevant Territorial Authorities in relation to the specific project described herein. No liability is accepted in respect of its use for any other purpose or by any other person or entity. All future owners of this property should seek professional geotechnical advice to satisfy themselves as to its ongoing suitability for their intended use.

APPENDIX 1 MONITORING LOCATIONS PLAN

