DEPTH-DURATION-FREQUENCY Climate Change - Rainfall Depth (mm) & Intensity (mm/h) (using Daily Rainfall Depth maps TP108 with climate change adjustments)

Job Name:	Ambridge Rose Retirement Village	Job No.:	496/03
Calculations By:	JF	Date:	17/10/2025
Checked By:	NP	Page No.:	1
File:	4-25 TP108 Rainfall Depth ARC ARI maps.xlsx	Rev.:	В

ARI	AEP -		nt Maps: Appendix A of TP108
		24hr	
2	0.5	77	
5	0.2	116	
10	0.1	139	
20	0.05	162	
50	0.02	194	
100	0.01	215	

Table 4.1: Percentage Increase in 24-hour Design Rainfall Depth

(inclusive of climate change as per Auckland Council SW CoP Version 4 dated March 2024)

API	AEP	Percentage increase in 24hr design rainfall depth due to future climate change - 2.1°	Percentage increase in 24hr design rainfall depth due to future climate change - 3.8°
2	50%	15.1	27.4
5	20%	16.4	29.6
10	10%	17	30.8
20	5%	17.2	31.2
50	2%	17.6	31.9
100	1%	18.1	32.7

Rainfall Depth (mm)

Duration/ARI	24hr (2.1°)	24hr (3.8°)
2 yr (50%)	88.63	98.10
5 yr (20%)	135.02	150.34
10 yr (10%)	162.63	181.81
20 yr (5%)	189.86	212.54
50 yr (2%)	228.14	255.89
100 yr (1%)	253.92	285.31

Table 2: Ratio to convert 24-hour Rainfall Depth to Intensities

	24hr without	24hr with climate
Duration	climate change	change allownces
10min	67.5	69.4
20min	51.9	53.2
30min	42.8	43.7
1hr	30.3	30.8
2hr	20.5	20.8
6hr	10.5	10.6
12hr	6.8	6.8
20hr	4.2	4.2

Rainfall Intensity (mm/h)

	10min	20min	30min	1hr	2hr	6hr	12hr	24hr
2 yr (50%)	61.5	47.1	38.7	27.3	18.4	9.4	6.0	3.7
5 yr (20%)	93.7	71.8	59.0	41.6	28.1	14.3	9.2	5.7
10 yr (10%)	112.9	86.5	71.1	50.1	33.8	17.2	11.1	6.8
20 yr (5%)	131.8	101.0	83.0	58.5	39.5	20.1	12.9	8.0
50 yr (2%)	158.3	121.4	99.7	70.3	47.5	24.2	15.5	9.6
100 yr (1%)	176.2	135.1	111.0	78.2	52.8	26.9	17.3	10.7

TP108: WORKSHEET

Runoff Parameters and T_c / Graphical Peak Flow Rate

	=
DODE	CIVI

Job Name:	Ambridge Rose Retirement Village	Job No.:	496/03
Calculations By:	JF	Date:	17/10/2025
Checked By:	NP	Page No.:	1
File:	4-01 TP 108 calc.xlsx	Rev.:	В

Worksheet 1: Runoff Parameters and Time of Concentration

Select: Pre Development

1. Runoff Curve Number (CN) and initial Abstraction (Ia)

Soil name and classification	Cover description (cover type, treatment, and hydrologic condition)	_	110000m²-	Product of CN x area
Group C	lawn, parks in good condition	74	0.131	9.67
Group A	Parks, pasture in good condition	39		0.00
	Unconnected impervious	98	0.168	16.46
	Connected impervious	98		0.00
		0		0.00
		0		0.00
* from Table 24		Totals =	0.299	26.14

CN (weighted) = total product / total area =

87.5

0.78

la (weighted) = 5 x pervious area =

5 x 0.1307 **2.2** mm 0.2987

total area

2. Time of Concentration

Channelisation factor, C = 1 (From Table 4.2)

Catchment length, L = 0.04 km (along drainage path)

Catchment Slope, $S_c = \frac{0.029}{\text{m/m}}$ (by equal area method)

Runoff factor, CN/(200-CN) = 87.5 =

 $t_c = 0.14 \ C \ L^{0.66} \left(\frac{CN}{200 - CN} \right)^{-0.55} \ S_c^{-0.30}$

= 0.056 hrs

SCS Lag for HEC-HMS.... $t_p = 2/3 t_c$

= 0.037 hrs

Worksheet 2: Graphical Peak Flow Rate

1. Data

Catchment Area A= 0.00299 km² (100ha =1km²)
Runoff curve number CN= 87 (from worksheet 1)
Initial abstraction Ia= 2.2 mm (from worksheet 1)
Time of concentration tc= 0.17 hrs (from worksheet 1)

2. Calculate storage, S =(1000/CN - 10)25.4 =

36 mm

Storm #1 Storm #2 Storm #3

3.	Average recurrence interval, ARI (yr)
	n

- 4. 24 hour rainfall depth, P_{24} (mm)
- 5. Compute, $c^* = \frac{P_{24} 2la}{P_{24} + 2la + 2S}$
- 6. Specific peak flow rate q* (from figure 5.1)
- 7. Peak flow rate, $q_p = q^* A P_{24}$ (m³/s)
- 8. Runoff depth, $Q_{24} = \frac{(P_{24} la)^2}{(P_{24} la) + S}$ (mm)
- 9. Runoff volume, $V_{24} = 1000 \times Q_{24} A \text{ (m}^3)$

	2 yr	10 yr	100 yr
	98.1	181.81	285.31
	0.564	0.710	0.795
	0.134	0.152	0.159
	0.039	0.083	0.135
)	69.6	149.4	251.0
)	208	446	750

TP108: WORKSHEET

Runoff Parameters and T_c / Graphical Peak Flow Rate

1	-
DODD	CIVI

Job Name:	Ambridge Rose Retirement Village	Job No.:	496/03
Calculations By:	JF	Date:	17/10/2025
Checked By:	NP	Page No.:	2
File:	4-01 TP 108 calc.xlsx	Rev.:	В

Worksheet 1: Runoff Parameters and Time of Concentration

Select: Post Development

1. Runoff Curve Number (CN) and initial Abstraction (Ia)

Soil name and classification	Cover description (cover type, treatment, and hydrologic condition)	Curve Number CN*	1100000	Product of CN x area
Group C	lawn, parks in good condition	74	0.093	6.87
Group A	permeable pavers	74	0.027	1.99
	Unconnected impervious	98		0.00
	Connected impervious	98	0.179	17.53
		0		0.00
		0		0.00
* from Table 24		Totals =	0.299	26.40
ON (! (I)	total and book total and		1	

CN (weighted) = total product / total area =

88.4

la (weighted) = 5 x pervious area =

5 x 0.1198 2.0 mm

total area 0.2987

2. Time of Concentration

Channelisation factor, C = 0.6 (From Table 4.2)

Catchment length, L = 0.042 km (along drainage path)

Catchment Slope, $S_c = \frac{0.03}{m/m}$ (by equal area method)

Runoff factor, CN/(200-CN)= 88.4 =

 $t_c = 0.14 \ C \ L^{0.66} \left(\frac{CN}{200 - CN}\right)^{-0.55} S_c^{-0.30}$

0.79 = 0.034 hrs

SCS Lag for HEC-HMS.... $t_p = 2/3 t_c$

= 0.023 hrs

Storm #3

Storm #4

Worksheet 2: Graphical Peak Flow Rate

Storm #1

1. Data

Catchment Area A= 0.00299 km² (100ha =1km²)
Runoff curve number CN= 88 (from worksheet 1)
Initial abstraction Ia= 2.0 mm (from worksheet 1)
Time of concentration tc= 0.17 hrs (from worksheet 1)

2. Calculate storage, S =(1000/CN - 10)25.4 =

33 mm

Storm #2

3.	Average recurrence interval, ARI (yr)

- 4. 24 hour rainfall depth, P_{24} (mm)
- 5. Compute, $c^* = \frac{P_{24} 2la}{P_{24} + 2la + 2S}$
- 6. Specific peak flow rate q* (from figure 5.1)
- 7. Peak flow rate, $q_p = q^* A P_{24} \text{ (m}^3/\text{s)}$
- 8. Runoff depth, $Q_{24} = \frac{(P_{24} la)^2}{(P_{24} la) + S}$ (mm)
- 9. Runoff volume, $V_{24} = 1000 \times Q_{24} A \text{ (m}^3)$

	2 yr	10 yr	100 yr
	98.1	181.81	285.31
	0.585	0.727	0.808
	0.137	0.154	0.161
	0.040	0.084	0.137
)	71.3	151.6	253.4
	213	453	757

				. 2
Pre to	post det	ention vo	olumes	رm) ا

5	7	7

Job Name:	Ambridge Rose Retirement Village	Job No.:	496/03
Calculations By:	JF	Date:	17/10/2025
Checked By:	NP	Page No.:	3
File:	4-01 TP 108 calc.xlsx	Rev.:	В

Pre-Development

Post-Development

