

Infrastructure Servicing Assessment for NoR

# Ministry of Education

43 Trigg Road; 54 and 60 Station Road

# Table of Contents

|          |                                  |           |
|----------|----------------------------------|-----------|
| <b>1</b> | <b>INTRODUCTION</b>              | <b>1</b>  |
| 1.1      | BACKGROUND                       | 1         |
| 1.2      | EXISTING SITE APPRAISAL          | 1         |
| 1.2.1    | <i>Stormwater</i>                | 2         |
| 1.2.2    | <i>Wastewater</i>                | 3         |
| 1.2.3    | <i>Water Supply</i>              | 3         |
| 1.2.4    | <i>Utilities</i>                 | 4         |
| 1.3      | PROPOSED FUTURE DEVELOPMENT      | 4         |
| <b>2</b> | <b>STORMWATER</b>                | <b>4</b>  |
| 2.1      | STORMWATER MANAGEMENT PRINCIPLES | 4         |
| 2.1.1    | <i>Water quality</i>             | 4         |
| 2.1.2    | <i>Hydrology mitigation</i>      | 4         |
| 2.1.3    | <i>Peak Flow Attenuation</i>     | 5         |
| 2.2      | STORMWATER MANAGEMENT CRITERIA   | 6         |
| 2.2.1    | <i>Implementation</i>            | 7         |
| 2.3      | FLOODING & OVERLAND FLOW         | 8         |
| <b>3</b> | <b>WASTEWATER</b>                | <b>8</b>  |
| <b>4</b> | <b>WATER SUPPLY</b>              | <b>9</b>  |
| 4.1      | FIRE SUPPLY                      | 9         |
| <b>5</b> | <b>UTILITY SERVICES</b>          | <b>10</b> |
| <b>6</b> | <b>CONCLUSION</b>                | <b>10</b> |

## Attachments

- A BeforeUDig Information
- B Watercare Development Information Form
- C Water Pressure Test

## Document Control

|                     |                                                                                     |
|---------------------|-------------------------------------------------------------------------------------|
| <i>Client</i>       | Ministry of Education                                                               |
| <i>Title</i>        | Infrastructure Servicing Assessment for NoR - 43 Trigg Road; 54 and 60 Station Road |
| <i>Revision</i>     | A                                                                                   |
| <i>Status</i>       | Final                                                                               |
| <i>Version date</i> | 18 December 2025                                                                    |
| <i>Prepared by</i>  | Luplesina Koro                                                                      |
| <i>Reviewed by</i>  | Dali Suljic                                                                         |
| <i>Released by</i>  | Dali Suljic                                                                         |

## Revision History

| Revision | Status | Date Issued | Prepared by   | Reviewed by | Released by |
|----------|--------|-------------|---------------|-------------|-------------|
| A        | Final  | 18.12.2025  | Lupesina Koro | Dali Suljic | Dali Suljic |

*This report has been prepared for the sole use of our client, Ministry of Education, for the particular brief and on the terms and conditions agreed with our client. It may not be used or relied on (in whole or part) by anyone else, or for any other purpose or in any other contexts, without our prior written agreement.*

## 1 Introduction

Tektus was engaged by the Ministry of Education (MoE) to develop an infrastructure servicing assessment to support the lodgement of a Notice of Requirement (NoR) that would enable the future construction and operation of a secondary school at 43 Trigg Road; 54 and 60 Station Road, Huapai referred to as the 'site' (Figure 1). This serviceability assessment should be read in conjunction with other relevant documentation prepared to support the lodgement of this NoR.



Figure 1: Proposed secondary school site at 43 Trigg Road; 54 and 60 Station Road, Huapai (source: Auckland Council Geomaps, November 2025)

### 1.1 Background

MoE determined that a new secondary school is required given the population growth expected across the Kumeū-Huapai sub-catchments and the existing demand for secondary school provision with the establishment of residential developments in the area. A desktop review of seven potential school site locations was initially conducted in 2022. In 2025, three sites were added to the review, and a total of ten potential locations were assessed / re-assessed<sup>1</sup>. The site at 54 and 60 Station Road, Huapai was determined as the preferred option for a secondary school site. 43 Trigg Road was later included for a more flexible proposition that would increase benefits for site development.

### 1.2 Existing Site Appraisal

The secondary school is proposed to be located across three existing parcels: 43 Trigg Road, 54 and 60 Station Road, Huapai. All parcels are located within the Future Urban Zone (FUZ) under the Auckland Unitary Plan<sup>2</sup> (AUP). Across the three parcels, the total site area is approximately 6.9 hectares with a ridgeline in the northern third of the site. North of the ridgeline, approximately 1.9 hectares of the site slopes towards the northern boundary at a grade of approximately 2%. South of the ridgeline, the remainder of the site generally slopes towards the low point in the southwest corner at a grade of approximately 10%. The site is estimated as 90% pasture with a cluster of structures that vary in size and function located across the three parcels.

<sup>1</sup>Incite, 2025. *Kumeū Secondary School Site Selection Revised Stage 2 Options Evaluation*.

<sup>2</sup>Auckland Council, 2016-. *Auckland Unitary Plan Operative in Part* 15 November 2016. Accessed December 2025: [Auckland Unitary Plan Operative in part](#)

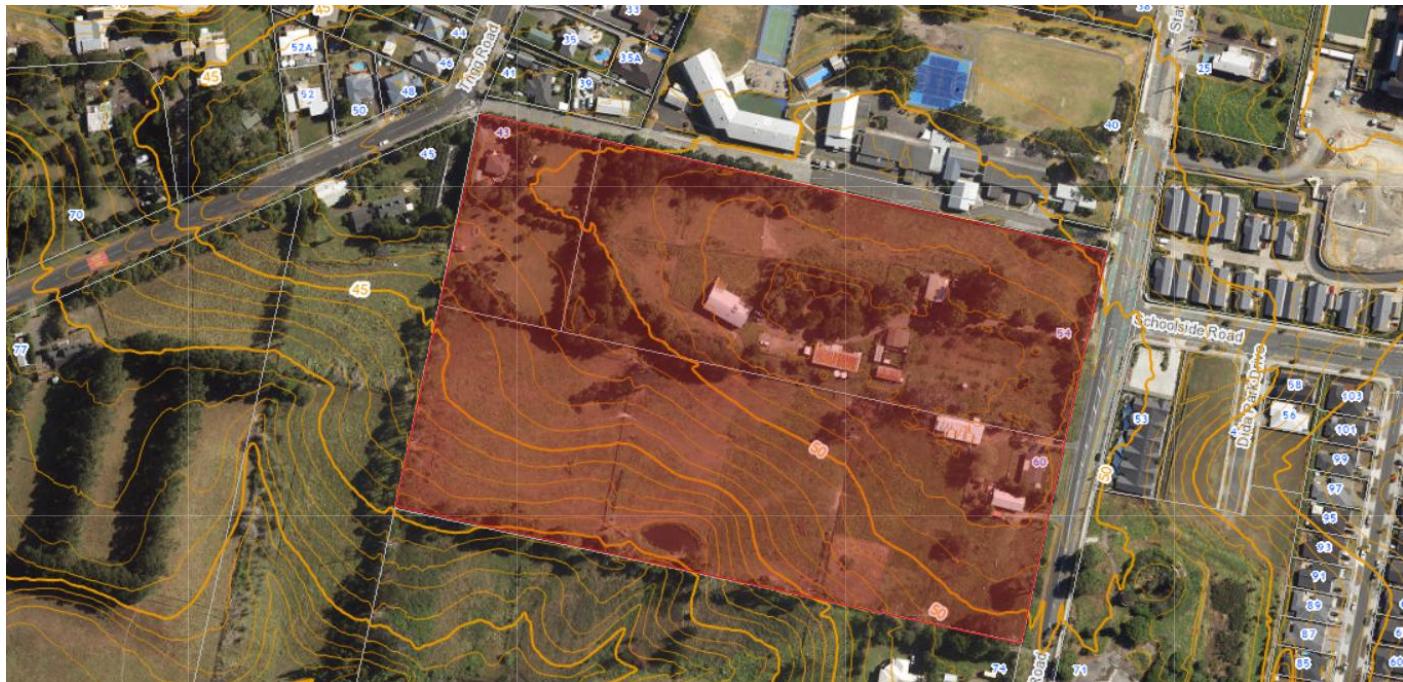



Figure 2: Site location plan (source: Auckland Council Geomaps, November 2025)

### 1.2.1 Stormwater

The site is located within the Kumeū-Huapai-Riverhead Future Urban Area (FUA). The Auckland Future Development Strategy 2023-2025<sup>3</sup> (FDS) confirms that the northern portion of the FUA is not appropriate for development due to the risks to life and property. There are also no feasible options for mitigation that would alleviate significant effects downstream should development occur within this region of the FUA. Healthy Waters Flood and Resilience (HWFR) confirmed that all sites considered in the site selection process were outside of this northern portion but were marked as 'red flagged' zones. Red flagged zones require appropriate stormwater management to ensure development of these areas will not exacerbate the flooding risk downstream due to the extensive nature of the upstream catchments.

HWFR indicated that given the greater flooding environment of Kumeū and Huapai, the flood maps for the area are currently being updated with a higher rainfall depth that will likely result in greater depth and flood plain extents. Given the location and topography of the site, the updated floodplain extents are unlikely to affect the site itself. A detailed catchment study and flood model is underway by HWFR with related infrastructure upgrades to be investigated once complete.

Figure 3 shows the site is likely subject to five concentrated overland flow paths, all of which originate within the site itself. Flows separate from the ridgeline towards the existing urban development in the north and the existing rural land south of the ridgeline. Ultimately, all flows converge further west of the site and discharge into the Kumeū River.

Based on Auckland Council GIS, there is no public stormwater connection available to the existing site (Figure 3). On the perimeter, at the northeastern and northwestern corner, a 300Ø mm concrete gravity line runs along Trigg Road and Station Road. These stormwater connections are located upstream of the site.

Auckland Council holds a Regionwide Stormwater Network Discharge Consent (NDC) that authorises stormwater discharges into the public stormwater network across the Auckland Region. However, as the authorisation is limited to

<sup>3</sup>Auckland Council, 2023. *Tāmaki – Whenua Taurikura Auckland Future Development Strategy 2023-2053*. Accessed November, 2025: <https://www.aucklandcouncil.govt.nz/content/dam/ac/docs/plans-projects-policies-reports-bylaws/misc/future-development-strategy.pdf>

urban zoned areas<sup>4</sup> under the AUP only, the site cannot be authorised under the NDC as it is located within the Future Urban Zone (FUZ). Thus, the development of site will need to be authorised by a new stormwater discharge consent.

The site is bordered by developments to the north and east, which are located within the Stormwater Management Area Flow 1 (SMAF 1) control.



Figure 3: Stormwater features of the site (source: Auckland Council Geomaps, December 2025)

The Ecological Assessment<sup>5</sup> indicates there are no wetlands / natural inland wetlands within the site boundary. There is an artificial pond towards the centre of the site, near the southern boundary but is considered an unlikely habitat for any aquatic species as determined by the Ecological Assessment. A potential intermittent stream is identified west of the pond and traverses the southern site boundary.

The Geotechnical Review<sup>6</sup> concludes that the ground conditions consist of stiff clayey silt / silty clay. Thus, soil infiltration rates are likely to be low.

#### 1.2.2 Wastewater

The public wastewater reticulation in Kumeū is a low-pressure system rather than a more conventional gravity system. There is no existing public wastewater infrastructure within the site, however a 40Ø mm connection in the northeastern corner feeds into a 63Ø mm main that connects to a 110Ø mm main that runs parallel to a 75Ø mm main along the eastern side of Station Road.

As part of the site selection process in 2022, WSL indicated that the existing wastewater network likely has capacity to service the site, however further capacity assessments may be required as the site is located within FUZ<sup>7</sup>.

#### 1.2.3 Water Supply

There is no existing public water supply infrastructure within the site, however east of the site, there is a 280Ø mm public water supply line that runs along the eastern side of Station Road. To the north of the site, a 180Ø mm main public water supply runs parallel to the northern boundary within the accessway for Huapai District School. There is a total of five hydrants located on these lines within the general proximity of the site.

<sup>4</sup>Auckland Council, 2020. Schedule 4: Connection requirements Regionwide stormwater network discharge consent. Accessed December 2025: [Healthy Waters NDC Schedule 4 - full version \(2\).pdf](#)

<sup>5</sup>Morphum, 2025. Kumeū Secondary NoR – Ecological Opportunities and Constraints. [P05641 Ecological Constraints and Opportunities Memo.pdf](#)

<sup>6</sup>Wentz-Pacific, 2025. Geotechnical Review Summary for Notice of Requirement Kumeū Secondary School 43 Trigg Road and 54/60 Station Road, Kumeū. Accessed December, 2025: [1502-01-25\\_Kumeū School NOR Geotech Assessment.pdf](#)

<sup>7</sup>Tonkin & Taylor Ltd, 2025. Desktop Assessment for Kumeū Secondary School Site Selection. Accessed November 2025: [Geotechnical Assessment Report](#)

As part of the site selection process in 2022, WSL indicated that the existing water supply network likely has capacity to service the site albeit the site being located within the FUZ<sup>8</sup>.

Water pressure testing was undertaken in December 2025 on the existing 280Ø mm. The testing recorded a static pressure of 355kPa and a residual pressure of 280kPa with a total flow of 26.4L/s from two hydrants. Refer to Attachment C for the detailed report.

#### 1.2.4 Utilities

BeforeUDig information (gas, power and telecommunications) was requested in August 2025 for each of the ten options considered in the site selection process (see Section 1.1). The availability of utilities for this site was reported for electricity and fibre services only, indicating 11kV underground lines along Station Road and fibre availability for properties within 200m of the site. VDSL is currently also provided for the site, which is a good alternative to fibre, but has limitations for connection speed<sup>9</sup>.

BeforeUDig information received in December 2025 (Attachment A) confirmed the above and also showed gas currently running through the northwest corner of the property, via an existing line in the single accessway of 43 Trigg Road.

### 1.3 Proposed Future Development

The proposed future development involves establishment of a secondary school accommodating Years 9-13. The MoE has advised that it anticipates an opening roll of 1,500 students, with a projected medium-long term demand of 2,500 student places with estimated population growth and further urbanisation of the area.

The total number of staff is estimated at 251<sup>10</sup> assuming an even distribution of students across the five year groups and no students funded under the Ongoing Resource Scheme. This total includes curriculum, management, senior management and middle management staff. The number of students for the masterplan roll and calculated staff has been used to estimate the wastewater and water supply demands for the school.

## 2 Stormwater

### 2.1 Stormwater Management Principles

#### 2.1.1 Water quality

Future development within the site is proposed to follow the principles of an integrated stormwater management approach, as directed by E1 of the AUP, to manage the quality of stormwater runoff from impervious surfaces. The key focus areas for water quality treatment within the site are exposed high contaminant generating carparks (servicing more than 30 vehicles as per AUP) and associated access roads.

#### 2.1.2 Hydrology mitigation

The ultimate receiving environment from the site is a freshwater stream. Considering that the surrounding existing urban areas are located within SMAF 1, it is proposed to implement the same for the site. All future impervious surfaces are proposed to meet the SMAF 1 retention and detention requirements consistent with Table E10.6.3.1.1 of the AUP. It is noted that due to the anticipated soil conditions described in Section 1.2.1, the provision of retention via infiltration to ground is unlikely. However, infiltration tests are recommended to be carried out at the Outline Plan of Works (OPW) stage to confirm the suitability of the site for disposal of retention to ground.

In addition to the provision of SMAF 1, it is proposed to generally maintain the natural catchment boundaries within the site to minimise the potential impact on stream hydrology.

<sup>8</sup>Tonkin & Taylor Ltd, 2025. *Desktop Assessment for Kumeū Secondary School Site Selection*. Accessed November 2025: [Geotechnical Assessment Report](#)

<sup>9</sup>Chorus. *Broadband Map NZ*. Accessed December, 2025: [Availability - Broadband Map NZ](#)

<sup>10</sup>Ministry of Education. *How we calculate curriculum staffing*. Accessed December, 2025. URL: <https://web-assets.education.govt.nz/s3fs-public/2024-08/How%20we%20calculate%20curriculum%20staffing%20-FINAL.pdf?VersionId=L1QCHhUD7QBWc9GHUDV.6dGIZ20XB7cn>.

### 2.1.3 Peak Flow Attenuation

Given the complexity of the existing flooding within this catchment, a comprehensive study would be required to inform catchment-wide attenuation requirements. Based on the advice from HWFR, the Kumeū-Huapai catchment study and flood model are not yet available (see Section **Error! Reference source not found.**) and it would not be feasible for MoE to commission an assessment of this scale to support this NoR. Given the location of the site and a relatively small scale of future development, including a low proportion of anticipated impervious surfaces, it is proposed to implement attenuation principles that seek to reduce the 1% AEP storm post-development peak flows from impervious surfaces to 80% of the pre-development (pervious surfaces) rates.

The 80% attenuation approach will ensure that the future development of the site will not increase flooding downstream considering potential catchment-wide impacts. This approach is largely based on national and international studies that informed stormwater management principles for several local authorities across New Zealand. TP10<sup>11</sup> suggested that limiting the peak discharge of the 100-year (1% AEP) storm to not exceed 80% of the pre-development 100-year storm will reduce the risk of flood levels increasing downstream and is an acceptable alternative to a catchment wide study. This was supported by a study of the Flat Bush catchment conducted by Manukau City Council determining that post-development flows attenuated to 80% of the pre-development 100-year ARI peak flows is appropriate to mitigate potential downstream flood effects in the absence of a catchment study. A similar approach is detailed in the Waikato stormwater management guideline<sup>12</sup> which also includes details of a study undertaken in a New Jersey catchment. This study concluded that by implementing the 80% attenuation approach the post-development runoff rates are less than the pre-developed runoff rates for the entire storm as highlighted in Figure 4.

<sup>11</sup>Auckland Regional Council, 2003. *Stormwater management devices: Design guidelines manual*. Accessed December 2025. URL: [TP010 Stormwater management devices design guideline manual 2003](https://www.arc.govt.nz/assets/1/1/TP010-Stormwater-management-devices-design-guideline-manual-2003.pdf)

<sup>12</sup>Waikato Regional Council, 2020. Waikato stormwater management guideline. Accessed December, 2024. URL: TR20-07.pdf.

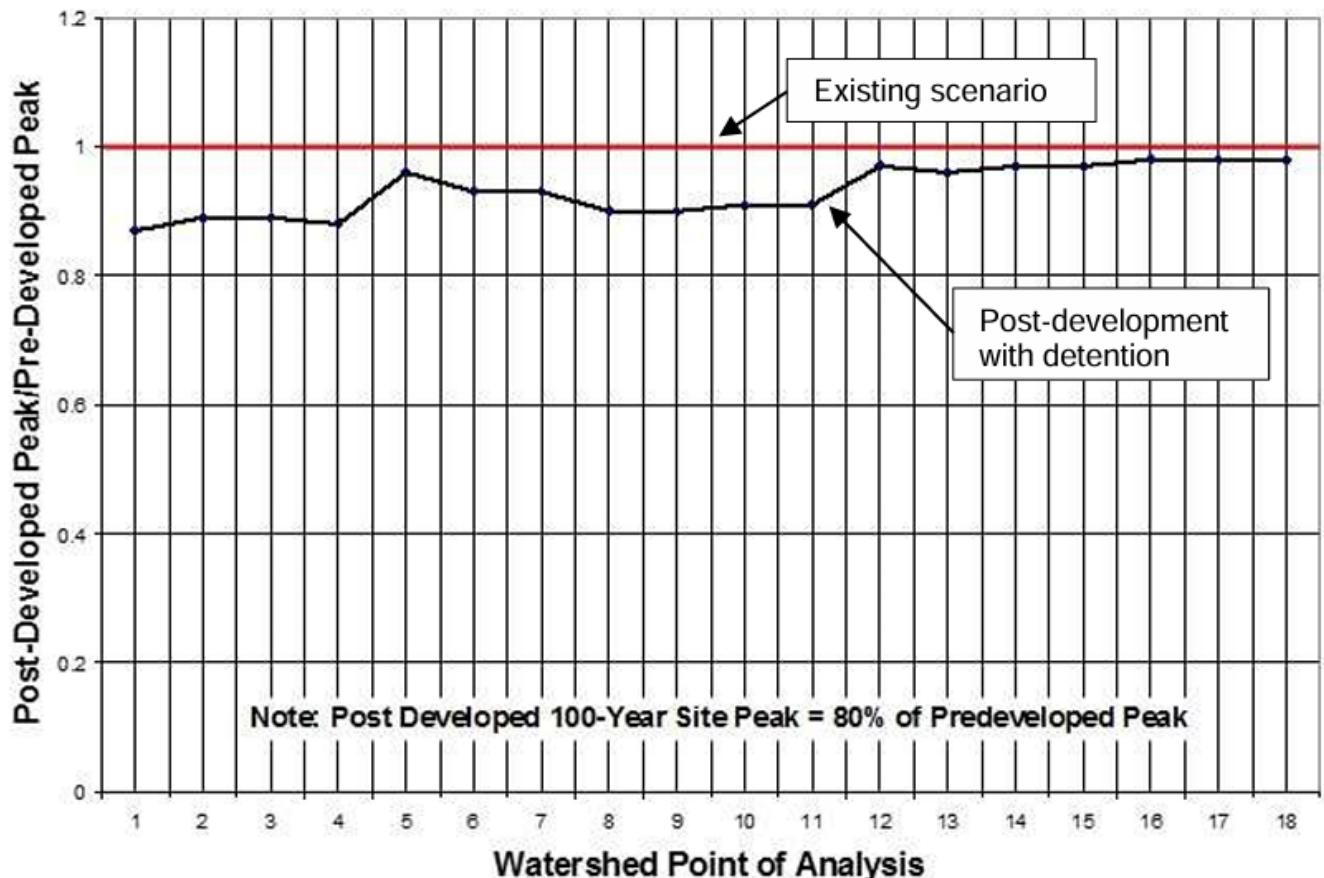



Figure 4: Pre and post-development 100-year ARI peak flow rates in a catchment (source: Waikato stormwater management guideline)

Attenuation of the 10% AEP post-development peak flows from impervious surfaces to pre-development (pervious surfaces) rates is not proposed for the site considering that all future stormwater system within the site will be designed to convey the 10% AEP flows in accordance with the current engineering standards. However, where connection is made to the existing public stormwater network, attenuation of the 10% AEP may be required subject to a detailed capacity assessment of the existing network at the OPW stage.

## 2.2 Stormwater Management Criteria

Table 1 summarises the relevant stormwater design criteria that align with the stormwater management principles set in Section 2.1 above and outlines options for stormwater management devices to deliver these outcomes.

Table 1: Proposed stormwater design criteria

| Outcome              | Surface                              | Criteria                                                                                                                                                                                                                                                                                       | Stormwater Management System                                                                   |
|----------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Water Quality        | Roof                                 | Use low contaminant generating roofing materials                                                                                                                                                                                                                                               |                                                                                                |
|                      | High-contaminant generating carparks | Water quality treatment with a device or system designed in accordance with GD01, or alternative proprietary device or system achieving an equivalent level of treatment                                                                                                                       | Bioretention device, swale, wetland, proprietary device                                        |
|                      | Other hardstands                     | No further requirements to Hydrology Mitigation (SMAF 1)                                                                                                                                                                                                                                       |                                                                                                |
| Hydrology Mitigation | All impervious areas                 | Provide retention (volume reduction) of at least 5mm runoff depth                                                                                                                                                                                                                              | Rainwater/detention tanks, bioretention device, wetland, structural tree pit, permeable paving |
|                      |                                      | Provide detention (temporary storage) and a drain down period of 24 hours for the difference between the pre development and post-development runoff volumes from the 95th percentile, 24 hour rainfall event minus the 5 mm retention volume or any greater retention volume that is achieved |                                                                                                |
| Attenuation          | All impervious areas                 | Attenuation of post-development peak flows to 80% of pre-development levels for the 1% AEP event*                                                                                                                                                                                              | Attenuation tanks, bioretention device, wetland, dry basin**                                   |

\*Attenuation of post-development peak flows to pre-development levels for the 10% AEP event may be required where connection is made to the existing public stormwater network, subject to a detailed capacity assessment.

\*\*Dry basin includes sports fields, informal recreation areas or carparks where these have been specifically designed to deliver the attenuation function

## 2.2.1 Implementation

It is not possible to develop a specific stormwater management solution for the site at this point, as there are no specific designs for the school currently available. Overall, and given the size of the site, there are no reasonably foreseen constraints that will preclude the future implementation of the proposed stormwater management criteria. However, a preliminary stormwater management solution has been developed based on the available information, to demonstrate the feasibility of the proposed stormwater management criteria consistent with Table 1 above.

The preliminary solution seeks to generally maintain the existing catchment boundaries, creating a stormwater management solution for the ‘northern’ and ‘southern’ catchment of the site as per

Table 2 and Figure 5.

Table 2 – Preliminary Stormwater Management Solution for the site

| Catchment | Surface                              | Water Quality                                 | Hydrology Mitigation                                               | Attenuation  |  |
|-----------|--------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|--------------|--|
| North     | Roof                                 | Low contaminant generating building materials | Rainwater tanks (retention is provided via re-use)                 | Sports Field |  |
|           | Other hardstands                     | Structural Tree Pits and Permeable Paving     |                                                                    |              |  |
| South     | Roof                                 | Low contaminant generating building materials | Rainwater tanks for retention via re-use and wetland for detention | Wetland      |  |
|           | High-contaminant generating carparks | Wetland                                       |                                                                    |              |  |
|           | Other hardstands                     | Wetland                                       |                                                                    |              |  |



Figure 5: Proposed stormwater management for the secondary school

Overall, it is recommended that stormwater management devices are centralised as much as possible, and green infrastructure is utilised, to minimise the long-term operation and maintenance costs whilst delivering educational opportunities for the school.

The final stormwater management system design, generally consistent with the criteria set in Table 1 above, will be developed at the OPW stage

### 2.3 Flooding & Overland Flow

The site is not subject to external overland flow paths and there are no existing floodplains or flood prone areas within the site itself. The management of overland flows and flooding will be designed and managed in accordance with the New Zealand Building Code<sup>13</sup> and the Auckland Council's Stormwater Code of Practice<sup>14</sup> to ensure safe conveyance of overland flows and provision of necessary freeboard for the future buildings. This will be detailed at the OPW stage.

## 3 Wastewater

The site can be serviced via the existing low-pressure sewer system located within Station Road. There is an existing 40Ø mm public connection (2543152) available at the property boundary in the northeastern corner. This connection may need to be upgraded subject to detailed design provided at the OPW stage.

Peak flows for the proposed school have been calculated using a population of 2,500 students and 251 staff applying the design wastewater flow allowances as in Table 5.1.4 of the Watercare Water and Wastewater Code of Practice for Land Development and Subdivision (CoP)<sup>15</sup>.

<sup>13</sup>Ministry of Business, Innovation and Employment, 2025. *Building Code compliance*. Accessed December, 2025: [Building Code compliance | Building Performance](#)

<sup>14</sup>Auckland Council, 2025. *The Auckland Code of Practice for Land Development and Subdivision Chapter 4: Stormwater*.

<sup>15</sup>Watercare, 2019. *Water and Wastewater Code of Practice for Land Development and Subdivision*. Accessed November, 2025: [cop\\_wastewater\\_chapter\\_e3b009a864.pdf](#).

Table 3: Estimated wastewater supply demand

| Personnel      | Daily demand (L/person/day) | Average Dry Weather Flow (ADWF) (L/s) | Peak Dry Weather Flow (PDWF) (L/s) | Peak Wet Weather Flow (PWWF) (L/s) |
|----------------|-----------------------------|---------------------------------------|------------------------------------|------------------------------------|
| 2,500 Students | 20                          | 0.58                                  | 1.16                               | 3.88                               |
| 251 Staff      | 45                          | 0.13                                  | 0.26                               | 0.88                               |
| <b>Total</b>   | -                           | 0.71                                  | 1.42                               | 4.76                               |

WSL has only provided an indication that the exiting network will likely have the capacity to service the proposed secondary school, however that this is subject to further wastewater network capacity assessments and confirmation by WSL as the site lies within FUZ (see Section 1.2.2). In consideration of this advice, it is important to note that the standard operating hours for a secondary school are expected to be predominantly outside of the diurnal peaks of the surrounding residential areas. Therefore, it is anticipated that the proposed school will have minimal impact on the operation and capacity of the existing wastewater system in any case. A standard Watercare development information form is included as Attachment A.

## 4 Water Supply

The site can be serviced via the existing 180Ø or 280Ø mm water supply mains located within Station Road. The final connection point and details will be provided at OPW stage.

Peak flows for the proposed school are calculated in Table 4, applying a similar approach as for wastewater, and demand allowances as per Table 6.1.b of the Watercare Water and Wastewater Code of Practice for Land Development and Subdivision (CoP) with a peaking factor (PF) interpolated as 1.6 for students and a PF of 2 for staff. The daily demand listed in Table 4 is expected to be conservative as the MoE data suggests that schools across the Auckland region exhibit a much lower daily demand.

Table 4: Estimated water supply demand

| Personnel         | Daily demand (L/person/day) | Average Daily Demand (L/s) | Peak Daily Demand (L/s) | Peak Hourly Demand (L/s), PF = 2.5 |
|-------------------|-----------------------------|----------------------------|-------------------------|------------------------------------|
| 2,500 Students    | 25                          | 0.72                       | 1.16                    | 2.89                               |
| 251 Staff members | 50                          | 0.15                       | 0.29                    | 0.73                               |
| <b>Total</b>      | -                           | 0.87                       | 1.45                    | 3.62                               |

WSL indicated no concerns with servicing the site for water supply albeit the site being located within FUZ (see Section 1.2.3). In addition, the pressure testing of the 280Ø mm water supply main confirmed that the existing pressures within the system are within the range required by Watercare (250kPa – 800kPa as per CoP Section 6.3.5.10).

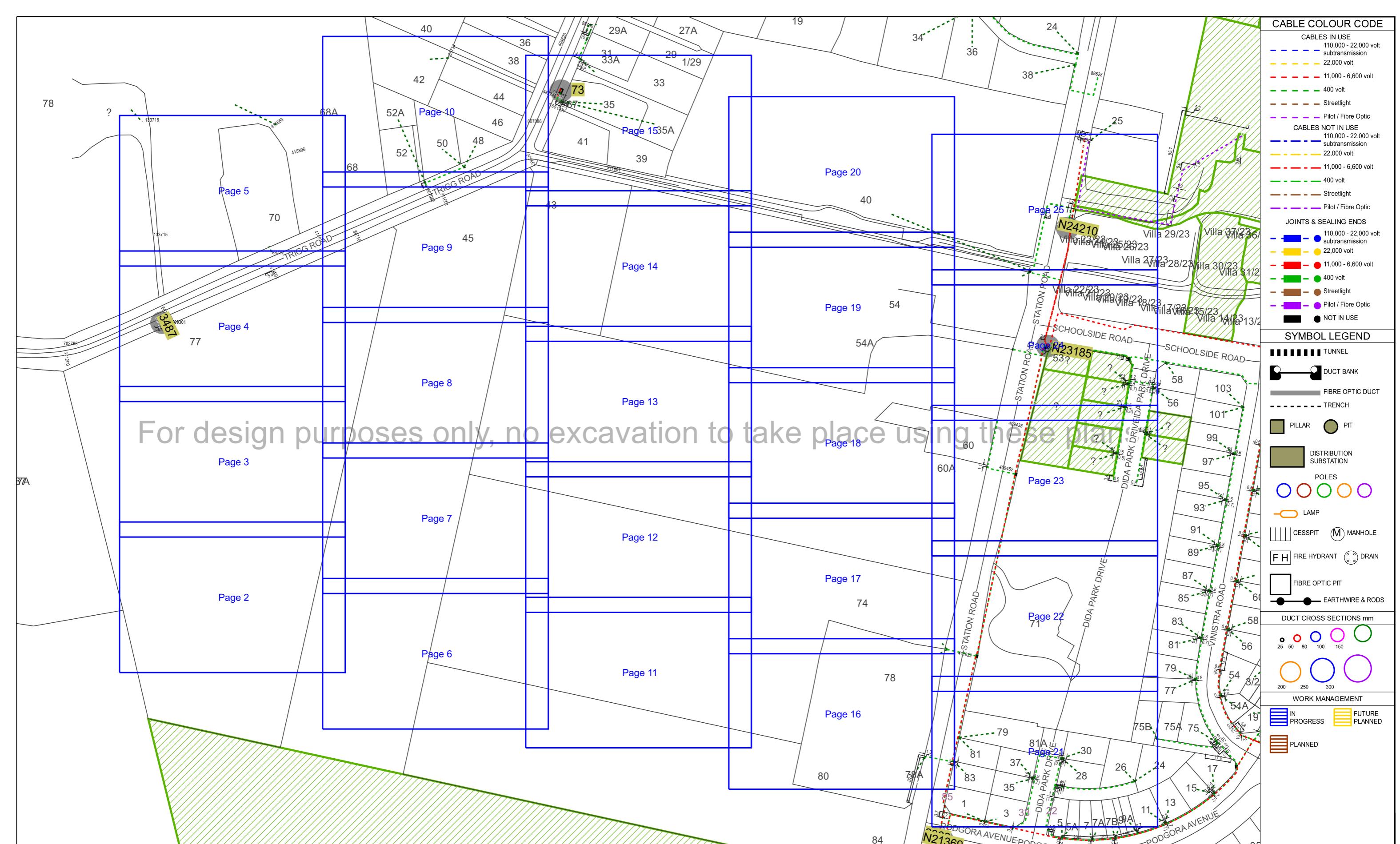
Similarly to the considerations for wastewater serviceability, the standard operating hours for a secondary school are expected to be predominantly outside of the diurnal peaks of the surrounding residential areas. On this basis, it is anticipated that the proposed school will have minimal impact on the operation and capacity of the existing water supply system.

### 4.1 Fire Supply

Water pressure testing of the existing 280Ø mm water supply main confirmed that the existing public water supply system can achieve FW2 classification under Fire Service Standard SNZ PAS 4509 (as per Table 2 of the Standard). On this basis, adequate firefighting supply can be provided for the site to enable future development (as per Table 1 of the Standard). Final design of fire supply systems, demonstrating compliance with the Standard, will be provided at the OPW stage.

## 5 Utility Services

Section 1.2.4 indicates there are existing gas, power and telecommunications networks available within the area. The final connection location to these services will be identified at the OPW stage, in coordination with the relevant utility network operators.


## 6 Conclusion

This serviceability assessment has been prepared to support the lodgement of the NoR for education purposes and should be read in conjunction with other relevant documentation.

The assessment has demonstrated that the site at 43 Trigg Road; 54 and 60 Station Road can be adequately serviced by civil infrastructure (stormwater, wastewater, water supply and utilities) to enable the future development of a secondary school, in accordance with relevant Council guidelines and standards.

## ATTACHMENT A

BeforeUDig Information – December 2025



© Vector Limited. This plan is the property of Vector Limited. All rights reserved. The contents of this document may not be reproduced either in whole or in part by any means whatsoever without the prior written consent of Vector Limited.

#### 22kV, 33kV, 110kV SUB TRANSMISSION CABLES-SPECIAL CONDITIONS APPLY:

Vector Limited provides a free standover service that requires 2 working days notice. Hand digging is required when excavating within 1 metre of the cable. Replacement trench backfill material must be the same as that removed and it must be replaced to the same level of compaction. Refer to attached covering letter for additional information.

**DISCLAIMER:** Whilst care has been taken in the preparation of this plan, Vector Limited and its subsidiaries do not accept any liability for its accuracy and completeness and do not make any representation or warranty, express or implied, in relation to the same. These drawings are not to scale and may not show customer connections or obsolete lines. Works may have occurred in the vicinity which may not be represented in this plan at the date of issue. The information contained in this plan is supplied for reference purposes only; actual dimensions and locations on site may differ from those indicated. Without limiting the foregoing, where plans are more than 28 days old they should not be used; a new plan should be requested from Vector.

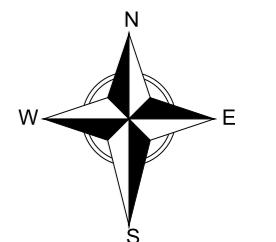
**Vector reminds you of your responsibilities under the Health and Safety at Work Act 2015, whereby you must establish the location of underground services before commencing excavation.**

If you hit an electricity cable or overhead line please call us immediately on 0508 VECTOR (0508 832 867). If you hit any gas pipeline call the Fire Service first on 111. If you hit a gas distribution pipe in the Auckland area call us on 0800 764 764. If you hit a gas pipeline in the rest of the North Island call FIRST GAS on 0800 800 393. If you hit a gas transmission pipeline call FIRST GAS on 0800 734 567. If you hit a communications cable (all areas) call us immediately on 0800 826 436 (select option 1).

#### A3 ELECTRICITY beforeudig PLAN

Date printed: 7. December 2025

No associated viewport


Page: 1 of 25



| CABLE COLOUR CODE     |                 |
|-----------------------|-----------------|
| CABLES IN USE         |                 |
| 110,000 - 22,000 volt | subtransmission |
| 22,000 volt           |                 |
| 11,000 - 6,600 volt   |                 |
| 400 volt              |                 |
| Streetlight           |                 |
| Pilot / Fibre Optic   |                 |
| CABLES NOT IN USE     |                 |
| 110,000 - 22,000 volt | subtransmission |
| 22,000 volt           |                 |
| 11,000 - 6,600 volt   |                 |
| 400 volt              |                 |
| Streetlight           |                 |
| Pilot / Fibre Optic   |                 |
| JOINTS & SEALING ENDS |                 |
| 110,000 - 22,000 volt | subtransmission |
| 22,000 volt           |                 |
| 11,000 - 6,600 volt   |                 |
| 400 volt              |                 |
| Streetlight           |                 |
| Pilot / Fibre Optic   |                 |
| NOT IN USE            |                 |

#### SYMBOL LEGEND

|                         |                                 |
|-------------------------|---------------------------------|
| TUNNEL                  | ██████████                      |
| DUCT BANK               | ██████████                      |
| FIBRE OPTIC DUCT        | ██████████                      |
| TRENCH                  | - - - - -                       |
| PILLAR                  | ██████████                      |
| PIT                     | ●                               |
| DISTRIBUTION SUBSTATION | ██████████                      |
| POLES                   | ○○○○○                           |
| LAMP                    | ○                               |
| CESSPIT                 | ██████████                      |
| MANHOLE                 | (M)                             |
| FIRE HYDRANT            | F H                             |
| DRAIN                   | ○○                              |
| FIBRE OPTIC PIT         | ██████████                      |
| EARTHWIRE & RODS        | ██████████                      |
| DUCT CROSS SECTIONS mm  | 25 50 80 100 150<br>200 250 300 |
| WORK MANAGEMENT         |                                 |
| IN PROGRESS             | ████                            |
| FUTURE PLANNED          | ████                            |
| PLANNED                 | ████                            |



For design purposes only, no excavation to take place using these plans

411822

71

STATION-ROAD

DIDA-PARK-DRIVE



© Vector Limited. This plan is the property of Vector Limited. All rights reserved. The contents of this document may not be reproduced either in whole or in part by any means whatsoever without the prior written consent of Vector Limited.

#### 22KV, 33KV, 110KV SUB TRANSMISSION CABLES-SPECIAL CONDITIONS APPLY:

Vector Limited provides a free standover service that requires 2 working days notice. Hand digging is required when excavating within 1 metre of the cable. Replacement trench backfill material must be the same as that removed and it must be replaced to the same level of compaction. Refer to attached covering letter for additional information.

**DISCLAIMER:** Whilst care has been taken in the preparation of this plan, Vector Limited and its subsidiaries do not accept any liability for its accuracy and completeness and do not make any representation or warranty, express or implied, in relation to the same. These drawings are not to scale and may not show customer connections or obsolete lines. Works may have occurred in the vicinity which may not be represented in this plan at the date of issue. The information contained in this plan is supplied for reference purposes only; actual dimensions and locations on site may differ from those indicated. Without limiting the foregoing, where plans are more than 28 days old they should not be used; a new plan should be requested from Vector.

**Vector reminds you of your responsibilities under the Health and Safety at Work Act 2015, whereby you must establish the location of underground services before commencing excavation.**


If you hit an electricity cable or overhead line please call us immediately on 0508 VECTOR (0508 832 867). If you hit any gas pipeline call the Fire Service first on 111. If you hit a gas distribution pipe in the Auckland area call us on 0800 764 764. If you hit a gas pipeline in the rest of the North Island call FIRST GAS on 0800 800 393. If you hit a gas transmission pipeline call FIRST GAS on 0800 734 567. If you hit a communications cable (all areas) call us immediately on 0800 826 436 (select option 1).

#### A3 ELECTRICITY beforeudig PLAN

Date printed: 7. December 2025

Scale: 1:400

Page: 22 of 25



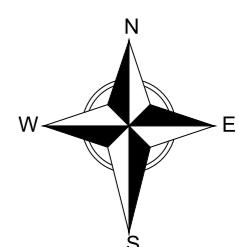
© Vector Limited. This plan is the property of Vector Limited. All rights reserved. The contents of this document may not be reproduced either in whole or in part by any means whatsoever without the prior written consent of Vector Limited.

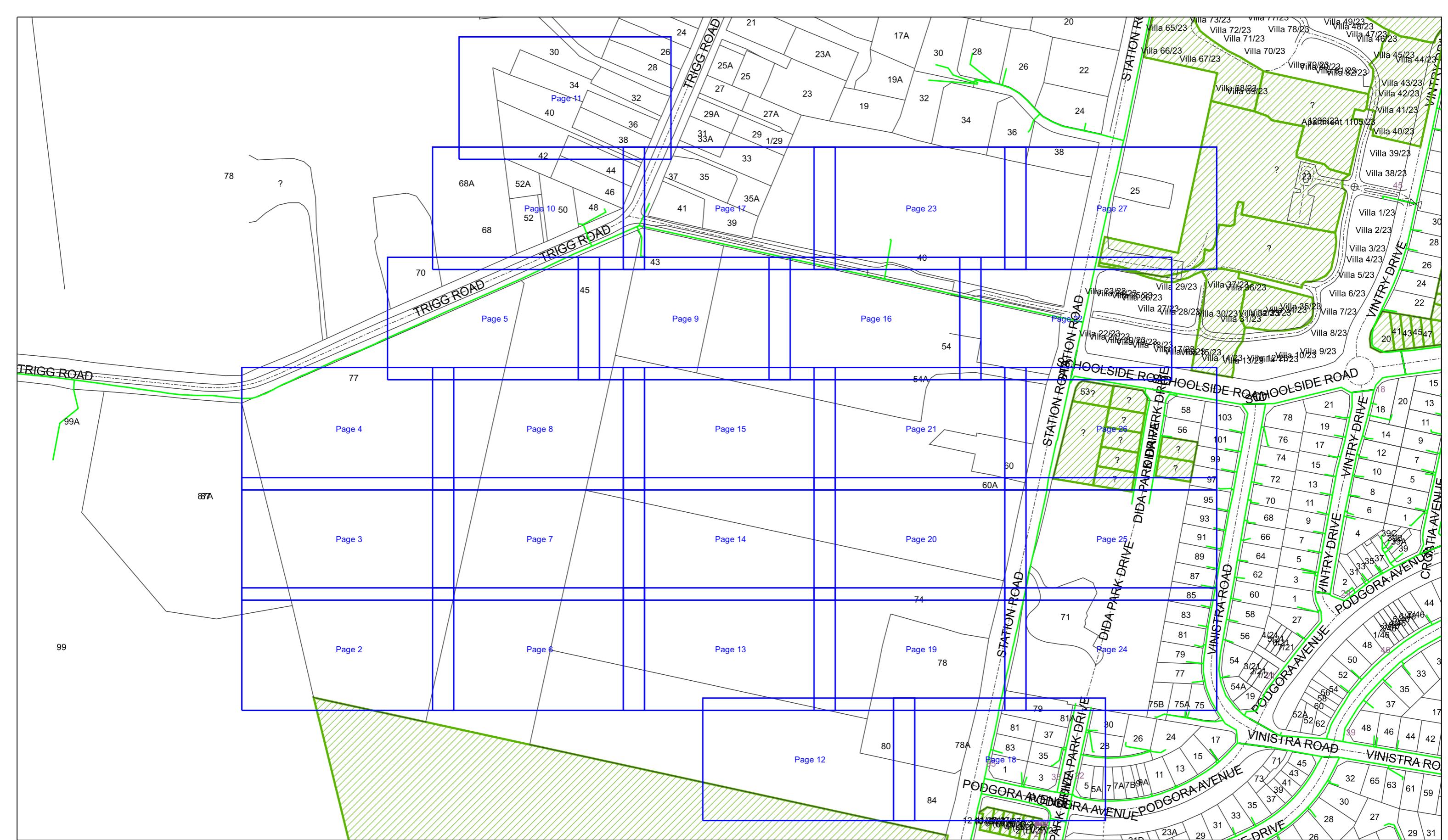
#### 22kV, 33kV, 110kV SUB TRANSMISSION CABLES-SPECIAL CONDITIONS APPLY:

Vector Limited provides a free standover service that requires 2 working days notice. Hand digging is required when excavating within 1 metre of the cable. Replacement trench backfill material must be the same as that removed and it must be replaced to the same level of compaction. Refer to attached covering letter for additional information.

**DISCLAIMER:** Whilst care has been taken in the preparation of this plan, Vector Limited and its subsidiaries do not accept any liability for its accuracy and completeness and do not make any representation or warranty, express or implied, in relation to the same. These drawings are not to scale and may not show customer connections or obsolete lines. Works may have occurred in the vicinity which may not be represented in this plan at the date of issue. The information contained in this plan is supplied for reference purposes only; actual dimensions and locations on site may differ from those indicated. Without limiting the foregoing, where plans are more than 28 days old they should not be used; a new plan should be requested from Vector.

**Vector reminds you of your responsibilities under the Health and Safety at Work Act 2015, whereby you must establish the location of underground services before commencing excavation.**


If you hit an electricity cable or overhead line please call us immediately on 0508 VECTOR (0508 832 867). If you hit any gas pipeline call the Fire Service first on 111. If you hit a gas distribution pipe in the Auckland area call us on 0800 764 764. If you hit a gas pipeline in the rest of the North Island call FIRST GAS on 0800 800 393. If you hit a gas transmission pipeline call FIRST GAS on 0800 734 567. If you hit a communications cable (all areas) call us immediately on 0800 826 436 (select option 1).


#### A3 ELECTRICITY beforeudig PLAN

Date printed: 7. December 2025

Scale: 1:400

Page: 23 of 25





**WARNING! Special conditions apply for high pressure gas pipelines (IP20, IP10, MP7, Selected MP4)**

A permit/consent is required for any excavation within 2 metres of this pipeline. A MINIMUM of 3 working days notice is required when applying for a permit/consent. Refer to attached covering letter for additional information.

**DISCLAIMER:** Whilst care has been taken in the preparation of this plan, Vector Limited and its subsidiaries do not accept any liability for its accuracy and completeness and do not make any representation or warranty, express or implied, in relation to the same. These drawings are not to scale and may not show customer connections or obsolete lines. Works may have occurred in the vicinity which may not be represented in this plan at the date of issue. The information contained in this plan is supplied for reference purposes only; actual dimensions and locations on site may differ from those indicated. Without limiting the foregoing, where plans are more than 28 days old they should not be used; a new plan should be requested from Vector.

Vector reminds you of your responsibilities under the Health and Safety at Work Act 2015, whereby you must establish the location of underground services before commencing excavation.

If you hit an electricity cable or overhead line please call us immediately on 0508 VECTOR (0508 832 867). If you hit any gas pipeline call the Fire Service first on 111. If you hit a gas distribution pipe in the Auckland area call us on 0800 764 764. If you hit a gas pipeline in the rest of the North Island call FIRST GAS on 0800 800 393. If you hit a gas transmission pipeline call FIRST GAS on 0800 734 567. If you hit a communications cable (all areas) call us immediately on 0800 826 436 (select option 1).

**WARNING! Indication only additional data is required**

Transmission Pipeline (ex - NGC):  
Please contact Vector - New Plymouth on 0800 734 567 for On-Site Location and Work Permits. A minimum of 48 hours notice is required.

PIPE COLOUR BY PRESSURE

|           |   |             |
|-----------|---|-------------|
| LP Pipe   | — | Fibre Optic |
| LPG Pipe  | — |             |
| MP1 Pipe  | — |             |
| MP2 Pipe  | — |             |
| MP4 Pipe  | — |             |
| MP7 Pipe  | — |             |
| IP10 Pipe | — |             |
| IP20 Pipe | — |             |
| 0 kPa     | — |             |

OTHER GAS FEATURES

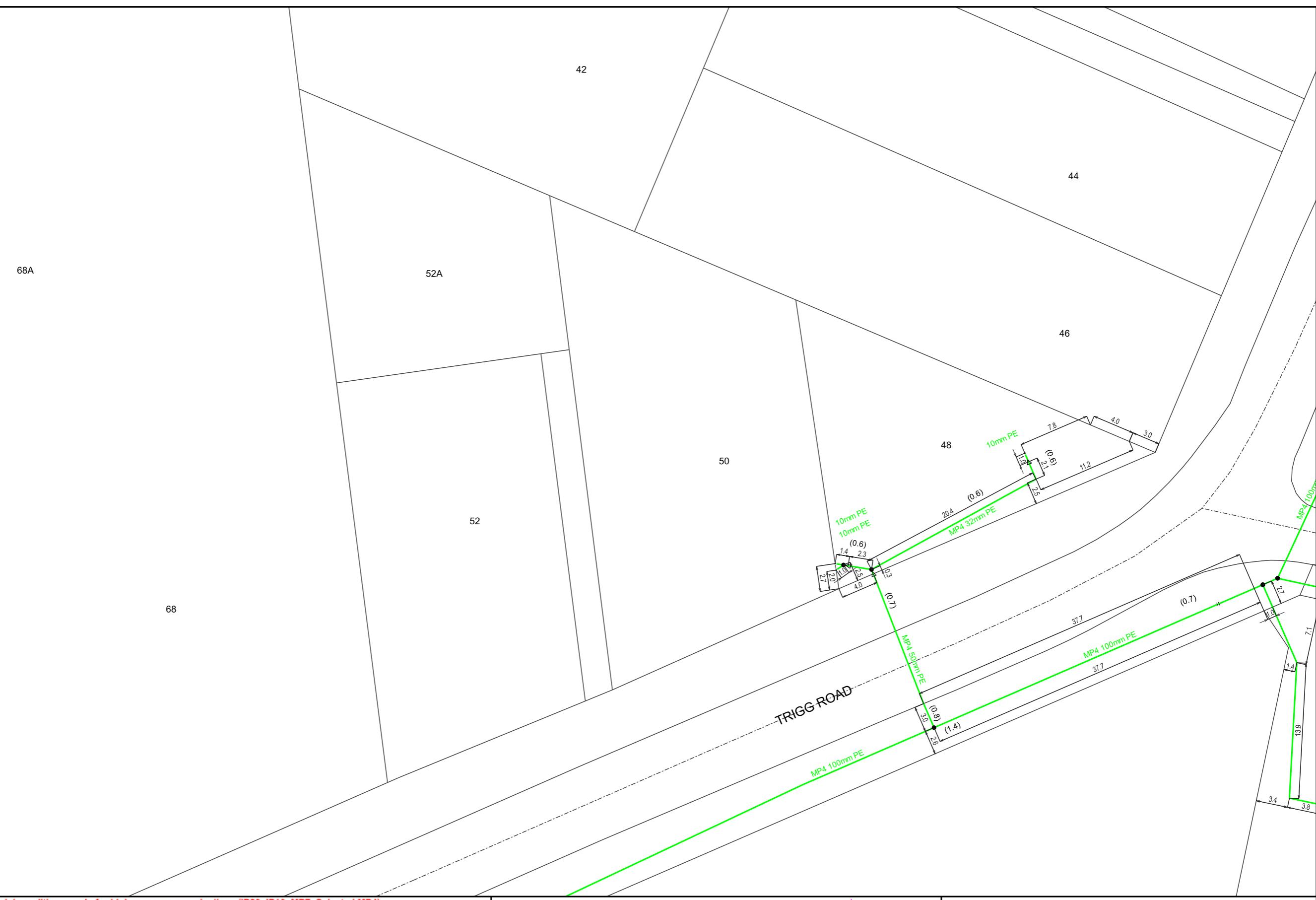
|              |   |                   |
|--------------|---|-------------------|
| Closed Valve | — | Gate              |
| Open Valve   | — | PRS               |
| Reducer      | — | Service Regulator |
| Riser        | — |                   |

WORK MANAGEMENT

|             |   |
|-------------|---|
| In Progress | — |
| Planned     | — |
| Future      | — |
| Planned     | — |

**WARNING!**  
Live service within this property.

**A3 GAS beforeudig PLAN**


Date printed: 7. December 2025

No associated viewport

Page: 1 of 27



© Vector Limited. This plan is the property of Vector Limited. All rights reserved. The contents of this document may not be reproduced either in whole or in part by any means whatsoever without the prior written consent of Vector Limited.



© Vector Limited. This plan is the property of Vector Limited. All rights reserved. The contents of this document may not be reproduced either in whole or in part by any means whatsoever without the prior written consent of Vector Limited.

**WARNING! Special conditions apply for high pressure gas pipelines (IP20, IP10, MP7, Selected M100).**

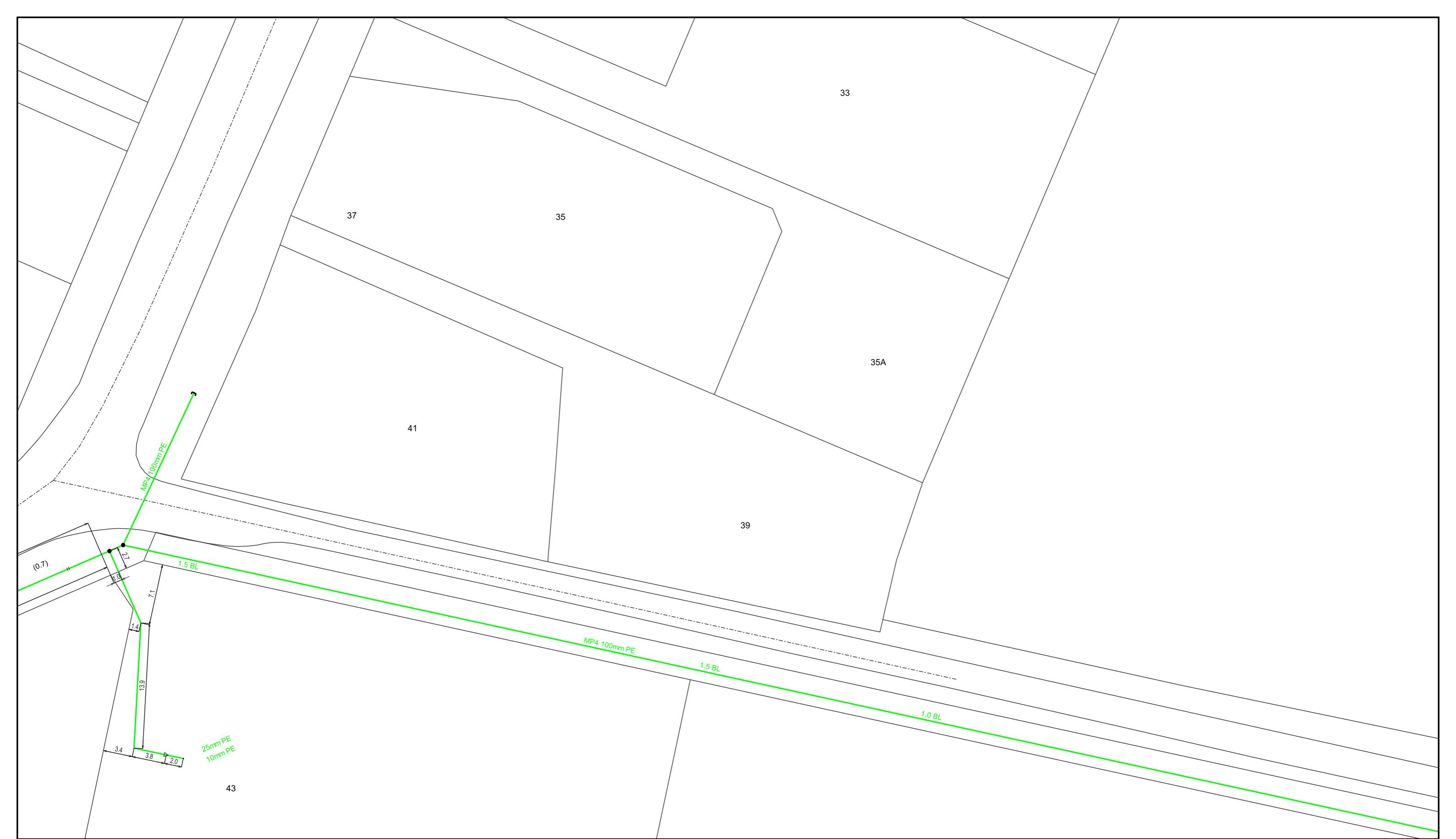
A permit/consent is required for any excavation within 2 metres of this pipeline. A MINIMUM of 3 working days notice is required when applying for a permit/consent. Refer to attached covering letter for additional information.

**DISCLAIMER:** Whilst care has been taken in the preparation of this plan, Vector Limited and its subsidiaries do not accept any liability for its accuracy and completeness and do not make any representation or warranty, express or implied, in relation to the same. These drawings are not to scale and may not show customer connections or obsolete lines. Works may have occurred in the vicinity which may not be represented in this plan at the date of issue. The information contained in this plan is supplied for reference purposes only; actual dimensions and locations on site may differ from those indicated. Without limiting the foregoing, where plans are more than 28 days old they should not be used; a new plan should be requested from Vector.

**Vector reminds you of your responsibilities under the Health and Safety at Work Act 2015, whereby you must establish the location of underground services before commencing excavation.**

**WARNING!** Indication only additional data is required

Transmission Pipeline (ex - NGC):  
Please contact Vector - New Plymouth on 0800 734 567 for On-Site Location and Work Permits. A minimum of 48 hours notice is required.


|                         |       |
|-------------------------|-------|
| PIPE COLOUR BY PRESSURE | LP    |
|                         | LPG   |
|                         | MP1   |
|                         | MP2   |
|                         | MP4   |
|                         | MP7   |
|                         | IP10  |
|                         | IP20  |
|                         | 0 kPa |

A3 GAS beforeudig PLAN

Date printed: 7 December 2025

Scale: 1:400





© Vector Limited. This plan is the property of Vector Limited. All rights reserved. The contents of this document may not be reproduced either in whole or in part by any means whatsoever without the prior written consent of Vector Limited.

**WARNING! Special conditions apply for high pressure gas pipelines (IP20, IP10, MP7, Selected MP4)**

A permit/consent is required for any excavation within 2 metres of this pipeline. A MINIMUM of 3 working days notice is required when applying for a permit/consent. Refer to attached covering letter for additional information.

**DISCLAIMER:** Whilst care has been taken in the preparation of this plan, Vector Limited and its subsidiaries do not accept any liability for its accuracy and completeness and do not make any representation or warranty, express or implied, in relation to the same. These drawings are not to scale and may not show customer connections or obsolete lines. Works may have occurred in the vicinity which may not be represented in this plan at the date of issue. The information contained in this plan is supplied for reference purposes only; actual dimensions and locations on site may differ from those indicated. Without limiting the foregoing, where plans are more than 28 days old they should not be used; a new plan should be requested from Vector.

**Vector reminds you of your responsibilities under the Health and Safety at Work Act 2015, whereby you must establish the location of underground services before commencing excavation.**

If you hit an electricity cable or overhead line please call us immediately on 0508 VECTOR (0508 832 867). If you hit any gas pipeline call the Fire Service first on 111. If you hit a gas distribution pipe in the Auckland area call us on 0800 764 764. If you hit a gas pipeline in the rest of the North Island call FIRST GAS on 0800 800 393. If you hit a gas transmission pipeline call FIRST GAS on 0800 734 567. If you hit a communications cable (all areas) call us immediately on 0800 826 436 (select option 1).

**WARNING! Indication only additional data is required**

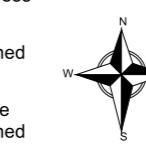
Transmission Pipeline (ex - NGC): Please contact Vector - New Plymouth on 0800 734 567 for On-Site Location and Work Permits. A minimum of 48 hours notice is required.

**PIPE COLOUR BY PRESSURE**

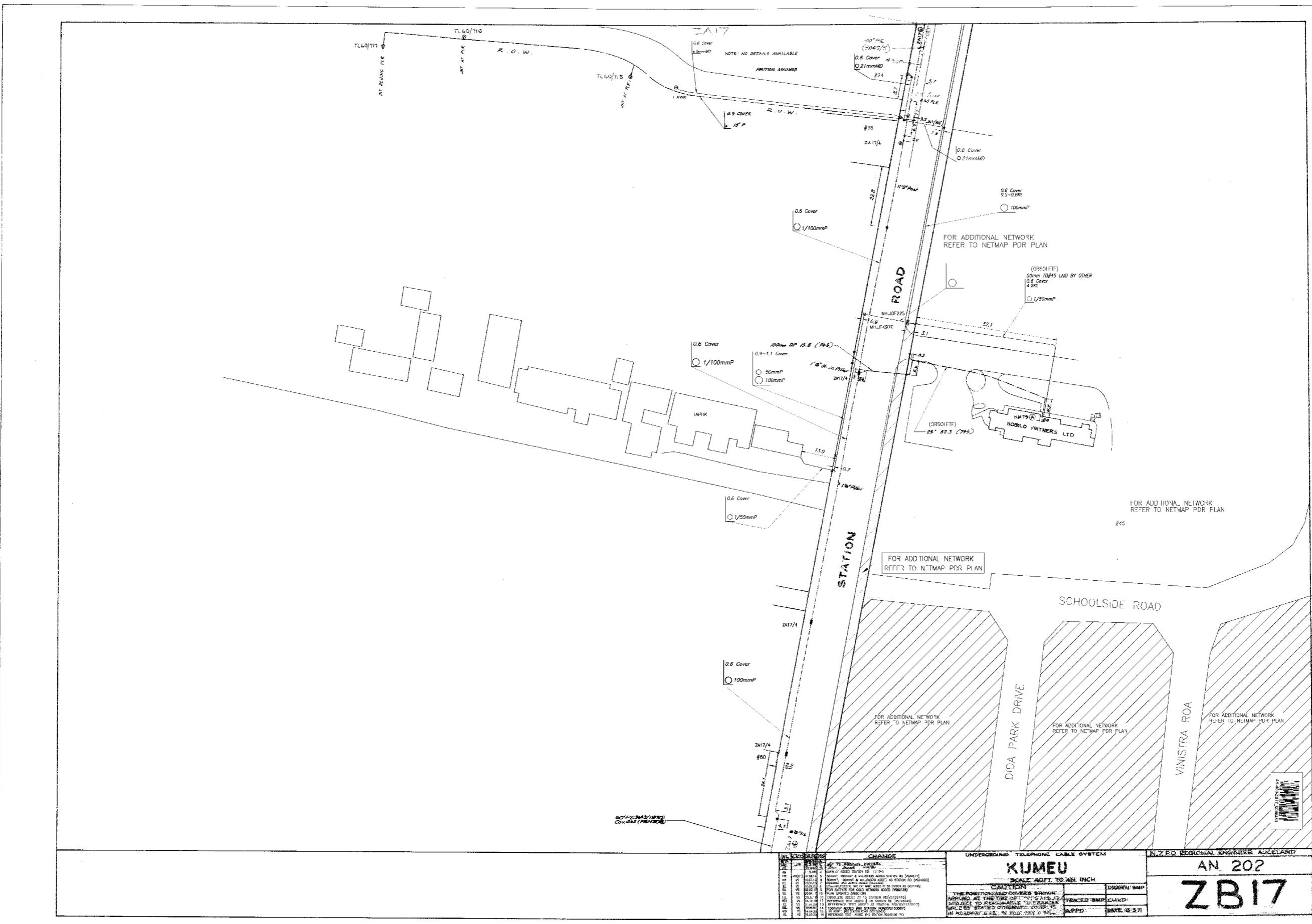
|   |           |
|---|-----------|
| — | LP Pipe   |
| — | LPG Pipe  |
| — | MP1 Pipe  |
| — | MP2 Pipe  |
| — | MP4 Pipe  |
| — | MP7 Pipe  |
| — | IP10 Pipe |
| — | IP20 Pipe |
| — | 0 kPa     |

**OTHER GAS FEATURES**

|   |                   |
|---|-------------------|
| — | Fibre Optic       |
| — | Closed Valve      |
| — | Open Valve        |
| — | Reducer           |
| — | Riser             |
| — | Gate              |
| — | PRS               |
| — | Service Regulator |


**WORK MANAGEMENT**

|   |             |
|---|-------------|
| — | In Progress |
| — | Planned     |
| — | Future      |
| — | Planned     |


**WARNING!**  
Live service within this property.

**A3 GAS beforeudig PLAN**

Date printed: 7. December 2025



Scale: 1:400



## ATTACHMENT B

### Watercare Development Information

**Development information form – Wastewater and Water Supply network planning summary assessment**

*Information to be completed by Developer/ Engineering Consultant*

| Development consideration                                                                                                                                              | Description | Comments |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| <b>Query status</b>                                                                                                                                                    |             |          |
| <b>Query submission date</b>                                                                                                                                           |             |          |
| <b>Address</b>                                                                                                                                                         |             |          |
| <b>Attach layout plan</b>                                                                                                                                              |             |          |
| <b>Current land use</b>                                                                                                                                                |             |          |
| <b>Proposed land use</b>                                                                                                                                               |             |          |
| <b>Unitary plan zoning</b>                                                                                                                                             |             |          |
| <b>Total development site area (m<sup>2</sup>/hectares)</b><br>(i.e. Land area for residential developments)                                                           |             |          |
| <b>Total development floor area (m<sup>2</sup>)</b><br>(i.e. Include all levels of multi-storey apartments and commercial developments)                                |             |          |
| <b>Number of proposed residential dwellings</b><br>(Typically consent or include ultimate if development is to be staged and consented at a future date)               |             |          |
| <b>Note: (1)</b> Watercare's GIS Viewer for Asset Data Query and Land Development/ Subdivision can be used to display aerial photography and land contour information. |             |          |

*(This section should not be duplicated if both water and wastewater is applied. Refer to Chapter 6 of the CoP.)*

*Refer to the Auckland Code of Practice for Land Development and Subdivision chapter 5: Wastewater, when completing this form:*

| Wastewater development assessment                                                                                                                    |                                                                                     |                                                                                                                                                                                               |                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Design consideration                                                                                                                                 |                                                                                     | Description                                                                                                                                                                                   | Comments                                                                         |
| Existing site design flows - pre-development scenario<br><br>(If site is currently undeveloped, write 0.00 L/s in the design flows for this section) | Residential Design Flows (L/s)                                                      | Self-Cleansing Design Flow = 0<br><br>Peak Design Flow = 0                                                                                                                                    | <i>Calculations based on Table 5.1.4 of Wastewater CoP for secondary school.</i> |
|                                                                                                                                                      | Non-Residential Design Flows (L/s)                                                  | Self-Cleansing Design Flow = 0 (no existing discharge to public wastewater network)<br><br>Peak Design Flow = 0                                                                               |                                                                                  |
| Proposed development site design flows - post-development scenario                                                                                   | Residential Design Flows (L/s)                                                      | Self-Cleansing Design Flow = 0<br><br>Peak Design Flow = 0<br><br>And if relevant<br><br>Ultimate Peak Design Flow = 0                                                                        |                                                                                  |
|                                                                                                                                                      | Non-Residential Design Flows (L/s)                                                  | Self-Cleansing Design Flow (students) = 1.16<br><br>Peak Design Flow (students) = 3.88<br><br>Self-Cleansing Design Flow (staff) = 0.26<br><br>Peak Design Flow (staff) = 0.88                |                                                                                  |
|                                                                                                                                                      | Non-Residential Discharge profile / trend (i.e. Operations)                         | Secondary School                                                                                                                                                                              |                                                                                  |
| Change in site flows                                                                                                                                 | Net difference between post-development and pre-development site design flows (L/s) | Net Change in Self-Cleansing Design Flow (students) = 1.16 L/s<br><br>Net Change in Peak Design Flow (students) = 3.88 L/s<br><br>Net Change in Self-Cleansing Design Flow (staff) = 0.26 L/s |                                                                                  |

| Wastewater development assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Design consideration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description                                                                                                                                                                    | Comments |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Net Change in Peak Design Flow (staff)<br>=0.88 L/s                                                                                                                            |          |
| <b>New assets required for development</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The proposed school will be serviced via the existing 40Ø mm pressure pipe (2543152) in the northeastern corner. The details of this connection will be provided at OPW stage. |          |
| <b>Existing network infrastructure capacity assessment</b><br><br><i>A sewer capacity check is to be carried out if the 'Net Change in Peak Design Flow' calculated above shows a net increase of greater than 1.0 L/sec.</i>                                                                                                                                                                                                                                                                                                                                                                                  | Type of Sewer Capacity Check undertaken:<br>= Level 1                                                                                                                          |          |
| <u>Notes:</u> <ol style="list-style-type: none"> <li>1. At Watercare's discretion, a Sewer Capacity Check may be required even if the net increase in site flow is &lt; 1.0 L/sec.</li> <li>2. The Level 1 Sewer Capacity Check as described in the CoP is to be undertaken in the first instance, unless specifically advised by Watercare. The Level 1 Capacity Check is intended to help identify applications that may require more accurate/detailed design calculations and/or identify whether data held on the existing network is sufficient to enable an accurate assessment of capacity.</li> </ol> |                                                                                                                                                                                |          |
| <b>Further wastewater comments:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |          |

| Water supply development assessment                                     |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design consideration                                                    | Description                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                       |
| <b>Average and Peak Residential Demand (L/s)</b>                        | Average Demand Design Flow = 0<br><br>Peak Demand Design Flow = 0                                                                                                                     |                                                                                                                                                                                                                                                                                                |
| <b>Average and Peak Non-Residential Demand (L/s)</b>                    | STUDENTS<br>Average Demand Design Flow = 0.72L/s<br><br>Peak Demand Design Flow =1.16L/s<br><br>STAFF<br>Average Demand Design Flow = 0.15L/s<br><br>Peak Demand Design Flow =1.29L/s | <i>Calculations based on Watercare CoP assuming secondary school and applying Table 6.1.b with the following PF for:</i><br><br><i>Peak Daily Demand:</i><br><i>PF = 1.6 for students</i><br><i>PF = 2 for staff</i><br><br><i>Peak hourly demand:</i><br><i>PF = 2 for students and staff</i> |
| <b>Non-Residential Demand typical daily consumption profile / trend</b> | Unknown                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |
| <b>Fire- fighting classification required by the proposed site</b>      | FW2                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |
| Hydrant flow test results                                               | <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No                                                                                                                   |                                                                                                                                                                                                                                                                                                |
| Sprinkler system in building?                                           | <input type="checkbox"/> Yes <input type="checkbox"/> No                                                                                                                              |                                                                                                                                                                                                                                                                                                |
| <b>Further water supply comments:</b>                                   |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                |

**Development information form – Wastewater and Water Supply network planning summary assessment**

*Information to be completed by Developer/ Engineering Consultant*

| Development consideration                                                                                                                                              | Description | Comments |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| <b>Query status</b>                                                                                                                                                    |             |          |
| <b>Query submission date</b>                                                                                                                                           |             |          |
| <b>Address</b>                                                                                                                                                         |             |          |
| <b>Attach layout plan</b>                                                                                                                                              |             |          |
| <b>Current land use</b>                                                                                                                                                |             |          |
| <b>Proposed land use</b>                                                                                                                                               |             |          |
| <b>Unitary plan zoning</b>                                                                                                                                             |             |          |
| <b>Total development site area (m<sup>2</sup>/hectares)</b><br>(i.e. Land area for residential developments)                                                           |             |          |
| <b>Total development floor area (m<sup>2</sup>)</b><br>(i.e. Include all levels of multi-storey apartments and commercial developments)                                |             |          |
| <b>Number of proposed residential dwellings</b><br>(Typically consent or include ultimate if development is to be staged and consented at a future date)               |             |          |
| <b>Note: (1)</b> Watercare's GIS Viewer for Asset Data Query and Land Development/ Subdivision can be used to display aerial photography and land contour information. |             |          |

*(This section should not be duplicated if both water and wastewater is applied. Refer to Chapter 6 of the CoP.)*

*Refer to the Auckland Code of Practice for Land Development and Subdivision chapter 5: Wastewater, when completing this form:*

| Wastewater development assessment                                                                                                                    |                                                                                     |                                                                                                                                                                                               |                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Design consideration                                                                                                                                 |                                                                                     | Description                                                                                                                                                                                   | Comments                                                                         |
| Existing site design flows - pre-development scenario<br><br>(If site is currently undeveloped, write 0.00 L/s in the design flows for this section) | Residential Design Flows (L/s)                                                      | Self-Cleansing Design Flow = 0<br><br>Peak Design Flow = 0                                                                                                                                    | <i>Calculations based on Table 5.1.4 of Wastewater CoP for secondary school.</i> |
|                                                                                                                                                      | Non-Residential Design Flows (L/s)                                                  | Self-Cleansing Design Flow = 0 (no existing discharge to public wastewater network)<br><br>Peak Design Flow = 0                                                                               |                                                                                  |
| Proposed development site design flows - post-development scenario                                                                                   | Residential Design Flows (L/s)                                                      | Self-Cleansing Design Flow = 0<br><br>Peak Design Flow = 0<br><br>And if relevant<br><br>Ultimate Peak Design Flow = 0                                                                        |                                                                                  |
|                                                                                                                                                      | Non-Residential Design Flows (L/s)                                                  | Self-Cleansing Design Flow (students) = 1.16<br><br>Peak Design Flow (students) = 3.88<br><br>Self-Cleansing Design Flow (staff) = 0.26<br><br>Peak Design Flow (staff) = 0.88                |                                                                                  |
|                                                                                                                                                      | Non-Residential Discharge profile / trend (i.e. Operations)                         | Secondary School                                                                                                                                                                              |                                                                                  |
| Change in site flows                                                                                                                                 | Net difference between post-development and pre-development site design flows (L/s) | Net Change in Self-Cleansing Design Flow (students) = 1.16 L/s<br><br>Net Change in Peak Design Flow (students) = 3.88 L/s<br><br>Net Change in Self-Cleansing Design Flow (staff) = 0.26 L/s |                                                                                  |

| Wastewater development assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Design consideration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description                                                                                                                                                                    | Comments |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Net Change in Peak Design Flow<br>(staff)<br>=0.88 L/s                                                                                                                         |          |
| <b>New assets required for development</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The proposed school will be serviced via the existing 40Ø mm pressure pipe (2543152) in the northeastern corner. The details of this connection will be provided at OPW stage. |          |
| <b>Existing network infrastructure capacity assessment</b><br><br><i>A sewer capacity check is to be carried out if the 'Net Change in Peak Design Flow' calculated above shows a net increase of greater than 1.0 L/sec.</i>                                                                                                                                                                                                                                                                                                                                                                                  | Type of Sewer Capacity Check undertaken:<br>= Level 1                                                                                                                          |          |
| <u>Notes:</u> <ol style="list-style-type: none"> <li>1. At Watercare's discretion, a Sewer Capacity Check may be required even if the net increase in site flow is &lt; 1.0 L/sec.</li> <li>2. The Level 1 Sewer Capacity Check as described in the CoP is to be undertaken in the first instance, unless specifically advised by Watercare. The Level 1 Capacity Check is intended to help identify applications that may require more accurate/detailed design calculations and/or identify whether data held on the existing network is sufficient to enable an accurate assessment of capacity.</li> </ol> |                                                                                                                                                                                |          |
| <b>Further wastewater comments:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |          |

| Water supply development assessment                                     |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design consideration                                                    | Description                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                       |
| <b>Average and Peak Residential Demand (L/s)</b>                        | Average Demand Design Flow = 0<br><br>Peak Demand Design Flow = 0                                                                                                                     |                                                                                                                                                                                                                                                                                                |
| <b>Average and Peak Non-Residential Demand (L/s)</b>                    | STUDENTS<br>Average Demand Design Flow = 0.72L/s<br><br>Peak Demand Design Flow =1.16L/s<br><br>STAFF<br>Average Demand Design Flow = 0.15L/s<br><br>Peak Demand Design Flow =1.29L/s | <i>Calculations based on Watercare CoP assuming secondary school and applying Table 6.1.b with the following PF for:</i><br><br><i>Peak Daily Demand:</i><br><i>PF = 1.6 for students</i><br><i>PF = 2 for staff</i><br><br><i>Peak hourly demand:</i><br><i>PF = 2 for students and staff</i> |
| <b>Non-Residential Demand typical daily consumption profile / trend</b> | Unknown                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |
| <b>Fire- fighting classification required by the proposed site</b>      | FW2                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |
| Hydrant flow test results                                               | <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No                                                                                                                   |                                                                                                                                                                                                                                                                                                |
| Sprinkler system in building?                                           | <input type="checkbox"/> Yes <input type="checkbox"/> No                                                                                                                              |                                                                                                                                                                                                                                                                                                |
| <b>Further water supply comments:</b>                                   |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                |

## ATTACHMENT C

### Water Pressure Test



12<sup>th</sup> December 2025

Tektus Consultants Ltd  
10 Madden Street  
Auckland Central 1010

**RE: Firefighting Water Supply at 43 Trigg Road and 54, 60 Station Road, Huapai**

**Attention: Luplesina Koro**

Dear Luplesina

Nova Flowtec Services were engaged to conduct a FW2 hydrant flow test for the proposed development at the above address.

The testing was conducted on Thursday 11th December 2025 at 1:30pm.

The object of the testing was to prove that there is sufficient water for firefighting purposes.

**Requirements:**

In order to meet the FW2 minimum requirements of PAS 4509: 2008, 12.5Lps is required within 135m and an additional 12.5Lps is required within 270m of the development.

This being a total of 25Lps at a minimum residual pressure of 100kPa.

**Results:**

During testing the minimum requirement was unable to be met as insufficient hydrants are located to cover all areas of the site within 135m. This is typical with a greenfield development.

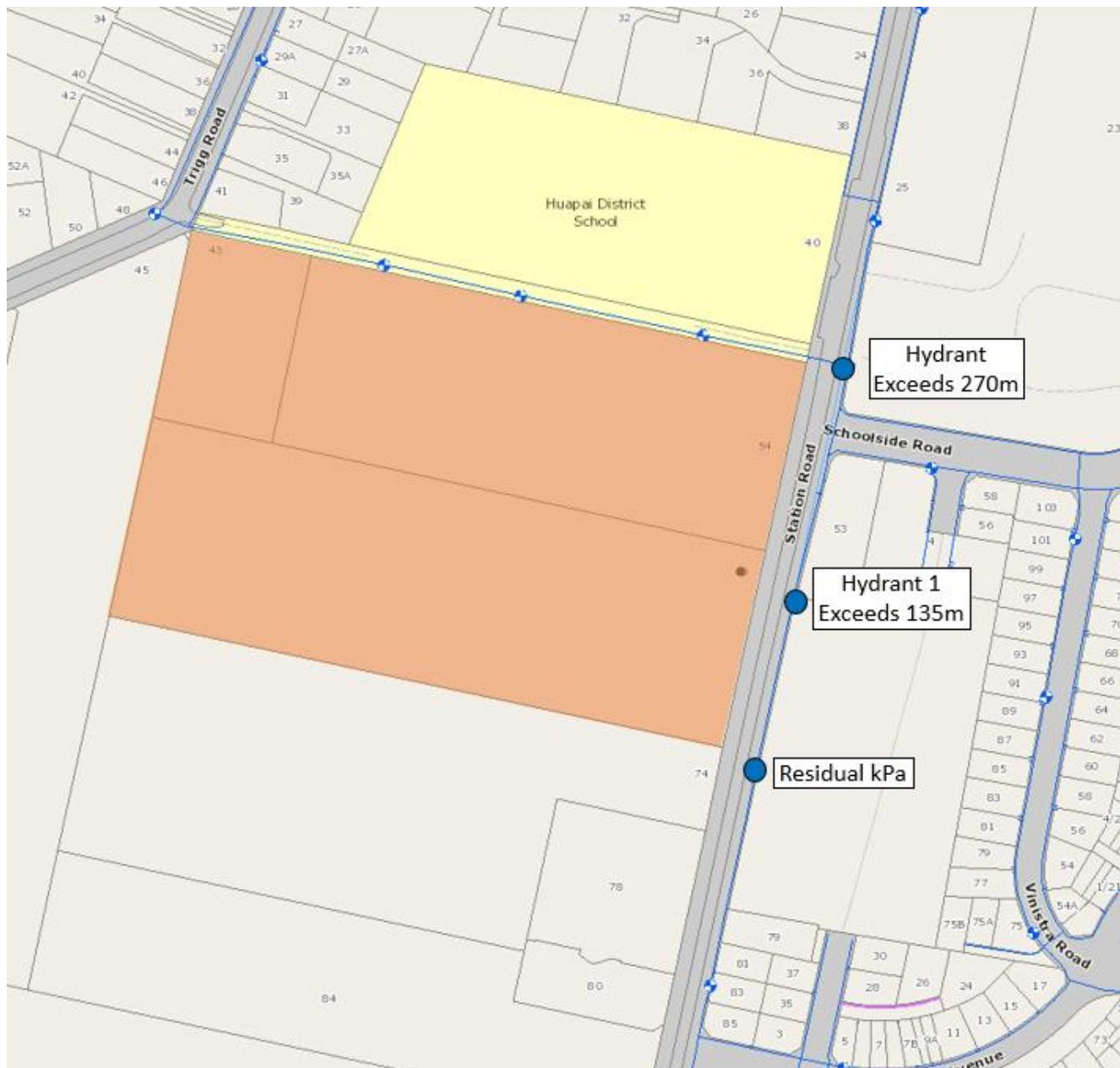
The nearest two hydrants located on Station Road were tested and a flow of 26.4Lps at 280kPa was recorded, proving the minimum FW2 requirement is available at the nearest street hydrants.

Additional hydrants will need to be fitted so as every proposed dwelling has a hydrant within 135m of the front door.

Please find the results table and the hydrant map on the following page.

A flow and pressure curve can be found on Page 3.

Should you have any questions please do not hesitate to contact me.


Kind Regards

Melanie Keane  
Testing Manager

## FW2 Water Classification Test

|                       | Hydrant One                                   | Hydrant Two | Total Flow (Lps) | Pressure (kPa) |
|-----------------------|-----------------------------------------------|-------------|------------------|----------------|
| Static Pressure (kPa) |                                               |             | 0                | 355            |
| Flow (Lps)            | 13.2                                          |             | 13.2             | 340            |
| Flow (Lps)            | 13.2                                          | 13.2        | 26.4             | 280            |
| Date & Time:          | Thursday 11th December 2025 at 1.30pm         |             |                  |                |
| Site Address:         | 43 Trigg Road and 54, 60 Station Road, Huapai |             |                  |                |
| Full Flow Result:     | 26.4Lps at 280kPa                             |             |                  |                |

## Hydrant Map



## Mains Flow and Pressure Report

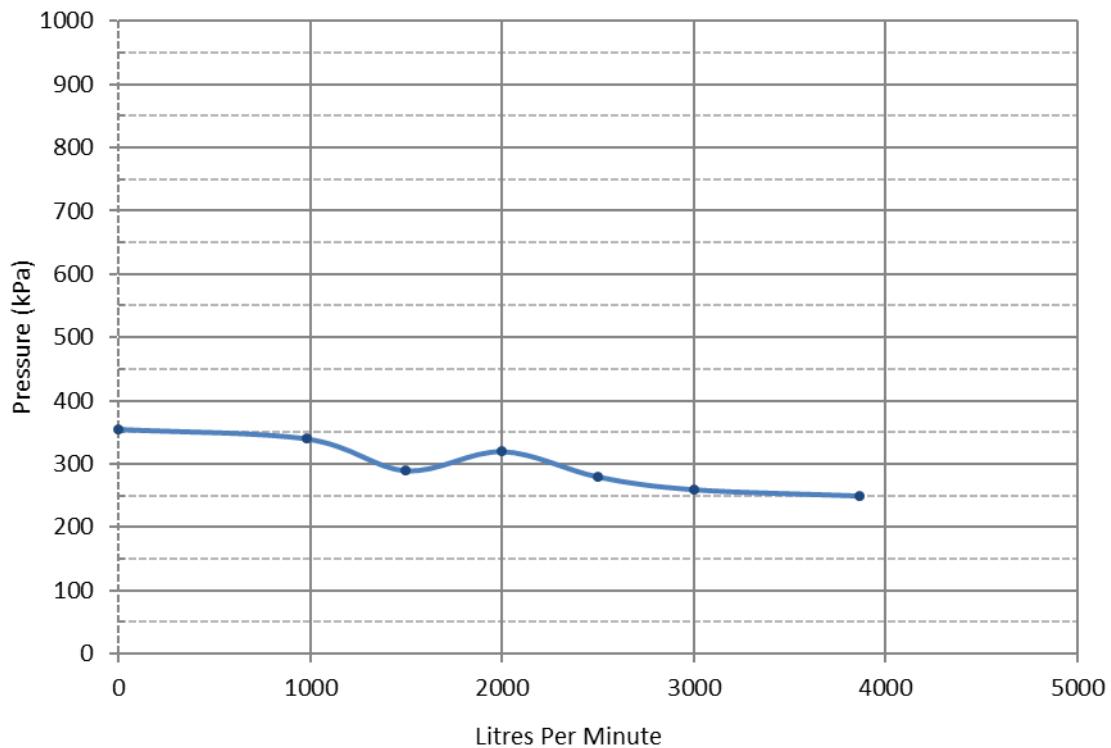
Hydrant locations: Station Road, Huapai

Date: 11th December 2025

Time: 1.40pm

Flow: [Hydrants 1 and 2](#)

Residual pressure: Residual kPa


Maximum flow result: 3860Lpm at 250kPa

Test Supervisor: Jason Goodwin

Data:

| Flow (Lpm) | Pressure (kPa) |
|------------|----------------|
| 0          | 355            |
| 980        | 340            |
| 1500       | 290            |
| 2000       | 320            |
| 2500       | 280            |
| 3000       | 260            |
| 3860       | 250            |

Graph:



Notes: The hydrants were flowed to full capacity during testing.

At full flow H1 was 1860Lpm and H2 was 2000Lpm.

Disclaimer: These results indicate the water networks performance on this given date and time.

The networks performance is subject to fluctuations.

Hydrant Map: [See page 2](#)

Report End