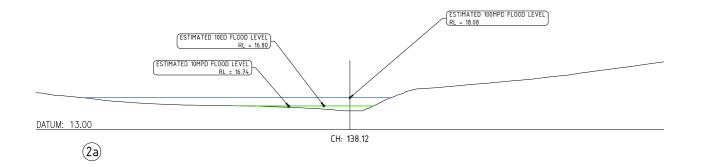
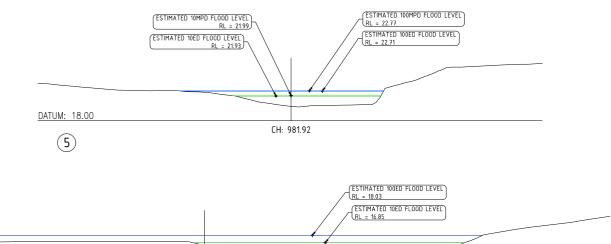
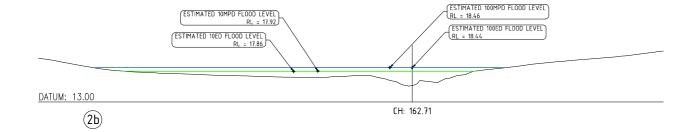


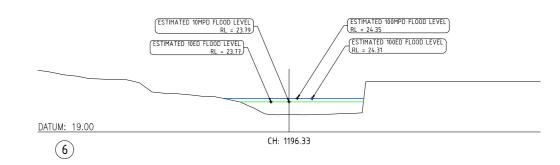
Issued for: RC

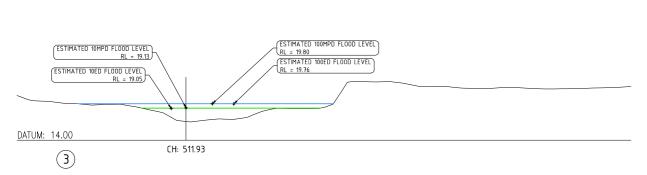
THESE DRAWINGS	ARF	COPYRIGHT	AND	REMAIN	THE	PROPERTY	0F	CHESTER	CONSULTANTS LTD	

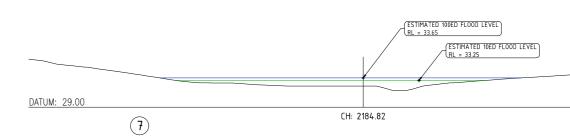

#	#	#	#	Design:	J CURTIS	Subject:	FLOOD RISK ASSESSMENT
#	#	#	#	Date:	15.03.2017	Client:	SF ESTATE LTD
#	#	#	#	Check:	N JULL	Address:	WARKWORTH NORTH
REV	DATE	AMENDMENTS	CHECKED	Job No:	11875	Drawing Title:	FLOOD SECTIONS

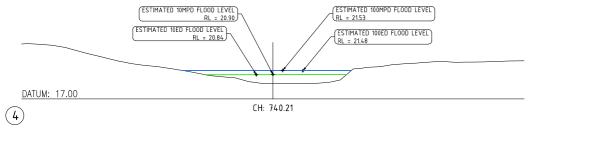

DATUM:	9.00	

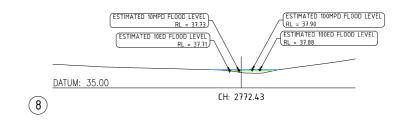

_











Drawing No: 902					
Revision No: ()	(`	Hest	I PR		
Scale: 1:300 @	A1				
Issued for: RC		chester.co.nz cheste			

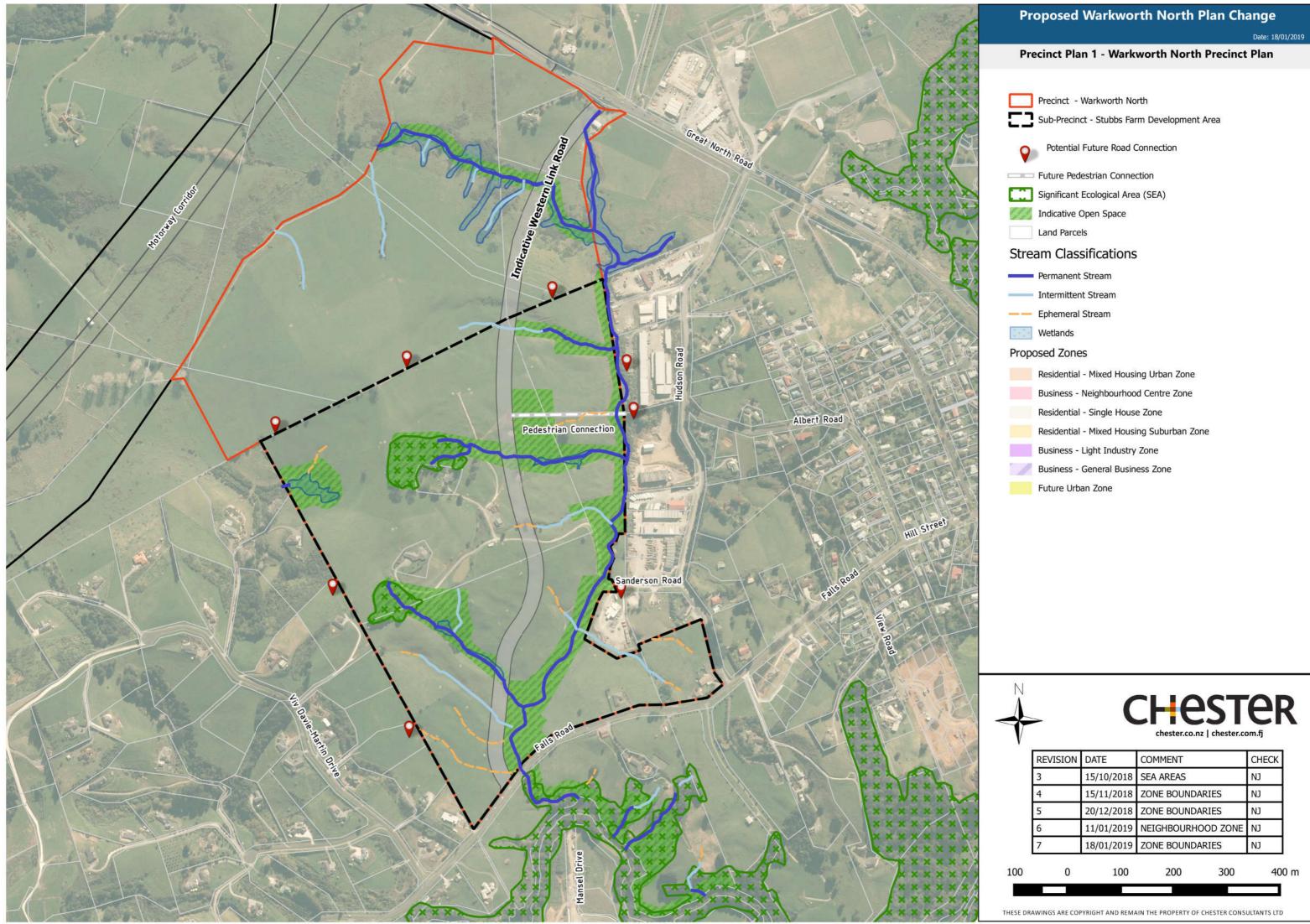
	Area	Length	Slope	Imp Area	Perv Area			TC_IMP	TC_PERV	ED Peak Flow	MPD Imp Area	MPD Perv Area		MPD Peak Flow	Flow
CATCH_ID	(ha)	(m)	(m/m)	(ha)	(ha)	CN_Imp	CN_Perv	(min)	(min)	(m³/s)	(ha)	(ha)	Increase IMP%	(m³/s)	Increase %
MA01	1134.0	9600	0.005	56.7	1077.3	98	72.2	153.8	205.9	121.01				121.01	. 0%
MA02	218.1	3700	0.012	10.9	207.2	98	73.3	61.7	81.5	40.40				40.40	0%
MA03	2944.6	10800	0.010	147.2	2797.3	98	71.7	130.9	176.3	343.27				343.27	0%
MA04	41.3	900	0.044	4.1	37.1	98	74.0	16.4	21.5	14.78				14.78	8 0%
MA05	7.8	760	0.079	0.8	7.0	98	74.2	12.3	16.1	3.13				3.13	8 0%
MA06	106.6	1080	0.041	63.9	42.6	98	78.1	18.9	23.5	42.24				42.24	
MA07	2.8	340	0.148	0.1	2.7	98	73.3	10	10					1.27	
MA08	1.5	300	0.151	0.1	1.4		72.6	10	10					0.66	
MA09	1.4	220	0.134	0.1	1.4		72.2	10	10					0.64	
MA10	6.5	360	0.225	0.3		98	73.2	10	10					2.92	
MA11	23.8	480	0.161	3.6		98	72.6	10	10	10.84				10.84	
MA12	123.6	2000	0.033	61.8	61.8		77.0	30.3	38.3	38.83				38.83	
ST01	6.1	560		0.3	5.8		74.0	10.5	13.7	2.55	4.0				
ST02	3.0	220	0.159	0.3			74.0	10	10		2.0		55.0		
ST03	2.6	360		0.1	2.4		73.9	10	10		1.7				
ST04	2.1	200	0.063	0.1	2.0		73.8	10	10	0.97	1.4		60.0		
ST05	2.6	300		0.1	2.5		73.0	10	10		1.7				
ST06	2.0	280	0.146	0.1	1.9		73.6	10	10		1.3				
ST07	1.7	220	0.124	0.1	1.6		74.0	10	10		1.1				
ST08	1.8	260	0.126	0.1	1.7		74.0	10	10		1.2		60.0		
ST09	7.9	500	0.114	2.4	5.5		74.0	10	10.9	3.68	5.1				
ST10	1.3	220		0.1	1.2		74.0	10	10		0.9				
ST11	1.3	120		0.1	1.2		74.0	10	10		0.9				
ST12	5.0	480		3.0			74.0	10	11.6	2.46	3.3				
ST13	3.0	460		0.2			74.0	10	10.7	1.35	2.0		60.0		
ST14	0.6	100		0.0	0.5		74.0	10	10	0.26	0.4		60.0		
ST15	14.8	560		8.9			79.0	11.4	14.1	7.00	9.6				
ST16	5.9	480	0.078	0.3			73.2	10	12	2.53	3.8		60.0		
ST17	2.693	300		1.6		98	79.0	10	10	1.36	1.8				
ST18	4.9	480	0.101	0.2		98	74.0	10	11.1	2.19	3.2		60.0		
ST19	3.568	300		2.1		50	75.0						5.0		
ST20	4.6	500		0.2			74.0	10	11.7	2.02	3.0				
ST21	24.5	900		9.8			75.7	19.8	25.5	8.92	13.4				
ST22	43.9	1300	0.033	2.2			74.0	22.7	29.8		5.6		7.8		
ST23	92.4	1700	0.010	4.6			73.9	38.8	51	22.09	29.6		27.0		
ST24	6.0	280	0.087	0.3			74.0	10	10		3.9	2.1	60.0		
ST25	6.1	320	0.076	0.3	5.8	98	72.9	10	10					2.72	
TOTAL	4862.4									705.53				710.65	5 1%

Notes:

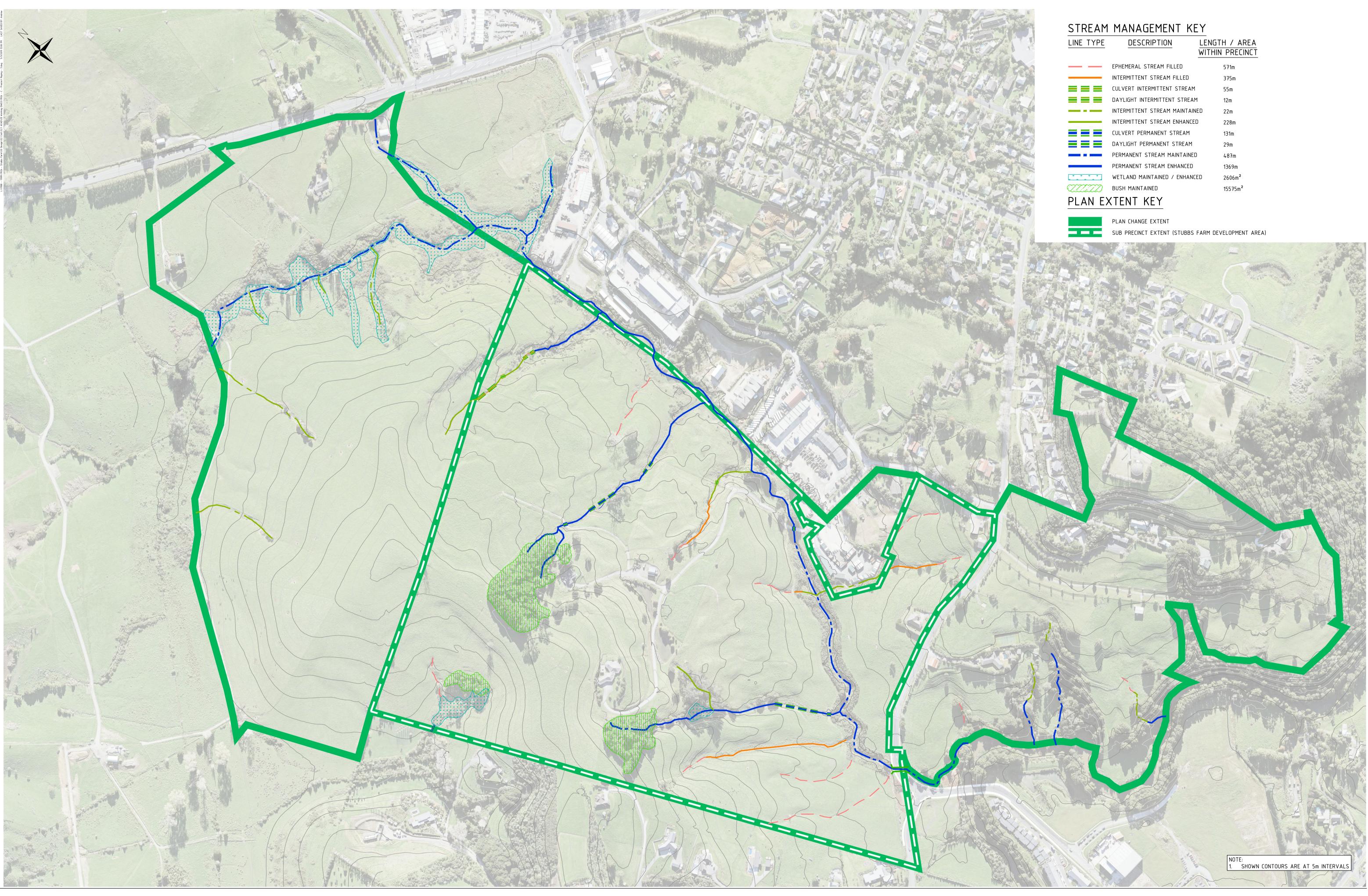
Forested areas digitised on GIS and areas calculated from an intersect with the subcatchments

Impervious Areas for urban areas assumed 60%. Where less an adjustment has been made based on a visual assessment of the aerial imagery.

Impervious areas for rural areas have been set at a minimum value of 5%. Where higher an adjustment has been made based on a visual assessment of the aerial imagery. Lawn areas and Pasture areas make up the remaining portions of the subcatchments. The proportions have been assumed based on a visual assessment.

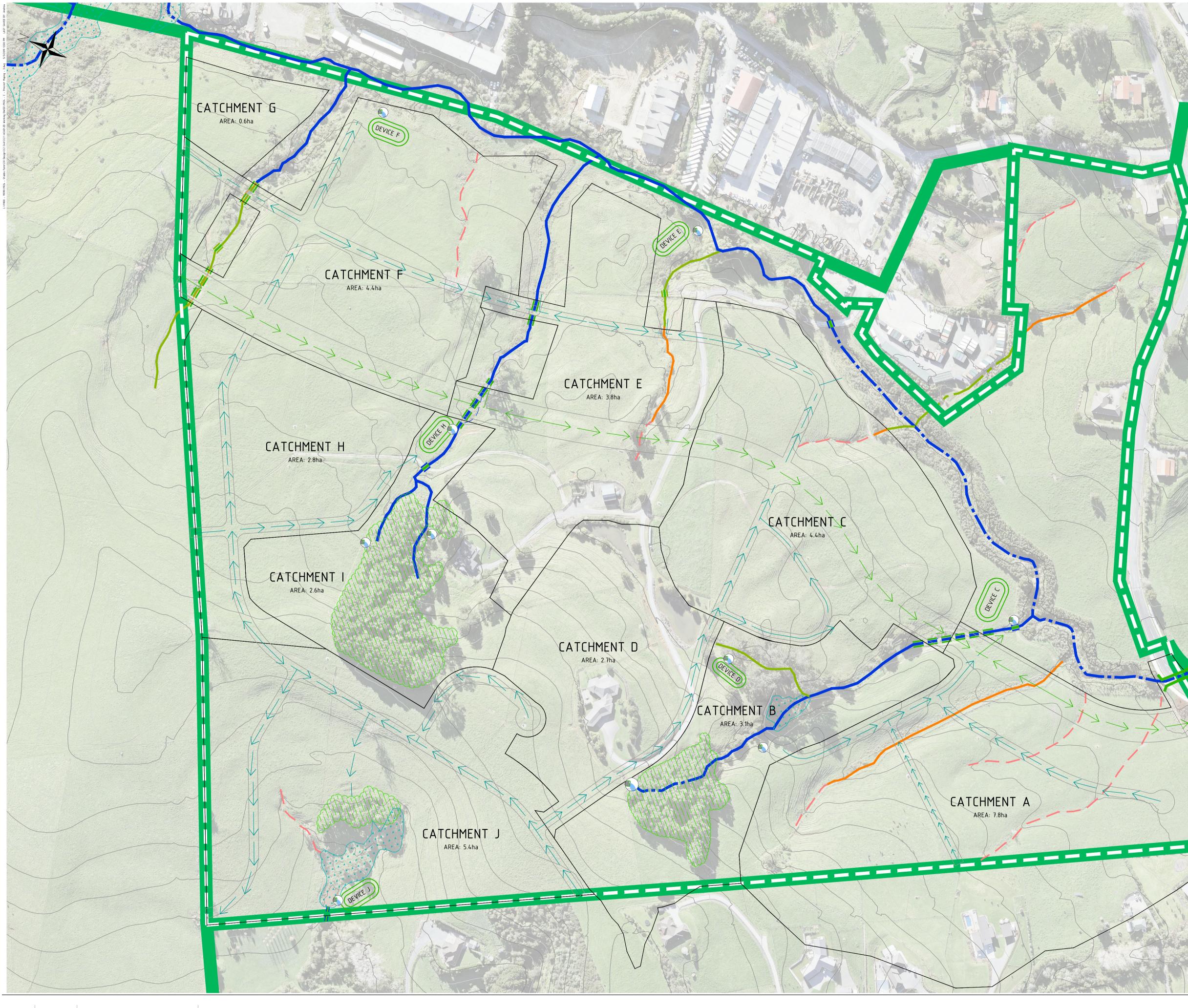

CHester

Hydraulic Model Results Summary


		100ED Q	100MPD Q							10ED Q	10MPD Q						
SECTION NO.	CHAINAGE	m³/s	m³/s	100ED WL	100MPD WL	± 100 year	100ED Width	100MPD Width	± 100 year	m³/s	m³/s	10ED WL	10MPD WL	± 10 year	10ED Width	10MPD Width	± 10 year
1	950.16	511.03	511.12	18.03	18.03	0	243.42	243.44	0.02	253.52	253.79	16.85	16.85	0	151.22	151.29	0.07
2a	138.12	71.64	74.88	18.08	18.08	0	48.87	48.85	-0.02	32.23	35.13	16.8	16.74	-0.06	22.10	18.66	-3.44
2b	162.71	71.64	74.88	18.44	18.46	0.02	65.54	65.86	0.32	32.23	35.13	17.86	17.92	0.06	55.46	56.55	1.09
3	511.93	70.64	73.83	19.76	19.8	0.04	40.37	40.81	0.44	32.02	34.55	19.05	19.13	0.08	26.11	28.72	2.61
4	740.21	70.64	73.83	21.48	21.53	0.05	26.60	26.94	0.34	32.02	34.55	20.84	20.9	0.06	22.43	22.79	0.36
5	981.92	69.34	72.39	22.71	22.77	0.06	32.17	32.72	0.55	31.8	33.71	21.93	21.99	0.06	23.19	23.65	0.46
6	1196.33	67	69.82	24.31	24.35	0.04	22.27	22.46	0.19	31.37	32.31	23.77	23.79	0.02	19.65	19.69	0.04
7	2184.82	60.89	60.87	33.65	33.65	0	57.52	57.52	0	20.72	28.8	33.25	33.25	0	49.17	49.20	0.03
8	2772.43	5.43	5.7	37.88	37.9	0.02	10.26	11.23	0.97	2.74	3.02	37.71	37.73	0.02	6.77	7.01	0.24

	Culvert Q	Weir Q		
Culvert Data	m³/s	m³/s	Velocity	US Elevation
100ED	22.1	49.54	2.21	18.41
100MPD	22.84	52.04	2.28	18.46
± 100 year	0.74	2.5	0.07	0.05
10ED	23.94	8.29	3.61	17.88
10MPD	24.8	10.33	3.65	17.94
± 10 year	0.86	2.04	0.04	0.06
100ED 90% Blocked	1.98	69.66	1.98	18.66
100MPD 90% Blocked	2.01	72.87	2.01	18.68
± 100 year	0.03	3.21	0.03	0.02

CHESTER



3	з	03.05.2019	BDY CHANGE (MASON)	A. SCHUNKE	Design:	NJ	Subject:	PROPOSED
	2	16.01.2019	SUB-PRECINCT EXTENT	N. JULL	Date:	16.10.2018	Client:	TURNSTON
	1	16.10.2018	TITLES UPDATED	N. JULL	Check:	SR	Address:	NORTH WA
R	EV	DATE	AMENDMENTS	CHECKED	Job No:	11875	Drawing Title:	PRECINCT

ED WARKWORTH NORTH PLAN CHANGE ONE CAPITAL LP – (WARKWORTH NORTH) WARKWORTH T PLAN 2: WARKWORTH NORTH SWCMP – STREAMS

Drawing No:	402				
Revision No:	2				
Scale:	1:2500 @ A1				
Issued for:	PLANNING				

chester.co.nz | chester.com.fj

3	03.05.2019	BDY CHANGE (MASON)	A. SCHUNKE	Design:	NJ	Subject:	PROPOSED
2	16.01.2019	SUB-PRECINCT EXTENT	N. JULL	Date:	16.10.2018	Client:	TURNSTON
1	16.10.2018	TITLES UPDATED	N. JULL	Check:	SR	Address:	NORTH WA
REV	DATE	AMENDMENTS	CHECKED	Job No:	11875	Drawing Title:	PRECINCT

ED WARKWORTH NORTH PLAN CHANGE ONE CAPITAL LP - (WARKWORTH NORTH) VARKWORTH

PLAN 2 - WARKWORTH NORTH SWCMP - Sub-precinct A (1 OF 2)

Drawing No:	403					
Revision No:	2					
Scale:	1:1500 @ A1					
lssued for:	PLANNING					

3	
500 @ A1	CHES
	chester.co.nz che

7	124	
	Drawing No:	403
	Revision No:	2
	Scale:	1:1500 @ A1

-/5				
				Mar All
				and general A
			N EST	
			-termine -	
			0000	1 2
				· mall
		A A AM		
	A Chine I	CALL T PAR		
Drawing No:	403			
Revision No:	2		He	7
Scale:	1:1500 @ A1			

NOTE: CATCHMENTS B, G AND I WILL HAVE FULL AT SOURCE FLOW CONTROL AND DISCHARGE DIRECTLY TO THE STREAM WITH COMPLIANT EROSION CONTROL.

 \rightarrow - \longrightarrow -

INDICATIVE RETICULATED STORMWATER OUTFALL LOCATION INDICATIVE DRY BASIN LOCATION (DEVICE NAME CORRESPONDS WITH CATCHMENT)

INDICATIVE ROAD WITH FULL QUALITY TREATMENT / SECONDARY FLOW CONVEYANCE INDICATIVE ROAD WITH PARTIAL QUALITY TREATMENT / SECONDARY FLOW CONVEYANCE

------ STORMWATER SUB-CATCHMENT

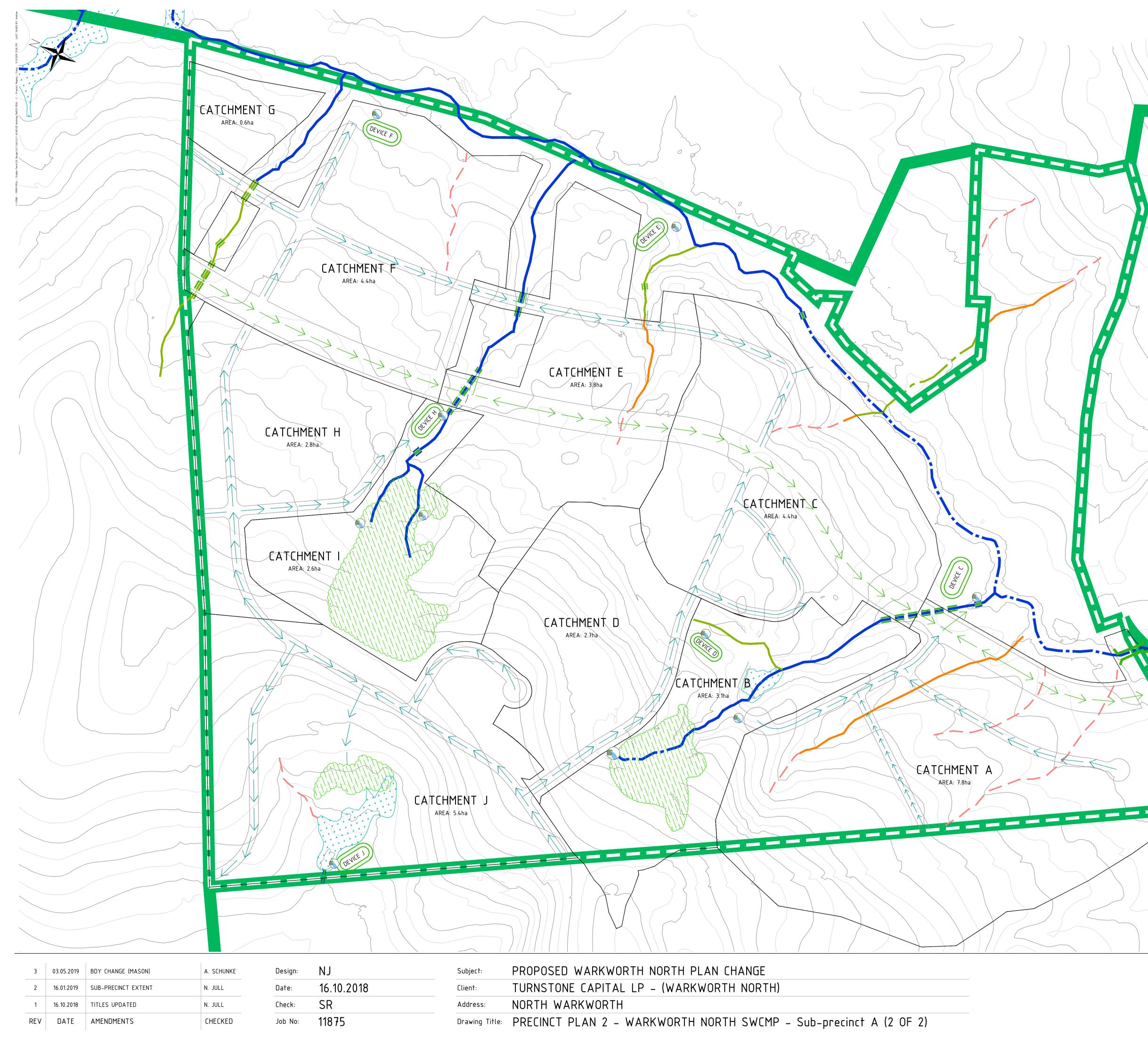
STORMWATER MANAGEMENT KEY

SUB PRECINCT EXTENT (STUBBS FARM DEVELOPMENT AREA)

LINE TYPE

PLAN CHANGE EXTENT

* * * * * BUSH MAINTAINED PLAN EXTENT KEY


EPHEMERAL STREAM FILLED INTERMITTENT STREAM FILLED CULVERT INTERMITTENT STREAM DAYLIGHT INTERMITTENT STREAM INTERMITTENT STREAM MAINTAINED INTERMITTENT STREAM ENHANCED CULVERT PERMANENT STREAM DAYLIGHT PERMANENT STREAM PERMANENT STREAM MAINTAINED PERMANENT STREAM ENHANCED WETLAND MAINTAINED / ENHANCED

STREAM MANAGEMENT KEY

DESCRIPTION

WITHIN PRECINCT 571m 375m 55m 12m 22m 228m 131m 29m 487m 1369m 2606m² 15575m²

LENGTH / AREA

Drawing No:	404
Revision No:	2
Scale:	1:1500 @ A1
Issued for:	PLANNING

		7		
				~
DEVICE A				S
				/
	\mathcal{N}			
		NOTE: 1. SHOWN CC	DNTOURS ARE AT 5m INTER	
Drawing No: 404				
Revision No: 2			STA	

CATCHMENTS B, G AND I WILL HAVE FULL AT SOURCE FLOW CONTROL AND DISCHARGE DIRECTLY TO THE STREAM WITH COMPLIANT EROSION CONTROL.

INDICATIVE DRY BASIN LOCATION (DEVICE NAME CORRESPONDS WITH CATCHMENT) NOTE:

STORMWATER MANAGEMENT KEY

LINE TYPE

* * * * *

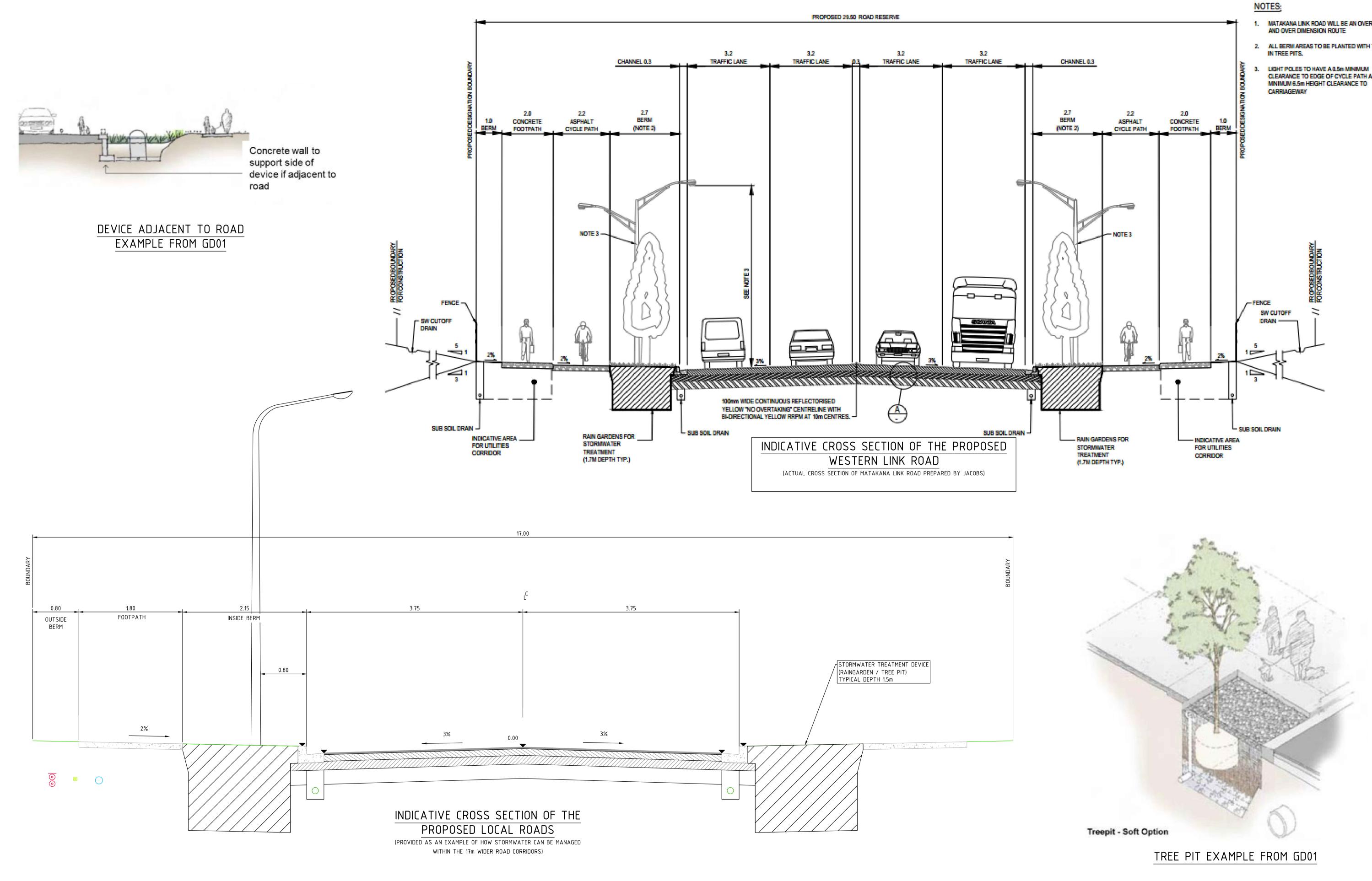
CTTTTT

INDICATIVE RETICULATED STORMWATER OUTFALL LOCATION

————— STORMWATER SUB-CATCHMENT INDICATIVE ROAD WITH FULL QUALITY TREATMENT / SECONDARY FLOW CONVEYANCE INDICATIVE ROAD WITH PARTIAL QUALITY TREATMENT / SECONDARY FLOW CONVEYANCE

INTERMITTENT STREAM FILLED CULVERT INTERMITTENT STREAM DAYLIGHT INTERMITTENT STREAM INTERMITTENT STREAM MAINTAINED INTERMITTENT STREAM ENHANCED CULVERT PERMANENT STREAM 💻 💻 📃 DAYLIGHT PERMANENT STREAM PERMANENT STREAM MAINTAINED PERMANENT STREAM ENHANCED WETLAND MAINTAINED / ENHANCED BUSH MAINTAINED PLAN EXTENT KEY

SUB PRECINCT EXTENT (STUBBS FARM DEVELOPMENT AREA)


PLAN CHANGE EXTENT

DESCRIPTION

EPHEMERAL STREAM FILLED

571m 375m 55m 12m 22m 228m 131m 29m 487m 1369m 2606m² 15575m²

STREAM MANAGEMENT KEY LENGTH / AREA WITHIN PRECINCT

3	03.05.2019	BDY CHANGE (MASON)	A. SCHUNKE	Design:	NJ	Subject:	PROPOSED
2	16.01.2019	SUB-PRECINCT EXTENT	N. JULL	Date:	16.10.2018	Client:	TURNSTON
1	16.10.2018	TITLES UPDATED	N. JULL	Check:	SR	Address:	NORTH WA
REV	DATE	AMENDMENTS	CHECKED	Job No:	11875	Drawing Title:	PRECINCT

ED WARKWORTH NORTH PLAN CHANGE ONE CAPITAL LP - (WARKWORTH NORTH)

VARKWORTH

PLAN 3 - ROAD SECTIONS AND ROAD STORMWATER MANAGMENT

Drawing No:	405
Revision No:	2
Scale:	NTS
Issued for:	PLANNING

- MATAKANA LINK ROAD WILL BE AN OVERWEIGHT
- 2. ALL BERM AREAS TO BE PLANTED WITH TREES
- CLEARANCE TO EDGE OF CYCLE PATH AND MINIMUM 6.5m HEIGHT CLEARANCE TO

15 June 2017

Healthy Waters Auckland Council Private Bag 92300 Auckland 1142

Dear Sir or Madam,

Subject: Further information requested under clause 23 First Schedule of the Resource Management Act 1991

The following information is provided in response to the clause 23 request received on the 30 April 2018.

Appendix 2:

14

Confirm the flood modelling undertaken by Chesters is consistent with the Mahurangi Catchment 2017 model outputs prepared by Council.

The flood modelling undertaken by Chester was prepared for the purposes of developing the structure plan in the absence of detailed model results from Auckland Council, which were not available when the project commenced. Chester's model results have been discussed with Ken Tomkins and Kevin Fan of Healthy Waters and it was accepted that the outputs were comparable with Council's Mahurangi Catchment model.

Chester confirms that the applicant is willing to adopt the results and outputs of the Mahurangi Catchment modelling completed by Auckland Council in 2017 (flood extents, modelled peak flows etc.) for subsequent design and consenting purposes.

Appendix 3: Advisory Notes

#36

There is an updated flood model available from council for the Mahurangi Catchment. (Mahurangi Catchment 2017). An offer was made to the applicant last year to access this model to inform their SMP.

As above, the project team will adopt the recent modelling data supplied by Healthy Waters for all subsequent design and consenting purposes.

#47

Provide an assessment of the impact of post-development flood flows in Stubbs Stream on the frequency (if any) of stormwater overtopping of Falls Road for up to a 10 year storm event.

Following a meeting between Healthy Waters and Chester personnel it was agreed that Chester would update their existing hydrological model to assess the differences between the existing development (ED) and maximum probable development (MPD) scenario for the Stubbs Stream Catchment, including an assessment of the effects of peak flow mitigation measures applied to sub-catchments within the Structure Plan area. The 2 year, 5 year, 10 year and 20 year annual recurrence interval rainfall events were assessed.

Healthy Waters provided time series flow extracts from the wider Mahurangi Catchment model, to account for the spill from the Mahurangi River Catchment into the Stubbs Farm Stream catchment. The time series input was included in the Chester Hydrological model as a manual discharge gauge input.

The outputs from the hydrological model are summarised in Table 1.

In all cases the MPD peak flows are significantly larger than the corresponding peak flows from the ED scenario, due to the combined effect of increased rainfall due to climate change and increased impervious coverage in the catchment.

Model Scenario	Peak Flow (m³/s)	Time
2yr ARI ED	14.41	12:43
2yr ARI MPD	20.86	12:43
2yr ARI MPD with Mitigation	21.11	12:29
5yr ARI ED	21.63	12:53
5yr ARI MPD	31	12:37
5yr ARI MPD with Mitigation	30.06	12:30
10yr ARI ED	27.52	12:47
10yr ARI MPD	39.26	14:59
10yr ARI MPD with Mitigation	39.31	14:59
20yr ARI ED	35.37	15:06
20yr ARI MPD	53.47	14:48
20yr ARI MPD with Mitigation	53.47	14:48

Table 1: Peak Flow Comparisons Upstream of Falls Road Bridge

The peak flow hydrograph at the Falls Road Bridge displays a distinctive double peak in all the modelled scenarios, the peak flow hydrograph for the 10 year ARI event is depicted in Figure 1. The first peak arriving at the falls road bridge corresponds to flows from the Stubbs Farm Structure Plan area and from catchments to the north east of State Highway 1 which also contribute to Stubbs Farm Stream. The second peak occurs much later and corresponds to flows spilling from the much larger Mahurangi River Catchment. The peak from the Mahurangi River Catchment is delayed due to the size of the contributing catchments and extended time of concentration.

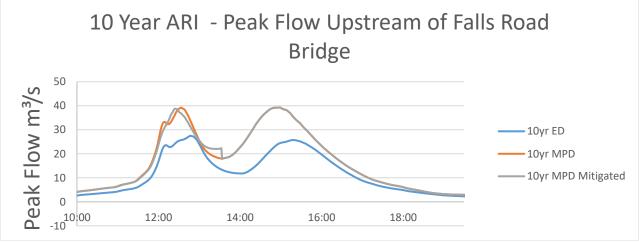


Figure 1: Peak Flow Hydrograph Upstream of Falls Road Bridge for 10 Year ARI

The maximum peak flow of the smaller rainfall events (2 year and 5 year ARI) is dictated by flows from the Stubbs Farm Stream Catchment, where the magnitude of flows spilling from the Mahurangi River Catchment is less. In the 10 and 20 year ARI events the maximum peak flow is dictated by the large volume of water spilling from the Mahurangi River Catchment.

Falls Road Bridge

A model of the Falls Road Bridge was built using the Federal Highway Administration's HY8 culvert analysis software in order to estimate the capacity of the bridge and the frequency of overtopping events.

A summary of the bridge/culvert analysis results are provided in Table 2.

The estimated capacity of the falls road bridge before overtopping is 23.13 m³/s. Utilising this capacity and the peak discharge rates from Chester's Hydrological model provided in Table 1 it is predicted that the falls road bridge has sufficient capacity to convey flows from the 2 year ED and MPD storms and the 5 year ED storm. For all other modelled storms exceeding the 5 year ED storm the Falls Road Bridge is expected to overtop.

Table 2: Summary of HY8 bridge/culvert analysis.

Model Scenario	Peak Flow (m³/s)	Time	Headwater Elevation (m)	Culvert Discharge (m³/s)	Roadway Discharge (m³/s)
2yr ARI ED	14.41	12:43	16.54	14.41	0
2yr ARI MPD	20.86	12:43	16.97	20.86	0
2yr ARI MPD with Mitigation	21.11	12:29	16.99	21.11	0
5yr ARI ED	21.63	12:53	17.02	21.63	0
5yr ARI MPD	31	12:37	17.36	26.63	4.36
5yr ARI MPD with Mitigation	30.06	12:30	17.34	26.37	3.68
10yr ARI ED	27.52	12:47	17.28	25.54	1.97
10yr ARI MPD	39.26	14:59	17.49	28.46	10.79
10yr ARI MPD with Mitigation	39.31	14:59	17.49	28.46	10.82
20yr ARI ED	35.37	15:06	17.43	27.68	7.68
20yr ARI MPD	53.47	14:48	17.65	30.64	22.82
20yr ARI MPD with Mitigation	53.47	14:48	17.65	30.64	22.82

Hydrological Mitigation within the Stubbs Farm Development Area

Mitigation was assessed in the updated Chester Hydrological model by limiting the post development discharge from each sub-catchment in the model to never exceed pre-development levels using a storage-discharge restriction. The effect of hydrology on the peak flows upstream of Falls Road Bridge was variable across the 4 rainfall events modelled.

When applied to the 2 year rainfall event, mitigation measures resulted in an increased peak flow upstream of the Falls Road Bridge. Hydrological mitigation detains peak flows for an extended period, decreasing the magnitude but increasing the duration of the peak. The model results for the 2 year storm scenario suggest that despite the reduction in peak flows, the increased duration allows for the peaks from a larger number of sub-catchments to coincide resulting in a slight increase in flow upstream of the Stubbs Farm Bridge.

When applied to the 5 year rainfall event, mitigation measures resulted in a slight decrease in peak flow upstream of the Falls Road Bridge approximately 3%.

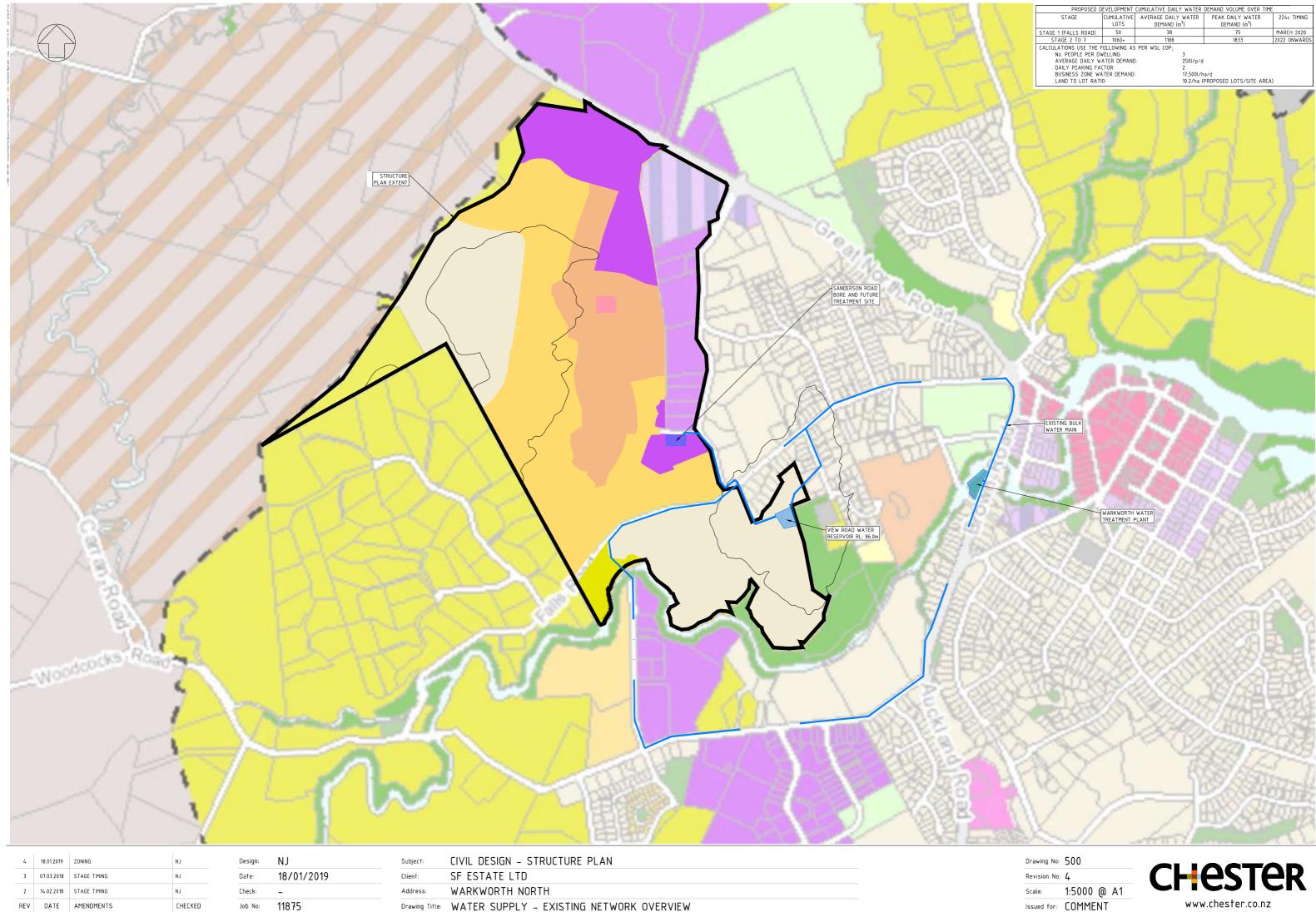
When applied to the 10 year and 20 year rainfall events, mitigation measures have a negligible effect as MPD flows through the Stubbs Farm Stream are dictated by flows from the Mahurangi River.

Runoff hydrographs from each of the modelled storm events are appended to this document.

Based on the results of the assessment undertaken it is our opinion that peak flow mitigation within the Stubbs Farm Development Area has limited potential to reduce peak flows upstream of the Falls Road Bridge and in some storm events may actually increase peak flows at the Falls Road Bridge by extending the duration of peak flows allowing for peak flows from a larger number of sub-catchments to coincide. We would not recommend that peak flow mitigation be a condition of development within the Stubbs Farm Development Area.

We trust that the information provided is sufficient to satisfy the request for information.

Warm regards,


Jordan Curtis Civil Engineer

APPENDIX D: WATER SUPPLY SERVICING PLAN

019	ZONING	LN	Design:	NJ	Subject:	CIVIL DESIGN – STRUCTURE PLAN
2018	STAGE TIMING	LN	Date:	18/01/2019	Client:	SF ESTATE LTD
2018	STAGE TIMING	LN	Check:	-	Address:	WARKWORTH NORTH
E	AMENDMENTS	CHECKED	Job No:	11875	Drawing Title:	WATER SUPPLY - EXISTING NETWORK OVERVIEW

Issued for: COMMENT